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SEMI-INFINITE LINEAR REGRESSION AND ITS APPLICATIONS∗
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Abstract. Finite linear least squares is one of the core problems of numerical linear algebra,
with countless applications across science and engineering. Consequently, there is a rich and ongo-
ing literature on algorithms for solving linear least squares problems. In this paper, we explore a
variant in which the system’s matrix has one infinite dimension (i.e., it is a quasimatrix). We call
such problems semi-infinite linear regression problems. As we show, the semi-infinite case arises in
several applications, such as supervised learning and function approximation, and allows for novel
interpretations of existing algorithms. We explore semi-infinite linear regression rigorously and algo-
rithmically. To that end, we give a formal framework for working with quasimatrices, and generalize
several algorithms designed for the finite problem to the infinite case. Finally, we suggest the use of
various sampling methods for obtaining an approximate solution.
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1. Introduction. Consider the classical linear least squares problem: given an
m× n matrix A, and a vector b, we seek to compute

x⋆ = arg min
x∈Rn

∥Ax− b∥2 .(1.1)

The problem of solving (1.1) is one of the most fundamental problems of numerical
linear algebra, and it has countless applications throughout scientific computing and
data science. As such, there is a rich literature on algorithms for solving (1.1). In
particular, there are algorithms that: compute an approximate solution [16], com-
pute a near exact solution [38, 5, 28], are designed for the overdetermined case [5],
designed for the underdetermined case [28], consider also the presence of a regularizer
[2, 36], and replace the two-norm with some other norm [10]. The previous list is far
from exhaustive. Finding efficient algorithms for solving (1.1) is an active research
field.

In this paper, we explore a variant of (1.1) in which A is no longer a matrix, but
a quasimatrix, that is a matrix in which one of the two dimensions is infinite (while
the other dimension is finite). We call such problems semi-infinite linear regression.
As we show, the semi-infinite case arises in several applications, such as supervised
learning and function approximation, and allows for novel interpretations of existing
algorithms. In contrast to the rich literature on the finite (i.e., matrix) variant of (1.1),
the semi-infinite case has hardly been treated in the literature (the only exception we
are aware of is [44]).

The goal of this paper is to explore semi-infinite linear regression rigorously and
algorithmically. To that end, we first define the notion of quasimatrix formally, and
give the needed framework for working with quasimatrices, both mathematically and
algorithmically. The use of the term “quasimatrix” as a matrix which has columns
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480 PAZ FINK SHUSTIN AND HAIM AVRON

or rows that are functions first appears in the literature in [41, 44], but has so far
been informal. Once we have the mathematical foundations, we define semi-infinite
regression formally, and discuss applications.

We then proceed to proposing algorithms for solving semi-infinite linear regres-
sion problems. First, we discuss direct methods, which factorize a quasimatrix A
into a product of quasimatrices. Even though most of the algorithms we present
are straightforward generalizations of classical methods for finite linear least squares
problems, we also show how in some cases the use of quasimatrix operations can be
sidestepped.

Next, we discuss iterative methods. It is possible to devise a wide array of iterative
methods for solving semi-infinite linear regression by generalizing iterative methods
for the finite case. However, for conciseness we show a representative algorithm from
each of the two approaches: Krylov subspace methods and stochastic optimization.
For Krylov methods, we show how LSMR [18] can be generalized to solve semi-infinite
linear regression. For stochastic optimization, we adapt a method based on stochastic
variance reduce gradient (SVRG) [23, 48]. Unlike LSMR, the adaptation of SVRG is
less straightforward, and requires generalizing it to work with integrable sums.

Motivated by recent literature on randomized numerical linear algebra
(RandNLA), we discuss algorithms that are based on sampling the semi-infinite lin-
ear regression problem. We discuss both randomized sampling and deterministic
sampling. For randomized sampling, we discuss a sampling technique which we term
as natural sampling. Conceptually, natural sampling is analogous to uniformly sam-
pling rows or columns from A when dealing with finite linear least squares problems,
though for semi-infinite linear regression problems, uniform sampling is not always
well defined. It is well known from the RandNLA literature that it is better to sample
based on the so-called leverage scores. For quasimatrices, the analogous operation
is sampling using the leverage function, a generalization of leverage scores. Similar
results have been shown before for restricted cases [3, 12, 4]. We also propose a deter-
ministic sampling method based on Gauss–Legendre quadrature. Interestingly, this
method does not have any finite analogue.

Most of the methods we present are based on existing algorithms for the finite lin-
ear least squares case to some degree (the only exception is the quadrature sampling).
The main contribution of the paper is in the rigorous and systematic treatment of the
subject. We hope that our systematic treatment of semi-infinite linear regression will
spur additional interest and research on this problem.

2. Quasimatrices. The term quasimatrix appears in the literature as a name for
matrices in which one of their dimensions is infinite [41]. The term was later adapted
by the chebfun library [8],1 and a variety of papers related to that package, and
other literature, use it, e.g., [44, 31, 33, 25, 22]. In previous literature, quasimatrices
were defined and treated informally as matrices which have columns or rows that
are functions. For our purposes, a more formal treatment is needed, and we provide
it here. Our approach is in many ways similar to the one taken by [15] to define
fundamental notions such as rank and basis as ones derived from linear maps in
which the domain is finite dimensional vectors.

Notations and basic terminology. For an integer n, we denote [n] = {1, . . . , n}.
Scalars are denoted by lowercase Greek letters or by x, y, . . . . Given two Banach
spaces, X and Y, we denote by B(X ,Y) the Banach space of bounded linear operators

1See http://www.chebfun.org/docs/guide/guide06.html
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SILR AND ITS APPLICATIONS 481

from X to Y. Given a Banach space X , X ∗ denotes the topological dual space of X ,
i.e., the space of continuous linear functionals from X to R or C. So, X ∗ = B(X ,R)
or X ∗ = B(X ,C) (depending on the context). Vectors are denoted by x,y, . . . and
considered as column vectors (unless otherwise stated), and matrices are denoted by
A,B, . . . or uppercase Greek letters. Quasimatrices are denoted by x,y, . . . if they
are lying in a Hilbert space and otherwise by A,B, . . . (defined later in this paper).
For a vector x or a matrix A, the notation x∗ or A∗ denotes the Hermitian transpose.
The n × n identity matrix is denoted by In. We use e1, e2, . . . to denote the unit
vectors and assume that their dimensions are clear from the context. All vectors are
considered as column vectors, which can be of finite or infinite dimension.

We use L2(Ω, dµ) to denote the space of complex-valued square integrable func-
tions over Ω with respect to the measure µ, i.e., the inner product in L2(Ω, dµ) is

(f ,g)L2(Ω,dµ) :=

∫
Ω

f(η)g(η)dµ(η) .

2.1. Quasimatrix algebra. Amatrix is a mapping from two indexes to a scalar.
Alternatively, a matrix can be viewed as mapping from a finite index set to finite di-
mensional vectors, where the index set is either the column index or the row index. For
a quasimatrix we drop the condition that the mapped vectors are finite dimensional,
and instead require them to be from a Hilbert space.

Definition 1. Let n be a positive integer and let H be a Hilbert space over R or
C. A tall quasimatrix is a mapping from [n] to H. A wide quasimatrix is a mapping
from [n] to H∗.

We generally omit the adjectives tall and wide when the text refers to both types,
or when the relevant type is clear from the context. We say the size of a tall quasima-
trix is m× n if m is the dimension of the Hilbert space H. We generally write ∞× n
if H has infinite dimension. A similar notion of size applies for wide quasimatrices.
To avoid clutter, henceforth we assume that H is defined over C, and leave for the
reader to deduce how some of the description is somewhat simplified for the real case.

For a tall quasimatrix A, we refer to the values at the various indexes as the
columns of the quasimatrix. We use the following notation

A =
[
a1 · · · an

]
to denote the tall quasimatrix A which maps j ∈ [n] to aj , where a1, . . . ,an ∈ H.

Let b1, . . . ,bm ∈ H, and b∗
1, . . . ,b

∗
m ∈ H∗ their adjoints. We denote

B =

 b∗
1
...

b∗
m


for the wide quasimatrix B which maps j ∈ [m] to b∗

j . If a wide quasimatrix B maps
j to x ∈ H∗, the Riesz representation theorem implies that there exists a b ∈ H
such that x = b∗, so every wide quasimatrix can be written in this way. For a wide
quasimatrix B, we refer to the adjoints of the values at the indexes as the rows of
the quasimatrix. Note that both the columns of a tall quasimatrix, and the rows of a
wide quasimatrix, are vectors in H.

In the rest of section 2, A is a tall quasimatrix with columns a1, . . . ,an, and B
is a wide quasimatrix with rows b∗

1, . . . ,b
∗
m.
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482 PAZ FINK SHUSTIN AND HAIM AVRON

The conjugate transpose of a tall quasimatrix A is the wide quasimatrix B whose
coordinates are the adjoints of the corresponding coordinates of A. The conjugate
transpose of a wide quasimatrix B is the tall quasimatrix A whose coordinates are
the adjoints of the corresponding coordinates of B, which corresponds to removing
the adjoints. These definitions are consistent with the notations above.

Given a tall quasimatrix A and a vector x ∈ Cn, we define the product of A and
x as Ax =

∑n
j=1 xjaj . This definition naturally extends to the definition of a product

AX, where X ∈ Cn×k is the tall quasimatrix whose columns are Ax1, . . .Axk (where
x1, . . . ,xn are the columns of X). Given a wide quasimatrix B and an x ∈ H we
define

Bx =

 b∗
1x
...

b∗
mx

 .

This definition naturally extends to the definition of a product of B and A as the
m× n matrix whose columns are Ba1, . . .Ban.

We now define the left product. Given a tall quasimatrix A and a vector x ∈ H,
we define x∗A = (A∗x)∗. This definition is consistent with viewing x∗ as a 1 ×∞
quasimatrix, and the previous definition of BA. Similarly, x∗B = (B∗x)∗ for x ∈ Rm.
These definitions naturally extend to the left product of a matrix and a quasimatrix.
The product algebra we have defined over matrices and quasimatrices is associative
(but, of course, not commutative).

It is well known that an m× n complex matrix is, in fact, a coordinate represen-
tation of a linear transformation from Cn to Cm under the standard basis, and that
choosing a different basis leads to a different matrix (coordinate) representation. Sim-
ilarly to finite matrices, quasimatrices define bounded linear transformations between
finite dimensional Euclidean spaces and H. Concretely, for a tall quasimatrix A, we
can define the transformation A : x ∈ Cn 7→ Ax ∈ H. Conversely, given a bounded
linear transformation A : Cn → H, for the tall quasimatrix A = [Ae1 · · · Aen], the
corresponding linear transformation is A. Thus, we can abuse notation and use A to
denote both the quasimatrix and the linear transformation it defines. Likewise, every
wide quasimatrix B defines a bounded linear transformation B : x ∈ H 7→ Bx ∈ Rm,
likewise abusing notation (this is well justified by the Riesz representation theorem).
Taking the conjugate transpose of a tall or wide quasimatrix produces a quasimatrix
which represents the adjoint of the transformation defined by the original quasimatrix,
thus our notation is consistent with that operation as well.

Similarly to the finite dimensional matrix case, the extended product algebra
over matrices and quasimatrices is consistent with composition in the transformation
spaces. That is, given two matrices or quasimatricesX andY, with sizes or underlying
Hilbert space such that the product XY is defined, the transformation defined by
XY (which is a matrix or a quasimatrix) is exactly the same as the transformation
obtained by X composed with Y. However, we remark that if X is a tall quasimatrix
and Y is a wide quasimatrix, then we can certainly define the transformation from
H to H by composing X with Y, but that transformation is not represented by a
quasimatrix.

We have defined columns of a tall quasimatrix and rows of a wide quasimatrix.
Defining the rows of a tall quasimatrix or the columns of a wide quasimatrix is less
straightforward, and in some senses impossible. Intuitively, if H is a space of functions
over some index set Ω ⊆ Rn, then row η of a tall quasimatrix is simply the evaluation
of the columns at a location η ∈ Ω (and likewise for wide quasimatrices). However,
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SILR AND ITS APPLICATIONS 483

requiring H to be a space of functions is somewhat restrictive. In particular, note
that L2 spaces are, strictly speaking, spaces of equivalence classes of functions, and
pointwise evaluation is not really well defined.

However, note that if H is a reproducing kernel Hilbert space (RKHS), then we
can define the notion of rows (or columns) of a tall (wide) quasimatrix in a way that
is consistent with the use of identity vectors in finite matrices. If H is an RKHS over
Rd then for every η ∈ Rd the pointwise evaluation f ∈ H 7→ f(η) is a bounded linear
transformation. Thus, there is a unique eη ∈ H such that for every f ∈ H we have
e∗ηf = f(η). Thus, we define row η of an ∞× n quasimatrix A over an RKHS H as
e∗ηA ∈ R1×n. For an m×∞ quasimatrix B, column η is defined as Beη.

Many notions related to matrices can be easily generalized to quasimatrices. For
example, the rank is the dimension of space spanned by the columns (rows) of a tall
(wide) quasimatrix. Obviously, the rank cannot be larger then the size of the finite
dimension, and similar properties of matrix rank can be shown for quasimatrix rank.

2.2. Numerical computing with quasimatrices. In subsequent sections, we
describe algorithms that “operate” on quasimatrices and functions. Such algorithms
assume a model of computation in which functions are primitive types, and certain
operations between functions are allowed (e.g., taking the integral of a function).
Of course, such computations are not supported in hardware by general purpose
computing machines. However, the software package chebfun2 does provide this
abstraction in software [8]. Thus, we refer to this model of computation as the chebfun
model.

In numerical computing, it is customary to regard floating-point operations
(FLOPs) as the costly operations, and thus runtime analysis focuses on counting
FLOPs. In the chebfun model, arguably the costly operations are operations on
functions. Thus, when analyzing algorithms in the chebfun model we count function
operations (FUNOPs).

Specifically, we assume the following operations are supported, each costing one
FUNOP: multiplying a function by a scalar, adding or subtracting two functions,
evaluating a function at a point, and taking the inner product of two functions,

Of course, wherever possible we attempt to describe algorithms that operate under
the standard model of computation (no FUNOPs). Such algorithms usually require
additional assumptions on the quasimatrices involved.

2.3. Coordinate representation of quasimatrices over L2 spaces. As ex-
plained in the previous sections, the rows of a tall quasimatrix or the columns of a
quasimatrix cannot be defined for quasimatrices over L2 spaces. For most algorithms
we describe that use the chebfun model this is not an issue. However, when we discuss
algorithms that perform sampling and operate in the standard model, we need access
to rows/columns so they can be sampled. In such cases we need to assume that the
algorithm, when applied to quasimatrices over L2, has additional information in the
form of a coordinate representation of the quasimatrix it operates on.

Definition 2. Suppose A is a quasimatrix over L2(Ω, dµ) whose finite dimension
is n. A coordinate representation of A is a function z : Ω→ Cn such that∫

Ω

∥z(η)∥22dµ(η) <∞

and

2http://www.chebfun.org/
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484 PAZ FINK SHUSTIN AND HAIM AVRON

1. if A is tall, for every x ∈ Cn,

Ax =

n∑
i=1

xiz(·)i,

where the above equality should be interpreted in the L2(Ω, dµ) sense and z(η)i
is coordinate i of z(η) (for η ∈ Ω);

2. if A is wide, for every x ∈ L2(Ω, dµ) and j ∈ [n],

e∗jAx = (z(·)j ,x)L2(Ω,dµ).

The definition implies that if z is a coordinate representation of A then it is also a
coordinate representation of A∗. Essentially, for a tall quasimatrix with a coordinate
representation z, column i is z(·)i, and for a wide quasimatrix with a coordinate

representation z, row i is z(·)i
∗
. If the quasimatrix is defined over L2(Ω, dµ), we say

that Ω is the index set of the infinite dimension. We now say that for an index η ∈ Ω,
row η of a tall quasimatrix with coordinate representation z is z(η)∗, and column η
of a wide quasimatrix with coordinate representation z is z(η).

Note that the definition also implies the following. For A we have

A∗A =


(zA(·)1, zA(·)1)L2(Ω,dµ) . . . (zA(·)1, zA(·)n)L2(Ω,dµ)

... . . .
...

(zA(·)n, zA(·)1)L2(Ω,dµ) . . . (zA(·)n, zA(·)n)L2(Ω,dµ)

 =

∫
Ω
zA(η)zA(η)∗dµ(η)

and similarly for the product BB∗.

2.4. Quasimatrix factorizations. Matrix factorizations such as QR and SVD
are used to define direct methods for solving linear regression problems (and more
generally, in matrix analysis at large). Thus, it is nosurprising that they can be used
to solve semi-infinite linear regression problems as well, as was already noted in [44].
Various quasimatrix factorizations are already mentioned in [45, 8, 44], and are further
developed in [43]. They can be formulated in our formal quasimatrix framework
(previous aforementioned works used quasimatrices in an informal manner). In Table 1
we detail a few key quasimatrix factorizations of a tall quasimatrix A. Factorizations
for a wide quasimatrix B can be obtained by taking the conjugate transpose of a
factorization of B∗. We also detail in Table 1 the FUNOPs cost of forming the
various quasimatrix factorizations.

Using the SVD factorization, we define the condition number of a quasimatrix to
be κ(A) := σ1/σn, where Σ = diag (σ1, . . . , σn) in the SVD factorization.

3. Semi-infinite linear regression: Problem statement and examples.
In this paper, we are mainly concerned with the solution of regularized linear least
squares regression problems with quasimatrices. We specifically consider ridge regu-
larization (also called Tikhonov regularization). We call such problems semi-infinite
linear regression (SILR). Both the overdetermined case and the underdetermined case
are considered. In the overdetermined case, we are given an ∞× n quasimatrix A
over H, a target b ∈ H, and a regularization parameter λ ≥ 0. The goal of SILR is
to find x ∈ Cn such that

∥Ax− b∥2H + λ∥x∥22 = minimum.(3.1)

In the underdetermined case, we are given an n×∞ quasimatrix A over H, a target
b ∈ Cn, and a regularization parameter λ ≥ 0. Our goal is to find an x ∈ H such that

∥Ax− b∥22 + λ∥x∥2H = minimum.(3.2)
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Table 1
Factorizations of a tall Quasimatrix A with n columns over H.

Factorization form Reference FUNOPs in the
chebfun model

Reduce QR

using Gram–

Schmidt

A = QR

Q ∈ R∞×n, Q∗Q = In
R ∈ Rn×n upper diagonal

Rij =

{
(ai, aj)H j ≥ i

0 j < i

- n(n+ 1)

Reduce QR

using

Householder

triangulation

A = QR

Q = H1H2 · · ·HnES

H1, . . . ,Hn ∈ B(H,H) Householder
reflectors

E =
[

eH
1 eH

2 . . . eH
n

]
∈ R∞×n

eH
1 , eH

2 , . . . predetermined sequence of
orthonormal vectors in H.

S ∈ Rn×n diagonal sign matrix

R ∈ Rn×n upper diagonal

Rij = (eH
i , aj)H

[44] 3n(3n−1)/2+6n

SVD A = UΣV∗

U ∈ R∞×n, U∗U = In
V ∈ Rn×n, V∗V = In

Σ ∈ Rn×n nonnegative diagonal matrix

[8, 7, 26, 24,
25, 44]

QR cost +
(2n− 1)n

For simplicity, in both cases we either assume that A has full rank or that λ > 0.
This makes the solution unique, and we always denote it by x⋆.

We now give examples in which SILR is involved. We focus on cases where SILR
is solved approximately by sampling the quasimatrix in order to turn the problem
into regular finite linear regression problem.

3.1. Least squares approximation of a function. Suppose we are given a
function f ∈ H = L2([−1, 1], dλ) (or any other Hilbert space), and a finite dimensional
subspace V of H (e.g., the space of polynomials up to a certain degree). We want to
find the optimal approximation (in the H sense) of f in V, which we denote by fV .
Denote by n the dimension of V, and let v1, . . . ,vn be a basis for V. Define the∞×n
quasimatrix A = [ v1 · · · vn ]. Then, fV = Ax⋆, where

x⋆ = arg min
x∈Rn

∥Ax− f∥2H .(3.3)

A closely related problem is the problem of reconstructing an unknown function f
on a domain X from samples at randomly chosen points [11]. In this problem setting
we are given yi = f(xi) + ϵi at m given data points x1, . . . ,xm sampled independent
and identically distributed (i.i.d) from some distribution ρ on X (we do not assume
we have an explicit formula for ρ, or that we can produce additional samples; we only
assume such a distribution exists). The scalars ϵ1, . . . , ϵn are noise terms, which might
be zero in the noiseless case. We can connect this problem to (3.3) in the following
way, originally discussed in [11]. We set up a finite dimensional subspace V and try
to approximate fV via sampling. Specifically, let As ∈ Rm×n be a “rows sample” of
the quasimatrix A, i.e., defined by (As)ij = vj(xi), and let

x̃ = arg min
x∈Rn

∥Asx− y∥22 .(3.4)

The approximation is f̃V = Ax̃. In [11] the authors provide a criterion on s that
describes the needed number of samples to ensure that the least squares method is
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486 PAZ FINK SHUSTIN AND HAIM AVRON

stable and that its accuracy is comparable to the best approximation error of f by
elements from V. Note that (3.4) is a sampled version of (3.3). We discuss solving
SILR problems using sampling in section 6.

3.2. Kernel ridge regression. Kernel ridge regression (KRR) is an important
method for supervised learning. Recall the problem of supervised learning: given
training data (x1, y1), . . . , (xn, yn) ∈ X × Y, where X ⊆ Rd is an input domain and
Y ⊆ R is an output domain, we wish to infer some functional dependency between
the outputs and the inputs [14]. In KRR, one starts with a positive definite kernel
function k : X × X → R. The kernel is associated with an RKHS Hk which is the
completion of the function space{

m∑
i=1

αik(xi, ·) |xi ∈ X , αi ∈ R,m ∈ Z+

}
equipped with the inner product m∑

i=1

αik(xi, ·),
n∑

j=1

βjk(xj , ·)

Hk =

m∑
i=1

n∑
j=1

αiβjk(xi,xj) .

For some λ > 0, the KRR estimator is

f⋆ = arg min
f∈Hk

n∑
i=1

(f(xi)− yi)
2 + λ∥f∥2Hk

.(3.5)

The celebrated representer theorem [39] guarantees that f⋆ can be written as

f⋆(x) =

n∑
i=1

α⋆
i k(xi,x)(3.6)

for some α⋆
1, . . . , α

⋆
n ∈ R (note that k(xi, ·) ∈ Hk so

∑n
i=1 α

⋆
i k(xi, ·) ∈ Hk). Simple

linear algebra now implies that we can find α1, . . . , αn by solving the linear system

(K+ λIn)α = y,(3.7)

where K ∈ Rn×n is the matrix defined by Kij = k(xi,xj) and y = [y1 · · · yn]T ∈ Rn.

3.2.1. KRR as SILR. We now show how (3.5) can be written as an SILR
problem. Define the n×∞ quasimatrix A over Hk:

A =

 k(·,x1)
∗

...
k(·,xn)

∗

 .

Due to the reproducing property of RKHS, (f , k(·,xj))Hk
= f(xj) = (Af)j and we

have

f⋆ = arg min
f∈Hk

∥Af − y∥22 + λ∥f∥2Hk
.(3.8)

Thus, the KRR estimator is the solution to an underdetermined SILR problem. In
fact, using (3.7) to solve (3.8) is an instance of a direct method for solving underde-
termined SILR problems; see section 4.2.
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In (3.8), the quasimatrixA is defined over an RKHS. In certain cases, the problem
can be cast as an SILR problem with quasimatrices defined over an L2 space, and this
leads to approximation methods based on sampling. The following is based on the
seminal work of Rahimi and Recht on random Fourier features [37]. Suppose that k is
a shift-invariant positive definite function, that is, k(x, z) = k(x−z) for some positive
definite k(·) (note that we abuse notation in denoting by k both the kernel and the
positive definite function that defines it). Further assume that k is normalized in the
sense that k(x,x) = 1. According to Bochner’s theorem, there exists a probability
measure µ such that

k(x, z) = k(x− z) =

∫
Rd

e−2πi(x−z)Tηdµ(η) .

Define the function φ : X × Rd → C:

φ(x,η) = e2πix
Tη .

For fixed x, z ∈ X we have

(φ(x, ·), φ(z, ·))L2(Rd,dµ) =

∫
Rd

e−2πi(x−z)Tηdµ(η) =

∫
Rd

e−2πi(x−z)Tηp(η)dη = k(x, z)

so φ(x, ·) ∈ L2(Rd, dµ) for every x ∈ X . Let us now define the n×∞ quasimatrix B
over L2(Rd, dµ):

B =

 φ(x1, ·)∗
...

φ(xn, ·)∗

 .(3.9)

Lemma 3. Assuming that K is full rank or λ > 0, the following holds,

f⋆(x) = (φ(x, ·),w⋆)L2(Rd,dµ),

where

w⋆ = arg min
w∈L2(Rd,dµ)

∥Bw − y∥22 + λ∥w∥2L2(Rd,dµ) .(3.10)

Proof. Let

w⋆ = arg min
w∈L2(Rd,dµ)

∥Bw − y∥22 + λ∥w∥2L2(Rd,dµ) .

Since range (B∗) is a a closed linear subspace of H, there exists v⋆ ∈ Rn such
that w⋆ = B∗v⋆ + z, where z ⊥ range (B∗) . Since B, viewed as an operator, is
bounded, null (B) = (range (B∗))⊥, so Bz = 0. Now, since z ̸= 0 can only increase
λ∥w∥2L2(Rd,dµ) we conclude that z = 0. Thus, w⋆ = B∗v⋆ and we can write

min
w∈L2(Rd,dµ)

∥Bw − y∥22 + λ∥w∥2L2(Rd,dµ) = min
v∈Rn

∥BB∗v − y∥22 + λ∥B∗v∥2L2(Rd,dµ)

= min
v∈Rn

∥Kv − y∥22 + λvTKv,

whereK = BB∗ ∈ Rn×n is the kernel matrix previously defined. The optimal solution
is v⋆ = (K+ λIn)

−1y, i.e., v⋆ = α⋆, so w⋆ =
∑n

j=1 α
⋆
jφ(xj , ·). We now have
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488 PAZ FINK SHUSTIN AND HAIM AVRON

(φ(x, ·),w⋆)L2(Rd,dµ) =

∫
Rd

φ(x,η)w⋆(η)dµ(η)

=

∫
Rd

e−2πixTη

 n∑
j=1

α⋆
je

2πixT
j η

 dµ(η)

=

n∑
j=1

α⋆
j

∫
Rd

e−2πi(x−xj)
Tηdµ(η)

=

n∑
j=1

α⋆
jk(x,xj) = f⋆(x) .

The quasimatrix B is over complex-valued L2 spaces. It is possible to actually define
an equivalent SILR problem with a quasimatrix over a real-valued L2 space. Let
Ω̂ = Rd × [0, 2π] and µ̂ = µ × U(0, 2π), where U(0, 2π) is the uniform measure on
[0, 2π]. Now, let L2(Ω̂, dµ̂) denote the space of real-valued square integrable functions
with respect to the measure µ̂. Define the function φ̂ : X × Ω̂→ R:

φ̂(x, (η, b)) =
√
2 cos(xTη + b) .

Now, let

C =

 φ̂(x1, ·)∗
...

φ̂(xn, ·)∗

 .

Then,

f⋆(x) = (φ̂(x, ·),u⋆)L2(Ω̂,dµ̂),

where

u⋆ = arg min
u∈L2(Ω̂,dµ̂)

∥Cu− y∥22 + λ∥u∥2
L2(Ω̂,dµ̂)

.

See [37].

3.2.2. Approximating KRR using quasimatrix sampling. Computing the
exact KRR estimator is costly (since K is typically dense, finding α in (3.7) costs
O(n3) using direct methods; computing f⋆(x) for some x using (3.6) costs O(nd);
since computing f⋆ requires storing the entire training set, storage requirements for
holding a representation of f⋆ are O(nd)), which motivates looking for some ap-
proximation schemes. In this section we show how to perform approximate KRR by
sampling the quasimatrix B defined in the previous subsection. The resulting method
is actually identical to approximating KRR using random Fourier features, one of the
most popular approximations of KRR, though the presentation as a sampling method
for finding an approximate solution to an SILR problem is new.

Consider the wide quasimatrix B defined in the previous subsection. A coordinate
representation of B is

z(η) =

 φ(x1,η)
...

φ(xn,η)

 .D
ow

nl
oa

de
d 

03
/2

9/
22

 to
 1

32
.6

6.
40

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SILR AND ITS APPLICATIONS 489

This allows us to discuss column sampling of B. For s ≤ n, consider the matrix
Bη ∈ Cn×s obtained by column sampling B according to µ. That is, we sample
η1, . . . ,ηs according to µ and define the matrix

Bη =
[
z(η1) z(η2) · · · z(ηs)

]
=

 φ(x1,η1) · · · φ(x1,ηs)
...

...

φ(xn,η1) · · · φ(xn,ηs)

 .

Let
w⋆

η = arg min
w∈Cs

∥Bηw − y∥22 + λ∥w∥22 .

Finding w⋆
η amounts to solving a finite linear least squares problem, and can be

accomplished using O(ns2) arithmetic operations (and, notably, without performing
any FUNOPs). The approximate KRR estimator is

fη(x) =

s∑
i=1

φ(x, ηi)(w
⋆
η)i,

where (w⋆
η)i denotes entry i of w⋆

η. In a sense, the vector w⋆
η is an approximation

of the function w⋆ that is obtained by solving a sampled version of (3.10), and fη
approximates the inner product (φ(x, ·),w⋆)L2(X ,dµ).

3.3. Stretching a finite linear least squares problem. Since numerical com-
puting is typically done with numbers and not with functions, it is natural to find an
approximate solution to SILR problems by sampling the quasimatrix. Here, we show
that it is also possible to go the other way, and “stretch” a finite linear least squares
problem to an SILR problem. This process is interesting since it yields a novel inter-
pretation to the use of the Johnson–Lindenstrauss sketch in order to approximately
solve a linear regression problem.

Suppose that X ∈ Rn×d is a full rank matrix with n ≫ d, and that y ∈ Rn.
Consider finding w⋆ that minimizes ∥Xw − y∥22. Define the function

φ(x,η) = ηTx,

and let p denote the standard Gaussian density over Rn. We have∫
Rn

φ(x,η)2p(η)dη = xT

(∫
Rn

ηηTp(η)dη

)
x = xTx,

so for x ∈ Rn it holds that φ(x, ·) ∈ L2(Rn, dµ), where dµ denotes the standard
Gaussian distribution. Denote by x1, . . . ,xd the columns of X. Define the ∞ × d
quasimatrix A over L2(Rn, dµ): A = [ φ(x1, ·) · · · φ(xd, ·) ]. We now show that

w⋆ = arg min
w∈Rd

∥Aw − φ(y, ·)∥2L2(Rn,dµ) .(3.11)

Indeed, for every w ∈ Rd we have

∥Aw − φ(y, ·)∥2L2(X ,dµ) =

∫
Rn

(
d∑

i=1

(ηTxi)wi − ηTy

)2

p(η)dη

=

∫
Rn

(
ηT (Xw − y)

)2
p(η)dη

= ∥Xw − y∥22.

Thus, we have converted the finite linear least squares problem to an SILR problem.
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Let us now consider approximately solving (3.11) by sampling “rows” from A and
the corresponding entries from φ(y, ·). Since A is a quasimatrix over an L2 space, we
need a coordinate representation to meaningfully talk about sampling rows from A. A
coordinate representation of A is z(η) = XTη, where the index set is Ω = R. We can
now sample (3.11) as follows. We sample η1, . . . ,ηs ∈ Rn independently according to
p and form the matrix

Aη =


z(η1)

T

z(η2)
T

...
z(ηs)

T


and the vector yη = (ηT

i y)
s
i=1. The sampled problem (which is again a finite linear

least squares problem) is
ŵ = ∥Aηw − yη∥22 .

One may ask whether ŵ is close to being a minimizer of ∥Xw−y∥22. Let S be the
s× n matrix whose rows are η1, . . . ,ηs, then Aη = SX and yη = Sy. Using known
results on subspace embedding [47] we conclude that if s = Ω(d/ϵ2) then with high
probability

∥Xŵ − y∥2 ≤ (1 + ϵ)∥Xw⋆ − y∥2 .

The random matrix S is a Johnson–Lindenstrauss sketching matrix, and we have
demonstrated that applying the Johnson–Lindenstrauss sketch corresponds to stretch-
ing the linear least squares problem and then applying plain row sampling. A sur-
prising aspect of this observation is the fact that only O(d/ϵ2) samples are sufficient.
Indeed, standard techniques used for analyzing sampled linear least squares problems,
which are based on matrix tail inequalities, can be used to derive results that require
Ω(d log d/ϵ2) samples at the very least; see section 6.

4. Direct methods. Direct methods attempt to compute the solutions of SILR
problems using quasimatrix operations. This mostly involves FUNOPs (under the
chebfun model), but in some cases the computation can be reduced to algorithms
that operate in the standard model (without FUNOPs). For simplicity, we assume
that the quasimatrix involved is either full rank or λ > 0.

4.1. Overdetermined SILR. Let A be a tall quasimatrix with n columns. We
can solve the SILR problem in (3.1) using the normal equations. The development
is essentially the same as that for the finite linear least squares case. Let f(x) =
∥Ax− b∥2H + λ∥x∥22 be the objective function. We have,

f(x) = ∥Ax− b∥2H + λ∥x∥22 = xT(A∗A+ λIn)x− 2Re
(
xTA∗b

)
+ ∥b∥2H .

Thus the optimum value is obtained as the solution of the following linear system:

(A∗A+ λIn)x = A∗b

(easily verified by computing the gradient of f(x) and equating to zero). Note that
since we assumed that either A is full rank or λ > 0, A∗A+ λIn is invertible.

Thus, we can find the optimal x⋆ in the chebfun model by first computing A∗A+
λIn and A∗b (n(n+3)/2 FUNOPs), and then solving an n× n linear system (O(n3)
FLOPs). However, using the Gram matrix A∗A entails a squaring of the condition
number, so the use of a factorization is preferred numerically. It is simple algebra
to show that if A = QR is a reduced QR factorization of A, then x⋆ = (R +
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λR−∗)−1Q∗b, so n FUNOPs and O(n3) FLOPs (O(n2) if λ = 0) are needed once
we have a QR factorization. However, this entails explicitly inverting R∗, and that
matrix might be ill conditioned.

If A was a matrix, explicitly inverting R can be avoiding by factorizing the
augmented matrix

Â =

[
A√
λIn

]
.

However, ifA is a quasimatrix overH, then Â is a quasimatrix overH×Cn (if column j
of A is aj , then column j of the augmented quasimatrix is the tuple (aj ,

√
λej), where

ej is the jth identity vector in Cn), possibly making computations more cumbersome.3

We now show how it is possible to find x⋆ using a QR factorization of A without
explicitly inverting R. This involves fairly standard linear algebra tricks. Suppose we
have a QR factorization A = QARA. Let C be the matrix obtained by augmenting
RA with the matrix

√
λIn, and form a QR factorization of it. That is,

C =

[
RA√
λIn

]
= QCRC .

Let QC,1 denote the top n rows of QC, and QC,2 the bottom. Now,[
A√
λIn

]
=

[
QA

In

]
C =

[
QA

In

] [
QC,1

QC,2

]
RC =

[
QAQC,1

QC,2

]
RC .

Also, since [
Q∗

C,1Q
∗
A Q∗

C,2

] [ QAQC,1

QC,2

]
= In ,

we have a QR factorization of Â. This implies that x⋆ is the solution of the triangular
system

RCx = Q∗
C,1Q

∗
Ab .

As is the case of finite linear least squares, a reduced SVD can be used to solve
SILR problems as well. If A = UΣV∗ is a reduced SVD factorization, then simple
algebra reveals that x⋆ = V(Σ2+λIn)

−1ΣU∗b, so n FUNOPs and O(n2) FLOPs are
needed once we have an SVD factorization.

In certain cases it might be possible to compute A∗A and A∗b analytically,
without resorting to FUNOPs. We give a concrete example later, when we discuss
the underdetermined case.

4.2. Underdetermined SILR. Let A be a wide quasimatrix with n rows.
Again, the following argument follows closely the one used for finite linear least
squares. The space range (A∗) is a closed linear subspace of H, so we can write
x⋆ = A∗y⋆+z⋆, where y ∈ Rn and z ⊥ range (A∗) . Since A, viewed as an operator,
is bounded, null (A) = (range (A∗))⊥, so Az = 0. Thus, the objective at x⋆ is

∥Ax⋆ − b∥22 + λ∥x⋆∥2H = ∥AA∗y⋆ − b∥22 + λ∥A∗y⋆∥2H + λ∥z⋆∥2H,

where we used the fact that z⋆ ⊥ A∗y⋆. Obviously, z⋆ = 0, otherwise the objective
can be reduced. Denoting K = AA∗ ∈ Rn×n, we find that y⋆ is the minimizer of

f(y) = ∥Ky − b∥22 + λyTKy .

3We remark that the chebfun library does support hybrids of quasimatrices and a matrix (and
calls such objects by the name “chebmatrix”).
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This can be written as a determined (for λ = 0) or overdetermined (λ > 0) finite
linear least squares problems, from which we find that y⋆ solves the equation

(K2 + λK)y = Kb.

Since we assumed that either A is full rank or λ > 0, K + λIn is invertible, and
the vector (K + λIn)

−1b solves the equation. The solution is unique, thus y⋆ =
(K+ λIn)

−1b. We find that

x⋆ = A∗(K+ λIn)
−1b .

Thus, in the chebfun model we can find the optimal x⋆ by first computing K + λIn
(n(n + 1)/2 FUNOPs), solving for y⋆ (O(n3) FLOPs), and finally computing A∗y⋆

(n FUNOPs).
We can avoid forming the potentially ill conditioned matrix K using a QR factor-

ization of A∗ in a way similar to the previous subsection, where now we have a QR
factorization A∗ = QARA. Similarly, we can factorize[

A∗
√
λIn

]
=

[
QAQC,1

QC,2

]
RC .

This implies that [
A
√
λIn

]
= R∗

C

[
Q∗

C,1Q
∗
A Q∗

C,2

]
is an LQ factorization of the augmented matrix. Hence, x⋆ is equal to

x⋆ = QAQC,1(R
∗
C)

−1b .

An SVD factorization can be used as well: if A∗ = UΣV∗ is an SVD factorization,
then x⋆ = U(Σ2 + λIn)

−1ΣV∗b.
In certain cases, it is possible to compute K analytically. As an example, consider

again KRR (section 3.2) in the RKHS formulation (3.8). Due to the definition of Hk,
the ij entry of K is

Kij = (k(xi, ·), k(xj , ·))Hk
= k(xi,xj) ,

thus we can form K+λIn and compute α = (K+λIn)
−1y using O(n2d+n3) FLOPs.

The solution to (3.8) is then

f⋆(x) =

n∑
i=1

αik(xi,x)

and all computations are done in the standard model.

5. Iterative methods. In this section we discuss solving SILR problems using
iterative methods. First, we consider using the classical approach of Krylov subspace
methods. We show how methods such as LSMR or LSQR can be rather naturally
generalized to quasimatrices. Next, we propose a novel method based on stochastic
optimization which requires considerably fewer FUNOPs, but depends on the ability
to sample the quasimatrix. We also show that this algorithm can, in certain cases, be
applied in the standard model (without FUNOPs).

D
ow

nl
oa

de
d 

03
/2

9/
22

 to
 1

32
.6

6.
40

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SILR AND ITS APPLICATIONS 493

5.1. Krylov subspace methods. Krylov subspace methods are one of the most
important classes of iterative methods in numerical linear algebra. Many of the most
widely used iterative linear solvers are Krylov subspace methods. One important
benefit of Krylov subspace methods is that they only use matrix-vector operations.
For SILR, when working in the chebfun model, this implies that each iteration does
only O(n) FUNOPs.

It was already observed by several authors that it is possible to generalize Krylov
subspace methods to operator equations. For example, Olver suggested the use of
GMRES with the differentiation operator [32], and the chebfun library implements
GMRES for operator equations. Continuous analogues of CG, GMRES, and MINRES
appear in [19] in the context of differential operators. In the same vein, we can
adapt Krylov subspace algorithms for finite linear least squares, such as LSQR [34]
and LSMR [18], to solve SILR problems. Here we describe the LSMR algorithm
for quasimatrices. The development is a rather straightforward generalization of the
matrix case, but we show it for concreteness.

5.1.1. Golub–Kahan bidiagonalization process for quasimatrices. LSMR
and LSQR are based on Golub–Kahan bidiagonalization [20]. The goal of Golub–
Kahan bidiagonalization is to iteratively find a decomposition U∗AV = B where
U and V have orthogonal columns, and B is a bidiagonal matrix. When A is a
quasimatrix over H, one of U and V is a quasimatrix over H and the other one is a
matrix. The algorithm remains essentially unchanged, and is given in Algorithm 5.1
for a tall quasimatrix (for a wide quasimatrix the algorithm remains the same under
the corresponding changes of norms).

After k steps of the algorithm, we have AVk=Uk+1Bk and A∗Uk+1=Vk+1L
∗
k+1.

Note that, in the overdetermined case, where A is an ∞× n quasimatrix, Vk is an
n × k matrix and Uk is an ∞× k tall quasimatrix over H. In the underdetermined
case, Uk is an n × k matrix and Vk is an ∞× k tall quasimatrix over H such that
V∗

kVk = U∗
kUk = Ik. The algorithm also defines a (k+1)×k lower bidiagonal matrix

Bk.

5.1.2. LSMR for overdetermined SILR. Recall that the solution x⋆ of an
overdetermined SILR problem solves the normal equations (A∗A + λIn)x

⋆ = A∗b.
LSMR is equivalent to applying MINRES to the normal equations, i.e., in each it-
eration the minimizer of A∗b − (A∗A + λIn)x is found under the constraint that
x belongs to the Krylov subspace. Thus, defining rk = b − Axk at iteration k,
LSMR minimizes ∥A∗rk − λxk∥2 subject to xk ∈ Kk(A

∗A,b), where Kk(A
∗A,b) :=

span {b,A∗Ab, . . . , (A∗A)k−1b} is the kth order Krylov subspace generated by A∗A
and b.

To find xk, LSMR uses the Golub–Kahan bidiagonalization. After k iterations
we have AVk = Uk+1Bk and A∗Uk+1 = Vk+1L

∗
k+1, where Vk is an n × k matrix

and Uk is an ∞× k tall quasimatrix over H. Thus,

A∗(AVk) = (A∗Uk+1)Bk = Vk+1L
T
k+1Bk = Vk+1

[
BT

kBk

αk+1βk+1e
T
k+1

]
,

A∗b = β1A
Tu1 = α1β1Vk+1e1 .

(These equations are the same as in the matrix case; the quasimatrix algebra defined
in section 2 allows us to write essentially the same derivations). Since xk is in the
Krylov subspace, we can write xk = Vkyk for some yk ∈ Ck. Thus, we can write
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494 PAZ FINK SHUSTIN AND HAIM AVRON

Algorithm 5.1. (Tall) Quasimatrix Golub-Kahan bidiagonalizaion.

1: Inputs: Tall ∞× n quasimatrix A over H, and ∞× 1 quasimatrix b.
2: set:

β1 = ∥b∥H, u1 = b/β1, α1 = ∥ATu1∥2, v1 = ATu1/α1 .

3: for k = 1, 2, . . . ,

βk+1 = ∥Avk − αkuk∥H,uk+1 = (Avk − αkuk)/βk+1

αk+1 = ∥A∗uk+1 − βk+1vk∥2,vk+1 = (A∗uk+1 − βk+1vk)/αk+1 .

4: Denote:

Vk =
[
v1 v2 . . . vk

]
,Uk =

[
u1 u2 . . . uk

]

Bk =


α1

β2 α2

. . .
. . .

βk αk

βk+1

 ,LK =
[
Bk αk+1ek+1

]
.

∥A∗(Axk − b)∥22 + λ∥xk∥22 = ∥A∗(AVkyk − b)∥22 + λ∥Vkyk∥22

=

∥∥∥∥Vk+1

([
BT

kBk

αk+1e
T
k+1

]
yk − α1β1e1

)∥∥∥∥2
2

+ λ∥yk∥22 .

So, finding yk and xk has been reduced to the solution of a finite linear least squares
problem. An algorithm for finding these vectors efficiently and iteratively is described
in [18].

Stopping criteria: the Golub–Kahan process terminates whenever αk+1 = 0
or βk+1 = 0, which implies that the last equation is zero. However, we can use one
of the stopping criteria originally presented for the LSQR algorithm, involving the
predetermined parameters ATOL,BTOL, and CONLIM:

S1 :Stop if
√
∥rk∥2H + λ∥xk∥22 ≤ BTOL∥b∥H +ATOL

√
σmax(Bk)2 + λ∥xk∥2,

S2 :Stop if ∥A∗rk − λxk∥2 ≤ ATOL
√
σmax(Bk)2 + λ

√
∥Axk − b∥2H + λ,

S3 :Stop if

√
σmax(Bk)2 + λ

σmin(Bk)2 + λ
≥ CONLIM .

The motivation for these stopping rules is the fact that σmax(Bk) and σmin(Bk) pro-
vide estimates for σmax(A) and σmin(A). This follows from the fact that BT

kBk =
V∗

kA
∗AVk. See [18] for more details.
Complexity: when compared to the matrix version of LSMR, the quasima-

trix version trades each matrix-vector product with n FUNOPs. Thus, in terms of
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SILR AND ITS APPLICATIONS 495

FUNOPs, 2n FUNOPs are required per iteration. Since the number of iterations is
O(
√
κ(A∗A+ λIn), overall complexity is O(n

√
κ(A∗A+ λIn) FUNOPs.

5.1.3. Numerical example. We illustrate the use of LSMR for the problem of
approximating the Runge function f(x) = 1/(1+ 25x2) on [−1, 1] using a polynomial
of degree 300. We can write the approximation as the solution of an overdetermined
SILR problem, where A is any quasimatrix whose columns span the space of degree
300 polynomials. However, we want A to be reasonably well conditioned so that
LSMR will converge quickly, so we use Chebyshev polynomials as the columns of
A (we empirically observed that when the columns are the Chebyshev polynomials,
A is well conditioned, though we are unaware of any analytical result showing this;
note that taking the normalized Legendre polynomials instead would have resulted in
an orthogonal A, which would have made for an uninteresting numerical example).
Thus, we solve the SILR problem, where

A =
[
T0 T1 · · · T299

]
, b =

[
1

1 + 25x2

]
.

In the above, Tj is the jth Chebyshev polynomial. We use λ = 0 (no regularization)
and parameters ATOL = BTOL = 10−7. Convergence plots are shown in Figure 1.

5.2. Stochastic variance reduced gradient. Recent literature on convex op-
timization advocated the use of stochastic methods. Even for the specialized cases
of solving linear equations or linear least squares, such methods have been shown to
be beneficial [27, 21]. In this section, we propose a method for solving SILR prob-
lems using SVRG [23, 48]. SVRG is a stochastic optimization method for minimizing
objective functions that have a finite sum structure, i.e., of the form

f(x) =
1

n

n∑
i=1

fi(x) .

For such objective functions, we can compute stochastic gradients by sampling an
index of the sum. SVRG’s main benefit comes from the fact that it combines such
stochastic gradients with a small amount of full gradients (i.e., exact gradients of f).
For strongly convex functions, the number of such full gradients we need to compute
is independent of the condition number (however, the number of stochastic gradients
does depend on the average condition number).

10 20 30 40 50

Number of Iterations

10
-5R

e
s
id

u
a

l

||r||
2

||A
T
r||

2

Relative Error

Fig. 1. Numerical illustration: using LSMR to solve an SILR related to approximating the
Runge function using a polynomial.
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496 PAZ FINK SHUSTIN AND HAIM AVRON

For SILR, full gradients correspond to products of a quasimatrix A with a vector
or function, but this is the only operation that assumes the chebfun model and re-
quires FUNOPs. Thus, by using SVRG we remove the condition number dependence
for the number of FUNOPs required for convergence, which is a major improvement
over Krylov methods. However, stochastic gradients in SVRG correspond to sam-
pling objective functions, and for SILR this translates to sampling a row from a tall
quasimatrix or a column from a wide quasimatrix. Thus, the quasimatrix must be an
quasimatrix over an L2 space, and must have a coordinate representation.

One obstacle in applying SVRG to SILR problems is that such problems cannot be
written as a finite sum, but rather can be written as an integral of simpler functions,
i.e.,

f(x) =

∫
Ω

fη(x)dµ(η) .

We generalize SVRG and its analysis to handle such functions. The generalization
might be of independent interest, and appears in Appendix A.

5.2.1. Overdetermined SILR. Consider the overdetermined SILR problem
(3.1), where the quasimatrixA is overH = L2(Ω, dµ) for some index set Ω. We further
assume we have a coordinate representation zA : Ω → Rn for A and zb : Ω → R
for b. We further assume there exists an M such that for every η ∈ Ω we have
∥zA(η)∥22 ≤M . We can write the objective function in (3.1) as an integral,

1

2
∥Ax− b∥2L2(Ω,dµ) +

λ

2
∥x∥22 =

1

2

∥∥∥∥∥
n∑

i=1

xizA(·)i − b

∥∥∥∥∥
2

L2(Ω,dµ)

+
λ

2
∥x∥22

=
1

2
∥zA(·)∗x− b∥2L2(Ω,dµ) +

λ

2
∥x∥22

=
1

2

∫
Ω

(zA(η)∗x− zb(η))
2
+ λ∥x∥22 dµ(η)

=

∫
Ω

fη(x)dµ(η),

where

fη(x) :=
1

2
(zA(η)∗x− zb(η))

2
+

λ

2
∥x∥22 .

We can now apply the aforementioned variant of SVRG [23] (see Appendix A),
which is adapted for objective integrable functions. To do so, the following assump-
tions need to be verified.

Assumption 4. For all η ∈ Ω, ∇fη(x) is Lipschitz continuous, i.e., there exists
Lη > 0 such that for all x,y ∈ Rn

∥∇fη(x)−∇fη(y)∥ ≤ Lη∥x− y∥ .

Assumption 5. Suppose that f(x) is strongly convex, i.e., there exists γ > 0 such
that for all x,y ∈ Rn

f(x)− f(y) ≥ γ

2
∥x− y∥22 +∇f(y)T(x− y) .

Assumption 6. The equality ∇f(x) =
∫
Ω
∇fη(x)dµ(η) holds.

Assumption 7. Lsup := supη∈Ω Lη <∞.
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We begin by writing

f(x) :=
1

2
∥Ax− b∥2L2(Ω,dµ) +

λ

2
∥x∥22 =

1

2
xT(K+ λIn)x− xTA∗b+

1

2
∥b∥2L2(Ω,dµ),

where K = A∗A ∈ Rn×n. Thus,

∇f(x) = A∗(Ax− b) + λx .

It can be seen that Assumption 5 holds with γ = λ+ λmin(K). We also have

∇fη(x) = zA(η) (zA(η)∗x− zb(η)) + λx

with∫
Ω

∇fη(x)dµ(η) =
∫
Ω

zA(η) (zA(η)∗x− zb(η)) + λxdµ(η)

=

(∫
Ω

zA(η)zA(η)∗dµ(η)

)
x−

∫
Ω

zA(η)zb(η)dµ(η) + λx

= Kx−A∗b+ λx = ∇f(x),

so Assumption 6 holds as well. Note that for every η ∈ X

∥∇fη(x)−∇fη(y)∥2 = ∥(zA(η)zA(η)∗ + λIn)(x− y)∥2
≤
(
∥zA(η)∥22 + λ

)
∥x− y∥2,

so each ∇fη is Lipschitz continuous with Lipschitz constant Lη = ∥zA(η)∥22 + λ.
Thus, Assumptions 4 and 7 hold with Lsup = M + λ.

Therefore, according to Theorem 22 (in Appendix A), if we set

m = 50 · κ, κ =
M + λ

γ2 + λ
, α =

θ

M + λ
, 0 < θ <

1

4
,

where γ is any lower bound on σmin(A) (if λ > 0 we can take γ = 0), then taking
θ = 1/5 and assuming we start with x = 0 yields

E [f(x̃s)]− f(x⋆) ≤
(
5

6

)s(
1

2
∥b∥2L2(Ω,dµ) − f(x⋆)

)
.

Overall, to reduce (in expectation) by a factor of ϵ we need to do O(log(1/ϵ))
outer iterations, each requiring 2n FUNOPs. Each outer iteration requires O(κ) inner
iterations, each requiring O(n+ T ) FLOPS, where T is the cost of computing zA(η)
and zb(η) for a given η, so in total we need O((n+T )·κ·log(1/ϵ)) FLOPs. We see that
in contrast with Krylov subspace methods, the number of FUNOPs does not depend
on the condition number. The proposed algorithm is summarized in Algorithm 5.2.

5.2.2. Underdetermined SILR. We now consider the case thatA is a wide n×
∞ quasimatrix over L2(Ω, dµ) of full rank, and b ∈ Cn. As explained in subsection 4.2,
the optimal solution x⋆ has the form x⋆ = A∗y⋆ for y⋆ ∈ Cn. In addition, we have
y⋆ = (K+ λIn)

−1b, where K = AA∗. Hence,

y⋆ = arg min
y∈Cn

1

2
y∗(K+ λIn)y − y∗b .

D
ow

nl
oa

de
d 

03
/2

9/
22

 to
 1

32
.6

6.
40

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

498 PAZ FINK SHUSTIN AND HAIM AVRON

Algorithm 5.2. SVRG for overdetermined SILR.

1: Inputs:
- Tall ∞× n quasimatrix A over L2(Ω, dµ), along with coordinate representation
zA : Ω→ Cn

- b with coordinate representation zb : Ω→ Cn, λ > 0
- M such that for all η ∈ Ω we have ∥zA(η)∥22 ≤M
- γ such that 0 ≤ γ ≤ σmin(A)
- Accuracy parameter ϵ > 0

2: x̃0 ← 0
3: α← 1

5(M+λ) , m←
50(M+λ)

γ2+λ

4: smax ←
(
log
(
6
5

))−1 · log
(

∥b∥2
L2(dµ)

2ϵ

)
5: Iterate: for s = 1, 2, . . . , smax

6: x̃ = x̃s−1

7: g̃ = A∗(Ax̃− b) + λx̃
8: x0 = x̃
9: Iterate: for k = 1, 2, . . . ,m

10: sample ηk from the distribution µ
11: xk = xk−1 − α (zA(ηk)zA(ηk)

∗ (xk−1 − x̃) + λ (xk−1 − x̃) + g̃)
12: end
13: option I: set x̃s = xm

14: option II: set x̃s =
1
m

∑m
k=1 xk

15: end
16: return x̃smax

Thus, we can find approximate solutions to the regression problem by optimizing

f(y) :=
1

2
y∗(K+ λIn)y − y∗b

and returning x̃ = A∗ỹ for the ỹ found by the optimization process. Note that if we
find a ỹ such that f(ỹ) ≤ f(y⋆) + ϵ, then for x̃ = A∗ỹ we have

∥x̃− x⋆∥2L2(Ω,dµ) ≤
2λmax(K)

λmin(K) + λ
· ϵ .

We can again use SVRG (with the specific variant described in Appendix A) to
minimize f(y). Since the assumptions are the same as in the previous section, and the
developments are almost identical, we do not repeat them. The algorithm is almost
identical to Algorithm 5.2, with two small differences: the equation for smax is replaced
by (log(6/5))−1 · log(∥b∥22 + ∥b∥22/(ϵ

√
λmin(K) + λ)) and g̃ is A(A∗ỹ) + λỹ − b.

5.2.3. SVRG for KRR. Recall that KRR can be recast as an underdetermined
SILR problem (subsection 3.2). We can use the algorithm from the previous subsec-
tion to solve this SILR problem. However, since we can compute K via the kernel
function without assuming the chebfun model, we can avoid performing FUNOPs
when computing g̃. That is, we can apply SVRG under the standard model. For this
case, the assumptions hold with M = d.

We illustrate the performance of this algorithm on a small scale experiment. The
goal is to learn a one dimensional dataset generated by noisily sampling the function
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Fig. 2. Experiment with SVRG for KRR. The target function and the samples are shown in
the top left graph. The top right and bottom left graph show the test error when varying s or m
(respectively). In the bottom right we show the test error as a function of the number of operations.

f⋆(x) = sin(6x)+ sin(60ex), i.e., yi = f⋆(xi)+ ϵi with ϵi
i.i.d∼ N (0, 0.32). The training

set consists of 400 equispaced examples on [−1, 1], and we use the Gaussian kernel.
The goal was to reach error ϵ = 10−2. The experiment was run with fixed step size
of α = 10−4 < 1/2Lsup . We varied both the value of m and s. Results are reported
in Figure 2.

6. Converting SILR to finite linear least squares via sampling. All the
previous algorithms we presented for solving SILR problems either assumed the cheb-
fun model, or relied on the ability to compute the Gram matrix using an analytic
formula (e.g., KRR). In practice, such formulas are not always available, and the
chebfun model is implemented only in software, and even then only when the col-
umns/rows of the quasimatrix are univariate functions.4 Thus, a different technique
is needed in order to solve SILR problems that violate these constraints. One nat-
ural approach for approximately solving a SILR problem is to discretize the infinite
dimension via sampling.

For brevity, let us focus on overdetermined SILR (3.1). In order to discuss sam-
pling, we need a coordinate representation of A. Thus, we assume that H = L2(Ω, dµ)
for some measurable index set Ω ⊆ Rd and that we have a coordinate representation
zA : Ω→ Cn for A and zb : Ω→ C for b. A generic approach is as follows. We first
select s coordinates η1, . . . ,ηs ∈ Ω, and associated weights w1, . . . , ws ∈ R. We then
form the row sampled matrix Aη and row sampled vector bη as follows:

4While chebfun does support bivariate functions, it does not seem to support quasimatrices of
bivariate functions.
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Aη =


w1zA(η1)

∗

w2zA(η2)
∗

...
wsz(ηs)

∗

 , bη =


w1zb(η1)

w2zb(η2)
...

wszb(ηs)

 .

We now solve the sampled problem (which is a finite linear least squares problem):

x̃ = arg min
x∈Cn

∥Aηx− bη∥22 + λ∥x∥22 .

Solving this sampled problem can be considered as an approximation to the SILR
problem, and, as explained in section 3, is the scheme used in least squares approxi-
mation of functions [11, 12] and random Fourier features [37].

To make the method concrete we need to address a couple of related questions.
Given η1, . . . ,ηs, can we relate x̃ to x⋆? How can we select η1, . . . ,ηs ∈ Ω and
w1, . . . , ws ∈ R so that x̃ is a good enough approximate solution? Similar questions
have been asked, and answered, for finite linear least squares [47, 1, 2], and various
structural conditions have been suggested. The following result is similar to ones that
appear in the literature on sampling finite linear least squares problems.

Proposition 8. Consider the overdetermined SILR

min
x∈Cn

∥Ax− b∥2H + λ∥x∥22

along with a full rank tall quasimatrix A over H with n columns and λ ≥ 0. Assume
that (∥Ax⋆ − b∥2H + λ∥x⋆∥22)/2 ≥ λ. Also assume that we are given a matrix Aη ∈
Rs×n and a vector bη ∈ Rs such that

(1− ϵ)
(
∥Ax− b∥2H + λ∥x∥22 + λ

)
≤ ∥Aηx− bη∥22 + λ∥x∥22 + λ(6.1)

≤ (1 + ϵ)
(
∥Ax− b∥2H + λ∥x∥22 + λ

)
for all x ∈ Cn. Then,

∥Ax̃− b∥2H + λ∥x̃∥22 ≤
1 + 2ϵ

1− ϵ

(
∥Ax⋆ − b∥2H + λ∥x⋆∥22

)
.

Proof. We have

∥Ax̃− b∥2H + λ∥x̃∥22 ≤
1

1− ϵ

(
∥Aηx̃− bη∥22 + λ∥x̃∥22 + λ

)
− λ

≤ 1

1− ϵ

(
∥Aηx

⋆ − bη∥22 + λ∥x⋆∥22 + λ
)
− λ

≤ 1 + ϵ

1− ϵ

(
∥Ax⋆ − b∥2H + λ∥x⋆∥22 + λ

)
− λ

≤ 1 + 2ϵ

1− ϵ

(
∥Ax⋆ − b∥2H + λ∥x⋆∥22

)
,

where the first and third inequalities use (6.1), the second inequality follows from
x̃ being the minimizer of the sampled SILR, and the last inequality uses the first
assumption.

Note that Proposition 8 does not require Aη and bη to actually be row samples
of A and b.
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6.1. Randomized sampling. One approach for selecting η1, . . . ,ηs and
w1, . . . , ws is to sample η1, . . . ,ηs randomly from Ω and set the weights accordingly.
The question is what distribution on Ω to use, and how to set the weights? To answer
these questions, we show a general result on the number of samples s required to
ensure (6.1) holds given some distribution on Ω and a specific way to set the weights.
The result is based on the concept of ridge leverage scores [17, 13], which we generalize
to quasimatrices (the generalization is similar to the one used in [3, 4]).

Definition 9. Let A be a quasimatrix over L2(Ω, dµ) equipped with a coordinate
representation z, and λ ≥ 0. Further assume that µ is a probability measure for which
a corresponding density p exists. The λ-leverage function of A is

τλ : Ω→ R, τλ(η) := p(η)z(η)∗(K+ λIn)
−1z(η),

where K = A∗A if A is a tall quasimatrix, or K = AA∗ if A is a wide quasimatrix.

Proposition 10 (similar to Proposition 5 in [3]). Under the same conditions in
Definition 9, ∫

Ω

τλ(η)dη = Tr
(
(K+ λIn)

−1K
)
=: sλ(A),

(sλ(A) is called the statistical dimension of A).

Lemma 11 (similar to Lemma 8 in [3]). Consider the overdetermined SILR

min ∥Ax− b∥2L2(Ω,dµ) + λ∥x∥22,

where A is a tall quasimatrix A with n columns, and λ ≥ 0. If λ = 0, further assume
that A is full rank. Assume we have coordinate representation zA : Ω → Cn for A
and zb : Ω→ C for b. Assume that∥∥∥∥[ A∗

b∗

] [
A b

]∥∥∥∥
2

≥ λ .

Let τλ(η) be the λ-leverage function of [ A b ]. Let τ̃ : Ω → R be a measurable
function such that τ̃(η) ≥ τλ(η) for all η ∈ Ω, and assume that sτ̃ =

∫
Ω
τ̃(η)dη <∞.

Also, denote pτ̃ (η) = τ̃(η)/sτ̃ . Suppose we sample η1, . . . ,ηs using pτ̃ and set wj =√
p(ηj)

spτ̃ (ηj)
. Given ϵ ≤ 1/2 and 0 < δ < 1, if s ≥ 8

3sτ̃ ϵ
−2 ln(16sλ([ A b ])/δ), then

(1− ϵ)
(
∥Ax− b∥2L2(Ω,dµ) + λ∥x∥22 + λ

)
≤ ∥Aηx− bη∥22 + λ∥x∥22 + λ(6.2)

≤ (1 + ϵ)
(
∥Ax− b∥2L2(Ω,dµ) + λ∥x∥22 + λ

)
holds with probability of at least 1− δ.

Proof Sketch. The proof is very similar to the proof of [3, Lemma 8], so we give
only a sketch of the proof. Denote

Â =

[
A b√
λIn+1

]
, Âη =

[
Aη bη√
λIn+1

]
, x̂ =

1√
1 + ∥x∥22

[
x
−1

]
.

Then, the inequality (6.2) is equivalent to

(1− ϵ)∥Âx̂∥2L2(X ,dµ) ≤ ∥Âηx̂∥22 ≤ (1 + ϵ)∥Âx̂∥2L2(X ,dµ),
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502 PAZ FINK SHUSTIN AND HAIM AVRON

i.e.,

−ϵÂ
∗
Â ⪯ Â

∗
ηÂη − Â

∗
Â ⪯ ϵÂ

∗
Â .

We write Â
∗
Â = V∗Σ2V. The claim is now equivalent to

−ϵId ⪯ Σ−1V⋆Â
∗
ηÂηVΣ−1 − Id ⪯ ϵId .

Notice that

A∗
ηAη =

s∑
j=1

w2
jzA(ηj)zA(ηj)

∗, b∗
ηbη =

s∑
j=1

w2
jzb(ηj)zb(ηj)

∗ .

It can be seen that z(η) = [ zA(η)
zb(η)

] is a coordinate representation for the quasimatrix

part of Â. Let

Sj =
p(ηj)

pτ̃ (ηj)
Σ−1V∗z(ηj)z(ηj)

∗VΣ−1 .

It is possible to show that E[S2
j ] ⪯ sτ̃E[Sj ] and Tr (E[Sj ]) = sτ̃ · sλ(K̂). The claim

follows from [46, Corollary 7.3.3].

A similar result appears in [12] for truncated and conditioned least squares ap-
proximations of functions, however, without any ridge term. The ridge leverage func-
tion can be viewed as a variant of the Christoffel function [35] from the literature on
orthogonal polynomials and approximation theory [35, 30, 42, 9].

One natural strategy for selecting the η1, . . . ,ηs is to sample them using the
distribution µ. We call this strategy natural sampling. Using Lemma 11 we can
give a bound on the number of samples needed when sampling η1, . . . ,ηs using this
strategy and setting all the weights to

√
1/s.

Proposition 12. Let τλ(η) be the λ-leverage function of [ A b ]. Suppose that
Mλ = Mλ([ A b ]) := supη∈Ω τλ(η)/p(η) is finite. Suppose we sample η1, . . . ,ηs

using µ, and set wj =
√

1/s for j = 1, . . . , s. If

s ≥ 8

3
Mλϵ

−2 ln(16sλ
([

A b
])

/δ),

then (6.2) holds with probability of at least 1− δ.

Proof. Let us define τ̃(η) = Mλp(η). Notice that sτ̃ = Mλ and that pτ̃ (η) = p(η).
Thus, the conditions of Proposition 11 hold if we sample using p(·) and set the weights
to
√
1/s, and the claim follows.

The quantity Mλ is a generalization of the concept of matrix coherence [5] to
quasimatrices. A similar quantity appears in [11] in the context of function approxi-
mation using sampling. When using natural sampling, the number of samples required
for (6.2) to hold with high probability depends on the coherence of the quasimatrix,
which can be large. Sampling using the ridge leverage scores, often referred to as
leverage score sampling, yields a better bound since sλ([ A b ]) ≤Mλ([ A b ]).

Of course, it is not simple to sample using the ridge leverage function. Cohen and
Migliorati suggested a method from leverage score sampling when λ = 0 [12]. Their
method is based on sequential conditional sampling, where individual coordinates
are sampled using either rejection sampling or inversion transform sampling. An
alternative approach is to find some simple and easy way to sample the upper bound
on τλ. For this to be worthwhile, the bound has to be tighter than the bound τλ(η) ≤
Mλp(η) used in Proposition 12. This approach is used in [3, 4].
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6.2. Quadrature sampling. In this section, we discuss deterministic sampling
using quadrature formulas. For simplicity, we assume that Ω = [−1, 1] and that µ
is the Lebesgue measure on [−1, 1]. Accordingly, the sampling scheme is based on
the Gauss–Legendre quadrature. Higher dimensional domains can be handled via
tensoring the quadrature. We also assume that λ > 0. Let zA : R → Cn be a
coordinate representation of A. We can write

A∗A =

∫ 1

−1

zA(η)zA(η)∗dη .

Furthermore, for every x ∈ Rn

∥Ax∥2L2([−1,1],dµ) =

∫ 1

−1

xTzA(η)zA(η)∗xdη =

∫ 1

−1

|zA(η)∗x|2 dη .

Let zb : R→ C be a coordinate representation of b. Then,

A∗b =

∫ 1

−1

zA(η)zb(η)dη, ∥b∥2L2([−1,1],dµ) =

∫ 1

−1

|zb(η)|2 dη .

We conclude that the overdetermined SILR can be written as an integral form∫ 1

−1

fx(η)dη = ∥Ax− b∥2L2([−1,1],dµ) + λ∥x∥22,(6.3)

where

fx(η) = |zA(η)∗x− zb(η)|2 +
λ

2
∥x∥22 .

The underlying idea is to approximate the integral in (6.3) using the Gauss–
Legendre quadrature. For a given ϵ ∈ (0, 1), our algorithm sets the nodes η1, . . . , ηs ∈
[−1, 1] to be the Gauss–Legendre quadrature nodes, and sets the weights w1, . . . , ws >
0 so that their squares are the Gauss–Legendre quadrature weights. We set s to be
large enough so that ∣∣∣∫ 1

−1
fx(η)dη −

∑s
j=1 w

2
jfx(ηj)

∣∣∣∫ 1

−1
fx(η)dη + λ

≤ ϵ .(6.4)

Once η1, . . . , ηs and the weights w1, . . . , ws are computed, we can define Aη and bη

as before. We have

s∑
j=1

w2
jfx(ηj) = ∥Aηx− bη∥22 + λ∥x∥22,

so if (6.4) holds then (6.1) holds (with H = L2([−1, 1], dµ)), and we can apply Propo-
sition 8.

To determine how many quadrature nodes s are needed so that (6.4) holds, we
can apply the following theorem, which is a modified version of [40, Theorem 11] for

the function gx(η) := fx(η)/(
∫ 1

−1
fx(η)dη+λ). Since the proof is a simple modification

of the proof [40, Theorem 11], we omit it.
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Theorem 13. Let E be the (Bernstein) ellipse in the complex plane with foci ±1
that passes through i, and let ρ = 1 +

√
2. Assume that both real and imaginary

parts of zA(·)i, i = 1, . . . , n, and zb(·) are analytic on R, and denote their analytic
continuations by ẑA(·) and ẑb(·) correspondingly. Denote

MA := sup
η∈E
∥ẑA(η)∥∞, Mb := sup

η∈E
∥ẑb(η)∥∞ .

Then, given a small ϵ, for

s ≥
ln
(
8(λ−1(nM2

A +M2
b) + 1)

)
− ln ϵ− ln

√
2

2 ln(1 +
√
2)

+ 1

we have ∣∣∣∣∣∣
∫ 1

−1

gx(η)dη −
s∑

j=1

wjgx(ηj)

∣∣∣∣∣∣ ≤ ϵ,

where η1, . . . ηs are chosen to be the Gauss–Legendre quadrature nodes, and w2
1, . . . , w

2
s

are the Gauss–Legendre quadrature weights.

Remark 14. For η ∈ E, we denote cx = ∥Ax − b∥2L2([−1,1],dµ) + λ∥x∥22 + λ and

bound gx(η) as follows,

gx(η) =
1

cx

(
|zA(η)∗x− zb(η)|2 +

λ

2
∥x∥22

)
=

1

cx

(∣∣∣∣[ zA(η)∗ zb(η)
] [ x

−1

]∣∣∣∣2 +
λ

2
∥x∥22

)

=
1

cx

(∣∣∣∣[ zA(η)∗ zb(η)
]
K̂

−1/2
K̂

1/2
[

x
−1

]∣∣∣∣2 +
λ

2
∥x∥22

)

≤
1

cx

([
zA(η)∗ zb(η)

]
K̂

−1
[

zA(η)
zb(η)

∗

]
·
([

x −1
]
K̂

[
x
−1

])
+

λ

2
∥x∥22

)
=
[
zA(η)∗ zb(η)

]
K̂

−1
[

zA(η)
zb(η)

∗

]
+

1

cx
·
λ

2
∥x∥22

≤ λ−1(∥zA(η)∥22 + |zb(η)|2) +
1

2

≤ λ−1(nM2
A +M2

b) +
1

2
,

where K̂ = [A
∗A A∗b

b∗A b∗b
]+λIn+1 and in the first inequality we use the Cauchy–Schwarz

inequality. Theorem 13 yields∣∣∣∫ 1

−1
fx(η)dη −

∑s
j=1 w

2
jfx(ηj)

∣∣∣∫ 1

−1
fx(η)dη + λ

=

∣∣∣∣∣∣
∫ 1

−1

gx(η)dη −
s∑

j=1

w2
j gx(ηj)

∣∣∣∣∣∣ ≤ ϵ .

We can generalize the above theorem, which is specific for Ω = [−1, 1], to complex
sets and/or high dimensional sets with a variety of probability measures on them, as
done in [40].

6.3. Numerical example. We illustrate both sampling approaches, random-
ized and quadrature, on a small numerical example. Consider trying to approximate
on [−1, 1] the Runge function using a polynomial of degree 39. We use the Chebyshev
basis, i.e.,

A =
[
T0 T1 · · · T39

]
, b =

[
1

1 + 25x2

]
with λ = 10−4.
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Fig. 3. Numerical illustration: approximating the Runge function using various sampling methods.

The leftmost graph in Figure 3 shows the ridge leverage density of [ A b ], and
compares it to the uniform density. We also plot the density of the limiting distribution
of Legendre nodes. We see very close alignment between the ridge leverage score
density and the density of the Legendre nodes. We note that in this case sλ = 39.99.
In contrast Mλ = 798.28, and thus we will need about 95% fewer samples when
using leverage score sampling when compared to natural sampling. However, even
for ϵ = 0.01, the number of samples required for randomized sampling is huge. In
contrast, for ϵ = 0.01 only s = 73 features are required using quadrature features.
Nevertheless, in the experiments we use s = 100 for both randomized and quadrature
sampling.

The middle and rightmost graphs in Figure 3 show the function approximation
(on the left), and the error in approximating the function (on the right). We use
both natural sampling and leverage score sampling, where we used inverse transform
sampling for leverage score sampling. With s = 100, using quadrature sampling
and leverage score sampling we get small errors: the maximum absolute error is
4.48 × 10−4 for quadrature sampling, and 9.82 × 10−4 for leverage score sampling.
Natural sampling has a large error near the boundary of [−1, 1] (as expected), and
the maximum absolute error is 0.0581.

7. Conclusions and future work. In this paper, we gave an algebraic frame-
work for working with quasimatrices and explored the use of this framework to solve
SILR problems, i.e., regression problems where the system’s matrix has an infinite
number of rows or columns. We discussed various applications, such as function
approximation and supervised learning (using KRR). We offered several classes of
algorithms for solving SILR problems: direct methods and iterative methods (gener-
alizing known iterative methods such as LSMR as an example of a Krylov subspace
method and SVRG as an example of a stochastic optimization method). Finally, mo-
tivated by recent research on RandNLA methods for solving finite linear least squares
problems, we explored the use of sampling techniques to approximate the solution of
an SILR, where sampling can be either randomized or deterministic. Possible future
directions are to further leverage advanced randomized linear algebra methods, such
as sketching, whereas the main challenge is in how to generate a random quasimatrix
from the correct distribution. Another interesting idea is to generalize the Batson–
Spielman–Srivastava process for iteratively building a spectral approximation of a
matrix using columns samples [6] to quasimatrices.

Appendix A. SVRG with integrable sums. The usual SVRG algorithm
[23, 48] is defined for objective functions that have a finite sum structure, i.e.,
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506 PAZ FINK SHUSTIN AND HAIM AVRON

f(x) =
1

n

n∑
i=1

fi(x) .(A.1)

Here we propose a variant of the algorithm designed for objective functions that can
be written as an integral. Let µ be some probability measure on a measurable index
set, Ω. Our variant of SVRG is designed for functions that can be written as

f(x) =

∫
Ω

fη(x)dµ(η),(A.2)

where the integral should be interepted as a Lebesgue integral. Notice that (A.1) is

a special case of (A.2): Ω = {1, . . . , n} and µ(A) = |A|
n . The proposed algorithm is

summarized in Algorithm A.1.

Algorithm A.1. SVRG for integrable objective functions.

1: Inputs: initial x̃0, learning rate α, frequency m
2: Iterate: for s = 1, 2, . . .
3: x̃ = x̃s−1

4: µ̃ = ∇
∫
Ω
fη(x̃)dµ(η) = ∇f(x̃)

5: x0 = x̃
6: Iterate: for k = 1, 2, . . . ,m
7: sample ηk according to the probability of η and update
8: xk = xk−1 − α

(
∇fηk

(xk−1)−∇fηk
(x̃) + µ̃

)
9: end

10: option I: set x̃s = xm

11: option II: set x̃s =
1
m

∑m
k=1 xk

12: end

As in common convex optimization, certain assumptions must be made in order
for the algorithm to converge. We prove that Algorithm A.1 converges and analyze
the convergence rate, when the following assumptions hold. We start with assump-
tions that are analogous to the assumptions in finite sum SVRG, which we already
mentioned in section 5.2.

Assumption 15. For all η ∈ Ω, ∇fη(x) is Lipschitz continuous, i.e., there exists
Lη > 0 such that for all x,y ∈ Rn

∥∇fη(x)−∇fη(y)∥ ≤ Lη∥x− y∥ .

Assumption 16. Suppose that f(x) is strongly convex, i.e., there exist γ > 0 such
that for all x,y ∈ Rn

f(x)− f(y) ≥ γ

2
∥x− y∥22 +∇f(y)T(x− y) .

Next, we list assumptions that trivially hold for the finite case but are required
for the continuous case.

Assumption 17. The equality ∇f(x) =
∫
Ω
∇fη(x)dµ(η) holds.

Suppose Ω = Rd and fη(x),∇fη(x) ∈ L1(Ω) with respect to η. Then, Assumption
17 holds from the Leibniz integral rule.
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Assumption 18. Lsup := supη∈Ω Lη <∞.

Assumptions 17 and 18 imply that ∇f(x) is Lipschitz continuous with Lipschitz
constant L ≤ Lsup. Note that for the finite sum case, Assumptions 17 and 18 hold
trivially, but this is no longer the case in the integrable case.

Corollary 19. If Assumptions 17, 18 hold, then we can make Assumptions 15,
16 hold for the continuous case.

We now analyze Algorithm 17. The analysis follows the analysis in [23, 48] quite
closely, making adjustments where necessary for integrals instead of sums, and using
the additional assumptions when needed.

Lemma 20. Suppose Assumptions 15, 17, 18 hold. Let x⋆ = arg minx f(x) and
Lsup = supη∈Ω Lη. Then∫

Ω

∥∇fη(x)−∇fη(x⋆)∥22dµ(η) ≤ 2Lsup (f(x)− f(x⋆)) .

Proof. Given any η ∈ Ω, let

gη(x) = fη(x)− fη(x
⋆)−∇fη(x⋆)T (x− x⋆) .

It can be seen that ∇gη(x⋆) = 0 and, hence, x⋆ = argminx gη(x). Moreover, from
Assumption 15, ∇gη(x) = ∇fη(x) − ∇fη(x⋆) is Lipschitz continuous with constant
Lη. This yields

gη(x)− gη(y) ≤
Lη

2
∥x− y∥22 +∇gη(y)T(x− y)

for any x,y ∈ Rn (see [29, Lemma 1.2.3]). Replacing x with x − 1
Lη
∇gη(x) and y

with x, gives

gη

(
x− 1

Lη
∇gη(x)

)
≤ gη(x)−

1

2Lη
∥∇gη(x)∥22 .

Since minx gη(x) = gη(x
⋆) = 0, we have 0 ≤ gη(x−∇gη(x)/Lη), which implies

1

2Lη
∥∇gη(x)∥22 ≤ gη(x) .(A.3)

Substituting the definition of g gives

∥∇fη(x)−∇fη(x⋆)∥22 ≤ 2Lη

(
fη(x)− fη(x

⋆)−∇fη(x⋆)T (x− x⋆)
)
.

Now, by taking an integral over Ω, we have∫
Ω

∥∇fη(x)−∇fη(x⋆)∥22dµ(η) ≤ 2Lsup

∫
Ω

fη(x)− fη(x
⋆)−∇fη(x⋆)T(x−x⋆)dµ(η)

= 2Lsup

(
f(x)− f(x⋆)−∇f(x⋆)T(x− x⋆)

)
= 2Lsup (f(x)− f(x⋆)) ,

where in the first inequality we use Assumption 18, in the second equality we use
Assumption 17, and the last equality is due to the fact that ∇f(x⋆) = 0.

Corollary 21. Denote vk = ∇fηk
(xk−1)−∇fηk

(x̃)+ µ̃. Then, conditioned on
xk−1 we have

E∥vk∥22 ≤ 4Lsup (f(xk−1)− 2f(x⋆) + f(x̃)) .

D
ow

nl
oa

de
d 

03
/2

9/
22

 to
 1

32
.6

6.
40

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

508 PAZ FINK SHUSTIN AND HAIM AVRON

Proof. Conditioned on xk−1, taking expectation with respect to ηk gives
E[∇fηk

(xk−1)] = ∇f(xk−1). Similarly, E[∇fηk
(x̃)] = ∇f(x̃). Therefore

E [vk] = E
[
∇fηk

(xk−1)−∇fηk
(x̃) + µ̃

]
= ∇f(xk−1) .(A.4)

Now,

E∥vk∥22 = E∥∇fηk
(xk−1)−∇fηk

(x̃) + µ̃+∇fηk
(x⋆)−∇fηk

(x⋆)∥22
≤ 2E∥∇fηk

(xk−1)−∇fηk
(x⋆)∥22 + 2E∥∇fηk

(x⋆)−∇fηk
(x̃) + µ̃∥22

= 2E∥∇fηk
(xk−1)−∇fηk

(x⋆)∥22
+ 2E∥∇fηk

(x̃)−∇fηk
(x⋆)− E

[
∇fηk

(x̃)−∇fηk
(x⋆)

]
∥22

≤ 2E∥∇fηk
(xk−1)−∇fηk

(x⋆)∥22 + 2E∥∇fηk
(x̃)−∇fηk

(x⋆)∥22
≤ 4Lsup (f(xk−1)− 2f(x⋆) + f(x̃)) ,

where in the first inequality we use ∥a + b∥2 ≤ 2(∥a∥2 + ∥b∥2). The second equality
uses E[∇fηk

(x̃)] = µ̃, E[∇fηk
(x⋆)] = ∇f(x⋆) = 0. The second inequality uses the

fact that for any ξ ∈ Rd: E∥ξ−Eξ∥22 = E∥ξ∥22−∥Eξ∥22 ≤ E∥ξ∥22. In the last inequality
we use Lemma 20.

Now we can proceed to prove the main theorem.

Theorem 22. Suppose Assumptions 16, 17, 18 hold, and let x⋆ = arg minx f(x)
and Lsup = supη∈Ω Lη. In addition, assume that there exists 0 < α < 1

2Lsup
, a

sufficiently large m such that

ρ =
1

γα(1− 2Lsupα)m
+

2Lsupα

(1− 2Lsupα)
< 1 .

Then SVRG (Algorithm A.1) with option II has geometric convergence in expectation:

E [f(x̃s)]− f(x⋆) ≤ ρs (f(x̃0)− f(x⋆)) .

Proof. From Assumption 16, and using (A.4), we have

f(x⋆)− f(xk−1) ≥ −∇f(xk−1)
T(xk−1 − x⋆),(A.5)

f(xk)− f(xk−1) ≥ −αE [vk]
T
vk .

Subtracting these inequalities yields

−∇f(xk−1)
T(xk−1 − x⋆) ≤ f(x⋆)− f(xk)− αE [vk]

T
vk .(A.6)

Thus, we have

E∥xk − x⋆∥22 = E∥xk−1 − αvk − x⋆∥22
= ∥xk−1 − x⋆∥22 − 2α∇f(xk−1)

T(xk−1 − x⋆) + α2E∥vk∥22
≤ ∥xk−1 − x⋆∥22 − 2α (f(xk)− f(x⋆))− 2α2E [vk]

T
vk

+ 4Lsupα
2 (f(xk−1)− 2f(x⋆) + f(x̃)) ,

where the equality uses (A.4) and the inequality uses (A.6) and Corollary 21.
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Now, consider a fixed stage s, such that x0 = x̃ = x̃s−1 and x̃s = 1
m

∑m
k=1 xk.

By summing the previous inequality over k = 1, . . . ,m and taking expectation with
respect to the history of the random variables η1, . . . , ηm, we obtain

E∥xm − x⋆∥2 ≤ ∥x0 − x⋆∥22 − 2α

m∑
k=1

(E [f(xk)]− f(x⋆))− 2α2
m∑

k=1

∥E [vk] ∥22

+ 4Lsupα
2

m∑
k=1

(E [f(xk−1)]− f(x⋆)) + 4Lsupα
2m (f(x̃)− f(x⋆))

≤ ∥x̃− x⋆∥22 − 2α

m∑
k=1

(E [f(xk)]− f(x⋆))− 2α2
m∑

k=1

∥E [vk] ∥22

+ 4Lsupα
2

m∑
k=1

(E [f(xk)]− f(x⋆)) + 4Lsupα
3

m∑
k=1

∥E [vk] ∥22 + 4Lsupα
2m (f(x̃)− f(x⋆))

≤ ∥x̃− x⋆∥22 − 2α (1− 2Lsupα)

m∑
k=1

(E [f(xk)]− f(x⋆)) + 4Lsupα
2m (f(x̃)− f(x⋆))

≤
(
2

γ
+ 4Lsupα

2m

)
(f(x̃s−1)− f(x⋆))− 2α (1− 2Lsupα)

m∑
k=1

(E [f(xk)]− f(x⋆)) .

The second inequality is due to the strong convexity in (A.5), and the third
inequality uses the assumption 2Lsupα < 1 such that (4Lsupα

3 − 2α2)∥E[vk]∥22 ≤ 0.
The last inequality uses Assumption 16 with x replaced by x̃ and y replaced by x⋆.
In addition, f(x̃s) ≤ 1

m

∑m
k=1 f(xk) due to the convexity of f . Therefore, we obtain

2α (1− 2Lsupα)m (E [f(x̃s)]− f(x⋆)) ≤
(
2

γ
+ 4Lsupα

2m

)
(f(x̃s−1)− f(x⋆)) .

Dividing both sides of the above inequality by 2α(1− 2Lsupα)m gives

E [f(x̃s)]− f(x⋆) ≤ ρs (f(x̃0)− f(x⋆)) .
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