
SIAM J. SCI. COMPUT. c© 2017 Society for Industrial and Applied Mathematics
Vol. 39, No. 4, pp. A1558–A1585

APPROXIMATING SPECTRAL SUMS OF LARGE-SCALE
MATRICES USING STOCHASTIC CHEBYSHEV

APPROXIMATIONS∗

INSU HAN† , DMITRY MALIOUTOV‡ , HAIM AVRON§ , AND JINWOO SHIN¶

Abstract. Computation of the trace of a matrix function plays an important role in many
scientific computing applications, including applications in machine learning, computational physics
(e.g., lattice quantum chromodynamics), network analysis, and computational biology (e.g., protein
folding), just to name a few application areas. We propose a linear-time randomized algorithm for
approximating the trace of matrix functions of large symmetric matrices. Our algorithm is based
on coupling function approximation using Chebyshev interpolation with stochastic trace estimators
(Hutchinson’s method), and as such requires only implicit access to the matrix, in the form of
a function that maps a vector to the product of the matrix and the vector. We provide rigorous
approximation error in terms of the extremal eigenvalue of the input matrix, and the Bernstein ellipse
that corresponds to the function at hand. Based on our general scheme, we provide algorithms
with provable guarantees for important matrix computations, including log-determinant, trace of
matrix inverse, Estrada index, Schatten p-norm, and testing positive definiteness. We experimentally
evaluate our algorithm and demonstrate its effectiveness on matrices with tens of millions dimensions.

Key words. spectral function, matrix computation, Chebyshev approximation, Hutchinson’s
method

AMS subject classification. 68W25

DOI. 10.1137/16M1078148

1. Introduction. Given a symmetric matrix A ∈ Rd×d and function f : R→ R,
we study how to efficiently compute

Σf (A) = tr(f(A)) =
d∑
i=1

f(λi),(1)

where λ1, . . . , λd are eigenvalues of A. We refer to such sums as spectral sums (also
referred to as trace functions). Spectral sums depend only on the eigenvalues of A
and so they are spectral functions, although not every spectral function is a spectral
sum. Nevertheless, the class of spectral sums is rich and includes useful spectral
functions. For example, if A is also positive definite then Σlog(A) = log det(A), i.e.
the log-determinant of A.

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section June 1,
2016; accepted for publication (in revised form) March 13, 2017; published electronically August 22,
2017. This article is partially based on preliminary results published in the proceeding of the 32nd
International Conference on Machine Learning (ICML 2015).

http://www.siam.org/journals/sisc/39-4/M107814.html
Funding: The work of the third author was supported by the XDATA program of the Defense

Advanced Research Projects Agency (DARPA), administered through Air Force Research Laboratory
contract FA8750-12-C-0323.
†School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Dacjeon

Korea (hawki17@kaist.ac.kr).
‡Business Analytics and Mathematical Sciences, IBM Research, Yorktown Heights, NY, 10598

(dmalioutov@us.ibm.com).
§Department of Applied Mathematics, Tel Aviv University/Tel Aviv 6997801, Israel

(haimav@post.tau.ac.il).
¶School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Dacjeon

Korea (jinwoos@kaist.ac.kr).

A1558

http://www.siam.org/journals/sisc/39-4/M107814.html
mailto:hawki17@kaist.ac.kr
mailto:dmalioutov@us.ibm.com
mailto:haimav@post.tau.ac.il
mailto:jinwoos@kaist.ac.kr

APPROXIMATING SPECTURAL SUMS A1559

Indeed, there are many real-world applications in which spectral sums play an
important role. For example, the log-determinant appears ubiquitously in machine
learning applications including Gaussian graphical and Gaussian process models [38,
36, 13], partition functions of discrete graphical models [29], minimum-volume ellip-
soids [44], metric learning, and kernel learning [10]. The trace of the matrix inverse
(Σf (A) for f(x) = 1/x) is frequently computed for the covariance matrix in uncer-
tainty quantification [9, 27] and lattice quantum chromodynamics [39]. The Estrada
index (Σexp(A)) has been initially developed for topological index of protein folding in
the study of protein functions and protein-ligand interactions [15, 12], and currently
it appears in numerous other applications, e.g., statistical thermodynamics [18, 17],
information theory [7], and network theory [19, 16] ; see Gutman et al. [22] for more
applications. The Schatten p-norm (Σf (A>A)1/p for f(x) = xp/2 for p ≥ 1) has been
applied to recover low-rank matrix [34] and sparse MRI reconstruction [30].

The computation of the aforementioned spectral sums for large-scale matrices
is a challenging task. For example, the standard method for computing the log-
determinant uses the Cholesky decomposition (if A = LLT is a Cholesky decompo-
sition, then log det(A) = 2

∑
i logLii). In general, the computational complexity of

Cholesky decomposition is cubic with respect to the number of variables, i.e., O(d3).
For large-scale applications involving more than tens of thousands of dimensions, this
is obviously not feasible. If the matrix is sparse, one might try to take advantage of
sparse decompositions. As long as the amount of fill-in during the factorizations is
not too big, a substantial improvement in running time can be expected. Neverthe-
less, the worst case still requires Θ(d3). In particular, if the sparsity structure of A is
random-like, as is common in several of the aforementioned applications, then little
improvement can be expected with sparse methods.

Our aim is to design an efficient algorithm that is able to compute accurate
approximations to spectral sums for matrices with tens of millions of variables.

1.1. Contributions. We propose a randomized algorithm for approximating
spectral sums based on a combination of stochastic trace-estimators and Chebyshev
interpolation. Our algorithm first computes the coefficients of a Chebyshev approxi-
mation of f . This immediately leads to an approximation of the spectral sums as the
trace of power series of the input matrix. We then use a stochastic trace-estimator to
estimate this trace. In particular, we use Hutchinson’s method [25].

One appealing aspect of Hutchinson’s method is that it does not require an explicit
representation of the input matrix; Hutchinson’s method requires only an implicit rep-
resentation of the matrix as an operation that maps a vector to the product of the
matrix with the vector. In fact, this property is inherited by our algorithm to its
entirety: our algorithm only needs access to an implicit representation of the matrix
as an operation that maps a vector to the product of the matrix with the vector. In
accordance, we measure the complexity of our algorithm in terms of the number of
matrix-vector products that it requires. We establish rigorous bounds on the num-
ber of matrix-vector products for attaining a ε-multiplicative approximation of the
spectral sums based on ε, the failure probability, and the range of the function over
its Bernstein ellipse (see Theorem 3.1 for details). In particular, Theorem 3.1 implies
that if the range is Θ(1), then the algorithm provides ε-multiplicative approximation
guarantee using a constant amount of matrix-vector products for any constant ε > 0
and constant failure probability.

The overall time complexity of our algorithm is O(t·‖A‖mv), where t is the number
of matrix-vector products (as established by our analysis) and ‖A‖mv is the cost of

A1560 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

multiplying A by a vector. One overall assumption is that matrix-vector products
can be computed efficiently, i.e., ‖A‖mv is small. For example, if A is sparse then
‖A‖mv = O(nnz(A)), i.e., the number of non-zero entries in A. Other cases that admit
fast matrix-vector products are low-rank matrices (which allow fast multiplication
by factorization), or Fourier (or Hadamard, Walsh, Toeplitz) matrices using the fast
Fourier transform. The proposed algorithm is also very easy to parallelize.

We then proceed to discuss applications of the proposed algorithm. We give rig-
orous bounds for using our algorithm for approximating the log-determinant, trace of
the inverse of a matrix, the Estrada index, and the Schatten p-norm. These correspond
to continuous functions f(x) = log x, f(x) = 1/x, f(x) = exp(x), and f(x) = xp/2,
respectively. We also use our algorithm to construct a novel algorithm for testing pos-
itive definiteness in the property testing framework. Our algorithm, which is based
on approximating the spectral sums for 1−sign(x), is able to test positive definiteness
of a matrix with a sublinear (in matrix size) number of matrix-vector products.

Our experiments show that our proposed algorithm is orders of magnitude faster
than the standard methods for sparse matrices and provides approximations with
less than 1% error for the examples we consider. It can also solve problems of tens
of millions dimension in a few minutes on our single commodity computer with 32
GB memory. Furthermore, as reported in our experimental results, it achieves much
better accuracy compared to a similar approach based on Talyor expansions [48], while
both have similar running times. In addition, it outperforms the recent method based
on Cauchy integral formula [1] in both running time and accuracy.1 The proposed
algorithm is also very easy to parallelize and hence has a potential to handle even
larger problems. For example, the Schur method was used as a part of QUIC algorithm
for sparse inverse covariance estimation with over a million variables [24], hence our
log-determinant algorithm could be used to further improve its speed and scale.

1.2. Related Work. The first to consider the problem of approximating spec-
tral sums was [3], and its specific use for approximating the log-determinant and the
trace of the matrix inverse. Like our method, their method combines stochastic trace
estimation with approximation of bilinear forms. However, their method for approx-
imating bilinear forms is fundamentally different than our method and is based on a
Gauss-type quadrature of a Riemann–Stieltjes integral. They do not provide rigorous
bounds for the bilinear form approximation. In addition, recent progress on analyzing
stochastic trace estimation [2, 37] allows us to provide rigorous bounds for the entire
procedure.

Since then, several authors considered the use of stochastic trace estimators to
compute certain spectral sums; [4, 31] consider the problem of computing the diagonal
of a matrix or of the matrix inverse. Polynomial approximations and rational approx-
imations of high-pass filter to count the number of eigenvalues in an input interval
are used by [14]. They do not provide rigorous bounds. Stochastic approximations of
score functions are used by [40] to learn large-scale Gaussian processes.

Approximation of the log-determinant in particular has received considerable
treatment in the literature. Pace and LeSage [35] use both Taylor and Cheby-
shev based approximation to the logarithm function to design an algorithm for log-
determinant approximation, but do not use stochastic trace estimation. Their method
is determistic, can entertain only low-degree approximations, and has no rigorous
bounds. Zhang and Leithead [48] consider the problem of approximating the

1Aune, Simpson, and Eidsvik’s method [1] is implemented in the SHOGUN machine learning
toolbox, http://www.shogun-toolbox.org.

http://www.shogun-toolbox.org

APPROXIMATING SPECTURAL SUMS A1561

log-determinant in the setting of Gaussian process parameter learning. They use
Taylor expansion in conjunction with stochastic trace estimators, and propose novel
error compensation methods. They do not provide rigorous bounds as we provide
for our method. Boutsidis et al. [6] use a similar scheme based on Taylor expansion
for approximating the log-determinant, and do provide rigorous bounds. Neverthe-
less, our experiments demonstrate that our Chebyshev interpolation based method
provides superior accuracy. [1] approximates the log-determinant using a Cauchy in-
tegral formula. Their method requires the multiple use of a Krylov-subspace linear
system solver, so their method is rather expensive. Furthermore, no rigorous bounds
are provided.

Computation of the trace of the matrix inverse has also been researched exten-
sively. One recent example is [46], which uses a combination of stochastic trace esti-
mation and interpolating an approximate inverse. In another example, [8] considers
how accurately linear systems should be solved when stochastic trace estimators are
used to approximate the trace of the inverse.

To summarize, the main novelty of our work is combining Chebyshev interpolation
with Hutchinson’s trace estimator, which allows us to design a highly effective linear-
time algorithm with rigorous approximation guarantees for general spectral sums.

1.3. Organization. The structure of the paper is as follows. We introduce
the necessary background in section 2. Section 3 provides the description of our
algorithm with approximation guarantees, and its applications to the log-determinant,
the trace of matrix inverse, the Estrada index, the Schatten p-norm, and testing
positive definiteness are described in section 4. We report experimental results in
section 5.

2. Preliminaries. Throughout the paper, A ∈ Rd×d is a symmetric matrix with
eigenvalues λ1, . . . , λd ∈ R and Id is the d-dimensional identity matrix. We use tr(·)
to denote the trace of the matrix. We denote the Schatten p-norm by ‖ · ‖(p), and
the induced matrix p-norm by ‖ · ‖p (for p = 1, 2,∞) . We also use λmin(A) and
λmax(A) to denote the smallest and largest eigenvalue of A. In particular, we assume
that an interval [a, b] which contains all of A’s eigenvalues is given. In some cases,
such bounds are known a priori due to properties of the downstream use (e.g., the
application considered in subsection 5.2). In others, a crude bound like a = −‖A‖∞
and b = ‖A‖∞ or via Gershgorin’s circle theorem [21, sect. 7.2] might be obtained.
For some functions, our algorithm has additional requirements on a and b (e.g., for
log-determinant, we need a > 0).

Our approach combines two techniques, which we discuss in detail in the next
two subsections: (a) designing polynomial expansion for given function via Cheby-
shev interpolation [32] and (b) approximating the trace of matrix via Monte Carlo
methods [25].

2.1. Function approximation using Chebyshev interpolation. Chebyshev
interpolation approximates an analytic function by interpolating the function at the
Chebyshev nodes using a polynomial. Conveniently, the interpolation can be ex-
pressed in terms of basis of Chebyshev polynomials. Specifically, the Chebyshev
interpolation pn of degree n for a given function f : [−1, 1] → R is given by (see
Mason and Handscomb [32]):

f(x) ≈ pn(x) =
n∑
j=0

cjTj(x),(2)

A1562 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

where the coefficient cj , the jth Chebyshev polynomial Tj(x), and Chebyshev nodes
{xk}nk=0 are defined as

cj =

1

n+ 1

n∑
k=0

f(xk) T0(xk) if j = 0,

2
n+ 1

n∑
k=0

f(xk) Tj(xk) otherwise,

(3)

T0(x) = 1, T1(x) = x,

Tj+1(x) = 2xTj(x)− Tj−1(x) for j ≥ 1,(4)

xk = cos
(
π(k + 1/2)
n+ 1

)
.

Chebyshev interpolation better approximates the functions as the degree n in-
creases. In particular, the following error bound is known [5, 47].

Theorem 2.1. Suppose f is analytic function with |f(z)| ≤ U in the region
bounded by the so-called Bernstein ellipse with foci +1,−1 and sum of major and
minor semi-axis lengths equal to ρ > 1. Let pn denote the degree n Chebyshev inter-
polant of f as defined by (2), (3), and (4). We have

max
x∈[−1,1]

|f(x)− pn(x)| ≤ 4U
(ρ− 1) ρn

.

The interpolation scheme described so far assumed a domain of [−1, 1]. To allow
a more general domain of [a, b] one can use the linear mapping g(x) = b−a

2 x+ b+a
2 to

map [−1, 1] to [a, b]. Thus, f ◦ g is a function on [−1, 1] which can be approximated
using the scheme above. The approximation to f is then p̃n = pn ◦ g−1, where pn is
the approximation to f ◦ g. Note that p̃n is a polynomial with degree n as well. In
particular, we have the following approximation scheme for a general f : [a, b]→ R:

f(x) ≈ p̃n(x) =
n∑
j=0

c̃jTj

(
2

b− a
x− b+ a

b− a

)
,(5)

where the coefficient c̃j are defined as

c̃j =

1

n+ 1

n∑
k=0

f

(
b− a

2
xk +

b+ a

2

)
T0(xk) if j = 0,

2
n+ 1

n∑
k=0

f

(
b− a

2
xk +

b+ a

2

)
Tj(xk) otherwise.

(6)

The following is a simple corollary of Theorem 2.1.

Corollary 2.2. Suppose that a, b ∈ R with a < b. Suppose f is an analytic
function with |f(b−a2 z + b+a

2)| ≤ U in the region bounded by the ellipse with foci
+1,−1, and the sum of major and minor semi-axis lengths equals ρ > 1. Let p̃n
denote the degree n Chebyshev interpolant of f on [a, b] as defined by (4), (5) and (6).
We have

max
x∈[a,b]

|f(x)− p̃n(x)| ≤ 4U
(ρ− 1) ρn

.

APPROXIMATING SPECTURAL SUMS A1563

Proof. The proof follows immediately from Theorem 2.1 and observing that for
g(x) = b−a

2 x+ b+a
2 we have

max
x∈[−1,1]

|(f ◦ g)(x)− pn (x)| = max
x∈[a,b]

|f(x)− p̃n (x)| .

Chebyshev interpolation for scalar functions can be naturally generalized to ma-
trix functions [23]. Using the Chebyshev interpolation p̃n for function f , we obtain
the following approximation formula:

Σf (A) =
d∑
i=1

f(λi) ≈
d∑
i=1

p̃n(λi) =
d∑
i=1

n∑
j=0

c̃jTj

(
2

b− a
λi −

b+ a

b− a

)

=
n∑
j=0

c̃j

d∑
i=1

Tj

(
2

b− a
λi −

b+ a

b− a

)
=

n∑
j=0

c̃jtr

(
Tj

(
2

b− a
A− b+ a

b− a
Id

))

= tr

 n∑
j=0

c̃jTj

(
2

b− a
A− b+ a

b− a
Id

) ,

where the equality before the last follows from the fact that
∑d
i=1 p(λi) = tr(p(A))

for any polynomial p, and the last equality from the linearity of the trace operation.
We remark that other polynomial approximations, e.g., Taylor, can also be used.

However, it is known that Chebyshev interpolation, in addition to its simplicity, is
nearly optimal [43] with respect to the ∞-norm is well-suited for our uses.

2.2. Stochastic trace estimation (Hutchinson’s method). The main chal-
lenge in utilizing the approximation formula at the end of the last subsection is how
to compute

tr

 n∑
j=0

c̃jTj

(
2

b− a
A− b+ a

b− a
Id

)
without actually computing the matrix involved (since the latter is expensive to com-
pute). In this paper we turn to the stochastic trace estimation method. In essence,
it is a Monte Carlo approach: to estimate the trace of an arbitrary matrix B, first a
random vector z is drawn from some fixed distribution such that the expectation of
z>Bz is equal to the trace of B. By sampling m such i.i.d. random vectors, and aver-
aging we obtain an estimate of tr(B). Namely, given random vectors v(1), . . . ,v(m),
the estimator is

trm(B) =
1
m

m∑
i=1

v(i)>Bv(i) .

Random vectors can be used for the above trace estimator as long as they have
zero means and unit covariances [25]. Examples include those from Gaussian (normal)
distribution and Rademacher distribution. The latter samples entries uniformly at
random from {−1,+1} which is known to have the smallest variance among such
Monte Carlo methods [2]. This is called as the Hutchinson estimator and satisfies the
following equalities:

E [trm (B)] = tr (B) ,

Var [trm (B)] =
2
m

(
‖B‖2F −

d∑
i=1

B2
i,i

)
.

A1564 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

However, (ε, ζ)-bounds, as introduced by [2], are more appropriate for our needs.
Specifically, we use the following bound due to Roosta-Khorasani and Ascher [37].

Theorem 2.3. Let B ∈ Rd×d be a positive (or negative) semi-definite matrix.
Given ε, ζ ∈ (0, 1),

Pr [|trm(B)− tr(B)| ≤ ε |tr(B)|] ≥ 1− ζ

holds if sampling number m is larger than 6ε−2 log(2
ζ).

Note that computing v(i)>Bv(i) requires only multiplications between a matrix
and a vector, which is particularly appealing when evaluating B itself is expensive,
e.g.,

B =
n∑
j=0

c̃jTj

(
2

b− a
A− b+ a

b− a
Id

)
,

as in our case. In this case,

v(i)>Bv(i) =
n∑
j=0

c̃jv(i)>Tj

(
2

b− a
A− b+ a

b− a
Id

)
v(i) =

n∑
j=0

c̃jv(i)>w(i)
j ,

where

w(i)
j = Tj

(
2

b− a
A− b+ a

b− a
Id

)
v(i) .

The latter can be computed efficiently (using n matrix-vector products with A) by
observing that due to (4) we have that

w(i)
0 = v(i),w(i)

1 =
(

2
b− a

A− b+ a

b− a
Id

)
w(i)

0 ,

w(i)
j+1 = 2

(
2

b− a
A− b+ a

b− a
Id

)
w(i)
j −w(i)

j−1 .

In order to apply Theorem 2.3 we need B to be positive (or negative) semi-definite.
In our case B = p̃n(A), and thus it is sufficient for p̃n to be non-negative (non-positive)
on [a, b]. The following lemma establishes a sufficient condition for non-negativity of
p̃n, and a consequence positive (negative) semi-definiteness of p̃n(A).

Lemma 2.4. Suppose f satisfies that |f(x)| ≥ L for x ∈ [a, b]. Then, linear
transformed Chebyshev approximation p̃n(x) of f(x) is also non-negative on [a, b] if

4U
(ρ− 1) ρn

≤ L(7)

holds for all n ≥ 1.

Proof. From Corollary 2.2, we have

min
[a,b]

p̃n(x) = min
[a,b]

f(x) + (p̃n(x)− f(x))

≥ min
[a,b]

f(x)−max
[a,b]
|p̃n(x)− f(x)|

≥ L− 4U
(ρ− 1) ρn

≥ 0.

This completes the proof of Lemma 2.4.

APPROXIMATING SPECTURAL SUMS A1565

Algorithm 1. Trace of matrix function f approximation.
Input: symmetric matrix A ∈ Rd×d with eigenvalues in [a, b], sampling number m
and polynomial degree n
Initialize: Γ← 0
for j = 0 to n do
c̃j ← jth coefficient of the Chebyshev interpolation of f on [a, b] (see equation 6)

end for
for i = 1 to m do

Draw a random vector v(i) ∈ {−1,+1}d whose entries are uniformly distributed
w(i)

0 ← v(i) and w(i)
1 ← 2

b−aAv(i) − b+a
b−av(i)

u← c̃0w
(i)
0 + c̃1w

(i)
1

for j = 2 to n do
w(i)

2 ← 4
b−aAw(i)

1 −
2(b+a)
b−a w(i)

1 −w(i)
0

u← u + c̃j w2

w(i)
0 ← w(i)

1 and w(i)
1 ← w(i)

2
end for
Γ← Γ + v(i)>u/m

end for
Output: Γ

3. Approximating spectral sums.

3.1. Algorithm description. Our algorithm brings together the components
discussed in the previous section. A pseudo-code description appears as Algorithm 1.
As mentioned before, we assume that eigenvalues of A are in the interval [a, b] for
some b > a.

In section 4, we provide five concrete applications of the above algorithm: ap-
proximating the log-determinant, the trace of matrix inverse, the Estrada index, the
Schatten p-norm, and testing positive definiteness, which correspond to log x, 1/x,
exp(x), xp/2, and 1− sign(x), respectively.

3.2. Analysis. We establish the following theoretical guarantee on the proposed
algorithm.

Theorem 3.1. Suppose function f satisfies the following:
• f is non-negative (or non-positive) on [a, b].
• f is analytic with |f(b−a2 z+ b+a

2)| ≤ U for some U <∞ on the elliptic region
Eρ in the complex plane with foci at −1,+1 and ρ as the sum of semi-major
and semi-minor lengths.

• minx∈[a,b] |f(x)| ≥ L for some L > 0.
Given ε, ζ ∈ (0, 1), if

m ≥ 54ε−2 log (2/ζ),

n ≥ log
(

8
ε(ρ− 1)

U

L

)
/ log ρ,

A1566 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

then

Pr (|Σf (A)− Γ| ≤ ε |Σf (A)|) ≥ 1− ζ,

where Γ is the output of Algorithm 1.

The number of matrix-vector products performed by Algorithm 1 is O(mn), thus
the time-complexity is O(mn‖A‖mv), where ‖A‖mv is that of the matrix-vector oper-
ation. In particular, if m,n = O(1), the complexity is linear with respect to ‖A‖mv.
Therefore, Theorem 3.1 implies that if U,L = Θ(1), then one can choose m,n = O(1)
for ε-multiplicative approximation with probability of at least 1 − ζ given constants
ε, ζ > 0.

Proof. The condition

n ≥ log
(

8
ε(ρ− 1)

U

L

)
/ log ρ

implies that

4U
(ρ− 1) ρn

≤ ε

2
L .(8)

Recall that the trace of a matrix is equal to the sum of its eigenvalues and that this
also holds for a function of the matrix, i.e., f(A). Under this observation, we establish
a matrix version of Corollary 2.2. Let λ1, . . . , λd ∈ [a, b] be the eigenvalues of A. We
have

|Σf (A)− tr (p̃n(A))| =

∣∣∣∣∣
d∑
i=1

f(λi)− p̃n (λi)

∣∣∣∣∣ ≤
d∑
i=1

|f(λi)− p̃n (λi)|

≤
d∑
i=1

4U
(ρ− 1) ρn

=
4dU

(ρ− 1) ρn
(9)

≤ ε

2
dL ≤ ε

2
dmin

[a,b]
|f(x)|(10)

≤ ε

2

d∑
i=1

|f(λi)| =
ε

2
|Σf (A)| ,(11)

where the inequality (9) is due to Corollary 2.2, inequality (10) holds due to inequality
(8), and the last equality is due to the fact that f is either non-negative or non-positive.

Moreover, the inequality of (11) shows

|tr (p̃n(A))| − |Σf (A)| ≤ |Σf (A)− tr (p̃n(A))| ≤ ε

2
|Σf (A)| ,

which implies for ε ∈ (0, 1) that

|tr (p̃n(A))| ≤
(ε

2
+ 1
)
|Σf (A)| ≤ 3

2
|Σf (A)| .(12)

A polynomial degree n that satisfies (8) also satisfies (7), and from this it follows
that p̃n(A) is a positive semi-definite matrix by Lemma 2.4. Hence, we can apply
Theorem 2.3: for m ≥ 54ε−2 log (2/ζ) we have,

Pr
(
|tr (p̃n(A))− trm (p̃n(A))| ≤ ε

3
|tr (p̃n(A))|

)
≥ 1− ζ .

APPROXIMATING SPECTURAL SUMS A1567

In addition, this probability with (12) provides

Pr
(
|tr (p̃n(A))− trm (p̃n(A))| ≤ ε

2
|Σf (A)|

)
≥ 1− ζ.(13)

Combining (11) with (13) we have

1− ζ ≤ Pr
(
|tr (p̃n(A))− trm (p̃n(A))| ≤ ε

2
|Σf (A)|

)
≤ Pr

(
|Σf (A)− tr (p̃n(A))|+ |tr (p̃n(A))− trm (p̃n(A))|

≤ ε

2
|Σf (A)|+ ε

2
|tr (f(A))|

)
≤ Pr (|Σf (A)− trm (p̃n(A))| ≤ ε |Σf (A)|)

We complete the proof by observing that Algorithm 1 computes Γ = trm (p̃n(A)).

4. Applications. In this section, we discuss several applications of Algorithm 1:
approximating the log-determinant, trace of the matrix inverse, the Estrada index,
the Schatten p-norm, and testing positive definiteness. Underlying these applica-
tions is executing Algorithm 1 with the following functions: f(x) = log x (for log-
determinant), f(x) = 1/x (for matrix inverse), f(x) = exp(x) (for the Estrada index),
f(x) = xp/2 (for the Schatten p-norm), and f(x) = 1

2 (1 + tanh (−αx)), as a smooth
approximation of 1− sign(x) (for testing positive definiteness).

4.1. Log-determinant of positive definite matrices. Since Σlog(A) = log
detA our algorithm can naturally be used to approximate the log-determinant. How-
ever, it is beneficial to observe that

Σlog(A) = Σlog(A/(a+ b)) + d log(a+ b)

and use Algorithm 1 to approximate Σlog(A) for A = A/(a + b). The reason we
consider A instead of A as an input of Algorithm 1 is because all eigenvalues of A are
strictly less than 1 and the constant L > 0 in Theorem 3.1 is guaranteed to exist for
A. The procedure is summarized in Algorithm 2. In the next subsection we generalize
the algorithm for general non-singular matrices.

We note that Algorithm 2 requires us to know a positive lower bound a > 0 for
the eigenvalues, which is in general harder to obtain than the upper bound b (e.g.,
one can choose b = ‖A‖∞). In some special cases, the smallest eigenvalue of positive
definite matrices are known, e.g., random matrices [42, 41] and diagonal-dominant
matrices [20, 33]. Furthermore, it is sometimes explicitly given as a parameter in
many machine learning log-determinant applications [45], e.g., A = aId +B for some
positive semi-definite matrix B, and this includes the application involving Gaussian
Markov random fields (GMRF) in subsection 5.2.

Algorithm 2. Log-determinant approximation for positive definite matrices.
Input: positive definite matrix A ∈ Rd×d with eigenvalues in [a, b] for some a, b > 0,
sampling number m and polynomial degree n
Initialize: A← A/ (a+ b)
Γ← Output of Algorithm 1 with inputs A, [a

a+b ,
b
a+b],m, n with f(x) = log x

Γ← Γ + d log (a+ b)
Output: Γ

A1568 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

We provide the following theoretical bound on the sampling number m and the
polynomial degree n of Algorithm 2.

Theorem 4.1. Given ε, ζ ∈ (0, 1), consider the following inputs for Algorithm 2:
• A ∈ Rd×d is a positive definite matrix with eigenvalues in [a, b] for a, b > 0.
• m ≥ 54ε−2(log(1 + b

a))2 log (2
ζ).

• n ≥
log (20

ε (
√

2b
a +1−1) log(1+(b/a)) log(2+2(b/a))

log (1+(a/b)))

log
(√

2(b/a)+1+1√
2(b/a)+1−1

) = O

(√
b
a log

(
b
εa

))
Then, it follows that

Pr [|log detA− Γ| ≤ εd] ≥ 1− ζ,

where Γ is the output of Algorithm 2.

Proof. The proof of Theorem 4.1 is straightforward using Theorem 3.1 with choice
of upper bound U , lower bound L, and constant ρ for the function log x. Denote
δ = a

a+b and eigenvalues of A lie in the interval [δ, 1−δ]. We choose the ellipse region,
denoted by Eρ, in the complex plane with foci at +1,−1 and its semi-major axis
length is 1/(1− δ). Then,

ρ =
1

1− δ
+

√(
1

1− δ

)2

− 1 =
√

2− δ +
√
δ

√
2− δ −

√
δ
> 1

and log((1−2δ)x+1
2) is analytic on and inside Eρ in the complex plane.

The upper bound U can be obtained as follows:

max
z∈Eρ

∣∣∣∣log
(

(1− 2δ) z + 1
2

)∣∣∣∣ ≤ max
z∈Eρ

√(
log
∣∣∣∣ (1− 2δ) z + 1

2

∣∣∣∣)2

+ π2

=

√(
log
∣∣∣∣ δ

2 (1− δ)

∣∣∣∣)2

+ π2 ≤ 5 log
(

2
δ

)
:= U,

where the inequality in the first line holds because |log z| = |log |z|+ i arg (z)| ≤√
(log|z|)2+π2 for any z ∈ C, and the equality in the second line holds by the maximum-

modulus theorem. We also have the lower bound on log x in [δ, 1− δ] as follows:

min
[δ,1−δ]

|log x| = log
(

1
1− δ

)
:= L.

With these constants, a simple calculation reveals that Theorem 3.1 implies that
Algorithm 1 approximates

∣∣log detA
∣∣ with ε/ log(1/δ)-mulitipicative approximation.

The additive error bound now follows by using the fact that | log detA|
≤ d log(1/δ).

The bound on polynomial degree n in the above theorem is relatively tight, e.g.,
n = 27 for δ = 0.1 and ε = 0.01. Our bound for m can yield very large numbers for
the range of ε and ζ we are interested in. However, numerical experiments revealed
that for the matrices we were interested in, the bound is not tight and m ≈ 50 was
sufficient for the accuracy levels we required in the experiments.

4.2. Log-determinant of non-singular matrices. One can apply the algo-
rithm in the previous section to approximate the log-determinant of a non-symmetric

APPROXIMATING SPECTURAL SUMS A1569

Algorithm 3. Log-determinant approximation for non-singular matrices.
Input: non-singular matrix C ∈ Rd×d with singular values in [σmin, σmax] for some
σmin, σmax > 0, sampling number m and polynomial degree n
Γ← Output of Algorithm 2 for inputs C>C, [σ2

min, σ
2
max],m, n

Γ← Γ/2
Output: Γ

non-singular matrix C ∈ Rd×d. The idea is simple: run Algorithm 2 on the positive
definite matrix C>C. The underlying observation is that

log |detC| = 1
2

log detC>C .(14)

Without loss of generality, we assume that singular values of C are in the interval
[σmin, σmax] for some σmin, σmax > 0, i.e., the condition number κ(C) is at most
κmax := σmax/σmin. The proposed algorithm is not sensitive to tight knowledge of
σmin or σmax, but some loose lower and upper bounds on them, respectively, suffice.
A pseudo-code description appears as Algorithm 3.

The time-complexity of Algorithm 3 is O(mn‖C‖mv) = O(mn‖C>C‖mv) as well
since Algorithm 2 requires the computation of products of matrix C>C and a vector,
and that can be accomplished by first multiplying by C and then by C>. We state
the following additive error bound of the above algorithm.

Corollary 4.2. Given ε, ζ ∈ (0, 1), consider the following inputs for
Algorithm 3:

• C ∈ Rd×d is a matrix with singular values in [σmin, σmax] for some σmin,
σmax > 0.

• m ≥M(ε, σmax
σmin

, ζ) and n ≥ N (ε, σmax
σmin

), where

M(ε, κ, ζ) :=
14
ε2
(
log
(
1 + κ2))2 log

(
2
ζ

)
,

N (ε, κ) :=
log
(

10
ε

(√
2κ2 + 1− 1

) log (2+2κ2)
log(1+κ−2)

)
log
(√

2κ2+1+1√
2κ2+1−1

) = O
(
κ log

κ

ε

)
.

Then, it follows that

Pr [|log (|detC|)− Γ| ≤ εd] ≥ 1− ζ,

where Γ is the output of Algorithm 3.

Proof. The proof follows immediately from (14) and Theorem 4.1, and observing
that all the eigenvalues of C>C are inside [σ2

min, σ
2
max].

We remark that the condition number σmax/σmin decides the complexity of Al-
gorithm 3. As one can expect, the approximation quality and algorithm complexity
become worse as the condition number increases, as polynomial approximation for log
near the point 0 is challenging and requires higher polynomial degrees.

4.3. Trace of matrix inverse. In this section, we describe how to estimate the
trace of matrix inverse. Since this task amounts to computing Σf (A) for f(x) = 1/x,
we propose Algorithm 4, which uses Algorithm 1 as a subroutine.

We provide the following theoretical bounds on sampling number m and polyno-
mial degree n of Algorithm 4.

A1570 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

Algorithm 4. Trace of matrix inverse.
Input: positive definite matrix A ∈ Rd×d with eigenvalues in [a, b] for some a, b > 0,
sampling number m and polynomial degree n
Γ← Output of Algorithm 1 for inputs A, [a, b],m, n with f(x) = 1

x

Output: Γ

Theorem 4.3. Given ε, ζ ∈ (0, 1), consider the following inputs for Algorithm 4:
• A ∈ Rd×d is a positive definite matrix with eigenvalues in [a, b].
• m ≥ 54ε−2 log (2

ζ).

• n≥log
(

8
ε

(√
2(ba)−1−1

)
b
a

)
/ log

(
2√

2(b
a

)−1−1
+1

)
=O
(√

b
a log(b

εa)
)
.

Then, it follows that

Pr
[∣∣tr (A−1)− Γ

∣∣ ≤ ε ∣∣tr (A−1)∣∣] ≥ 1− ζ,

where Γ is the output of Algorithm 4.

Proof. In order to apply Theorem 3.1, we define inverse function with linear
transformation f̃ as

f̃ (x) =
1

b−a
2 x+ b+a

2

for x ∈ [−1, 1].

Avoiding singularities of f̃ , it is analytic on and inside the elliptic region in the
complex plane passing through b

b−a whose foci are +1 and −1. The sum of the length
of semi-major and semi-minor axes is equal to

ρ =
b

b− a
+

√
b2

(b− a)2
− 1 =

2√
2
(
b
a

)
− 1− 1

+ 1.

For the maximum absolute value on this region, f̃ has maximum value U = 2/a
at − b

b−a . The lower bound is L = 1/b. Putting those together, Theorem 3.1, implies
the bounds stated in the theorem statement.

4.4. Estrada index. Given a (undirected) graph G = (V,E), the Estrada index
EE (G) is defined as

EE (G) := Σexp(AG) =
d∑
i=1

exp(λi),

where AG is the adjacency matrix of G and λ1, . . . , λ|V | are the eigenvalues of AG.
It is a well-known result in spectral graph theory that the eigenvalues of AG are
contained in [−∆G,∆G], where ∆G is maximum degree of a vertex in G. Thus, the
Estrada index G can be computed using Algorithm 1 with the choice of f(x) = exp(x),
a = −∆G, and b = ∆G. However, we state our algorithm and theoretical bounds in
terms of a general interval [a, b] that bounds the eigenvalues of AG, to allow for an
a priori tighter bound on the eigenvalues (note, however, that it is well known that
always λmax ≥

√
∆G).

We provide the following theoretical bounds on sampling number m and polyno-
mial degree n of Algorithm 5.

APPROXIMATING SPECTURAL SUMS A1571

Algorithm 5. Estrada index approximation.
Input: adjacency matrix AG ∈ Rd×d with eigenvalues in [a, b], sampling number
m and polynomial degree n
{If ∆G is the maximum degree of G, then a = −∆G, b = ∆G can be used as
default.}
Γ← Output of Algorithm 1 for inputs A, [a, b],m, n with f(x) = exp(x)
Output: Γ

Theorem 4.4. Given ε, ζ ∈ (0, 1), consider the following inputs for Algorithm 5:
• AG ∈ Rd×d is an adjacency matrix of a graph with eigenvalues in [a, b].
• m ≥ 54ε−2 log (2

ζ).

• n≥log
(

2
πε (b−a) exp

(√
16π2+(b−a)2+(b−a)

2

))
/ log(4π

b−a+1)=O
(
b−a+log 1

ε
log(1

b−a)

)
.

Then, it follows that

Pr [|EE (G)− Γ| ≤ ε |EE (G)|] ≥ 1− ζ,

where Γ is the output of Algorithm 5.

Proof. We consider exponential function with linear transformation as

f̃ (x) = exp
(
b− a

2
x+

b+ a

2

)
for x ∈ [−1, 1].

The function f̃ is analytic on and inside the elliptic region in the complex plane
which has foci ±1 and passes through 4πi

(b−a) . The sum of length of the semi-major
and semi-minor axes becomes

4π
b− a

+

√
16π2

(b− a)2
+ 1,

and we may choose ρ as 4π
(b−a) + 1.

By the maximum-modulus theorem, the absolute value of f̃ on this elliptic region
is maximized at

√
16π2

(b−a)2
+1 with value U = exp(

√
16π2+(b−a)2+(b+a)

2) and the lower bound
has the value L = exp(a). Putting those all together in Theorem 3.1, we could obtain
above the bound for approximation polynomial degree. This completes the proof of
Theorem 4.4.

4.5. Schatten p-norm. The Schatten p-norm for p ≥ 1 of a matrix M ∈ Rd1×d2
is defined as

‖M‖(p) =

min{d1,d2}∑
i=1

σpi

1/p

,

where σi is the ith singular value of M for 1 ≤ i ≤ min{d1, d2}. Schatten p-norm is
widely used in linear algebric applications such as nuclear norm (also known as the
trace norm) for p = 1:

‖M‖(1) = tr
(√

M>M
)

=
min{d1,d2}∑

i=1

σi.

A1572 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

Algorithm 6. Schatten p-norm approximation.
Input: matrix M ∈ Rd1×d2 with singular values in [σmin, σmax], sampling number
m and polynomial degree n
Γ← Output of Algorithm 1 for inputs M>M,

[
σ2

min, σ
2
max
]
,m, n with f(x) = xp/2

Γ← Γ1/p

Output: Γ

The Schatten p-norm corresponds to the spectral function xp/2 of matrix M>M since
singular values of M are square roots of eigenvalues of M>M . In this section, we
assume that general (possibly, non-symmetric) non-singular matrix M ∈ Rd1×d2 has
singular values in the interval [σmin, σmax] for some σmin, σmax > 0, and propose
Algorithm 6, which uses Algorithm 1 as a subroutine.

We provide the following theoretical bounds on sampling number m and polyno-
mial degree n of Algorithm 6.

Theorem 4.5. Given ε, ζ ∈ (0, 1), consider the following inputs for Algorithm 6:
• M ∈ Rd1×d2 is a matrix with singular values in [σmin, σmax].
• m ≥ 54ε−2 log (2

ζ).
• n ≥ N (ε, p, σmax

σmin
), where

N (ε, p, κ) := log
(

16 (κ− 1)
ε

(
κ2 + 1

)p/2)/
log
(
κ+ 1
κ− 1

)
= O

(
κ

(
p log κ+ log

1
ε

))
.

Then, it follows that

Pr
[∣∣∣‖M‖p(p) − Γp

∣∣∣ ≤ ε‖M‖p(p)] ≥ 1− ζ,

where Γ is the output of Algorithm 6.

Proof. Consider the following function as

f̃ (x) =
(
σ2

max − σ2
min

2
x+

σ2
max + σ2

min

2

)p/2
for x ∈ [−1, 1].

In general, xp/2 for arbitrary p ≥ 1 is defined on x ≥ 0. We choose elliptic region Eρ
in the complex plane such that it is passing through −(σ2

max + σ2
min)/(σ2

max − σ2
min)

and having foci +1,−1 on real axis so that f̃ is analytic on and inside Eρ. The length
of the semi-axes can be computed as

ρ =
σ2

max + σ2
min

σ2
max − σ2

min
+

√(
σ2

max + σ2
min

σ2
max − σ2

min

)2

− 1 =
σmax + σmin

σmax − σmin
=
κmax + 1
κmax − 1

,

where κmax = σmax/σmin.
The maximum absolute value is occurring at (σ2

max +σ2
min)/(σ2

max−σ2
min) and its

value is U = (σ2
max+σ2

min)p/2. Also, the lower bound is obtained as L = σmin
p. Apply-

ing Theorem 3.1 together with choices of ρ, U , and L, the bound of degree for polyno-
mial approximation n can be achieved. This completes the proof of Theorem 4.5.

APPROXIMATING SPECTURAL SUMS A1573

4.6. Testing positive definiteness. In this section we consider the problem
of determining if a given symmetric matrix A ∈ Rd×d is positive definite. This can
be useful in several scenarios. For example, when solving a linear system Ax = b,
the determination of whether A is positive definite can drive algorithmic choices like
whether to use Cholesky decomposition or use LU decomposition, or alternatively, if
an iterative method is preferred, whether to use CG or MINRES. In another example,
checking if the Hessian is positive or negative definite can help determine if a critical
point is a local maximum/minimum or a saddle point.

In general, positive definiteness can be tested in O(d3) operations by attempting
a Cholesky decomposition of the matrix. If the operation succeeds then the matrix is
positive definite, and if it fails (i.e., a negative diagonal is encountered) the matrix is
indefinite. If the matrix is sparse, running time can be improved as long as the fill-in
during the sparse Cholesky factorization is not too big, but in general the worst case
is still Θ(d3). More in line with this paper is to consider the matrix implicit, that is,
accessible only via matrix-vector products. In this case, one can reduce the matrix to
tridiagonal form by doing n iterations of Lanczos, and then test positive definiteness of
the reduced matrix. This requires d matrix-vector multiplications, and thus running
time Θ(‖A‖mv · d). However, we note that this algorithm is not a practical algorithm
since it suffers from severe numerical instability.

In this paper we consider testing positive definiteness under the property testing
framework. Property testing algorithms relax the requirements of decision problems
by allowing them to issue arbitrary answers for inputs that are on the boundary of the
class. That is, for decision problem on a class L (in this case, the set of positive definite
matrices) the algorithm is required to accept x with high probability if x ∈ L, and
reject x if x 6∈ L and x is ε-far from any y ∈ L. For x’s that are not in L but are less
than ε far away, the algorithm is free to return any answer. We say that such x’s are in
the indifference region. In this section we show that testing positive definiteness in the
property testing framework can be accomplished using o(d) matrix-vector products.

Using the spectral norm of a matrix to measure distance, this suggests the fol-
lowing property testing variant of determining if a matrix is positive definite.

Problem 1. Given a symmetric matrix A ∈ Rd×d, ε > 0, and ζ ∈ (0, 1),
• If A is positive definite, accept the input with probability of at least 1− ζ.
• If λmin ≤ −ε‖A‖2, reject the input with probability of at least 1− ζ.

For ease of presentation, it will be more convenient to restrict the norm of A to
be at most 1, and for the indifference region to be symmetric around 0.

Problem 2. Given a symmetric A ∈ Rn×n with ‖A‖2 ≤ 1, ε > 0, and ζ ∈ (0, 1),
• If λmin ≥ ε/2, accept the input with probability of at least 1− ζ.
• If λmin ≤ −ε/2, reject the input with probability of at least 1− ζ.

It is quite easy to translate an instance of Problem 1 to an instance of Problem 2.
First we use power-iteration to approximate ‖A‖2. Specifically, we use enough power
iterations with a normally distributed random initial vector to find a λ′ such that
|λ′ − ‖A‖2| ≤ (ε/2) ‖A‖2 with probability at least 1− ζ/2. Due to a bound by Klien
and Lu [28, sect. 4.4] we need to perform

⌈
2
ε

(
log2 (2d) + log

(
8
εζ2

))⌉

A1574 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

iterations (matrix-vector products) to find such an λ′. Let λ = λ′/(1 − ε/2) and
consider

B =
A− λε

2 Id

(1 + ε
2)λ

.

It is easy to verify that ‖B‖2 ≤ 1 and λ/‖A‖2 ≥ 1/2 for ε > 0. If λmin(A) ∈ [0, ε‖A‖2]
then λmin(B) ∈ [−ε′/2, ε′/2], where ε′ = ε/(1+ε/2). Therefore, by solving Problem 2
on B with ε′ and ζ ′ = ζ/2 we have a solution to Problem 1 with ε and ζ.

We call the region [−1,−ε/2] ∪ [ε/2, 1] the active region Aε, and the interval
[−ε/2, ε/2] as the indifference region Iε.

Let S be the reverse-step function, that is,

S (x) =

{
1 if x ≤ 0,
0 if x > 0.

Now note that a matrix A ∈ Rd×d is positive definite if and only if

ΣS(A) ≤ γ(15)

for any fixed γ ∈ (0, 1). This already suggests using Algorithm 1 to test positive
definite; however, the discontinuity of S at 0 poses problems.

To circumvent this issue we use a two-stage approximation. First, we approxi-
mate the reverse-step function using a smooth function f (based on the hyperbolic
tangent), and then use Algorithm 1 to approximate Σf (A). By carefully controlling
the transition in f , the degree in the polynomial approximation and the quality of
the trace estimation, we guarantee that as long as the smallest eigenvalue is not in
the indifference region, Algorithm 1 will return less than 1/4 with high probability if
A is positive definite and will return more than 1/4 with high probability if A is not
positive definite. The procedure is summarized as Algorithm 7.

The correctness of the algorithm is established in the following theorem. While
we use Algorithm 1, the indifference region requires a more careful analysis so the
proof does not rely on Theorem 3.1.

Theorem 4.6. Given ε, ζ ∈ (0, 1), consider the following inputs for Algorithm 7:
• A ∈ Rd×d be a symmetric matrix with eigenvalues in [−1, 1] and λmin(A) 6∈ Iε,

where λmin(A) is the minimum eigenvalue of A.

Algorithm 7. Testing positive definiteness.
Input: symmetric matrix A ∈ Rd×d with eigenvalues in [−1, 1], sampling number
m and polynomial degree n
Choose ε > 0 as the distance of active region
Γ ← Output of Algorithm 1 for inputs A, [−1, 1] ,m, n with f(x) = 1

2 (1 +
tanh(− log(16d)

ε x))
if Γ < 1

4 then
return PD

else
return NOT PD

end if

APPROXIMATING SPECTURAL SUMS A1575

• m ≥ 24 log (2
ζ).

• n ≥ log(32
√

2 log(16d))+log(1/ε)−log(π/8d)
log(1+ πε

4 log(16d))
= O

(
log2(d)+log(d) log(1/ε)

ε

)
.

Then the answer returned by Algorithm 7 is correct with probability of at least 1− ζ.

The number of matrix-vector products in Algorithm 7 is O((log2(d)+log(d) log(1/ε)
ε)

log(1/ζ)) as compared with O(d) that are required with non-property testing previous
methods.

Proof. Let pn be the degree Chebyshev interpolation of f . We begin by showing
that

max
x∈Aε

|S(x)− pn(x)| ≤ 1
8d

.

To see this, we first observe that

max
x∈Aε

|S(x)− pn(x)| ≤ max
x∈Aε

|S(x)− f(x)|+ max
x∈Aε

|f(x)− pn(x)| ,

and thus it is enough to bound each term by 1/16d.
For the first term, let

α =
1
ε

log (16d)(16)

and note that f(x) = 1
2 (1 + tanh(−αx)). We have

max
x∈Aε

|S(x)− f(x)| = 1
2

max
x∈[ε/2,1]

|1− tanh(αx)|

=
1
2

(
1− tanh

(αε
2

))
=

e−αε

1 + e−αε

≤ e−αε =
1

16d
.

To bound the second term we use Corollary 2.2. To that end we need to define an
appropriate ellipse. Let Eρ be the ellipse with foci −1,+1 passing through iπ

4α . The
sum of semi-major and semi-minor axes is equal to

ρ =
π +
√
π2 + 16α2

4α
.

The poles of tanh are of the form iπ/2 ± ikπ so f is analytic inside Eρ. It is always
the case that | tanh(z)| ≤ 1 if =(z) ≤ π/4 2, so |f(z)| ≤ 1 for z ∈ Eρ. Applying
Corollary 2.2 and noticing that ρ ≥ 1 + π/4α, we have

max
x∈[−1,1]

|pn(x)− f(x)| ≤ 4
(ρ− 1)ρd

≤ 16α
π(1 + π

4α)d
.

2To see this, note that using simple algebraic manipulations it is possible to show that | tanh(z)| =
(e2<(z) +e2<(z)−2 cos(2=(z)))/(e2<(z) +e2<(z)−2 cos(2=(z))), from which the bound easily follows.

A1576 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

Thus, maxx∈[−1,1] |pn(x)− f(x)| ≤ 1
16d provided that

n ≥ log(32α)− log(π/8d)
log(1 + π

4α)
,

which is exactly the lower bound on n in the theorem statement.
Let

B = pn (A) +
1
8d
Id;

then B is symmetric positive semi-definite since pn(x) ≥ −1/8d due to the fact that
|f(x)| ≥ 0 for every x. According to Theorem 2.3,

Pr
(
|trm (B)− tr (B)| ≤ tr (B)

2

)
≥ 1− ζ

if m ≥ 24 log(2/ζ) as assumed in the theorem statement.
Since trm(B) = trm(pn(A)) + 1/8, tr(B) = tr(pn(A)) + 1/8, and Γ = trm

(pn(A)), we have

Pr
(
|Γ− tr (pn(A))| ≤ tr (pn(A))

2
+

1
16

)
≥ 1− ζ .(17)

If λmin(A) ≥ ε/2, then all eigenvalues of S(A) are zero and so all eigenvalues of
pn(A) are bounded by 1/8d, and thus tr (pn(A)) ≤ 1/8. Inequality (17) then implies
that

Pr (Γ ≤ 1/4) ≥ 1− ζ .

If λmin(A) ≤ −ε/2, S(A) has at least one eigenvalue that is 1 and is mapped in
pn(A) to at least 1− 1/8d ≥ 7/8. All other eigenvalues in pn(A) are at the very least
−1/8d, and thus tr (pn(A)) ≥ 3/4. Inequality (17) then implies that

Pr (Γ ≥ 1/4) ≥ 1− ζ .

The conditions λmin(A) ≥ ε/2 and λmin(A) ≤ −ε/2 together cover all cases for
λmin(A) 6∈ Iε thereby completing the proof.

5. Experiments. The experiments were performed using a machine with 3.5GHz
Intel i7-5930K processor with 12 cores and 32 GB RAM. We choose m = 50, n = 25
in our algorithm unless stated otherwise.

5.1. Log-determinant. In this section, we report the performance of our al-
gorithm compared to other methods for computing the log-determinant of positive
definite matrices. We first investigate the empirical performance of the proposed al-
gorithm on large sparse random matrices. We generate a random matrix A ∈ Rd×d,
where the number of non-zero entries per each row is around 10. We first select
non-zero off-diagonal entries in each row with values drawn from the standard nor-
mal distribution. To make the matrix symmetric, we set the entries in transposed
positions to the same values. Finally, to guarantee positive definiteness, we set its
diagonal entries to absolute row-sums and add a small margin value 0.1. Thus, the
lower bound for eigenvalues can be chosen as a = 0.1 and the upper bound is set to
the infinite norm of a matrix.

APPROXIMATING SPECTURAL SUMS A1577

104 105 106 107

matrix dimension

100

102

104

ru
n

n
in

g
 t

im
e

 [
s
e

c
]

Chebyshev

Shogun

(a)

0 2 4 6 8 10

matrix dimension ×104

10-4

10-2

100

102

104

ru
n

n
in

g
 t

im
e

 [
s
e

c
]

Cholesky

Schur

Chebyshev

Taylor

Shogun

(b)

102 103 104 105

matrix dimension

10-4

10-3

10-2

10-1

re
la

ti
v
e

 e
rr

o
r

ra
te

Chebyshev

Taylor

Shogun

(c)

5 10 15 20 25

polynomial degree

10-5

10-4

10-3

10-2

10-1

re
la

ti
v
e

 e
rr

o
r

ra
te

Chebyshev

Taylor

(d)

200 400 600 800 1000

trace samples

10-5

10-4

10-3

10-2

re
la

ti
v
e

 e
rr

o
r

ra
te

Chebyshev-Hutchinson

Chebyshev-Gaussian

(e)

101 102 103 104 105

condition number

0

1

2

3

4

5

6

re
la

ti
v
e

 e
rr

o
r

ra
te

×10-3

Chebyshev

Taylor

(f)

Fig. 1. Performance evaluations of Algorithm 2 (i.e., Chebyshev) and comparisons with other
algorithms: (a) running time varying matrix dimension; (b) comparison in running time among
Cholesky decomposition, Schur complement [24], Cauchy integral formula [1], and Taylor-based al-
gorithm [48]; (c) relative error varying matrix dimension; (d) relative error varying polynomial
degree; (e) relative error varying the number of trace samples; (f) relative error varying condition
number. The relative error means a ratio between the absolute error of the output of an approxima-
tion algorithm and the actual value of log-determinant.

Figure 1 (a) shows the running time of Algorithm 2 from matrix dimension d = 104

to 107. The algorithm scales roughly linearly over a large range of matrix sizes, as
expected. In particular, it takes only 600 seconds for a matrix of dimension 107 with
108 non-zero entries. Under the same setup, we also compare the running time of our
algorithm with other ones, including Cholesky decomposition and Schur complement.
The latter was used for sparse inverse covariance estimation with over a million vari-
ables [24] and we run the code implemented by those authors. The running time of
the algorithms are reported in Figure 1 (b). Our algorithm is dramatically faster than
both exact methods. Moreover, our algorithm is an order of magnitude faster than
the recent approach based on the Cauchy integral formula [1], while it achieves better
accuracy as reported in Figure 1 (c).3

We also compare the relative accuracies between our algorithm and that using
Taylor expansions [48] with the same sampling number m = 50 and polynomial degree
n = 25, as reported in Figure 1 (c). We see that the Chebyshev interpolation based
method is more accurate than the one based on Taylor approximations. To complete
the picture, we also use a large number of samples for trace estimator, m = 1000,
for both algorithms to focus on the polynomial approximation errors. The results are
reported in Figure 1 (d), showing that our algorithm using Chebyshev expansions is
superior in accuracy compared to the Taylor-based algorithm.

3The method [1] is implemented in the SHOGUN machine learning toolbox, http://www.
shogun-toolbox.org.

http://www.shogun-toolbox.org
http://www.shogun-toolbox.org

A1578 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

0 0.2 0.4 0.6 0.8 1

eigenvalue

0

0.2

0.4

0.6

0.8

1

cluster-smallest

uniform

cluster-largest

(a)

5 10 15 20 25

polynomial degree

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e
 e

rr
o
r

ra
te

cluster-smallest

uniform

cluster-largest

(b)

Fig. 2. Performance evaluations of Algorithm 2 when eigenvalue distributions are uniform
(star), clustered on the smallest one (down triangle), and clustered on the largest one (up triangle):
(a) distribution of eigenvalues, (b) relative error varying polynomial degree.

In Figure 1 (e), we compare two different trace estimators, Gaussian and Hutchin-
son, under the choice of polynomial degree n = 100. We see that the Hutchinson
estimator outperforms the Gaussian estimator. Finally, in Figure 1 (f) we report
the results of experiments with varying condition number. We see that the Taylor-
based method is more sensitive to the condition number than the Chebyshev-based
method.

Chebyshev expansions have extreme points more likely around the end points of
the approximating interval since the absolute values of their derivatives are larger.
Hence, one can expect that if eigenvalues are clustered on the smallest (or largest)
one, the quality of approximation becomes worse. To see this, we run Algorithm 2
for matrices having uniformly distributed eigenvalues and eigenvalues clustered on
the smallest (or largest) one, which is reported in Figure 2. We observe that if the
polynomial degree is small, the clustering effect causes larger errors, but the error
decaying rate with respect to polynomial degree is not sensitive to it.

5.2. Maximum likelihood estimation for GMRF using log-determinant.
In this section, we apply our proposed algorithm approximating log-determinants for
maximum likelihood (ML) estimation in Gaussian Markov random fields (GMRF)
[38]. GMRF is a multivariate joint Gaussian distribution defined with respect to a
graph. Each node of the graph corresponds to a random variable in the Gaussian
distribution, where the graph captures the conditional independence relationships
(Markov properties) among the random variables. The model has been extensively
used in many applications in computer vision, spatial statistics, and other fields. The
inverse covariance matrix J (also called information or precision matrix) is positive
definite and sparse: Jij is non-zero only if the edge {i, j} is contained in the graph.
We are specifically interested in the problem of parameter estimation from data (fully
or partially observed samples from the GMRF), where we would like to find the
maximum likelihood estimates of the non-zero entries of the information matrix.

GMRF with 100 million variables on synthetic data. We first consider a
GMRF on a square grid of size 5000 × 5000 with precision matrix J ∈ Rd×d with
d = 25 × 106, which is parameterized by η, i.e., each node has four neighbors with

APPROXIMATING SPECTURAL SUMS A1579

η
-0.3 -0.25 -0.2 -0.15 -0.1 -0.05

lo
g
-l
ik

e
lih

o
o
d
 e

s
ti
m

a
ti
o
n

×10
7

-3.1

-3.05

-3

-2.95

-2.9

-2.85

-2.8

Fig. 3. Log-likelihood estimation for hidden parameter η for square GMRF model of size 5000×
5000.

partial correlation η. We generate a sample x from the GMRF model (using a Gibbs
sampler) for parameter η = −0.22. The log-likelihood of the sample is

log p(x|η) =
1
2

log detJ(η)− 1
2
x>J(η)x− d

2
log (2π) ,

where J(η) is a matrix of dimension 25 × 106 and 108 non-zero entries. Hence, the
ML estimation requires us to solve

max
η

(
1
2

log detJ(η)− 1
2
x>J(η)x− d

2
log (2π)

)
.

We use Algorithm 2 to estimate the log-likelihood as a function of η, as reported in
Figure 3. This confirms that the estimated log-likelihood is maximized at the correct
(hidden) value η = −0.22.

GMRF with 6 million variables for ozone data. We also consider a similar
GMRF parameter estimation from real spatial data with missing values. We use the
data-set from [1] that provides satellite measurements of ozone levels over the entire
earth following the satellite tracks. We use a resolution of 0.1 degrees in latitude
and longitude, giving a spatial field of size 1681× 3601, with over 6 million variables.
The data-set includes 172,000 measurements. To estimate the log-likelihood in the
presence of missing values, we use the Schur complement for determinants. Let the
precision matrix for the entire field be J = (Jo Jo,z

Jz,o Jz
), where subsets xo and xz

denote the observed and unobserved components of x. Then, our goal is to find some
parameter η such that

max
η

∫
xz
p (xo,xz|η) dxz.

We estimate the marginal probability using the fact that the marginal precision matrix
of xo is J̄o = Jo − Jo,zJ−1

z Jz,o and its log-determinant is computed as log det(J̄o) =
log det(J)−log det(Jz) via Schur complements. To evaluate the quadratic term x′oJ̄oxo
of the log-likelihood we need a single linear solve using an iterative solver. We use a
linear combination of the thin-plate model and the thin-membrane models [38], with
two parameters η = (α, β): J = αI+βJtp+(1−β)Jtm and obtain ML estimates using
Algorithm 2. Note that smallest eigenvalue of J is equal to α. We show the sparse
measurements in Figure 4 (a) and the GMRF interpolation using fitted values of
parameters in Figure 4 (b). We can see that the proposed log-determinant estimation

A1580 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

Fig. 4. GMRF interpolation of ozone measurements: (a) original sparse measurements and
(b) interpolated values using a GMRF with parameters fitted using Algorithm 2.

algorithm allows us to do efficient estimation and inference in GMRFs of very large
size, with sparse information matrices of size over 6 millions variables.

5.3. Other spectral functions. In this section, we report the performance of
our scheme for four other choices of function f : the trace of matrix inverse, the Estrada
index, the matrix nuclear norm, and testing positive definiteness, which correspond to
f(x) = 1/x, f(x) = exp(x), f(x) = x1/2, and f(x) = 1

2 (1 + tanh(−αx)), respectively.
The detailed algorithm description for each function is given in section 4. Since the
running times of our algorithms are “almost” independent of the choice of function f ,
i.e., it is the same as the case f(x) = log x reported in the previous section, we focus
on measuring the accuracy of our algorithm.

In Figure 5, we report the approximation error of our algorithm for the trace
of matrix inverse, the Estrada index, the matrix nuclear norm, and testing positive
definiteness. All experiments were conducted on random 5000-by-5000 matrices. The
particular setups for the different matrix functions are:

• The input matrix for the trace of matrix inverse is generated in the same way
with the log-determinant case in the previous section.

• For the Estrada index, we generate the random regular graphs with 5000
vertices and degree ∆G = 10.

• For the nuclear norm, we generate random nonsymmetric matrices and esti-
mate its nuclear norm (which is equal to the sum of all singular values). We
first select the 10 positions of non-zero entries in each row and their values are
drawn from the standard normal distribution. The reason why we consider
nonsymmetric matrices is because the nuclear norm of a symmetric matrix is
much easier to compute, e.g., the nuclear norm of a positive definite matrix
is just its trace. We choose σmin = 10−4 and σmax =

√
‖A‖1‖A‖∞ for input

matrix A.
• For testing positive definiteness, we first create random symmetric matrices

whose smallest eigenvalue varies from 10−1 to 10−4 and the largest eigenvalue
is less than 1 (via appropriate normalizations). Namely, the condition num-
ber is between 10 and 104. We choose the same sampling number m = 50
and three different polynomial degrees: n = 200, 1800, and 16000. For each
degree n, Algorithm 7 detects correctly positive definiteness of matrices with
condition numbers at most 102, 103, and 104, respectively. The error rate is
measured as a ratio of incorrect results among 20 random instances.

APPROXIMATING SPECTURAL SUMS A1581

5 10 15 20 25

polynomial degree

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e
 e

rr
o
r

Trace Inverse

(a)

5 10 15 20 25

polynomial degree

10
-4

10
-2

10
0

10
2

re
la

ti
v
e
 e

rr
o
r

Estrada Index

(b)

5 10 15 20 25

polynomial degree

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e
 e

rr
o
r

Nuclear Norm

(c)

condition number

10
1

10
2

10
3

10
4

te
s
ti
n
g
 P

D
 e

rr
o
r

ra
te

0

0.2

0.4

0.6

0.8

1
n=200

n=1800

n=16000

(d)

Fig. 5. Accuracy of the proposed algorithm: (a) the trace of matrix inverse, (b) the Estrada
index, (c) the nuclear norm (Schatten 1-norm) and (d) testing positive definiteness.

For experiments of the trace of matrix inverse, the Estrada index, and the nuclear
norm, we plot the relative error of the proposed algorithms varying polynomial degrees
in Figure 5 (a), (b), and (c), respectively. Each of them achieves less than 1% error
with polynomial degree at most n = 25 and sampling number m = 50. Figure 5
(d) shows the results of testing positive definiteness. When n is set according to
the condition number the proposed algorithm is almost always correct in detecting
positive definiteness. For example, if the decision problem involves the active region
Aε for ε = 0.02, which is the case that matrices having the condition number at most
100, polynomial degree n = 200 is enough for the correct decision.

We tested the proposed algorithm for testing positive definiteness on real-world
matrices from the University of Florida Sparse Matrix Collection [11], selecting various
symmetric matrices. We use m = 50 and three choices for n: n = 200, 1800, 16000.
The results are reported in Table 1. We observe that the algorithm is always correct
when declaring positive definiteness, but seems to declare indefiniteness when the
matrix is too ill-conditioned for it to detect definiteness correctly. In addition, with
two exceptions (crankseg 1 and pwtk), when n = 16000 the algorithm was correct
in declaring whether the matrix is positive definite or not. We remark that while
n = 16000 is rather large it is still smaller than the dimension of most of the matrices
that were tested (recall that our goal was to develop an algorithm that requires a
small number of matrix products, i.e., it does not grow with respect to the matrix
dimension). We also note that even when the algorithm fails it still provides useful
information about both positive definiteness and the condition number of an input
matrix, while standard methods such as Cholesky decomposition (as mentioned in

A1582 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

T
a
ble

1
T

esting
positive

definiteness
for

real-w
orld

m
atrices.

A
lgorithm

7
outputs

P
D

or
N

O
T

P
D

,
i.e.,

the
input

m
atrix

is
either

(1)
positive

definite
(P

D
)

or
(2)

not
positive

definite
or

its
sm

allest
eigenvalue

is
in

the
indiff

erence
region

(N
O

T
P

D
).

T
he

M
A

T
L

A
B

e
i
g
s

and
c
o
n
d
e
s
t

functions
output

the
sm

allest
eigenvalue

and
an

estim
ate

for
the

condition
num

ber
of

the
input

m
atrix,

respectively.

m
atrix

dim
ension

num
b

er
of

nonzeros
p

ositive
definite

A
lgorithm

7
n

=
200

A
lgorithm

7
n

=
1800

A
lgorithm

7
n

=
16000

M
A

T
L

A
B

e
i
g
s

M
A

T
L

A
B

c
o
n
d
e
s
t

C
h
e
m
9
7
Z
t
Z

2,541
7,361

yes
P

D
P

D
P

D
diverge

462.6
f
v
1

9,604
85,264

yes
P

D
P

D
P

D
0.5122

12.76
f
v
2

9,801
87,025

yes
P

D
P

D
P

D
0.5120

12.76
f
v
3

9,801
87,025

yes
N

O
T

P
D

N
O

T
P

D
P

D
0.0020

4420
C
u
r
l
C
u
r
l
0

11,083
113,343

no
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

diverge
6.2×

10
2
1

b
a
r
t
h
5

15,606
107,362

no
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

-2.1066
84292

D
u
b
c
o
v
a
1

16,129
253,009

yes
N

O
T

P
D

N
O

T
P

D
P

D
0.0048

2624
c
v
x
q
p
3

17,500
114,962

no
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

diverge
2.2×

10
1
6

b
o
d
y
y
4

17,546
121,550

yes
N

O
T

P
D

N
O

T
P

D
P

D
diverge

1017
t
3
d
l
e

20,360
20360

yes
N

O
T

P
D

N
O

T
P

D
P

D
diverge

6031
b
c
s
s
t
m
3
6

23,052
320,060

no
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

diverge
∞

c
r
y
s
t
m
0
3

24,696
583,770

yes
N

O
T

P
D

P
D

P
D

3.7×
10
−

1
5

467.7
a
u
g
2
d

29,008
76,832

no
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

-2.8281
∞

w
a
t
h
e
n
1
0
0

30,401
471,601

yes
N

O
T

P
D

N
O

T
P

D
P

D
0.0636

8247
a
u
g
3
d
c
q
p

35,543
128,115

no
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

diverge
4.9×

10
1
5

w
a
t
h
e
n
1
2
0

36,441
565,761

yes
N

O
T

P
D

N
O

T
P

D
P

D
0.1433

4055
b
c
s
s
t
k
3
9

46,772
2,060,662

no
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

diverge
3.1×

10
8

c
r
a
n
k
s
e
g
1

52,804
10,614,210

yes
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

diverge
2.2×

10
8

b
l
o
c
k
q
p
1

60,012
640,033

no
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

-446.636
8.0×

10
5

D
u
b
c
o
v
a
2

65,025
1,030,225

yes
N

O
T

P
D

N
O

T
P

D
P

D
0.0012

10411
t
h
e
r
m
o
m
e
c
h
T
C

102,158
711,558

yes
N

O
T

P
D

P
D

P
D

0.0005
125.5

D
u
b
c
o
v
a
3

146,689
3,636,643

yes
N

O
T

P
D

N
O

T
P

D
P

D
0.0012

11482
t
h
e
r
m
o
m
e
c
h
d
M

204,316
1,423,116

yes
N

O
T

P
D

P
D

P
D

9.1×
10
−

7
125.487

p
w
t
k

217,918
11,524,432

yes
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

diverge
5.0×

10
1
2

b
m
w
3
2

227,362
11,288,630

no
N

O
T

P
D

N
O

T
P

D
N

O
T

P
D

diverge
1.2×

10
2
0

APPROXIMATING SPECTURAL SUMS A1583

subsection 4.6) are intractable for large matrices. Furthermore, one can first run an
algorithm to estimate the condition number, e.g., the MATLAB condest function,
and then choose an appropriate degree n. We also run the MATLAB eigs function,
which is able to estimate the smallest eigenvalue using iterative methods [26] (hence,
it can be used for testing positive definitenesss). Unfortunately, the iterative method
often does not converge, i.e., residual tolerance may not go to zero, as reported in
Table 1. One advantage of our algorithm is that it does not depend on a convergence
criterion.

6. Conclusion. Recent years have a seen a surge in the need for various compu-
tations on large-scale unstructured matrices. The lack of structure poses a significant
challenge for traditional decomposition based methods. Randomized methods are a
natural candidate for such tasks as they are mostly oblivious to structure. In this
paper, we proposed and analyzed a linear-time approximation algorithm for spectral
sums of symmetric matrices, where the exact computation requires cubic-time in the
worst case. Furthermore, our algorithm is very easy to parallelize since it requires only
(separable) matrix-vector multiplications. We believe that the proposed algorithm will
find important theoretical and computational roles in a variety of applications ranging
from statistics and machine learning to applied science and engineering.

Acknowledgments. The authors thank Peder Oslen and Sivan Toledo for help-
ful discussions.

REFERENCES

[1] E. Aune, D. Simpson, and J. Eidsvik, Parameter estimation in high dimensional Gaussian
distributions, Stat. Comput., 24 (2014), pp. 247–263.

[2] H. Avron and S. Toledo, Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix, J. ACM, 58 (2011), p. 8.

[3] Z. Bai, G. Fahey, and G. Golub, Some large-scale matrix computation problems, J. Comput.
Appl. Math., 74 (1996), pp. 71–89, https://doi.org/10.1016/0377-0427(96)00018-0, http:
//www.sciencedirect.com/science/article/pii/0377042796000180.

[4] C. Bekas, E. Kokiopoulou, and Y. Saad, An estimator for the diagonal of a matrix, Appl.
Numer. Math., 57 (2007), pp. 1214–1229.

[5] J. P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46
(2004), pp. 501–517.

[6] C. Boutsidis, P. Drineas, P. Kambadur, and A. Zouzias, A Randomized Algorithm for
Approximating the Log Determinant of a Symmetric Positive Definite Matrix, preprint
arXiv:1503.00374, 2015.

[7] R. Carbó-Dorca, Smooth function topological structure descriptors based on graph-spectra, J.
Math. Chem., 44 (2008), pp. 373–378.

[8] J. Chen, How accurately should I compute implicit matrix-vector products when applying the
Hutchinson trace estimator?, SIAM J. Sci. Comput., 38 (2016), pp. A3515–A3539, https:
//doi.org/10.1137/15M1051506.

[9] M. Dashti and A. M. Stuart, Uncertainty quantification and weak approximation of an
elliptic inverse problem, SIAM J. Numer. Anal., 49 (2011), pp. 2524–2542.

[10] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon, Information-theoretic metric learning,
in Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR,
2007.

[11] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.,
Software (TOMS), 38 (2011), pp. 1–25, http://www.cise.ufl.edu/research/sparse/matrices.

[12] J. A. de la Peña, I. Gutman, and J. Rada, Estimating the Estrada index, Linear Algebra
Appl., 427 (2007), pp. 70–76.

[13] A. P. Dempster, Covariance selection, Biometrics, (1972), pp. 157–175.
[14] E. Di Napoli, E. Polizzi, and Y. Saad, Efficient estimation of eigenvalue counts in an

interval, Numer. Linear Algebra Appl., 23 (2016), pp. 674–692.

https://doi.org/10.1016/0377-0427(96)00018-0
http://www.sciencedirect.com/science/article/pii/0377042796000180
http://www.sciencedirect.com/science/article/pii/0377042796000180
http://arxiv.org/abs/1503.00374
https://doi.org/10.1137/15M1051506
https://doi.org/10.1137/15M1051506
http://www.cise.ufl.edu/research/sparse/matrices

A1584 I. HAN, D. MALIOUTOV, H. AVRON, AND J. SHIN

[15] E. Estrada, Characterization of 3D molecular structure, Chemical Physics Letters, 319 (2000),
pp. 713–718.

[16] E. Estrada, Topological structural classes of complex networks, Phys. Rev. E, 75 (2007),
p. 016103.

[17] E. Estrada, Atom–bond connectivity and the energetic of branched alkanes, Chemical Physics
Letters, 463 (2008), pp. 422–425.

[18] E. Estrada and N. Hatano, Statistical-mechanical approach to subgraph centrality in complex
networks, Chemical Physics Letters, 439 (2007), pp. 247–251.

[19] E. Estrada and J. A. Rodŕıguez-Velázquez, Spectral measures of bipartivity in complex
networks, Phys. Rev. E, 72 (2005), p. 046105.

[20] S. A. Gershgorin, Uber die abgrenzung der eigenwerte einer matrix, Izvestiya or Russian
Academy of Sciences, (1931), pp. 749–754.

[21] G. H. Golub and C. F. Van Loan, Matrix Computations, Vol. 3, JHU Press, 2012.
[22] I. Gutman, H. Deng, and S. Radenković, The Estrada index: An updated survey, Selected

Topics on Appl. Graph Spectra, Math. Inst., Beograd, (2011), pp. 155–174.
[23] N. Higham, Functions of Matrices, Society for Industrial and Applied Mathematics, Philadel-

phia, PA, 2008, https://doi.org/10.1137/1.9780898717778.
[24] C. Hsieh, M. A. Sustik, I. S. Dhillon, P. K. Ravikumar, and R. Poldrack, BIG & QUIC:

Sparse inverse covariance estimation for a million variables, in Adv. Neural Inf. Process.
Syst., 26 (2013), pp. 3165–3173.

[25] M. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines, Commun. Statistics-Simulation Comput., 19 (1990), pp. 433–450.

[26] I. C. Ipsen, Computing an eigenvector with inverse iteration, SIAM Rev., 39 (1997),
pp. 254–291.

[27] V. Kalantzis, C. Bekas, A. Curioni, and E. Gallopoulos, Accelerating data uncertainty
quantification by solving linear systems with multiple right-hand sides, Numer., Algorithms,
62 (2013), pp. 637–653.

[28] P. Klein and H.-I. Lu, Efficient approximation algorithms for semidefinite programs arising
from max cut and coloring, in Proceedings of the 28th Annual ACM Symposium on The-
ory of Computing, Philadelphia, PA, 1996, pp. 338–347, https://doi.org/10.1145/237814.
237980.

[29] J. Ma, J. Peng, S. Wang, and J. Xu, Estimating the partition function of graphical models
using Langevin importance sampling, in Proceedings of the 16th International Conference
on Artificial Intelligence and Statistics, Scottsdale, AZ 2013, pp. 433–441.

[30] A. Majumdar and R. K. Ward, An algorithm for sparse MRI reconstruction by Schatten
p-norm minimization, Magnetic Resonance Imaging, 29 (2011), pp. 408–417.

[31] D. M. Malioutov, J. K. Johnson, and A. Willsky, Low-rank variance estimation in large-
scale GMRF models, in IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Vol.
3, Toulouse, FR 2006, pp. III–III.

[32] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press, Boca Raton, FL,
2002.

[33] N. Morača, Bounds for norms of the matrix inverse and the smallest singular value, Linear
Algebra Appl., 429 (2008), pp. 2589–2601.

[34] F. Nie, H. Huang, and C. Ding, Low-rank matrix recovery via efficient Schatten p-norm min-
imization, in Proceedings of the 26th AAAI Conference on Artificial Intelligence, Toronto,
ON, 2012, pp. 655–661, http://dl.acm.org/citation.cfm?id=2900728.2900822.

[35] R. K. Pace and J. P. LeSage, Chebyshev approximation of log-determinants of spatial weight
matrices, Comput. Statist. Data Anal., 45 (2004), pp. 179–196.

[36] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, MIT Press,
Cambridge, MA, 2005.

[37] F. Roosta-Khorasani and U. M. Ascher, Improved bounds on sample size for implicit matrix
trace estimators, Found. Comput. Math., 15 (2015), pp. 1187–1212, https://doi.org/10.
1007/s10208-014-9220-1.

[38] H. Rue and L. Held, Gaussian Markov Random Fields: Theory and Applications, CRC Press,
Boca Raton, FL, 2005.

[39] A. Stathopoulos, J. Laeuchli, and K. Orginos, Hierarchical probing for estimating the trace
of the matrix inverse on toroidal lattices, SIAM J. Sci. Comput., 35 (2013), pp. S299–S322.

[40] M. L. Stein, J. Chen, and M. Anitescu, Stochastic approximation of score functions for
Gaussian processes, Annals Appl. Statist., 7 (2013), pp. 1162–1191.

[41] T. Tao and V. Vu, Random matrices: The distribution of the smallest singular values, Geom.
Funct. Anal., 20 (2010), pp. 260–297.

[42] T. Tao and V. H. Vu, Inverse Littlewood-Offord theorems and the condition number of random
discrete matrices, Ann. Math., 169 (2009), pp. 595–632.

https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1145/237814.237980
https://doi.org/10.1145/237814.237980
http://dl.acm.org/citation.cfm?id=2900728.2900822
https://doi.org/10.1007/s10208-014-9220-1
https://doi.org/10.1007/s10208-014-9220-1

APPROXIMATING SPECTURAL SUMS A1585

[43] L. N. Trefethen, Approximation Theory and Approximation Practice, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 2012.

[44] S. Van Aelst and P. Rousseeuw, Minimum volume ellipsoid, Wiley Interdisciplinary Reviews:
Computational Statistics, 1 (2009), pp. 71–82.

[45] M. J. Wainwright and M. I. Jordan, Log-determinant relaxation for approximate in-
ference in discrete Markov random fields, IEEE Trans. Signal Process., 54 (2006),
pp. 2099–2109.

[46] L. Wu, J. Laeuchli, V. Kalantzis, A. Stathopoulos, and E. Gallopoulos, Estimating the
trace of the matrix inverse by interpolating from the diagonal of an approximate inverse, J.
Comput. Phys., 326 (2016), pp. 828–844, https://doi.org/10.1016/j.jcp.2016.09.001, http:
//www.sciencedirect.com/science/article/pii/S0021999116304120.

[47] S. Xiang, X. Chen, and H. Wang, Error bounds for approximation in Chebyshev points,
Numer. Math., 116 (2010), pp. 463–491.

[48] Y. Zhang and W. E. Leithead, Approximate implementation of the logarithm of the ma-
trix determinant in Gaussian process regression, J. Stat. Comput. Simul., 77 (2007),
pp. 329–348.

https://doi.org/10.1016/j.jcp.2016.09.001
http://www.sciencedirect.com/science/article/pii/S0021999116304120
http://www.sciencedirect.com/science/article/pii/S0021999116304120

	Introduction
	Contributions
	Related Work
	Organization

	Preliminaries
	Function approximation using Chebyshev interpolation
	Stochastic trace estimation (Hutchinson's method)

	Approximating spectral sums
	Algorithm description
	Analysis

	Applications
	Log-determinant of positive definite matrices
	Log-determinant of non-singular matrices
	Trace of matrix inverse
	Estrada index
	Schatten p-norm
	Testing positive definiteness

	Experiments
	Log-determinant
	Maximum likelihood estimation for GMRF using log-determinant
	Other spectral functions

	Conclusion
	References

