
A Scalable Randomized Least Squares Solver for Dense
Overdetermined Systems

∗

Chander Iyer
Department of Computer Science
Rensselaer Polytechnic Institute

Haim Avron
Department of Applied Mathematics

Tel Aviv University

Georgios Kollias
IBM Research - T. J. Watson Research Center

Yves Ineichen
IBM Research - Zurich Research Lab

Christopher Carothers
Department of Computer Science
Rensselaer Polytechnic Institute

Petros Drineas
Department of Computer Science
Rensselaer Polytechnic Institute

ABSTRACT

We present a fast randomized least-squares solver for distributed-
memory platforms. Our solver is based on the Blendenpik algo-
rithm, but employs a batchwise randomized unitary transformation
scheme. The batchwise transformation enables our algorithm to
scale the distributed memory vanilla implementation of Blendenpik
by up to×3 and provides up to×7.5 speedup over a state-of-the-art
scalable least-squares solver based on the classic QR based algo-
rithm. Experimental evaluations on terabyte scale matrices demon-
strate excellent speedups on up to 16384 cores on a Blue Gene/Q
supercomputer.

CCS Concepts

•Computing methodologies → Linear algebra algorithms; Distributed

algorithms; •Mathematics of computing → Computations on matrices;

Keywords

Randomized numerical linear algebra; high-performance computing; dense

least squares regression

1. INTRODUCTION
The explosive growth of data in the past few decades in vari-

ous domains ranging from physics and biological sciences to eco-
nomics and social sciences has led to a need to perform efficient and
scalable analysis on these massive datasets. One of the most widely
and routinely used primitives is least-squares regression. Several
algorithms have been proposed to solve the large-scale least-squares

∗
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of Inter-

national Business Machines Corporation in the United States, other countries, or both.
Other product and service names might be trademarks of IBM or other companies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ScalA15 November 15–20 2015, Austin, TX, USA

c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4011-3/15/11. . . $15.00

DOI: 10.1145/2832080.2832083

problems in various distributed and parallel environments [10], giv-
ing solutions with accuracy close to machine precision. In particu-
lar, recent literature advocates the use of communication-avoiding
factorizations [5]. However, while these approaches have been
shown to be scalable for a variety of shared memory and distributed
memory platforms [6], they are still based on the classic QR based
O(mn2) algorithm, while the fastest sequential codes are based on
fast o(mn2) randomized algorithms [1, 13].

Indeed, recent years has seen extensive research on so-called
Randomized Numerical Linear Algebra (RandNLA). One of the
core problems extensively researched by this emerging field is least-
squares regression. Drineas et al. [7] introduced the first set of ran-
domized algorithms for this problem. These algorithms are based
on applying a randomized Hadamard transform to the columns of
the input matrix and then using uniform random sampling and sparse
random projections to generate problems of lower sizes. This was
followed by the work of Rokhlin and Tygert [16], which used a sub-
sampled randomized Fourier transform to form a preconditioner,
and then used a standard Krylov subspace based iterative solver.
Subsequently, Avron et al. [1] introduced Blendenpik which was the
first practical implementation of a RandNLA dense least-squares
solver that consistently and comprehensively outperformed state-
of-the-art implementations of the traditional QR based O(mn2) al-
gorithm. Since then, there has been extensive research on RandNLA
algorithms for regression (least-squares and others). See Yang et
al. [17] for a recent survey.

So far, most research on randomized least-squares regression al-
gorithms has focused on the sequential setting. There are two im-
portant exceptions. Meng et al. [13] introduced LSRN, a distributed
memory algorithm for least-square projection based on random nor-
mal projections. The algorithm still has O(mn2) complexity, and
the main benefits of randomization comes in the form of reduced
constants and improved parallel efficiency. Yang et al. [17] con-
sider RandNLA in a MapReduce like framework called Spark. This
framework is less appropriate for supercomputers, as it is less suit-
able for taking advantage of their hardware architecture.

In this work we explore the behavior of the Blendenpik algo-
rithm in a distributed memory setting. We show that a variant of
the algorithm that uses a batchwise unitary transformation leads to
an algorithm that is not only faster than state-of-the-art implemen-
tation of the O(mn2) algorithm, but is also able to scale to much
larger matrix sizes. In particular, we show that a Blendenpik based
algorithm can solve terabyte sized matrices and above. While the

gains in terms of running time (vs. the O(mn2) solver) are some-
what modest, they are tangible, and they do suggest the possibil-
ity that variants of Blendenpik that are more finely tuned for the
distributed memory setting will deliver the same gains seen in the
sequential setting [1].

We experiment on AMOS1, the high-performance Blue Gene/Q
supercomputer system at RPI, which has five racks, 5120 nodes /
81920 cores and 81920 GB of main memory with a peak perfor-
mance of 1 PetaFLOP (1015 floating point operations per second)
and a 5-D torus network with 2 GBs/sec of bandwidth per link
and 512 GB/sec to 1 TB/sec of bisection network bandwidth per
rack depending on the torus network configuration. Due to run-
time constraints imposed by the scheduling system for each par-
tition of AMOS, we limit our experiments to testing up to 1024
nodes (16384 cores). The Blue Gene/Q architecture supports a hy-
brid communication framework that uses the MPI (Message Pass-
ing Interface) [8] standard for distributed communication and mul-
tithreading using OpenMP [3] which our implementation seeks to
exploit.

To summarize, our contributions are:

• Implementation of and experimentation with Blendenpik on
distributed-memory platforms.

• A batchwise transformation scheme that scales a distributed
vanilla implementation of Blendenpik by up to ×3 in terms
of matrix sizes and provides up to×7.5 speedup over a state-
of-the-art scalable least-squares solver.

The full source code of our batchwise Blendenpik implemention
is available for download at https://github.com/cjiyer/libskylark/tree/
batchwiseblendenpik .

The rest of this paper is structured as follows. Section 2 describes
the Blendenpik algorithm and the various stages of the algorithm
in detail. Section 3 highlights the distributed Blendenpik imple-
mentation in the Blue Gene/Q along with scalability issues in our
implementation and describes of an approach to overcome them.
Section 4 first describes experiments to tune our Blue Gene/Q en-
vironment for our evaluations and later demonstrates the outcome
of our evaluations against three different criteria.

Notation.
A,B, . . . denote matrices and a, b, . . . denote column vectors.

Given a matrix A ∈ R
m×n, let ‖A‖2 = maxx 6=0

‖Ax‖2
‖x‖2

be the

spectral norm and ‖A‖F =
√

∑m

i=1

∑n

j=1|a2
ij | be the Frobenius

norm. Let σ1 ≥ σ1 ≥ σ2 · · · ≥ σr be the nonzero singular
values of A where r = rank(A), the rank of the matrix. Then
the condition number of A is given by κ(A) = σ1

σr
. Also, let

U ∈ R
m×n be a matrix whose columns form an orthonormal ba-

sis for the column space of A and let Ui,∗ denote the i-th row of
the matrix U as a row vector. We define the coherence of A as
µ(A) = maxi∈{1,...,m}‖Ui,∗‖22. Also, we denote by nnz(A), the
number of nonzero entries of A and α (A) = m

n
as the aspect ratio

of A.

2. THE BLENDENPIK ALGORITHM FOR

DENSE OVERDETERMINED SYSTEMS
Blendenpik is a least-squares solver for dense overdetermined

full column rank systems that computes the approximate solution
with a high degree of precision. Given a dense overdetermined

1https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q

matrix A ∈ R
m×n and a column vector b ∈ R

m, the algorithm
computes the solution using three stages:

1. A preconditioner is constructed by applying a randomized
unitary transform F to the input matrix A and then sampling
a small number of rows, Ms from the transformed matrix
FA.

2. A QR factorization of the sampled matrix Ms is computed
giving an orthogonal matrix Qs and an upper triangular ma-
trix Rs. The latter is then used as a preconditioner for the
input matrix.

3. The preconditioner is used in conjunction with LSQR (an
iterative method for solving least squares problems) to com-
pute an approximate solution x̂ to the original problem.

Algorithm 1 The Blendenpik algorithm [1]

1: Input: A ∈ R
m×n matrix, m≫ n and rank (A) = n.

b ∈ R
m vector.

F ∈ R
m×m random unitary transform matrix.

γ(≥ 1) - Sampling factor.
2: Output: x̂ = Solution of minx‖Ax− b‖2.
3: while Output not returned do

4: M = FA
5: Let S ∈ R

m×m be a random diagonal matrix:

Sii =
{

1 with probability γn

m

0 with probability 1− γn

m

6: Ms = SM ; Ms = QsRs

7: κ̂ = κestimate(Rs)
8: if κ̂−1 > 5ǫmachine then

9: y = minz‖AR−1
s z − b‖2

10: Solve Rsx̂ = y
11: return x̂
12: else

13: if # iterations > 3 then

14: solve using Baseline Least squares and return
15: end if

16: end if

17: end while

A sketch of Blendenpik is described in Algorithm 1. We give a
brief overview on each of the stages below.

Randomized Unitary transformation.
The randomized unitary transformation matrix F is constructed

as the product of a random diagonal matrix D with i.i.d. Rademacher
random diagonal entries (Pr(Dii = ±1) = 1/2) and a fixed uni-
tary transformation. This results in a randomly shuffled, low co-
herence matrix M from which a preconditioner is constructed by
sampling rows of the matrix. We experiment mainly on the Discrete
Cosine Transform (DCT) as the underlying fixed unitary transfor-
mation. A detailed implementation of the DCT and subsequent
limitations imposed by overdetermined terascale matrices are ex-
plained in Section 3.

Row Sampling and QR Preconditioning.
The algorithm then creates a lower dimensional matrix Ms by

selecting rows with probability γ(n/m) from M , where γ is a
sampling factor that can be tuned. It is observed experimentally
that a small number of rows γn is sufficient for generating a well-
conditioned preconditioner. This sampled matrix Ms is then used

to compute the preconditioner Rs for the input matrix by a QR fac-
torization. Since the upper triangular matrix Rs returned by QR
may be ill-conditioned, we run the unitary transformation and row
sampling steps more than once (usually three times as mentioned in
the algorithm suffices). While selecting a smaller sample of rows
can improve the QR preconditioning runtime, there is a tradeoff as
it slows down the convergence rate of the iterative solver (since the
preconditioner is of lower quality).

Iterative Solution.
The solution is computed using a Krylov-subspace method called

LSQR [14], with Rs serving as a preconditioner. Given an iterate
xj and the corresponding residual error rj = b − Axj, the algo-
rithm uses the following criteria in LSQR to test convergence (this
is a standard test in LSQR)

‖(AR−1)T rj‖2
‖AR−1‖F ‖rj‖2 ≤ ρ

where ρ is a tolerance value that determines the backward error at
which the iterative solver terminates. This guarantees a backward
stable solution to yj = minz‖AR−1

s z − b‖2 and returns the es-
timate xj = R−1

s yj . The residual error at convergence is used to
compute the final backward error estimate, given by ‖AT rj‖2. The
runtime of LSQR is affected by how well conditioned the precon-
ditioned system AR−1

s is, which in turn is determined by the row
size of Ms. The lower the number of rows sampled, the greater the
coherence of Ms leading to a high condition number of the precon-
ditioned system, and hence greater the time it takes to converge.

3. DISTRIBUTED-MEMORY BLENDENPIK:

OUR ALGORITHM

(
[MC ,MR] & [MR,MC]

Distribution [VR, ⋆] & [⋆, VR]
formats for ∼ [VC , ⋆] & [⋆, VC]
a 2-D process
grid

[⋆, ⋆]

MC Matrix column
Distribution MR Matrix row
order VC Vector in column major order
within each VR Vector in row major order
grid dimension ⋆ Stored on every process

[X,Y] Distribute [columns, rows]
with scheme [X, Y]

[MC ,MR] Distribute [columns, rows]
Description equally among processes

VC/VR Distribute over processes in
column/row major wrapping

Table 1: Elemental data distribution overview.

The algorithm is implemented on top of the Elemental library [15].
Given a distributed environment over p processes, any dense ma-
trix A ∈ R

m×n is partitioned in Elemental into rectangular grids
of sizes r × c in a 2D cyclic distribution such that p = r × c and
r, c = O(

√
p). Elemental allows a matrix to be distributed in more

than one way. An overview of various data distributions available in
Elemental is given in Table 1 (not exhaustive). We use the standard
distribution [MC ,MR] listed in Table 1 for dense input matrices to
exploit operations that are communication intensive. For column-
wise/rowwise vector operations that require local computations to
be performed, we use a [⋆, VC/VR] or a [VC/VR, ⋆] distribution
that assigns each column/row vector to a single process. In some
cases, we require a matrix or a column vector to be present across
all processes which is done using the [⋆, ⋆] format. The notations
used henceforth are adapted from Elemental for convenience. The

attendant paper gives a comprehensive insight on these notations
describing different data distributions and the communication costs
involved in redistribution.

3.1 Randomized Unitary Transformation
The first step in the Blendenpik sketch performs a random uni-

tary transformation M = FA on the input matrix. As mentioned
in Section 2, a random unitary transformation is the product of a
random diagonal matrix and a fixed unitary transformation. We
now describe how the randomized unitary transformation is imple-
mented, with DCT as our fixed unitary transformation below.

Essentially, we use the DCT implementation in FFTW [9], a
highly optimized implementation of FFT tuned for underlying ar-
chitectures that can work on multidimensional data. For our pur-
poses we use the 1-D extensions of DCT that operate on data dis-
tributions of Elemental. The [MC ,MR] Elemental distribution for
input matrices is not a suitable format to apply FFTW’s DCT, since
the data distributed across multiple nodes columnwise as well as
rowwise is locally non-contiguous, while the implementation ex-
pects contiguously distributed data across either of the dimensions.
We resolve this problem by redistributing the data such that all ele-
ments of a column/row vector are owned locally by a process, using
either the [VR/VC , ∗] or [∗, VR/VC] distribution mentioned in Ta-
ble 1. The DCT can be considered as pre multiplying the input ma-
trix by the discrete cosine components, and hence the input matrix
must have all elements of a column locally i.e. in the [∗, VR/VC]
distribution. The Elemental pseudocode for the unitary transforma-
tion in Blendenpik can be described in the following steps:

M = FA⇐⇒

A[⋆, VR] = A[MC ,MR]
M [⋆, VR] = F [⋆, VR]A[⋆, VR]
M [MC ,MR] = M [⋆, VR]

The A[∗, VR] ←− A[MC ,MR] redistribution can be thought
of as a MPI_Scatter and an MPI_Gather collective pair op-
eration. The current MPI specifications (MPI 3.0) support send-
ing/receiving upto INT_MAX (231 − 1) elements for any collec-
tive operation. This places memory constraints for terascale dense
overdetermined systems as the row sizes increase and more col-
umn elements get bunched together inside a single process. Ham-
mond et. al. [11] present an excellent discussion and demonstrate
a library implementation called BigMPI as a wrapper to the cur-
rent MPI specifications to resolve this problem. However, porting
this as a wrapper to the local MPI implementation on AMOS is a
cumbersome task and beyond the scope of our work. We instead
overcome this problem using a batchwise unitary transformation as
explained in the following section.

3.2 Batchwise Unitary Transformation
The grid distribution by Elemental being cylic in nature, imposes

an additional overload during redistribution in that the memory for
each process is now shared by other columns of the matrix too.
Thus, not only are we constrained by the row size i.e. require-
ment for the entire matrix column to be present locally to apply the
transform, but also being inhibited by the column size i.e. mem-
ory shared between additional columns. This tradeoff requires a
flexibility in choosing to do a bulk redistribution and delayed tran-
formation than a piecemeal redistribution and immediate transfor-
mation. Since we are concerned with terascale overdetermined
systems, a piecemeal redistribution, wherein we select only a few
columns to transform at a time that enables faster transform is gen-
erally preferred. Another limiting factor that inhibits Blendenpik
performance for terascale matrices is the communication cost in
redistributing matrices after batchwise transformation. However,

one can observe that we sample the batchwise transformed matrix
before redistribution to generate the preconditioner.

a0,0 a0,1 a0,2 . . . a0,n

a1,0 a1,1 a1,2 . . . a1,n

a2,0 a2,1 a2,2 . . . a2,n

...
...

...
. . .

...

am,0 am,1 am,2 . . . am,n

A[MC, MR]

2× 2 processor grid

a0,0 a0,1 a0,2 a0,3 . . . a0,n

a1,0 a1,1 a1,2 a1,3 . . . a1,n

a2,0 a2,2 a2,2 a2,3 . . . a2,n

...
...

...
...

. . .
...

am,0 am,1 am,2 am,3 . . . am,n

A[*, VR]

ms0,0 ms0,1 ms0,2 . . . ms0,n

ms1,0 ms1,1 ms1,2 . . . ms1,n

ms2,0 ms2,1 ms2,2 . . . ms2,n

...
...

...
. . .

...

msγn,0 msγn,1 msγn,2 . . . msγn,n

Ms[MC, MR]

m0,0 m0,1 m0,2 m0,3 . . . m0,n

m1,0 m1,1 m1,2 m1,3 . . . m1,n

m2,0 m2,2 m2,2 m2,3 . . . m2,n

...
...

...
...

. . .
...

mm,0 mm,1 mm,2 mm,3 . . . mm,n

M[*, VR]

Batchwise Transform

R
ed

is
tr

ib
u
te

S
am

p
le

&
R

ed
is

tr
ib

u
te

Figure 1: Batchwise unitary transformation in Blendenpik.

Figure 1 illustrates the batchwise transformation done on a piece-
meal basis, i.e. only selecting a limited number of columns whose
flexibility can be suitably chosen. Let a matrix A ∈ R

m×n be
distributed in an [MC ,MR] format and let there be four MPI pro-
cesses (say) in our distributed environment (denoted by the color
scheme) given by p0, . . . , p3. We divide the matrix A columnwise
into b submatrices given by A(1), A(2), . . . , A(b), redistribute each
submatrix A(i)[⋆, VR]← A(i)[MC ,MR] : i ∈ {1, . . . , b} ,
perform random unitary transformation on each submatrix
M (i)[⋆, VR]← F [⋆, VR]A

(i)[⋆, VR] : i ∈ {1, . . . , b} ,
sample from each of the transformed submatrix

M
(i)
s [⋆, VR]← S [⋆, VR]M

(i)[⋆, VR] : i ∈ {1, . . . , b},
redistribute back each of the sampled b submatrices

M
(i)
s [MC ,MR] ← M

(i)
s [⋆, VR] : i ∈ {1, . . . , b} and finally

merge in the Ms[MC ,MR] matrix. The number of columns in
each submatrix and thus effectively, the number of submatrices b
can be tuned as per the dimensions of the matrix and the number of
IBM R© BG/Q nodes used in our evaluations.

A pseudocode description is given in Algorithm 2.

Algorithm 2: Elemental pseudocode for batchwise transformation.

Input:

A[MC ,MR] ∈ R
m×n.

F [⋆, VR] ∈ R
m×m.

S[⋆, VR] ∈ R
γn×m.

Output:

Ms[MC ,MR] - the transformed matrix.

(

A(1)[MC ,MR] A(2)[MC ,MR] · · · A(b)[MC ,MR]
)

←− A[MC ,MR]
for i = 1, 2, . . . , b do

A(i)[⋆, VR] = A(i)[MC ,MR]

M(i)[⋆, VR] = F [⋆, VR] A(i)[⋆, VR]

M(i)
s [⋆, VR] = S[⋆, VR] M(i)[⋆, VR]

M(i)
s [MC ,MR] = M(i)

s [⋆, VR]
end for

Ms[MC ,MR]←−
(

M(1)
s [MC ,MR] M(2)

s [MC ,MR] · · · M(b)
s [MC ,MR]

)

return Ms[MC ,MR]

Number of Blue Gene/Q nodes
32 64 128 256 512

N
u

m
b

e
r

o
f

re
p

li
c

a
ti

o
n

s

0

20

40

60

80

100

120

140

160

180

200
Base Blendenpik implementation for Yoshiyasu

Batchwise Blendenpik implementation for Yoshiyasu

Base Blendenpik implementation for ESOC

Batchwise Blendenpik implementation for ESOC

Figure 2: A comparison of the maximum number of replications
achieved using the batchwise transformation implementation in
Blendenpik and the base Blendenpik implementation for Yoshiyasu
and ESOC dense matrices.

Figure 2 compares the scalability of batchwise unitary transfor-
mation in Blendenpik with the base distributed implementation of
Blendenpik in terms of data sizes for dense matrices for increas-
ing Blue Gene/Q nodes. For this purpose, we generate terascale
dense matrices of the base Yoshiyasu Mesh and ESOC Springer
sparse matrices by densifying and replicating them as explained in
Section 4. The batchwise unitary transformation scales approxi-
mately by a factor of 2 for the Yoshiyasu matrix and approximately
3 times for the ESOC matrix over the base Blendenpik implemen-
tation that performs unitary transformation in a single stage. This
scaling effect becomes more pronounced when the columns of the
matrix increase as observed for the ESOC matrix for increasing
BG/Q nodes, which supports our choice of using batchwise trans-
formation to scale up Blendenpik.

3.3 Other Stages
The sampled matrix Ms generates the preconditioner R−1

s ob-
tained using Elemental’s QR solver. Finally, the iterative solution
is obtained using an LSQR implementation. The parameters for
LSQR, the tolerance value ρ and the iteration limit Niter can be
suitably tuned depending upon the magnitude of accuracy needed
and the speedup desired from our Blendenpik solver. Usually a
tolerance value ρ closer to ǫmachine is chosen for a better backward
stable solution.

4. EVALUATION
To generate terascale dense matrices, we randomly perturb sparse

matrices with values generated from a standard normal distribution
i.e. N (0, 1). We further replicate matrices for a chosen number of
times depending upon the size of the matrix to generate. We rely
on the UFL Sparse matrix collection [4] for obtaining matrices of
different conditioning and coherence values.

We choose the Yoshiyasu Mesh2, ESOC Springer3 and the Rucci4

matrix from the UFL Sparse matrix collection for creating our datasets.
Table 2 shows the datasets used for our evaluation after densifica-
tion and replication steps on the sparse matrices. Each dataset is
suffixed with the number of replications done on the base dense

2http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/
mesh_deform.html
3http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
4http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html

Data Set Number of

rows (Mil-

lion)

Number of

columns

Number

of entries

(Billion)

Total

size(TB)

Yoshiyasu-1 0.234

9393

2.198 0.016
Yoshiyasu-24 5.616 52.756 0.384
Yoshiyasu-48 11.233 105.512 0.768
Yoshiyasu-72 16.849 158.268 1.152
Yoshiyasu-96 22.466 211.025 1.535
Yoshiyasu-120 28.082 263.781 1.919
Yoshiyasu-144 33.699 316.537 2.303
Yoshiyasu-168 39.315 369.294 2.687
Yoshiyasu-192 44.932 422.050 3.070

ESOC-1 0.327

37830

12.373 0.090
ESOC-8 2.616 98.982 0.720
ESOC-16 5.233 197.964 1.440
ESOC-24 7.849 296.946 2.160
ESOC-32 10.466 395.928 2.880
ESOC-40 13.082 494.910 3.600
ESOC-48 15.698 593.892 4.321
ESOC-56 18.315 692.874 5.041
ESOC-64 20.931 791.856 5.761

Rucci-1 1.978
109900

217.369 1.581
Rucci-2 3.956 434.739 3.163
Rucci-3 5.933 652.108 4.744

Table 2: Datasets used in Blendenpik evaluation.

matrix e.g. Yoshiyasu-24 indicates that the Yoshiyasu Mesh dense
matrix has been replicated 24 times. We choose a sampling factor
of γ = 2 for the dense matrices based on scalability tests with the
DCT transform to generate a relatively well-conditioned precondi-
tioner.

Evaluation Metrics.
Let A ∈ R

m×n be the input matrix, b ∈ R
m be the right hand

side vector and let:
x̂←− min

x
‖Ax− b‖2, the batchwise Blendenpik min-norm solution.

x∗ ←− the exact solution.

r̂ ←− Defined as b− Ax̂.

t̂run ←− running time of Blendenpik.

t∗run ←− running time of baseline (Elemental).

We evaluate the Blendenpik algorithm for large scale dense matri-
ces using the following metrics.

Speedup : Speedup is given by
t∗run

t̂run

.

Accuracy : Accuracy is defined in terms of the relative error for

the min-norm solution x̂ given by
‖Ax̂− Ax∗‖2
‖Ax∗‖2

and the

backward error given by ‖AT r̂‖2.

4.1 AMOS Environment Setup
Our goal in this work is to provide a thorough evaluation of

Blendenpik as a terascale dense least squares solver from three pri-
mary viewpoints: scalability, performance and numerical stability.
We tune AMOS to evaluate the Blendenpik implementation against
optimum baseline performance and scalability. We select that com-
bination of number of OpenMP threads per node and number of
MPI processes per node that gives maximum performance for the
baseline least squares solver (Elemental) on AMOS. We measure
the average time taken by the baseline solver over 5 runs for all pos-
sible MPI/OpenMP combinations for two dense matrices: a random
matrix generated uniformly at random between [−1, 1] of dimen-
sions R1320000×38000 and the ESOC-4 replicated matrix (see above

for the replication process) of dimensions R
1308248×37830 . The

AMOS system can execute upto 64 MPI processes with 1 OpenMP
thread or 1 MPI process with 64 OpenMP threads or combinations
of the same in a single node. We use a bgclang/LLVM build of the
baseline Elemental solver for our evaluations.

As seen in Table 3, the performance of the baseline Elemen-
tal solver improves as the number of OpenMP threads per node
increases for a single MPI process per node. Similarly, the per-
formance also increases with increasing MPI processes per node
for a single OpenMP thread. However, the performance drops
when many MPI processes compete for CPU resources with sev-
eral OpenMP threads in the system. The maximum performance
is realized for 32 OpenMP threads for a single MPI process as
seen in Table 3, while it immediately degrades when the number
of threads reach 64. One possible reason could be because of pos-
sible thread synchronization during Floating point operations in the
BG/Q CPU cores. The choice of 1 MPI process and 32 OpenMP
threads per Blue Gene/Q node is the standard configuration we se-
lect for our evaluations and henceforth we use the number of nodes
interchangeably for the number of cores.

4.2 Runtime environment evaluation
One of the key factors that influence scalability considerations

is the performance of the runtime environment in the AMOS Blue
Gene/Q system. The AMOS system supports both standard GNU
(4.7.2) as well as LLVM/bgclang5 environments [12]. Figure 3
demonstrates the speedup for the baseline (Elemental) least squares
solver built with bgclang over the baseline solver built with GNU
for various replications of the Yoshiyasu and the ESOC matrix for
increasing row sizes on 512 BG/Q nodes. The baseline (Elemental)
solver achieves a significant speedup in the LLVM/bgclang envi-
ronment due to the highly optimized linear algebraic routines im-
plemented in the BG/Q Math libraries, ESSL (Engineering Scien-
tific Subroutine Library) and MASS (Mathematical Acceleration
Subsystem).

Total Matrix Size (TB)
0 0.5 1 1.5

S
p

e
e

d
u

p

7

8

9

10

11

12

13

14

Yoshiyasu bgclang over GNU speedup

ESOC bgclang over GNU speedup

Figure 3: Speedup defined as t∗gnu/t
∗
bgclang of the baseline solver

as a function of matrix size in TB for 512 nodes.

To solve the least squares regression problem, the baseline Ele-
mental solver computes the QR for the preconditioner. The QR can
be considered as a sequence of matrix multiplications of orthogonal
matrices with the input matrix, and ESSL outperforms the BLAS
routines built with the standard GNU compiler for the Blue Gene/Q
in this respect. As we see, the speedup for the Yoshiyasu is much
better than the one achieved for the ESOC Springer matrix as the
matrix is highly overdetermined and with increasing columns, QR

5http://trac.alcf.anl.gov/projects/llvm-bgq

OpenMP
threads per

node

A ∈ R
1.32M×38K random matrix; µ(A) = 0.0054 ± 1.5 ∗ 10−4;

κ(A) = 1.4084 ± 1.1 ∗ 10−4
A ∈ R

1.3082M×38K ESOC-4 matrix; µ(A) = 0.998± 0;
κ(A) = 1.4594 ∗ 106 ± 11.0268

MPI processes per node

1 2 4 8 16 32 64 1 2 4 8 16 32 64

1 8734.48 4613.62 2996.67 2187.48 1477.89 1878.74 1755.57 9304.71 5205.42 2737.43 2067.88 1378.84 1809.77 −
2 4499.6 2637.91 1762.49 1580.48 1240.34 1826.52 − 4831.84 2922.68 1640.01 1542.24 1133.12 1741.58 −
4 2349.32 1565.67 1156.55 1334.04 1168.86 − − 2567.38 1741.82 1091.47 1236.9 1023.93 − −
8 1276.73 1097.84 922.341 2261.12 − − − 1463.21 1207.34 898.165 1219.18 − − −

16 800.443 1057.67 1193 − − − − 961.26 1026.97 891.234 − − − −
32 628.171 1081.64 − − − − − 742.075 919.704 − − − − −
64 686.517 − − − − − − 744.563 − − − − − −

Table 3: Runtime analysis to select an optimal hybrid MPI/OpenMP configuration for our scaling experiments. Each run was done on 128
BG/Q nodes for 5 iterations. All runtime values mentioned are in seconds(lower runtime values are preferred indicating faster execution).

worsens quadratically (since the QR for a matrix A ∈ R
m×n re-

quire O(mn2) floating point operations.

4.3 Scalability evaluation
One of the primary goals is to demonstrate Blendenpik as a scal-

able solver for terascale overdetermined systems. Figures 4 and 5
show the scalability of our solver on 512 nodes and 1024 nodes
respectively on AMOS. The base Elemental least squares solver
scales quite well for highly overdetermined dense matrices like the
Yoshiyasu matrix. Hence the speedup observed for the Blendenpik
solver compared to the baseline solver is not as significant as seen
in Figure 4. However for matrices that are less overdetermined, the
runtime and thus the speedup improves considerably. This effect is
observed for the ESOC Springer matrix as shown in Figure 4.

Total Matrix Size (TB)
0 0.5 1 1.5 2 2.5 3

S
p

e
e
d

u
p

1

2

3

4

5

6

7
Yoshiyasu-speedup

ESOC-speedup

Figure 4: Speedup analysis for Yoshiyasu Mesh and ESOC
Springer dense matrices as a function of increasing matrix sizes
for 512 BG/Q nodes.

One observation that is particularly significant is the effect of
batchwise transformation on the speedup as the matrix size in-
creases. The number of columns transformed in a single batch de-
pends upon the number of rows of the matrix and the minimum
space available across all processes to allocate the columns. Thus,
as the number of rows increases, fewer and fewer columns fit in
a batch making the batchwise transformation step slower. This is
the reason why the speedup peaks at a point where the entire trans-
formed matrix is able to fit into memory and beyond this stage,
the batchwise processing kicks in. This effect is more pronounced
as seen for increasing replications of the ESOC Springer matrix
and Rucci matrix in Figure 5 for 1024 BG/Q nodes. In general,
the Blendenpik solver scales excellently as compared to the base-
line Elemental solver. While the baseline solver fails to execute
for Yoshiyasu-192 (Table 2) & ESOC-36 (ESOC matrix with 36
replications) do not run in 512 nodes and ESOC-68 (ESOC matrix
with 68 replications) in 1024 nodes, the Blendenpik solver is able

Total Matrix Size (TB)
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

S
p

e
e
d

u
p

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
ESOC-speedup

Rucci-speedup

Figure 5: Speedup analysis for ESOC Springer and Rucci dense
matrices as a function of increasing matrix sizes for 1024 BG/Q
nodes.

to scale to matrix sizes of these replications.

4.4 Performance Evaluation
We also evaluate our Blendenpik solver for assessing perfor-

mance in terms of both strong scaling and weak scaling for in-
creasing Blue Gene/Q nodes. Figure 6 shows the strong scaling
performance of the solvers on the base Yoshiyasu Mesh and ESOC
Springer dense matrices respectively. As we see, the speedup of
the Blendenpik solver rises almost linearly with increasing BG/Q
nodes which is more pronounced for the Yoshiyasu Mesh matrix
than the ESOC Springer matrix. However, this advantage is offset
as the baseline Elemental solver performs comparably to the batch-
wise Blendenpik solver for 512 BG/Q nodes. This slowdown in the
batchwise Blendenpik solver is mainly on account of the QR pre-
conditioning phase that does not scale as well as the unitary trans-
form and the LSQR stages with increasing number of BG/Q nodes.
Similarly, the strong scaling runtime for the Rucci matrix is given
in Table 4. The Rucci matrix shows better speedup than the ESOC
Springer and Yoshiyasu Mesh matrices for increasing number of
BG/Q nodes.

Number of

BG/Q nodes

Batchwise

Blendenpik

(seconds)

Elemental-

Baseline (sec-

onds)

Speedup

512 645.511 1916.85 2.9695
1024 413.897 1318.65 3.1859

Table 4: Strong scaling runtime analysis for the Rucci matrix
(1977885 × 109900) for increasing Blue Gene/Q nodes.

Figure 7 shows the improved runtime achieved by the baseline
Elemental solver and the batchwise Blendenpik solver for the max-

Number of Blue Gene/Q nodes
0 100 200 300 400 500 600

S
p

e
e
d

u
p

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
Yoshiyasu-speedup

ESOC-speedup

Figure 6: Strong scaling speedup analysis for the Yoshiyasu Mesh
matrix (234023 × 9393) and ESOC Springer matrix (327062 ×
37830) for increasing Blue Gene/Q nodes.

imum number of BG/Q nodes for each of the matrices (512 nodes
for the Yoshiyasu Mesh & ESOC Springer matrices and 1024 nodes
for the Rucci matrix) which is still slower compared to the Blenden-
pik solver.

Dense matrix type
Yoshiyasu Mesh ESOC Springer Rucci

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

10 1

10 2

10 3

10 4

Batchwise Blendenpik

Elemental (baseline)

Figure 7: Runtime plot for the Yoshiyasu Mesh matrix (234023 ×
9393), ESOC Springer matrix (327062×37830) and Rucci matrix
(1977885 × 109900) for max. number of BG/Q nodes.

Finally, the weak scaling performance of the Yoshiyasu Mesh
and ESOC Springer matrices are shown in Figures 8 and 9 re-
spectively. As seen, the Yoshiyasu Mesh runtime for the batch-
wise Blendenpik solver is approximately constant for increasing
matrix sizes and for increasing BG/Q nodes while there’s a signifi-
cant bump in the running time for the baseline solver. Interestingly,
the runtime of the ESOC matrix keeps reducing in spite of the num-
ber of rows increasing with increasing number of BG/Q nodes. As
mentioned in the strong scaling analysis, the primary bottleneck
for the reduction in performance for increasing BG/Q nodes was
the performance of the QR preconditioning stage. However, the
size of the sampled matrix which is the input for the QR precondi-
tioner still remains the same even when the problem size increases.
When more computing resources are assigned, the QR precondi-
tioner performance improves. This gives a boost to the QR speedup
leading to improved overall runtime. The weak scaling runtime for
the Rucci matrix is given in Table 5 whose behavior is similar to
the ESOC matrix.

4.5 Numerical Stability Evaluation
We evaluate the numerical stability of the Blendenpik solver as

matrix size increases. The numerical stability is captured by the
relative error and the backward error defined earlier in our accuracy
metric. We show the numerical stability with respect to the relative
error for increasing matrix sizes for 512 Blue Gene/Q nodes for the

Number of Blue Gene/Q nodes
0 100 200 300 400 500 600

R
u

n
ti

m
e

(s
e
c
o

n
d

s
)

50

100

150

200

250

300

350

400

4x rows 8x rows 16x rows

32x rows 64x rows

4x rows

8x rows 16x rows

32x rows

64x rows

Batchwise Blendenpik

Elemental (baseline)

Figure 8: Weak scaling runtime analysis for the Yoshiyasu Mesh
matrix (234023× 9393) for increasing matrix sizes and increasing
Blue Gene/Q nodes.

Number of Blue Gene/Q nodes
0 100 200 300 400 500 600

R
u

n
ti

m
e

(s
e
c
o

n
d

s
)

100

200

300

400

500

600

700

800

900

1x rows

2x rows

4x rows

8x rows 16x rows

1x rows

2x rows 4x rows

8x rows
16x rows

Batchwise Blendenpik

Elemental (baseline)

Figure 9: Weak scaling speedup analysis for the ESOC Springer
matrix (327062×37830) for increasing matrix sizes and increasing
Blue Gene/Q nodes.

Number of

BG/Q nodes

Batchwise

Blendenpik

(seconds)

Elemental-

Baseline (sec-

onds)

Speedup

512 645.511 1916.85 2.9695
1024 473.565 2564.85 5.416

Table 5: Weak scaling runtime analysis for the Rucci matrix
(1977885 × 109900) for increasing row sizes and increasing Blue
Gene/Q nodes.

Yoshiyasu Mesh and the ESOC matrix in Figure 10. The accuracy
in terms of relative error for both the ESOC and Yoshiyasu matrices
are much better than O(

√
ǫmachine) which is well within the bounds

on the relative error given by Drineas et al. [7].
The numerical stability defined by backward error is as shown in

Figure 11 for both the baseline Elemental solver and the Blenden-
pik solver. As observed, the ESOC Springer matrix has a worse
backward error than the Yoshiyasu Mesh matrix (≈ 5 orders of
magnitude worse) for increasing matrix sizes due to it’s high con-
dition number due to which the LSQR solver quickly stagnates.
However, the backward error of the Blendenpik solver is compa-
rable to the backward error of the baseline solver. This error can
be improved by either using more than one preprocessing and mix-
ing stage or by selecting a larger sample size for the precondition-
ing stage that leads to a worse overall running time and reduced
speedup for increasingly large matrices. Thus there is a tradeoff
between the numerical stability and the speedup desired to com-
pute least squares for dense terascale matrices.

Summary.

Total Matrix Size (TB)
0 0.5 1 1.5 2 2.5 3

R
e
la

ti
v
e
 e

rr
o

r

10 -12

10 -11

10 -10

Yoshiyasu-Mesh

ESOC-Springer

Figure 10: Accuracy analysis in terms of relative error as a function
of increasing matrix size for Yoshiyasu Mesh and ESOC Springer
matrices for 512 BG/Q nodes.

Total Matrix Size (TB)
0 0.5 1 1.5 2 2.5 3

B
a

c
k

w
a

rd
 E

rr
o

r

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

Yoshiyasu-Baseline

Yoshiyasu-Blendenpik

ESOC-Baseline

ESOC-Blendenpik

Figure 11: Accuracy analysis in terms of backward error as a
function of increasing matrix size for Yoshiyasu Mesh and ESOC
Springer matrices for 512 BG/Q nodes.

• The scalability of the batchwise Blendenpik implementation
is determined by the number of columns in each batch of the
DCT transform which in turn is determined by the number
of rows of the matrix. As the number of rows increases, the
runtime of the batchwise unitary transformation stage wors-
ens leading to a reduced speedup.

• The batchwise Blendenpik solver demonstrates appreciable
strong scaling and weak scaling comparable to the baseline
Elemental solver for all matrices.

• The Blendenpik solver demonstrates excellent numerical sta-
bility in terms of the forward error for increasing matrix sizes.
The backward error however is worse, though this is compa-
rable to the backward error achieved by the baseline Elemen-
tal solver.

5. CONCLUSIONS AND FUTURE WORK
In this paper we take the first steps towards designing an highly

scalable distributed memory least squares solver based on the Blenden-
pik algorithm. Our solver, which is based on a somewhat straight-
forward implemention of the Blendenpik algorithm in a distributed
setting coupled with a batchwise unitary transformation, is already
able to beat state-of-the-art algorithm based on the classical algo-
rithm both in runtime and in the sheer size of matrices that can be
solved.

In the future, we plan to design a more finely tuned Blendenpik-
based algorithm for distributed memory platforms. This mostly

involves reducing the communication overhead involved in the ran-
domized unitary transformation. One exciting idea is to do the ran-
domized unitary transformation only after an initial reduction of
row space using input-sparsity sketching, as suggested by Clark-
son and Woodruff [2]. This row-reduced space also enables us to
choose a larger sample size for the preconditioning stage that can
lead to a significant improvement in the numerical stability.

Acknowledgments
We would like to thank Jack Poulson for his helpful discussions
on Elemental and Hal Finkel for his help with the llvm/bgclang
build. Haim Avron’s work was conducted while at IBM T.J. Wat-
son Research Center. The work is partially supported by NSF IIS-
1302231, and by the XDATA program of the Defense Advanced
Research Projects Agency (DARPA), administered through Air Force
Research Laboratory contract FA8750-12-C-0323.

6. REFERENCES
[1] H. Avron, P. Maymounkov, and S. Toledo. Blendenpik:

Supercharging lapack’s least-squares solver. SIAM J. Scientific

Computing, 32(3):1217–1236, 2010.

[2] K. L. Clarkson and D. P. Woodruff. Low rank approximation and
regression in input sparsity time. CoRR, abs/1207.6365, 2012.

[3] L. Dagum and R. Menon. OpenMP: An industry-standard API for
shared-memory programming. IEEE Comput. Sci. Eng., 5(1):46–55,
Jan. 1998.

[4] T. A. Davis and Y. Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, Dec. 2011.

[5] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR and LU
factorizations. ArXiv e-prints, Aug. 2008.

[6] J. Demmel and K. Yelick. Communication avoiding (CA) and other
innovative algorithms. The Berkeley Par Lab: Progress in the

Parallel Computing Landscape, pages 243–250.

[7] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós. Faster
least squares approximation. Numer. Math., 117(2):219–249, Feb.
2011.

[8] M. P. Forum. MPI: A message-passing interface standard. Technical
report, Knoxville, TN, USA, 1994.

[9] M. Frigo and S. G. Johnson. FFTW: An adaptive software
architecture for the FFT. In Proceedings of the International

Conference on Acoustics, Speech, and Signal Processing, volume 3,
pages 1381–1384, Seattle, Washington, 1998.

[10] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh. Parallel
Algorithms for Dense Linear Algebra Computations. SIAM Review,
32(1):54–135, 1990.

[11] J. R. Hammond, A. Schäfer, and R. Latham. To INT_MAX... and
beyond!: Exploring large-count support in MPI. In Proceedings of

the 2014 Workshop on Exascale MPI, ExaMPI ’14, pages 1–8,
Piscataway, NJ, USA, 2014. IEEE Press.

[12] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the

2004 International Symposium on Code Generation and

Optimization (CGO’04), Palo Alto, California, Mar 2004.

[13] X. Meng, M. A. Saunders, and M. W. Mahoney. LSRN: A parallel
iterative solver for strongly over- or under-determined systems.
CoRR, abs/1109.5981, 2011.

[14] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse
linear equations and sparse least squares. ACM Trans. Math. Softw.,
8(1):43–71, Mar. 1982.

[15] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A.
Romero. Elemental: A new framework for distributed memory dense
matrix computations. ACM Trans. Math. Softw., 39(2):13:1–13:24,
Feb. 2013.

[16] V. Rokhlin and M. Tygert. A fast randomized algorithm for
overdetermined linear least-squares regression. Proc. Natl. Acad. Sci.

USA, 105(36):13212–13217, 2008.

[17] J. Yang, X. Meng, and M. W. Mahoney. Implementing randomized
matrix algorithms in parallel and distributed environments. CoRR,
abs/1502.03032, 2015.

