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SKETCHING FOR PRINCIPAL COMPONENT REGRESSION\ast 

LIRON MOR-YOSEF\dagger AND HAIM AVRON\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Principal component regression (PCR) is a useful method for regularizing least
squares approximations. Although conceptually simple, straightforward implementations of PCR
have high computational costs and so are inappropriate for large scale problems. In this paper,
we propose efficient algorithms for computing approximate PCR solutions that, on one hand, are
high quality approximations to the true PCR solutions (when viewed as minimizer of a constrained
optimization problem) and, on the other hand, entertain rigorous risk bounds (when viewed as
statistical estimators). In particular, we propose an input sparsity time algorithms for approximate
PCR. We also consider computing an approximate PCR in the streaming model and kernel PCR.
Empirical results demonstrate the excellent performance of our proposed methods.
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1. Introduction. Least squares approximations of the form

min
\bfx \in \BbbR d

\| Ax - b\| 2

are fundamental building blocks in computational science, with applications ranging
from statistical data analysis to inverse problems. However, it is well appreciated,
especially in the aforementioned application areas, that regularization is often the key
to achieving the best results.

One of the basic methods for regularizing least squares approximations is principal
component regression (PCR) [23, 27, 2]. Given a data matrix A, a right-hand side b,
and a target rank k, PCR is computed by first computing the coefficients V\bfA ,k corre-
sponding to the top k principal components of A (i.e., to the dominant right invariant
subspace of A), then regressing on AV\bfA ,k and b, and finally projecting the solution
back to the original space. In short, the PCR estimator is xk = V\bfA ,k(AV\bfA ,k)

+b and
regularization is achieved via PCA-based dimensionality reduction. While there is
some criticism of PCR in the statistical literature [2, 24], it is nevertheless a valuable
tool in the toolbox of practitioners.

Up until recent breakthroughs on fast methods for least squares approximations,
there was little penalty in terms of computational complexity when switching from
ordinary least squares (OLS) to PCR. Indeed, the complexity of SVD-based compu-
tation of the dominant invariant subspace is O(ndmin(n, d)), and this matches the
asymptotic complexity of straightforward computation of the OLS solution (i.e., via
direct methods). However, recent progress on fast sketching-based algorithms for lin-
ear regression [17, 36, 31, 12, 44] has created a gap: exact computation of the principal
components still requires SVD, so the overall complexity is still O(ndmin(n, d)), even
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though the OLS stage is faster. The gap is not insubstantial: when learning with
large scale data (either large n or large d), O(ndmin(n, d)) is often not feasible, but
modern sketching-based linear regression methods are.

1.1. Contributions. In this paper, we study the use of dimensionality reduction
prior to computing PCR (so we can compute PCR on a smaller input matrix). In
particular, for a data matrix A, we relate the PCR solution of AR, where R is any
dimensionality reduction matrix, to the PCR solution of A. To do so, we study
the notion of approximate PCR both from an optimization perspective and from a
statistical perspective, and we provide conditions on R that guarantee that after
projecting the solution back to the full space (by multiplying by RT) we have an
approximate PCR solution with rigorous statistical risk bounds. These results are
described in section 3.

We then leverage the aforementioned results to design fast, sketching-based algo-
rithms for approximate PCR. We propose algorithms specialized for several cases (in
the following, n is the number of data points, d is the dimension of the data): large n
(using left sketching), large d (using right sketching), and both n and d large (using
two-sided sketching). Furthermore, we propose an input-sparsity time algorithm for
approximate PCR. These results are described in section 4.

We also consider computing approximate PCR in the streaming model, providing
the first algorithm for computing approximate PCR in a stream. We also provide a
fast algorithm for approximate kernel PCR (polynomial kernel only). These results
are described in section 5.

Finally, empirical results (section 6) clearly demonstrate the ability of our pro-
posed algorithms to compute approximate PCR solutions, the correctness of our
theoretical analysis, and the advantages of using our techniques instead of simpler
techniques like compressed least squares.

In general, unlike previous works on randomized methods for PCR (which we
discuss in the next subsection), we analyze the use of sketching for PCR from a
sketch-and-solve approach. We discuss the various advantages and disadvantages of
the sketch-and-solve approach in comparison to iterative-based approaches in the next
subsection.

1.2. Related work. Recently, matrix sketching, such as the use of random
projections, has emerged as a powerful technique for accelerating and scaling many
important statistical learning techniques. See recent surveys by Woodruff [44] and
Yang, Meng, and Mahoney [46] for an extensive exposition on this subject. So far,
there has been limited research on the use of matrix sketching in the context of
principal component regression.

One natural strategy for leveraging sketching in the context of PCR is to use
approximate principal components. Approximate principal components can be com-
puted using a fast sketching-based algorithm for approximate PCA (also known as
``randomized SVD"") [21, 44]. This was recently explored by Boutsidis and Magdon-
Ismail [7]. The authors show that if the number of subspace iterations is sufficiently
large, one can obtain a bound on the suboptimality of the approximate solution and
on the error of the solution vector. We too bound the suboptimality of our solutions,
but instead of bounding the error of the solution vector, we bound their distance
to the right dominant subspace, or bound the distance of the projection to the left
dominant subspace.

Frostig et al. leverage fast randomized algorithms for ridge regression to design
iterative algorithms for PCR and principal component projection [18]. Frostig et al.'s
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results were later improved upon by Allen-Zhu and Li [1]. Both of the aforementioned
methods use iterations, while our work explores the use of a sketch-and-solve approach.
While it is true that better accuracies can be achieved using iterative methods with
sketching-based accelerators [36, 5, 31, 20, 3], there are some advantages to using a
sketch-and-solve approach. In particular, sketch-and-solve algorithms are typically
faster. However, this comes at a price: sketch-and-solve algorithms typically provide
cruder approximations. Nevertheless, it is not uncommon for these cruder approxi-
mations to be sufficient in applications. Another advantage of the sketch-and-solve
approach is that it is more amenable to streaming and kernelization; we consider both
in this paper.

Closely related to our work is recent work on compressed least squares (CLS) [30,
25, 37, 38, 42]. In particular, our statistical analysis (section 3.2) is inspired by recent
statistical analysis of CLS [37, 38, 25]. Additionally, CLS is sometimes considered as
a computationally attractive alternative to PCR [38, 42]. While CLS certainly uses
matrix sketching to compress the matrix, it also uses the compression to regularize
the problem. The mix between compression for scalability and compression for regu-
larization reduces the ability to fine-tune the method to the needs at hand, and thus
obtain the best possible results. In contrast, our methods use sketching primarily to
approximate the principal components and as such serve as a means for scalability
only. We propose methods that are computationally as attractive as CLS, and are
more faithful to the behavior of PCR (in fact, CLS is a special case of one of our pro-
posed algorithms). These advantages over CLS are also evident in the experimental
results reported in section 6.

PCR is a form of least squares regression with convex constraints (once the dom-
inant subspace has been found). Pilanci and Wainwright recently explored the effect
of regularization on the sketch size for least squares regression [34, 35]. In the afore-
mentioned papers, sketching is applied only to the objective, while the constraint is
enforced exactly. This is unsatisfactory in the context of PCR since for PCR the
constraints are gleaned from the input, and enforcing them is as expensive as solving
the problem exactly. In contrast, our methods use sketching not only to compress the
objective function, but also to approximate the constraint set.

Ridge regression (also known as Tikhonov regularization) is another popular and
well-studied method for regularizing least squares solutions. It is also closely related
to PCR in the sense that the ridge term can be viewed as a soft damping of the
singular values. Recently several sketching-based algorithms have been suggested to
accelerate the solution of ridge regression [9, 4, 43, 10].

2. Preliminaries.

2.1. Notation and basic definitions. We denote scalars using Greek letters
or using x, y, . . . . Vectors are denoted by x,y, . . . and matrices by A,B, . . . . The
s\times s identity matrix is denoted by Is. We use the convention that vectors are column-
vectors. nnz (A) denotes the number of nonzeros in A. The notation \alpha = (1 \pm \gamma )\beta 
means that (1 - \gamma )\beta \leq \alpha \leq (1+\gamma )\beta , and the notation \alpha = \beta \pm \gamma means that | \alpha  - \beta | \leq \gamma .

Given a matrix X \in \BbbR m\times n, let X = U\bfX \Sigma \bfX VT
\bfX be a thin SVD of X, i.e., U\bfX \in 

\BbbR m\times min(m,n) is a matrix with orthonormal columns, \Sigma \bfX \in \BbbR min(m,n)\times min(m,n) is a
diagonal matrix with the nonnegative singular values on the diagonal, and V\bfX \in 
\BbbR n\times min(m,n) is a matrix with orthonormal columns. The thin SVD is not necessarily
unique, so when we use this notation we mean that the statement is correct for any
such decomposition. A thin SVD can be computed in O(mnmin(m,n)). We denote
the singular values of X by \sigma max(X) = \sigma 1(X) \geq \cdot \cdot \cdot \geq \sigma min(m,n)(X) = \sigma min(X),
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omitting the matrix from the notation if the relevant matrix is clear from the context.
For k \leq min(m,n), we use U\bfX ,k (respectively, V\bfX ,k) to denote the matrix consisting
of the first k columns of U\bfX (respectively, V\bfX ), and we use \Sigma \bfX ,k to denote the
leading k\times k minor of \Sigma \bfX . We use U\bfX ,k+ (respectively, V\bfX ,k+) to denote the matrix
consisting of the last min(m,n)  - k columns of U\bfX (respectively, V\bfX ), and we use
\Sigma \bfX ,k+ to denote the lower-right (min(m,n)  - k) \times (min(m,n)  - k) block of \Sigma \bfX . In
other words,

U\bfX =
\bigl[ 
U\bfX ,k U\bfX ,k+

\bigr] 
, \Sigma \bfX =

\biggl[ 
\Sigma \bfX ,k 0
0 \Sigma \bfX ,k+

\biggr] 
, V\bfX =

\bigl[ 
V\bfX ,k V\bfX ,k+

\bigr] 
.

The Moore--Penrose pseudoinverse of X is X+ := V\bfX \Sigma +
\bfX UT

\bfX , where \Sigma +
\bfX =

diag
\bigl( 
\sigma 1(X)+, . . . , \sigma min(m,n)(X)+

\bigr) 
with a+ = a - 1 when a \not = 0, and 0 otherwise.

The stable rank of a matrix X is sr (X) := \| X\| 2F /\| X\| 22. The kth relative gap of
a matrix X is

gapk (X) =
\sigma 2
k  - \sigma 2

k+1

\sigma 2
1

.

For a subspace \scrU , we use P\scrU to denote the orthogonal projection matrix onto \scrU ,
and P\bfX for the projection matrix on the column space of X (i.e., P\bfX = P\bfr \bfa \bfn \bfg \bfe (\bfX )).

We have P\bfX = XX+. The complementary projection matrix is P\bot 
\bfX = I  - P\bfX . A

useful property of projection matrices is that if \scrS \subseteq \scrT , then P\scrS P\scrT = P\scrT P\scrS = P\scrS .
Furthermore, we note the following result.

Theorem 1 (Theorem 2.3 in [40]). For any A and B with the same number of
rows, the following statements hold:

1. If rank (A) = rank (B), then the singular values of P\bfA P\bot 
\bfB and P\bfB P

\bot 
\bfA are

the same, so
\| P\bfA P\bot 

\bfB \| 2 = \| P\bfB P
\bot 
\bfA \| 2.

2. Moreover the nonzero singular values \sigma of P\bfA P\bot 
\bfB correspond to pairs \pm \sigma of

eigenvalues of P\bfB  - P\bfA , so

\| P\bfB  - P\bfA \| 2 = \| P\bfA P\bot 
\bfB \| 2.

3. If \| P\bfB  - P\bfA \| 2 < 1, then rank (A) = rank (B).

2.2. Principal component regression and principal component projec-
tion. In the principal component regression (PCR) problem, we are given an input
n \times d data matrix A, a right-hand side b \in \BbbR n, and a rank parameter k which is
smaller than or equal to the rank of A. Furthermore, we assume that there is an
nonzero eigengap at k: \sigma k > \sigma k+1. The goal is to find the PCR solution, xk, defined
as

(1) xk := arg min
\bfx \in \bfr \bfa \bfn \bfg \bfe (\bfV \bfA ,k)

\| Ax - b\| 2.

It is easy to verify that xk = V\bfA ,k(AV\bfA ,k)
+b = V\bfA ,k\Sigma 

 - 1
\bfA ,kU

T
\bfA ,kb. The principal

component projection (PCP) of b is bk := Axk = P\bfU \bfA ,k
b.

Straightforward computation of xk and bk via the SVD takes O(ndmin(n, d))
operations.1 We are primarily interested in finding faster algorithms that compute an

1The complexity when using iterative algorithms (e.g., Lanczos) to compute only the dominant
invariant spaces depends on several additional facts and in particular on spectral properties of the
matrix and sparsity level. Thus, to avoid overly complicating the discussion on computational com-
plexity, we refrain from further discussion of iterative methods for computing dominant eigenspaces.
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approximate PCR or PCP solution (we formalize the terms ``approximate PCP/PCR""
in section 3). Throughout the paper, we use A,b, and k as the arguments of the
PCR/PCP problem to be solved.

2.3. Matrix perturbations and distance between subspaces. Our analysis
uses matrix perturbation theory extensively. We now describe the basics of this theory
and the results we use.

The principal angles \theta j \in [0, \pi /2] between two subspaces \scrU and\scrW are recursively
defined by the identity

cos(\theta j) = max
\bfu \in \scrU 

max
\bfw \in \scrW 

uTw s.t. \| u\| 2 = 1, \| w\| 2 = 1 \forall i < j.uT
i u = 0,wT

i w = 0 .

We use uj and wj to denote the vectors for which cos(\theta j) = uT
j wj . Let \Theta (\scrU ,\scrW )

denote the d\times d diagonal matrix whose jth diagonal entry is the jth principal angle,
and as usual we allow writing matrices instead of subspaces as shorthand for the
column space of the matrix. Henceforth, when we write a function on \Theta (\cdot , \cdot ), i.e.,
sin(\Theta (U,W)), we mean evaluating the function entrywise on the diagonal only. It is
well known [19, section 6.4.3] that ifU (respectively, W) is a matrix with orthonormal
columns whose column space is equal to \scrU (respectively, \scrW ), then

\sigma j(U
TW) = cos(\theta j).

The following lemma connects the tangent of the principal angles to the spectral norm
of an appropriate matrix.

Lemma 2 (Lemma 4.3 in [16]). Let Q \in \BbbR n\times s have orthonormal columns, and let
W = [ Wk Wk+ ] \in \BbbR n\times n be an orthogonal matrix where Wk \in \BbbR n\times k with k \leq s.
If rank (WT

kQ) = k, then

\| tan\Theta (Q,Wk)\| 2 = \| (WT
k+Q)(WT

kQ)\| 2 .

Matrix perturbation theory studies how a perturbation of a matrix translates
to perturbations of the matrix's eigenvalues and eigenspaces. In order to bound
the perturbation of an eigenspace, one needs some notion of distance between two
subspaces. One common distance metric between two subspaces is

(2) d2(\scrU ,\scrW ) := \| P\scrU  - P\scrW \| 2 .

If U and V have the same number of columns, and both have orthonormal columns,
then

d2(U,V) =

\sqrt{} 
1 - \sigma min(U

TV)2 = sin(\theta max) = \| sin\Theta (U,V)\| 2,

where \theta max is the maximum principal angle between range (U) and range (V) [19,
section 6.4.3].

A classical result that bounds the distance between the dominant subspaces of
two symmetric matrices in terms of the spectral norm of difference between the two
matrices is the Davis--Kahan sin(\Theta ) theorem [15, section 2]. We need the following
corollary of this theorem.

Theorem 3 (corollary of Davis--Kahan sin\Theta theorem [15]). Let A, \~A \in \BbbR n\times n

be two symmetric matrices, both of rank at least k. Suppose that \lambda k > \~\lambda k+1, where
\lambda 1 \geq \cdot \cdot \cdot \geq \lambda n and \~\lambda 1 \geq \cdot \cdot \cdot \geq \~\lambda n are the eigenvalues of A and \~A. We have

d2(V\bfA ,k,V \~\bfA ,k) \leq 
\| A - \~A\| 2
\lambda k  - \~\lambda k+1

.
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Proof. We use the following variant of the sin\Theta theorem (see [41, Theorem 2.16]):
Suppose a symmetric matrix B has a spectral representation

B = XLXT +YMYT,

where [XY] is square orthonormal. Let the orthonormal matrix Z be of the same
dimensions as X and suppose that

R = BZ - ZN,

where N is symmetric. Furthermore, suppose that the spectrum of N is contained
in some interval [\alpha , \beta ] and that for some \delta > 0 the spectrum of M lies outside of
[\alpha  - \delta , \beta + \delta ]. Then

\| sin\Theta (X,Z)\| 2 \leq 
\| R\| 2
\delta 

.

We prove Theorem 3 by applying the aforementioned variant of the sin\Theta theorem with
B = \~A, X = V \~\bfA ,k, Y = V \~\bfA ,k+, L = diag

\bigl( 
\~\lambda 1, . . . , \~\lambda k

\bigr) 
, M = diag

\bigl( 
\~\lambda k+1, . . . , \~\lambda n

\bigr) 
,

Z = V\bfA ,k, N = diag (\lambda 1, . . . , \lambda k), and \delta = \lambda k  - \~\lambda k+1. It is easy to verify that the
conditions of the sin\Theta theorem hold, so

\| sin\Theta (V\bfA ,k,V \~\bfA ,k)\| 2 \leq 
\| R\| 2

\lambda k  - \~\lambda k+1

,

where R = \~AV\bfA ,k  - V\bfA ,kN. We have AV\bfA ,k = V\bfA ,kN, so \| R\| 2 = \| ( \~A  - 
A)V\bfA ,k\| 2 \leq \| \~A - A\| 2. Combining this inequality with the previous one and noting
that d2(V\bfA ,k,V \~\bfA ,k) = \| sin\Theta (V\bfA ,k,V \~\bfA ,k)\| 2 completes the proof.

Under the conditions of Theorem 3, sinceA and \~A are symmetric matrices, Weyl's
inequality implies that

d2(V\bfA ,k,V \~\bfA ,k) \leq 
\| A - \~A\| 2

\lambda k  - \lambda k+1  - \| A - \~A\| 2

as long as \| A - \~A\| 2 < \lambda k - \lambda k+1. Thus, if \| A - \~A\| 2 \ll \lambda k - \lambda k+1, then we can compute
an approximation to the k-dimensional dominant subspace of A by computing the k-
dimensional dominant subspace of \~A.

3. PCR with dimensionality reduction. Our goal is to design algorithms
which compute an approximate solution to the PCR or PCP problem. Our strategy
for designing such algorithms is to reduce the dimensions of A prior to computing
the PCR/PCP solution. Specifically, let R \in \BbbR d\times t be some matrix where t \leq d, and
define

(3) x\bfR ,k := RV\bfA \bfR ,k(ARV\bfA \bfR ,k)
+b .

The rationale in (3) is as follows. First, A is compressed by computing AR (this
is the dimensionality reduction step). Then we compute the rank k PCR solution
of AR and b; this is (ARV\bfA \bfR ,k)

+b. Finally, the solution is projected back to the
original space by multiplying by RV\bfA \bfR ,k. Obviously, given R we can compute x\bfR ,k

in O(ndt) (and even faster if A is sparse), so if t \ll min(n, d) there is a potential
for significant gain in terms of computational complexity, provided it is possible to
compute R efficiently as well. Furthermore, if we design R to have some special
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structure that allows us to compute AR in O(nt2) time, the overall complexity would
reduce to O(nt2).

Of course, x\bfR ,k is not the PCR solution xk (unless R = V\bfA ,k). This suggests the
following mathematical question (which, in turn, leads to an algorithmic question):
under which conditions on R is x\bfR ,k a good approximation to the PCR solution xk?
In this section, we derive general conditions on R that ensure deterministically that
x\bfR ,k is in some sense (which we formalize later in this section) a good approximation
of xk. The results in this section are nonalgorithmic and independent of the method
in which R is computed. In the next section we address the algorithmic question:
how can we compute such R matrices efficiently?

We approach the mathematical question from two different perspectives: an op-
timization perspective and a statistical perspective. In the optimization perspective,
we consider PCR/PCP as an optimization problem (equation (1)) and ask whether
the value of the objective function of x\bfR ,k is close to the optimal value of the objec-
tive function, while upholding the constraints approximately (see Definition 4). In
the statistical perspective, we treat xk and x\bfR ,k as statistical estimators and compare
their excess risk under a fixed-design model. Interestingly, the conditions we derive
for R are the same for both perspectives.

Before proceeding, we remark that an important special case of (3) is when R
has exactly k columns. In that case, for brevity, we omit the subscript k from x\bfR ,k

and notice that

(4) x\bfR = R(AR)+b .

Equation (4) is valid even if R has more than k columns and/or the columns are not
orthonormal. Thus, an established technique in the literature, frequently referred to
as compressed least squares (CLS) [30, 25, 37, 38, 42], is to generate a random R and
compute x\bfR . To avoid confusion, we stress the difference between (3) and (4): in
(3) we compute a PCR solution on the compressed matrix AR, while in (4) ordinary
least squares is used. These two strategies coincide when R has k columns. In this
paper, we focus on (3) and consider (4) only when it is a special case of (3) (when
R has exactly k columns). For an analysis of CLS from a statistical perspective, see
recent work by Slawski [38].

3.1. Optimization perspective. The PCR solution can be written as the so-
lution of a constrained least squares problem:

xk = arg min
\| \bfV T

\bfA ,k+\bfx \| 2=0

\bfx \in \bfr \bfa \bfn \bfg \bfe (\bfA T)

\| Ax - b\| 2.

In order to analyze a candidate solution \~x from an optimization perspective, we need
to decide how to treat the constraints. One option is to require a candidate \~x to be
inside the feasible set. Indeed, Pilanci and Wainwright recently considered sketching-
based methods for constrained least squares regression [34]. However, there is no
evident way to impose V\bfT 

\bfA ,k+x = 0 without actually computing V\bfA ,k+, which is as
expensive as computing V\bfA ,k. Thus, if we require an approximate solution to be
inside the feasible set, we might as well compute the exact PCR solution. Thus, in
our notion of approximate PCR, we relax the constraints and require only that the
approximate solution is close to meeting the constraint; i.e., we seek a solution for
which \| A\~x - b\| 2 is close to \| Axk  - b\| 2 and \| VT

\bfA ,k+\~x\| 2 is small.
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Similarly, if A has full rank, the PCP solution can written as the solution of a
constrained least squares problem:

bk = arg min
\| \bfU T

\bfA ,k+
\~\bfb \| 2=0

\~\bfb \in \bfr \bfa \bfn \bfg \bfe (\bfA )

\| \~b - b\| 2.

Again, our notion of approximate PCP relaxes the constraint.
The discussion above motivates the following definition of approximate PCR/PCP.

Definition 4 (approximate PCR and PCP). An estimator \~x is an (\epsilon , \upsilon )-approxi-
mate PCR of rank k if

\| A\~x - b\| 2 = \| Axk  - b\| 2 \pm \epsilon \| b\| 2

and \| VT
\bfA ,k+\~x\| 2 \leq \upsilon \| b\| 2. An estimator \~b is an (\epsilon , \upsilon )-approximate PCP of rank k if

\| \~b - b\| 2 = \| bk  - b\| 2 \pm \epsilon \| b\| 2

and \| UT
\bfA ,k+

\~b\| 2 \leq \upsilon \| b\| 2.
Before proceeding, a few remarks are in order.
1. Imposing no constraints on \~x (or \~b) does not make sense: we can always form

or approximate the OLS solution, and it will demonstrate a smaller objective
value. Indeed, the main motivation for using PCR is to impose some form of
regularization, so it is crucial the definition of approximate PCR/PCP have
some form of regularization built in.

2. We require only additive error on the objective function, while relative error
bounds are usually viewed as more desirable. For approximate PCR, requiring
relative error bounds is likely unrealistic: since it is possible that b = Axk,
any algorithm that provides a relative error bound must search inside a space
that contains range (V\bfA ,k). This is a strong restriction (and plausibly one
that actually requires computing V\bfA ,k).

3. Approximate PCR implies approximate PCP: if \~x is an (\epsilon , \nu )-approximate
PCR, then A\~x is an (\epsilon , \sigma k+1\nu )-approximate PCP.

4. Our notion of approximate PCP is somewhat similar to the notion of approx-
imate PCP proposed recently by Allen-Zhu and Li [1].

5. Yet another notion of approximate PCR appears in [7, Theorem 5]. They, too,
consider an additive error on objective function, but instead of considering
the distance to the dominant subspace they bound the distance of the approx-
imate solution to the true solution. We remark that a bound on \| xk  - \~x\| 2
trivially implies a bound on \| VT

\bfA ,k+\~x\| 2.
6. Arguably, it would have been preferable to require the approximate PCR

solution \~x to be such that \| xk - \~x\| 2 is small (relative to \| xk\| 2). However, we
believe that providing such guarantees with reasonable sketch sizes requires
iterations. In this paper, we focus predominately on algorithms that do not
require iterations (the only exception being the input sparsity algorithm in
subsection 4.3).

We are now ready to state general conditions on R that ensure deterministically that
x\bfR is an approximate PCR, and conditions on R that ensure deterministically that
Ax\bfR ,k is an approximate PCP.

Theorem 5. Suppose that R \in \BbbR d\times s, where s \geq k. Assume that \nu \in (0, 1).
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1. If d2 (U\bfA \bfR ,k,U\bfA ,k) \leq \nu , then Ax\bfR ,k is an (\nu , \nu )-approximate PCP.

2. If s = k, R has orthonormal columns (i.e., RTR = Ik), and d2
\bigl( 
R,V\bfA ,k

\bigr) 
\leq 

\nu (1 + \nu 2) - 1/2, then x\bfR is an
\bigl( \sigma k+1

\sigma k
\nu , \nu 

(
\surd 
1 - \nu 2 - \nu )\sigma k

\bigr) 
-approximate PCR.

Before proving this theorem, we state a theorem which is a corollary of a more
general result proved recently by Drineas et al. [16], and then proceed to proving a
couple of auxiliary lemmas.

Theorem 6 (corollary of Theorem 2.1 in [16]). Let A be an m \times n matrix with
singular value decomposition A = U\bfA \Sigma \bfA V\bfT 

\bfA . Let k \geq 0, and let R \in \BbbR d\times k be any
matrix such that V\bfT 

\bfA ,kR has full rank. Then

\| sin\Theta (AR,U\bfA ,k)\| 2 \leq \| \Sigma \bfA ,k+\| 2 \cdot \| \Sigma  - 1
\bfA ,k\| 2 \cdot \| tan\Theta (R,V\bfA ,k)\| 2.

Lemma 7. Assume rank (A) \geq k. If R \in \BbbR d\times k has orthonormal columns and
d2 (R,V\bfA ,k) \leq \nu , then the following bounds hold:

(5) \| VT
\bfA ,k+R\| 2 \leq \nu ,

(6) \sigma min (AR) \geq \sigma k

\Bigl( \sqrt{} 
1 - \nu 2  - \nu 

\Bigr) 
.

Furthermore, if \nu < 1, then rank (AR) = k.

Proof. Since both V\bfA ,k and R have orthonormal columns, d2 (R,V\bfA ,k) \leq \nu 

implies that the square of the singular values of VT
\bfA ,kR lies inside the interval [1 - \nu 2,

1]. The eigenvalues of RTV\bfA ,kV
T
\bfA ,kR are exactly the square of the singular values of

VT
\bfA ,kR, so the eigenvalues of Ik  - RTV\bfA ,kV

T
\bfA ,kR lie in [0, \nu 2]. Let Z be any matrix

with orthonormal columns that completes V\bfA to a basis (i.e., V\bfA VT
\bfA + ZZT = Id)

and is orthogonal to V\bfA (i.e., VT
\bfA Z = 0). Note that Z can be an empty matrix if

d \leq n. Denote V\bfA ,k\bot =
\bigl[ 
V\bfA ,k+ Z

\bigr] 
. We have

\| VT
\bfA ,k\bot R\| 2 =

\sqrt{} 
\| RTV\bfA ,k\bot V

T
\bfA ,k\bot R\| 2

=
\sqrt{} 
\| Ik  - RTV\bfA ,kV

T
\bfA ,kR\| 2

\leq \nu ,

where we used the fact that V\bfA ,kV
T
\bfA ,k + V\bfA ,k\bot V

T
\bfA ,k\bot = Id. We now note that

VT
\bfA ,k+R is a submatrix of VT

\bfA ,k\bot so \| VT
\bfA ,k+R\| 2 \leq \| V

T
\bfA ,k\bot R\| 2 \leq \nu . This establishes

the first part of the theorem.
As for the second part, recall the following identities: (1) for any matrix X and

Y of the same size, \sigma min (X\pm Y) \geq \sigma min (X) - \sigma max (Y) [22, Theorem 3.3.19]; (2) if
the number of rows in X and Y is at least as large as the number of columns, and
XY is defined, then \sigma min (XY) \geq \sigma min (X)\sigma min (Y). We have

\sigma min (AR) = \sigma min(AV\bfA ,kV
T
\bfA ,kR+AV\bfA ,k+V

T
\bfA ,k+R)

\geq \sigma min(AV\bfA ,kV
T
\bfA ,kR) - \sigma max(AV\bfA ,k+V

T
\bfA ,k+R)

\geq \sigma min(AV\bfA ,k)\sigma min(V
T
\bfA ,kR) - \sigma max(AV\bfA ,k+)\sigma max(V

T
\bfA ,k+R)

= \sigma k\sigma min(V
T
\bfA ,kR) - \sigma k+1\sigma max(V

T
\bfA ,k+R)

\geq \sigma k

\sqrt{} 
1 - \nu 2  - \sigma k+1\nu 

\geq \sigma k(
\sqrt{} 
1 - \nu 2  - \nu ),
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where the first equality follows from the fact that A(V\bfA ,kV
T
\bfA ,k+V\bfA ,k+V

T
\bfA ,k+) = A.

When \nu < 1 we have \sigma min(AR) > 0, so indeed the rank of AR is k.

Lemma 8. Assume rank (A) \geq k. Suppose that R \in \BbbR d\times k has orthonormal
columns, and that d2 (R,V\bfA ,k) \leq \nu (1 + \nu 2) - 1/2 < 1. We have

d2(U\bfA \bfR ,U\bfA ,k) \leq 
\sigma k+1

\sigma k
\nu .

Proof. Since rank (A) \geq k and \nu (1 + \nu 2) - 1/2 < 1, according to Lemma 7 the
matrix AR has full rank. According to Theorem 1 and the fact that P\bfA \bfR and P\bfU \bfA ,k

are orthogonal projections we have

(7) d2 (U\bfA \bfR ,U\bfA ,k) = d2 (AR,U\bfA ,k) = \| P\bfA \bfR  - P\bfU \bfA ,k
\| 2 = \| P\bot 

\bfA \bfR P\bfU \bfA ,k
\| 2.

Combining Theorem 6 and (7), we bound

d2 (AR,U\bfA ,k) = \| P\bot 
\bfA \bfR P\bfU \bfA ,k

\| 2
= \| (I - P\bfA \bfR )U\bfA ,k\| 2
= \| sin\Theta (AR,U\bfA ,k)\| 2
\leq \| \Sigma \bfA .k+\| 2 \cdot \| \Sigma  - 1

\bfA .k\| 2 \cdot \| tan\Theta (R,V\bfA ,k)\| 2
=

\sigma k+1

\sigma k
\cdot \| tan\Theta (R,V\bfA ,k)\| 2

\leq \sigma k+1

\sigma k
\nu ,

where the last inequality follows from the fact that \Theta (R,V\bfA ,k) is a diagonal matrix

whose diagonal values are the inverse cosine of the singular values of RTV\bfA ,k, and

these, in turn, are all larger than
\sqrt{} 
1 - \nu 2(1 + \nu 2) - 1.

We are now ready to prove Theorem 5.

Proof of Theorem 5. We need to show both the additive error bounds on the
objective function, and the error bound on the constraints. We start with the additive
error bounds on the objective function, both for PCP (first part of the theorem) and
for PCR (second part of the theorem). We have

Ax\bfR ,k = ARV\bfA \bfR ,k (ARV\bfA \bfR ,k)
+
b = P\bfU \bfA \bfR ,k

b

and
Axk = AV\bfA ,k(AV\bfA ,k)

+b = P\bfU \bfA ,k
b .

Thus,

\| Ax\bfR ,k  - b\| 2 = \| Axk  - b+Ax\bfR ,k  - Axk\| 2
= \| Axk  - b\| 2 \pm \| Ax\bfR ,k  - Axk\| 2
= \| Axk  - b\| 2 \pm \| (P\bfU \bfA \bfR ,k

 - P\bfU \bfA ,k
)b\| 2

= \| Axk  - b\| 2 \pm d2(U\bfA \bfR ,k,U\bfA ,k) \cdot \| b\| 2.

In the first part of the theorem, we have d2 (U\bfA \bfR ,k,U\bfA ,k) \leq \nu , while in the second
part of the theorem we have U\bfA \bfR ,k = U\bfA \bfR (since AR has k columns) and Lemma 8
ensures that d2 (U\bfA \bfR ,k,U\bfA ,k) \leq \nu \sigma k+1/\sigma k. Either way, the additive error bounds of
the theorem are met.
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We now bound the infeasibility of the approximate solution for the PCP guarantee
(first part of the theorem):

\| UT
\bfA ,k+Ax\bfR ,k\| 2 = \| UT

\bfA ,k+Ax\bfR ,k  - UT
\bfA ,k+Axk +UT

\bfA ,k+Axk\| 2
\leq \| UT

\bfA ,k+ (Ax\bfR ,k  - Axk) \| 2 + \| UT
\bfA ,k+Axk\| 2

\leq \| Ax\bfR ,k  - Axk\| 2
\leq d2 (U\bfA \bfR ,k,U\bfA ,k) \| b\| 2
\leq \nu \| b\| 2,

where we used the fact that Axk \in range (U\bfA ,k) so UT
\bfA ,k+Axk = 0.

We now bound the infeasibility of the approximate solution for the PCR guarantee
(second part of the theorem):

\| VT
\bfA ,k+x\bfR \| 2 = \| VT

\bfA ,k+R(AR)+b\| 2
\leq \| VT

\bfA ,k+R\| 2 \cdot \| (AR)+\| 2 \cdot \| b\| 2

\leq \nu \bigl( \surd 
1 - \nu 2  - \nu 

\bigr) 
\sigma k

\| b\| 2,

where we used Lemma 7 to bound \| VT
\bfA ,k+R\| 2 and \| (AR)+\| 2.

3.2. Statistical perspective. We now consider x\bfR ,k from a statistical per-
spective. We use a similar framework to the one used in the literature to analyze
CLS [37, 38, 42]. That is, we consider a fixed design setting in which the rows of A,
a1, . . . ,an \in \BbbR d, are considered as fixed, and b's entries, b1, . . . , bn \in \BbbR , are

bi = fi + \xi i,

where f1, . . . , fn are fixed values and the noise terms \xi 1, . . . , \xi n are assumed to be
independent random values with zero mean and \sigma 2 variance. We denote by f \in \BbbR n

the vector whose ith entry is fi . The goal is to recover f from b (i.e., denoise b).
The optimal predictor Ax \star of f given A is a minimizer of

min
\bfx \in \BbbR d

\BbbE 
\bigl[ 
\| Ax - b\| 22/n

\bigr] 
,

where here, and in subsequent expressions, the expectation is with respect to the noise
\xi (if there are multiple minimizers, x \star is the minimizer with minimum norm). It is
easy to verify that Ax \star = P\bfA f .

Given an estimator \theta = \theta (A,b) of x \star (which we assume is a random variable
since b is a random variable), its excess risk is defined as

\scrE (\theta ) := \BbbE 
\bigl[ 
\| A\theta  - Ax \star \| 22/n

\bigr] 
.

The ordinary least square estimator (OLS) \^x is simply a solution to min\bfx \in \BbbR d \| Ax - 
b\| 2: \^x := A+b. Simple calculations show that

\scrE (\^x) = \sigma 2rank (A) /n .

Thus, if the rank of A is large, which is usually the case when d\gg n, then the excess
risk might be large (and it does not asymptotically converge to 0 if rank (A) = \Omega (n)).



SKETCHING FOR PRINCIPAL COMPONENT REGRESSION 465

This motivates the use of regularization (e.g., PCR). Indeed, the excess risk of the
PCR estimator xk can be bounded [38]:

(8) \scrE (xk) \leq 
\| VT

\bfA x \star \| 2\infty \cdot 
\sum min(n,d)

i=k+1 \sigma 2
i

n
+

\sigma 2k

n
.

In many scenarios, xk has a significantly reduced excess risk in comparison to the
excess risk of \^x (see [38] for a discussion). This motivates the use of PCR when d is
large.

In this section, we analyze the excess risk of x\bfR ,k based on properties of R. The
bounds are based on the following identity [38]:2 for any M of appropriate size

(9) \scrE (x\bfM ) = \scrE (M(AM)+b) =
1

n
\| (I - P\bfA \bfM )Ax \star \| 22\underbrace{}  \underbrace{}  

\scrB (\bfx \bfM )

+ \sigma 2 rank (AM)

n\underbrace{}  \underbrace{}  
\scrV (\bfx \bfM )

.

In the above, \scrB (x\bfM ) can be viewed as a bias term, and \scrV (x\bfM ) can be viewed as a
variance term. Equation (8) is obtained by bounding the bias term \scrB (xk), although
our results lead to a bound on \scrE (xk) that is tighter in some cases (Corollary 11). An
immediate corollary of (9) is the following bound for x\bfR ,k:

(10) \scrE (x\bfR ,k) =
1

n
\| (I - P\bfA \bfR \bfV \bfA \bfR ,k

)Ax \star \| 22 +
\sigma 2k

n
.

The following result addresses the case where R has k orthonormal columns.
The conditions are the same as the first part of Theorem 5 (optimization perspective
analysis).

Theorem 9. Assume that rank (A) \geq k. Suppose that R \in \BbbR d\times k has orthonor-
mal columns, and that d2(R,V\bfA ,k) \leq \nu (1 + \nu 2) - 1/2 < 1. Then

\scrE (x\bfR ) \leq 
(1 + \nu ) \cdot \| x \star \| 22 \cdot \sigma 2

k+1

n
+

\sigma 2k

n
.

For the proof, we need the following theorem due to Halko, Martinsson, and
Tropp [21].

Theorem 10 (Theorem 9.1 in [21]). Let A be an m \times n matrix with singular
value decomposition A = U\bfA \Sigma \bfA V\bfT 

\bfA . Let k \geq 0, and let R be any matrix such that
V\bfT 

\bfA ,kR has full row rank. Then we have

\| (Im  - P\bfA \bfR )A\| 22 \leq \| \Sigma \bfA ,k+\| 22 + \| \Sigma \bfA ,k+V
T
\bfA ,k+R

\Bigl( 
VT

\bfA ,kR
\Bigr) +
\| 22.

Proof of Theorem 9. The condition that d2(R,V\bfA ,k) \leq \nu (1+\nu 2) - 1/2 < 1 ensures

that VT
\bfA ,kR has full rank, and that \| tan\Theta (R,V\bfA ,k)\| 22 \leq \nu (since \Theta (R,V\bfA ,k) is a

diagonal matrix whose diagonal values are the inverse cosine of the singular values of

2However, no proof of (9) appears in [38], so for completeness we include a proof in the appendix.
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RTV, and these, in turn, are all larger than
\sqrt{} 
1 - \nu 2(1 + \nu 2) - 1). Thus we have

\scrB (x\bfR ) =
1

n
\| (I - P\bfA \bfR )Ax \star \| 22

\leq 1

n
\| x \star \| 22 \cdot 

\biggl( 
\| \Sigma \bfA ,k+\| 22 + \| \Sigma \bfA ,k+V

\bfT 
\bfA ,k+R

\Bigl( 
V\bfT 

\bfA ,kR
\Bigr) +
\| 22
\biggr) 

\leq 1

n
\| x \star \| 22

\biggl( 
\sigma 2
k+1 + \sigma 2

k+1\| V
\bfT 
\bfA ,k+R

\Bigl( 
V\bfT 

\bfA ,kR
\Bigr) +
\| 22
\biggr) 

=
1

n
\| x \star \| 22

\bigl( 
\sigma 2
k+1 + \sigma 2

k+1\| tan\Theta (R,V\bfA ,k) \| 22
\bigr) 

\leq 
(1 + \nu ) \cdot \| x \star \| 22 \cdot \sigma 2

k+1

n
,

where in the first inequality we used Theorem 10 and for the second equality we used
Lemma 2. The result now follows from the fact that rank (AR) \leq k.

Corollary 11. For the PCR solution xk we have

\scrE (xk) \leq 
\| x \star \| 22 \cdot \sigma 2

k+1

n
+

\sigma 2k

n
.

Next, we consider the general case where R does not necessarily have orthonormal
columns, and potentially has more than k columns. The conditions are the same as
the second part of Theorem 5 (optimization perspective).

Theorem 12. Suppose that R \in \BbbR d\times s, where s \geq k. Assume that rank (AR) \geq 
k. If d2 (U\bfA \bfR ,k,U\bfA ,k) \leq \nu < 1, then

\scrE (x\bfR ,k) \leq \scrE (xk) +
(2\nu + \nu 2)\| f\| 22

n
.

Proof. Since AR has rank at least k, we have P\bfA \bfR \bfV \bfA \bfR ,k
= P\bfU \bfA \bfR ,k

. From
(10), the fact that Ax \star = P\bfA f , and P\bfA \bfR \bfV \bfA \bfR ,k

P\bfA = P\bfA \bfR \bfV \bfA \bfR ,k
(since the range of

ARV\bfA \bfR ,k is contained in the range of A) we have

\scrB (x\bfR ,k)=
1

n
\| (I - P\bfA \bfR \bfV \bfA \bfR ,k

)Ax \star \| 22

=
1

n
\| (P\bfA  - P\bfA \bfR \bfV \bfA \bfR ,k

)f\| 22

=
1

n
\| (P\bfA  - P\bfU \bfA ,k

+P\bfU \bfA ,k
 - P\bfA \bfR \bfV \bfA \bfR ,k

)f\| 22

=
1

n

\Bigl( 
\| (P\bfA  - P\bfU \bfA ,k

)f\| 22+\| (P\bfU \bfA ,k
 - P\bfU \bfA \bfR ,k

)f\| 22

+2(P\bfA f - P\bfU \bfA ,k
f)T(P\bfU \bfA ,k

f - P\bfA \bfR \bfV \bfA \bfR ,k
f)
\Bigr) 

\leq \scrB (xk)+d2 (U\bfA \bfR ,k,U\bfA ,k)
2 \| f\| 22

n
+

2

n

\bigm| \bigm| fT(P\bfA  - P\bfU \bfA ,k
)T(P\bfU \bfA ,k

 - P\bfA \bfR \bfV \bfA \bfR ,k
)f
\bigm| \bigm| .
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For the cross-terms, we bound\bigm| \bigm| fT(P\bfA  - P\bfU \bfA ,k
)T(P\bfU \bfA ,k

 - P\bfA \bfR \bfV \bfA \bfR ,k
)f
\bigm| \bigm| 

=
\bigm| \bigm| fT \bigl( P\bfA P\bfU \bfA ,k

 - P\bfA P\bfA \bfR \bfV \bfA \bfR ,k
 - P\bfU \bfA ,k

P\bfU \bfA ,k
+P\bfU \bfA ,k

P\bfA \bfR \bfV \bfA \bfR ,k

\bigr) 
f
\bigm| \bigm| 

=
\bigm| \bigm| fT \bigl( P\bfU \bfA ,k

 - P\bfU \bfA \bfR ,k
 - P\bfU \bfA ,k

+P\bfU \bfA ,k
P\bfU \bfA \bfR ,k

\bigr) 
f
\bigm| \bigm| 

= fT
\bigl( 
I - P\bfU \bfA ,k

\bigr) 
P\bfU \bfA \bfR ,k

f

= fTP\bot 
\bfU \bfA ,k

P\bfU \bfA \bfR ,k
f

\leq \| P\bot 
\bfU \bfA ,k

P\bfU \bfA \bfR ,k
\| 2 \cdot \| f\| 22.

Since both U\bfA \bfR ,k and U\bfA ,k are full rank, we have (Theorem 1)

\| P\bot 
\bfU \bfA ,k

P\bfU \bfA \bfR ,k
\| 2 = \| P\bfU \bfA ,k

 - P\bfU \bfA \bfR ,k
\| 2 = d2 (U\bfA \bfR ,k,U\bfA ,k ).

Thus, we find that

\scrB (x\bfR ,k) \leq \scrB (xk) + (2\nu + \nu 2)
\| f\| 22
n

.

We reach the bound in the theorem statement by adding the variance \scrV (x\bfR ,k), which
is equal to the variance of xk because the ranks are equal.

Discussion. Theorem 9 shows that if R is a good approximation to V\bfA ,k, then
there is a small relative increase to the bias term, while the variance term does not
change. Since we are mainly interested in keeping the asymptotic behavior of the
excess risk (as n goes to infinity), a fixed \nu of modest value suffices. However, for
this result to hold, R has to have exactly k columns, and those columns should be
orthonormal. Without these restrictions, we need to resort to Theorem 12. In that
theorem, we get (if the conditions are met) only an additive increase in the bias term.
Thus if, for example, \| f\| 22/n\rightarrow c as n\rightarrow \infty for some constant c, then \nu should tend
to 0 as n goes to infinity, but a constant value should suffice if n is fixed.

4. Sketched PCR and PCP. In the previous section, we considered general
conditions on R which ensure that x\bfR ,k is an approximate solution to the PCR/PCP
problem. In this section, we propose algorithms to generate R for which these con-
ditions hold. The main technique we employ is matrix sketching. The idea is to
first multiply the data matrix A by some random transformation (e.g., a random
projection) and extract an approximate subspace from the compressed matrix.

4.1. Dimensionality reduction using sketching. The compression (multi-
plication by a random matrix) alluded to in the previous paragraph can be applied
from the left side, the right side, or both. In left sketching, which is more appropriate
if the input matrix has many rows and a modest number of columns, we propose
using R = V\bfS \bfA ,k, where S is some sketching matrix (we discuss a couple of options
shortly). In right sketching, which is more appropriate if the input matrix has many
columns and a modest number of rows, we propose using R = GT, where G is some
sketching matrix. Two-sided sketching, R = GTV\bfS \bfA \bfG T,k, is suited for the case in
which the number of columns and the number of rows are large.

The sketching matrices, S and G, are randomized dimensionality reduction trans-
formations. Quite a few sketching transforms have been proposed in the literature in
recent years. For concreteness, we consider two specific cases, though our results hold
for other sketching transformations as well (though some modifications in the bounds
might be necessary). The first, which we refer to as ``subgaussian map,"" is a random
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matrix in which every entry of the matrix is sampled i.i.d. from some subgaussian
distribution (e.g., N(0, 1)) and the matrix is appropriately scaled (however, scaling
is not necessary in our case). The second transform is a sparse embedding matrix,
in which each column is sampled uniformly and independently from the set of scaled
identity vectors and multiplied by a random sign. We refer to such a matrix as a
CountSketch matrix [8, 44].

Both transformations described above, and a few others, have, with high prob-
ability, provided enough rows are used, the following property, which we refer to as
approximate Gram property.

Definition 13. Let X \in \BbbR m\times n be a fixed matrix. For \epsilon , \delta \in (0, 1/2), a distribu-
tion \scrD on matrices with m columns has the (\epsilon , \delta )-approximate Gram matrix property
for X if

Pr
\bfS \sim \scrD 

\Bigl( 
\| XTSTSX - XTX\| 2 \geq \epsilon \| X\| 22

\Bigr) 
\leq \delta .

Recent results by Cohen, Nelson, and Woodruff [14]3 show that when S has
independent subgaussian entries, then as long as the number of rows in S is \Omega ((sr (X)+
log(1/\delta ))/\epsilon 2), we have the (\epsilon , \delta )-approximate Gram property for X. If S is a Count-

Sketch matrix, then as long as the number of rows in S is \Omega (sr (X)
2
/(\epsilon 2\delta )), we have

the (\epsilon , \delta )-approximate Gram property for X [14].
We first describe our results for the various modes of sketching, and then discuss

algorithmic issues and computational complexity.

Theorem 14 (left sketching). Let \nu , \delta \in (0, 1/2) and denote

\epsilon =
\nu (1 + \nu 2) - 1/2

1 + \nu (1 + \nu 2) - 1/2
\cdot gapk (A) .

Suppose that S is sampled from a distribution that provides a (\epsilon , \delta )-approximate Gram
matrix for A. Then for R = V\bfS \bfA ,k, with probability 1 - \delta , the approximate solution
x\bfR is a

\bigl( \sigma k+1

\sigma k
\nu , \nu 

(
\surd 
1 - \nu 2 - \nu )\sigma k

\bigr) 
-approximate PCR and

\scrE (x\bfR ) \leq 
(1 + \nu ) \cdot \| x \star \| 22 \cdot \sigma 2

k+1

n
+

\sigma 2k

n
.

Thus if, for example, S is a CountSketch matrix, then the conditions are met
when the number of rows in S is

\Omega 

\Biggl( 
sr (A)

2

gapk (A)
2
\nu 2\delta 

\Biggr) 
.

In another example, if S is a subgaussian map, then the conditions are met when the
number of rows in S is

\Omega 

\Biggl( 
sr (A) + log(1/\delta )

gapk (A)
2
\nu 2

\Biggr) 
.

Proof. Due to Theorems 5 and 9, it suffices to show that d2 (R,V\bfA ,k) \leq \nu (1 +
\nu 2) - 1/2. Under the conditions of the theorem, with probability of at least 1  - \delta ,
we have \| ATSTSA  - ATA\| 2 \leq \epsilon \| A\| 22. If that is indeed the case, ATSTSA has
rank at least k since ATSTSA and ATA are symmetric matrices and we know that

3Theorem 1 in [14] with k = \bfs \bfr (\bfX ) .



SKETCHING FOR PRINCIPAL COMPONENT REGRESSION 469

\sigma 2
i

\bigl( 
ATSTSA

\bigr) 
= \sigma 2

i

\bigl( 
ATA

\bigr) 
\pm \| ATSTSA - ATA\| 2 (Weyl's theorem and the fact that

\sigma 2
k > \epsilon \sigma 2

1). Furthermore, since \nu > 0 we have \epsilon < gapk (A), and Theorem 3 implies
that

d2(R,V\bfA ,k) \leq 
\| ATA - ATSTSA\| 2

(\sigma 2
k  - \sigma 2

k+1) - \| A
TA - ATSTSA\| 2

\leq \epsilon 

gapk (A) - \epsilon 

\leq \nu (1 + \nu 2) - 1/2 .

Thus, we have shown that with probability 1 - \delta we have d2 (R,V\bfA ,k) \leq \nu (1+\nu 2) - 1/2,
as required.

Theorem 15 (right sketching). Let \nu , \delta \in (0, 1/2) and denote

\epsilon =
\nu 

1 + \nu 
\cdot gapk (A) .

Suppose that G is sampled from a distribution that provides an (\epsilon , \delta )-approximate
Gram matrix for AT. Then for R = GT, with probability 1  - \delta , the approximate
solution Ax\bfR ,k is a (\nu , \nu )-approximate PCP and

\scrE (x\bfR ,k) \leq \scrE (xk) +
(2\nu + \nu 2)\| f\| 22

n
.

Thus if, for example, G is a CountSketch matrix, then the conditions are met
when the number of rows in G is

\Omega 

\Biggl( 
sr (A)

2

gapk (A)
2
\nu 2\delta 

\Biggr) 
.

In another example, if G is a subgaussian map, then the conditions are met when the
number of rows in G is

\Omega 

\Biggl( 
sr (A) + log(1/\delta )

gapk (A)
2
\nu 2

\Biggr) 
.

Proof. Due to Theorem 5 it suffices to show that d2 (U\bfA \bfR ,k,U\bfA ,k) \leq \nu . Under

the conditions of the theorem, with probability at least 1 - \delta , we have \| AGTGAT  - 
AAT\| 2 \leq \epsilon \| A\| 22. If that is indeed the case, AGTGAT has rank at least k since
AGTGAT and AAT are symmetric matrices and we know that \sigma 2

i

\bigl( 
AGTGAT

\bigr) 
=

\sigma 2
i

\bigl( 
AAT

\bigr) 
\pm \| AGTGAT  - AAT\| 2 (Weyl's theorem and the fact that \sigma 2

k > \epsilon \sigma 2
1).

Furthermore, since \nu > 0 we have \epsilon < gapk (A), and Theorem 3 implies

d2(U\bfA \bfR ,k,U\bfA ,k) \leq 
\| AGTGAT  - AAT\| 2

(\sigma 2
k  - \sigma 2

k+1) - \| AGTGAT  - AAT\| 2

\leq \epsilon 

gapk (A) - \epsilon 

\leq \nu .

Thus, we have shown that with probability 1  - \delta we have d2 (U\bfA \bfR ,k,U\bfA ,k) \leq \nu , as
required.
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Theorem 16 (two-sided sketching). Let \nu , \delta \in (0, 1/2) and denote

\epsilon 2 =
\nu 

2(1 + \nu /2)
\cdot gapk (A) .

Suppose that G is sampled from a distribution that provides an (\epsilon 2, \delta /2)-approximate
Gram matrix for AT. Denote

\epsilon 1 =
\nu (1 + \nu 2/4) - 1/2/2

1 + \nu (1 + \nu 2/4) - 1/2/2
\cdot gapk

\Bigl( 
AGT

\Bigr) 
and suppose S is sampled from a distribution that provides an (\epsilon 1, \delta /2)-approximate
Gram matrix for AGT. Then for R = GTV\bfS \bfA \bfG T,k with probability 1 - \delta the approx-
imate solution Ax\bfR ,k is a (\nu , \nu )-approximate PCP and

\scrE (x\bfR ,k) \leq \scrE (xk) +
(2\nu + \nu 2)\| f\| 22

n
.

Thus if, for example, S is a CountSketch matrix and G is a subgaussian map,
then the conditions hold when the number of rows of S is

\Omega 

\left(   sr
\Bigl( 
AGT

\Bigr) 2
gapk

\Bigl( 
AGT

\Bigr) 2
\nu 2\delta 

\right)   
and the number of rows in G is

\Omega 

\Biggl( 
sr (A) + log(1/\delta )

gapk (A)
2
\nu 2

\Biggr) 
.

Proof. Due to Theorem 5 it suffices to show that d2 (U\bfA \bfR ,k,U\bfA ,k) \leq \nu .
Under the conditions of the theorem, with probability at least 1  - \delta /2, we have

\| (AGT)TSTSAGT  - (AGT)TAGT\| 2 \leq \epsilon 1\| AGT\| 22, and with probability at least
1 - \delta /2, we have \| AGTGAT  - AAT\| 2 \leq \epsilon 2\| A\| 22. Thus, both inequalities hold with
probability at least 1 - \delta . If that is indeed the case, AGTGAT has rank at least k since
AGTGAT and AAT are symmetric matrices, and we know that \sigma 2

i

\bigl( 
AGTGAT

\bigr) 
=

\sigma 2
i

\bigl( 
AAT

\bigr) 
\pm \| AGTGAT  - AAT\| 2 (Weyl's theorem and the fact that \sigma 2

k > \epsilon 2\sigma 
2
1).

Moreover, (AGT)TSTSAGT has rank at least k since (AGT)TSTSAGT andAGTGAT

are symmetric matrices, and we know that \sigma 2
i

\bigl( 
(AGT)TSTSAGT

\bigr) 
= \sigma 2

i

\bigl( 
AGTGAT

\bigr) 
\pm 

\| (AGT)TSTSAGT  - AGTGAT\| 2 (Weyl's theorem and the fact that \sigma 2
k

\bigl( 
AGT

\bigr) 
>

\epsilon 1\sigma 
2
1

\bigl( 
AGT

\bigr) 
). Since \nu > 0 we have \epsilon 1 < gapk

\bigl( 
AGT

\bigr) 
and Theorem 3 implies

d2(V\bfA \bfG T\bfV \bfS \bfA \bfG T,k
,V\bfA \bfG T,k)

\leq \| (AGT)TSTSAGT  - (AGT)TAGT\| 2
\sigma 2
k

\Bigl( 
AGT

\Bigr) 
 - \sigma 2

k+1

\Bigl( 
AGT

\Bigr) 
 - \| (AGT)TSTSAGT  - (AGT)TAGT\| 2

\leq \epsilon 1\| AGT\| 22
\sigma 2
k

\Bigl( 
AGT

\Bigr) 
 - \sigma 2

k+1

\Bigl( 
AGT

\Bigr) 
 - \epsilon 1\| AGT\| 22

=
\epsilon 1

gapk

\Bigl( 
AGT

\Bigr) 
 - \epsilon 1

\leq \nu (1 + \nu 2/4) - 1/2/2.
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Table 1
Computational complexity of computing \bfx \bfR ,k and CLS for various options \bfR . For brevity, we

omit the O() from the notation.

\bfx \bfR ,k CLS

Left sketching Subgaussian \bfS s1 \cdot \bfn \bfn \bfz (\bfA ) + s1dmin(s1, d) + nk2 N/A

\bfR = \bfV \bfS \bfA ,k CountSketch \bfS k \cdot \bfn \bfn \bfz (\bfA ) + s2dmin(s2, d) + nk2 N/A

Right sketching subgaussian \bfG t1 \cdot \bfn \bfn \bfz (\bfA ) + nt1 min(n, t1) + t1kmin(n, d) t1 \cdot \bfn \bfn \bfz (\bfA ) + nt1 min(n, t1)

\bfR = \bfG T CountSketch \bfG \bfn \bfn \bfz (\bfA ) + nt2 min(n, t2) + t2kmin(n, d) \bfn \bfn \bfz (\bfA ) + nt2 min(n, t2)

Two sided CountSketch \bfn \bfn \bfz (\bfA ) + s2k2 + kmin(nt2,\bfn \bfn \bfz (\bfA )) + nk2 N/A

\bfR = \bfG T\bfV \bfS \bfA \bfG T,k \bfG and \bfS 

From Lemma 8 (withAGT) we get that d2(U\bfA \bfG T\bfV \bfS \bfA \bfG T,k
,U\bfA \bfG T,k) \leq 

\sigma k+1(\bfA \bfG T)

\sigma k(\bfA \bfG T)
(\nu /2)

\leq \nu /2.
We now bound

d2 (U\bfA \bfR ,k,U\bfA ,k) \leq d2
\bigl( 
U\bfA \bfR ,k,U\bfA \bfG T,k,k

\bigr) 
+ d2

\bigl( 
U\bfA \bfG T,k,U\bfA ,k

\bigr) 
\leq \nu ,

where we similarly use Theorem 15 to bound d2(U\bfA \bfG T,k,U\bfA ,k) \leq \nu /2.
Thus, we have shown that with probability 1 - \delta we have d2 (U\bfA \bfR ,k,U\bfA ,k) \leq \nu ,

as required.

4.2. Fast approximate PCR/PCP. A prototypical algorithm for approximate
PCR/PCP is to compute x\bfR ,k with some choice of sketching-based R. There are quite
a few design choices that need to be made in order to turn this prototypical algorithm
into a concrete algorithm, e.g., whether to use left, right, or two-sided sketching to
form R, and which sketch transform to use. There are various trade-offs; e.g., using
CountSketch results in faster sketching, but usually requires larger sketch sizes.
Furthermore, in computing x\bfR ,k there are also algorithmic choices to be made with
respect to choosing the order of matrix multiplications: in computing (ARV\bfA \bfR ,k)

+b
should we first compute AR and then multiply by V\bfA \bfR ,k, or vice versa? Likely, there
is no one-size-fits-all algorithm, and different profiles of the input matrix (in particular,
the size and sparsity level) call for a different variant of the prototypical algorithm.

Table 1 summarizes the running time complexity of several design options. In
order to better make sense between these different choices, we first summarize the
running time complexity of various design choices using the optimal implementation
(from an asymptotic running time complexity perspective). To make the discussion
manageable, we consider only subgaussian maps and CountSketch. Furthermore,
for the sake of the analysis, we make some assumptions and adopt some notational
conventions. First, we assume that computing B+c for some B \in \BbbR m\times n and c is done
via straightforward methods based on QR or SVD factorizations, and as such takes
O(mnmin(m,n)). We consider using fast sketch-based approximate least squares
algorithms in the next subsection. Next, we let the sketch sizes be parameters in
the complexity. In the discussion, we use our theoretical results to deduce reasonable
assumptions on how these parameters are set, and thus to reason about the final
complexity of sketched PCR/PCP. We denote the number of rows in the left sketch
matrix S by s1 for a subgaussian map, and by s2 for CountSketch. We denote the
number of rows in the left sketch matrix G by t1 for a subgaussian map, and by t2 for
CountSketch. Finally, we assume nnz (A) \geq max(n, d), and that all sketch sizes
are greater than k.



472 LIRON MOR-YOSEF AND HAIM AVRON

Table 1 also lists, where relevant, the complexity of the CLS solution x\bfR .

Discussion. We first compare the computational complexity of CLS to the com-
putational complexity of our proposed right sketching algorithm. For both choices of
G we have for sketched PCP an additional term of O(tkmin(n, d)). However, close
inspection reveals that this term is dominated by the term O(ntmin(n, t)). Thus our
proposed algorithm has the same asymptotic complexity as CLS for the same sketch
size. However, our algorithm does not mix regularization and compression and comes
with stronger theoretical guarantees.

Next, in order to compare subgaussian maps to CountSketch, we first make
some simplified assumptions on the required approximation quality \nu , the relative
eigengap gapk (A), and the rank parameter k: \nu is fixed, gapk (A) is bounded from
below by a constant, and we have k = O(sr (A)). The first assumption is justified if
we are satisfied with fixed suboptimality in the objective (optimization perspective),
or a small constant multiplicative increase in excess risk if left sketching is used, or n
is fixed (statistical perspective). The first assumption is somewhat less justified from
a statistical point of view when n \rightarrow \infty and right sketching is used. The rationale
behind the second assumption is that the PCR/PCP problem is in a sense ill-posed if
there is a tiny eigengap. The third assumption is motivated by the fact that the stable
rank is a measure of the number of large singular values, which are typically singular
values that correspond to the signal rather than noise. With these assumptions,
our theoretical results establish that s1, t1 = O(k) and s2, t2 = O(k2) suffice. It is
important to stress that we make these assumptions only for the sake of comparing
the different sketching options, and we do not claim that these assumptions always
hold, or that our proposed algorithms work only when these assumptions hold.

For left sketching, with these assumptions, we have a complexity of O(knnz (A)+
k2 max(n, d)) for subgaussian maps and O(knnz (A) + dk2 min(k2, d) + nk2) for
CountSketch. Clearly, better asymptotic complexity is achieved with subgaus-
sian maps. For right sketching, with these assumptions, we have a complexity of
O(knnz (A)+nk2) for subgaussian sketch andO(nnz (A)+nk2 min(n, k2)) forCount-
Sketch. The complexity in terms of the input sparsity nnz (A), which is arguably
the dominant term, is better for CountSketch. For two-sided sketching, we have a
complexity of O(nnz (A) + k4 + kmin(nk2,nnz (A)) + nk2).

If n \gg d and nnz (A) = O(n) (sparse input matrix, and constant amount of
nonzero features per data point), left sketching gives better asymptotic complexity. If
n\gg d and nnz (A) = nd (full data matrix), left sketching has better complexity un-
less d\gg k3. Furthermore, left sketching gives stronger theoretical guarantees. Thus,
for n\gg d we advocate the use of left sketching. If d\gg n and nnz (A) = O(d) (sparse
input matrix), right sketching with a subgaussian maps always has better complexity
than left sketching, and potentially (but not always) right sketching with Count-
Sketch has even better complexity. If d \gg n and nnz (A) = nd (full data matrix),
right sketching with subgaussian maps has the same complexity as left sketching,
and potentially (but not always) right sketching with CountSketch has even better
complexity (if d is sufficiently larger than n). Thus, for d \gg n we advocate the use
of right sketching. If n \approx d (both very large) and nnz (A) = n, then it is possible
to have O(nk2) with all three options (left, right, and two sided), as long as k2 \leq n.
A similar conclusion is achieved if n \approx d and nnz (A) = nd, but if k2 \ll n, then
two-sided sketch is better.

4.3. Input sparsity approximate PCP. In this section, we propose an input
sparsity algorithm for approximate PCP. By ``input sparsity algorithm,"" we mean an
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Algorithm 1 Input Sparsity Approximate PCP.

1: Input: A \in \BbbR n\times d, b \in \BbbR n, k \leq min(n, d), s, t \geq k, \epsilon \in (0, 1)

2: Generate two CountSketch matrices S \in \BbbR s\times n and G \in \BbbR t\times n.
3: Remove from G any row that is zero.
4: C\leftarrow AGT.
5: D\leftarrow SC.
6: Compute V\bfD ,k, the k dominant right invariant space of G (via SVD).

7: For the analysis (no need to compute): R = GTV\bfD ,k.
8: Solve min\gamma \| CV\bfD ,k\gamma  - b\| 2 to \epsilon /d accuracy using input sparsity least squares

regression (see [12, section 7.7]). (Do not compute CV\bfD ,k. In each iteration,
multiplying a vector by CV\bfD ,k is performed by first multiplying by V\bfD ,k and
then by C.)

9: Return y\leftarrow GT(V\bfD ,k\~\gamma ), where \~\gamma is the output of the previous step.

algorithm whose running time is O(nnz (A) log(d/\epsilon ) + poly (k, s, t, log(1/\epsilon )), where
\epsilon is some accuracy parameter (see formal theorem statement).

The basic idea is to use two-sided sketching, with an additional modification of
using input sparsity algorithms to approximate (AR)+b = argmin\gamma \| AR\gamma  - b\| 2.
Specifically, we propose using the algorithm recently suggested by Clarkson and
Woodruff [12]. A pseudocode description of our input sparsity approximate PCP
algorithm is listed in Algorithm 1. We have the following statement about the algo-
rithm.

Theorem 17. Run Algorithm 1 with \epsilon , s, t, k as parameters. Under exact arith-
metic,4 after

O(nnz (A) log(d/\epsilon ) + log(d/\epsilon )tk + sk2 + t3k + k3 log2 k)

operations, with probability 2/3, the algorithm will return a y such that

\| y  - x\bfR \| 22 \leq \epsilon \| x\bfR \| 22 .

Proof. Denote B = AR, and consider using the iterative method described in [12,
section 7.7] to approximately solve min\gamma \| B\gamma  - b\| 2. Denote the optimal solution by
\gamma \bfR , and the solution that our algorithm found by \~\gamma . Theorem 7.14 in [12] states that
after the O(log(d/\epsilon )) iterations the algorithm would have returned \~\gamma such that

(11) \| BZ(\~\gamma  - \gamma \bfR )\| 22 \leq (\epsilon /d)\| BZ\gamma \bfR \| 22

for some invertible Z found by the algorithm. Furthermore, \kappa (BZ) = O(1), where
\kappa (\cdot ) is the condition number (ratio between the largest singular value and smallest).
Equation (11) implies that \| \~\gamma  - \gamma \bfR \| 22 \leq \kappa (BZ)2(\epsilon /d)\| \gamma \bfR \| 22 = O(\epsilon /d)\| \gamma \bfR \| 22. Now,
noticing that x\bfR = R\gamma \bfR and y = R\~\gamma , we find that

\| y  - x\bfR \| 22 \leq O(\epsilon /d)\kappa (R)2\| x\bfR \| 22 .

We now need to bound \kappa (R)=\kappa (GTV\bfS \bfA \bfG T,k) = \kappa (GT), whereG is aCountSketch

matrix. Since G has a single nonzero in each column, then \| GT\| 22 \leq \| G
T\| 2F \leq d.

4The results are likely too optimistic for inexact arithmetic. We leave the numerical analysis to
future work.
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Furthermore, since we removed zero column from GT, for any x the vector GTx has
in one of its coordinates any coordinate of x, so \sigma min(G

T) \geq 1. So we found that
\kappa (GT)2 \leq d. We conclude that

\| y  - x\bfR \| 22 \leq O(\epsilon )\| x\bfR \| 22 .

Adjusting \epsilon to compensate for the constants completes the proof.

5. Extensions.

5.1. Streaming algorithm. We now consider computing an approximate PCR/
PCP in the streaming model. We consider a one-pass row-insertion streaming model,
in which the rows ofA, a1,a2, . . . ,an, and the corresponding entries in b, b1, b2, . . . , bn,
are presented one by one and once only (i.e., in a stream). The goal is to use o(n)
memory (so A cannot be stored in memory). The relevant resources to be bounded
for numerical linear algebra in the streaming model are storage, update time (time
spent per row), and final computation time (at the end of the stream) [11]. Our goal
is to bound these by O(poly (d)) .

Our proposed streaming algorithm for approximate PCP uses left sketching. It
is easy to verify that if S is a subgaussian map or CountSketch, then R = V\bfS \bfA ,k

can be computed in the streaming model: one has to update SA as new rows are
presented (O(d) update for CountSketch, and O(sd) for subgaussian map), and
once the final row has been presented, factorizing SA and extracting R can be done
in O(sdmin(s, d)), which is polynomial in d if s is polynomial in d. However, to
compute x\bfR one has to compute (AR)+b, and storing AR in memory requires \Omega (n)
memory. To circumvent this issue we propose introducing another sketching matrix T,
and approximating (AR)+b via (TAR)+b . Thus, for R = V\bfS \bfA ,k we approximate
x\bfR by \~x\bfR = R(TAR)+b. It is easy to verify that \~x\bfR can be computed in the
streaming model (by forming and updating TA while computing R).

More generally, for any R which can be computed in the streaming model, we
can also compute in the streaming model the following approximation of x\bfR ,k:

\~x\bfR ,k := RV\bfA \bfR ,k(TARV\bfA \bfR ,k)
+Tb .

The next theorem establishes conditions on T that guarantee that \~x\bfR ,k is an approx-
imate PCR/PCP.

Theorem 18. Suppose that R \in \BbbR d\times s with s \geq k. Assume \nu \in (0, 1). Suppose
T provides an O(\nu )-distortion subspace embedding for range

\bigl( \bigl[ 
U\bfA \bfR ,k U\bfA ,k b

\bigr] \bigr) 
that is

\| U\bfA \bfR ,kx1 +U\bfA ,kx2 + bx3\| 22 = (1\pm O(\nu ))(\| x1\| 22 + \| x2\| 22 + x3
3)

for every x1,x2 \in \BbbR k and x3 \in \BbbR . Then
1. if d2 (U\bfA \bfR ,k,U\bfA ,k) \leq \nu , then A\~x\bfR ,k is an (O(\nu ), O(\nu ))-approximate PCP;

2. if s = k and R has orthonormal columns (i.e., RTR = Ik) and d2 (R,V\bfA ,k) \leq 
\nu (1 + \nu 2) - 1/2, then \~x\bfR is an (O(\nu ), O(\nu /\sigma k))-approximate PCR.

The subspace embedding conditions on T are met with probability at least 1 - \delta if, for
example, T is a CountSketch matrix with O(k2/\nu 2\delta ) rows.

Proof. We need to show both the additive error bounds on the objective function
and the error bound on the constraints. We start with the additive error bounds
on the objective function for both for PCP (first part of the theorem) and for PCR
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(second part of the theorem). The lower bound on \| A\~x\bfR ,k - b\| 2 follows immediately
from the fact that \~x\bfR ,k \in range (RV\bfA \bfR ,k) and the fact that x\bfR ,k is a minimizer of
\| Ax - b\| 2 subject to x \in range (RV\bfA \bfR ,k). For the upper bound, we observe

\| A\~x\bfR ,k  - b\| 2 \leq (1 +O(\nu )) \| TARV\bfA \bfR ,k(TARV\bfA \bfR ,k)
+Tb - Tb\| 2

\leq (1 +O(\nu )) \| TARV\bfA \bfR ,k(ARV\bfA \bfR ,k)
+b - Tb\| 2

\leq (1 +O(\nu )) \| Ax\bfR ,k  - b\| 2
\leq \| Ax\bfR ,k  - b\| 2 +O(\nu )\| b\| 2,

where in the first and third inequalities we used the fact that T provides a sub-
space embedding for range ([ARV\bfA \bfR ,k b]), and in the second inequality we used the
fact that (TARV\bfA \bfR ,k)

+Tb is a minimizer of \| TARV\bfA \bfR ,kx  - Tb\| 2. Bounds on
\| Ax\bfR ,k  - b\| 2 (Theorem 5) now imply the additive bound.

We now bound the constraint for the PCR guarantee (second part of the theorem).
Let

C = (TU\bfA \bfR ,k)
+((TU\bfA \bfR ,k)

T)+ .

Since (TU\bfA \bfR ,k)
T and (TU\bfA \bfR ,k)

+ have the same row space, and TU\bfA \bfR ,k has more
rows than columns, C is nonsingular and we have C(TU\bfA \bfR ,k)

T = (TU\bfA \bfR ,k)
+. Since

T provides a subspace embedding for U\bfA \bfR ,k, all the singular values of TU\bfA \bfR ,k

belong to the interval [1  - O(\nu ), 1 + O(\nu )]. We conclude that \| C  - Ik\| 2 \leq O(\nu ).
We also have (TU\bfA \bfR ,k\Sigma \bfA \bfR ,k)

+ = \Sigma  - 1
\bfA \bfR ,k(TU\bfA \bfR ,k)

+ since TU\bfA \bfR ,k has linearly
independent columns (since it provides a subspace embedding), and \Sigma \bfA \bfR ,k has all
linearly independent rows. Thus,

\| UT
\bfA ,k+A\~x\bfR ,k\| 2

= \| UT
\bfA ,k+A\~x\bfR ,k  - UT

\bfA ,k+U\bfA ,kU
T
\bfA ,kT

TTb\| 2
\leq \| A\~x\bfR ,k  - U\bfA ,kU

T
\bfA ,kT

TTb\| 2
= \| U\bfA \bfR ,k(TU\bfA \bfR ,k)

+Tb - U\bfA ,kU
T
\bfA ,kT

TTb\| 2
= \| U\bfA \bfR ,kC(TU\bfA \bfR ,k)

TTb - U\bfA ,kU
T
\bfA ,kT

TTb\| 2
\leq (1 +O(\nu )) \cdot \| U\bfA \bfR ,kCUT

\bfA \bfR ,kT
T  - U\bfA ,kU

T
\bfA ,kT

T\| 2 \cdot \| b\| 2
\leq (1 +O(\nu ))

2 \cdot \| U\bfA \bfR ,kCUT
\bfA \bfR ,k  - U\bfA ,kU

T
\bfA ,k\| 2\| b\| 2

\leq (1 +O(\nu )) \cdot 
\Bigl( 
\| U\bfA \bfR ,k (C - Ik)U

T
\bfA \bfR ,k\| 2 + \| U\bfA \bfR ,kU

T
\bfA \bfR ,k  - U\bfA ,kU

T
\bfA ,k\| 2

\Bigr) 
\cdot \| b\| 2

\leq (1 +O(\nu )) \cdot 
\Bigl( 
\| U\bfA \bfR ,k (C - Ik)U

T
\bfA \bfR ,k\| 2 + \nu 

\Bigr) 
\cdot \| b\| 2

= (1 +O(\nu )) \cdot (\| (C - Ik) \| 2 + \nu ) \cdot \| b\| 2
\leq (1 +O(\nu )) \cdot (O(\nu ) + \nu ) \cdot \| b\| 2
= O(\nu ) \cdot \| b\| 2.

We now bound the constraint for the PCR guarantee (second part of the theorem).
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To that end, we observe that

\| VT
\bfA ,k+\~x\bfR ,k\| 2 \leq \| VT

\bfA ,k+RV\bfA \bfR ,k(TARV\bfA \bfR ,k)
+Tb\| 2

\leq \| VT
\bfA ,k+R\| 2 \cdot \| (TU\bfA \bfR ,k\Sigma \bfA \bfR ,k)

+Tb\| 2

\leq \nu \cdot (1 +O(\nu )) \cdot \| b\| 2
\sigma min (TU\bfA \bfR ,k\Sigma \bfA \bfR ,k)

\leq \nu \cdot (1 +O(\nu )) \| b\| 2
(1 - O(\nu ))\sigma min (U\bfA \bfR ,k\Sigma \bfA \bfR ,k)

\leq O(\nu ) \cdot \| b\| 2
\sigma min (AR)

\leq O(\nu )

\sigma k
\cdot \| b\| 2,

where we used the fact thatT provides a subspace embedding for range
\bigl( \bigl[ 

U\bfA \bfR ,k b
\bigr] \bigr) 
,

and used Lemma 7 to bound \| VT
\bfA ,k+R\| 2 and \| (AR)+\| 2.

5.2. Approximate kernel PCR. For simplicity, we consider only the homo-
geneous polynomial kernel \scrK (x, z) = (xTz)q. The results trivially extend to the
nonhomogeneous polynomial kernel \scrK n(x, z) = (xTz+ c)q by adding a single feature
to each data point. We leave for future work the development of similar techniques
for other kernels (e.g., Gaussian kernel).

Let \phi : \BbbR d \rightarrow \BbbR dq

be the function that maps a vector z = (z1, . . . , zd) to the set of
monomials formed by multiplying q entries of z, i.e., \phi (z) = (zi1zi2 \cdot \cdot \cdot ziq )i1,...,iq\in \{ 1,...,d\} .

For a data matrix A \in \BbbR d and a response vector b \in \BbbR n, let \Phi \in \BbbR n\times dq

be the matrix
obtained by applying \phi to the rows of A, and consider computing the rank k PCR
solution \Phi and b, which we denote by x\scrK ,k. The corresponding prediction function
is f\scrK ,k(z) := \phi (z)Tx\scrK ,k. While x\scrK ,k is likely a huge vector (since x\scrK ,k \in \BbbR dq

), and
thus expensive to compute, in kernel PCR we are primarily interested in having an
efficient method to compute f\scrK ,k(z) given a ``new"" z. We can accomplish this via the
kernel trick, as we now show.

We assume that \Phi has full row rank (this holds if all data points are different).
Let a1, . . . ,an be the rows ofA. As usual with PCR, we have x\scrK ,k = V\Phi ,k\Sigma 

 - 1
\Phi ,kU

T
\Phi ,kb.

Since V\Phi ,k = \Phi TU\Phi ,k\Sigma 
 - 1
\Phi ,k we have

(12) f\scrK ,k(z) = \phi (z)T\Phi TU\Phi ,k\Sigma 
 - 2
\Phi ,kU\Phi ,kb = (\scrK (z,a1) \cdot \cdot \cdot \scrK (z,an))\alpha \scrK ,k,

where \alpha \scrK ,k := U\Phi ,k\Sigma 
 - 2
\Phi ,kU

T
\Phi ,kb. In the above, we used the fact that for any x and z

we have \phi (x)T\phi (z) = (xTz)q = \scrK (x, z). Let K \in \BbbR n\times n be the kernel matrix (also
called Gram matrix ) defined by Kij = \scrK (ai,aj). It is easy to verify that K = \Phi \Phi T, so
we can compute K in O(n2(d+ q)) (and without forming \Phi , which is a huge matrix).
We also have K = U\Phi \Sigma 

2
\Phi U

T
\Phi , so \alpha k = U\bfK ,k\Sigma 

 - 1
K,kU

T
\bfK ,kb. Thus, we can compute \alpha \scrK ,k

in O(n2(d + q + n)) time. Once we have computed \alpha k, using (12) we can compute
f\scrK ,k(z) for any z in O(ndq) time.

In order to compute an approximate kernel PCR, we introduce a right sketching
matrix R \in \BbbR dq\times t. Such a matrix R is frequently referred to, in the context of
kernel learning, as a randomized feature map. We use the TensorSketch feature
map [32, 33]. The feature map is defined as follows. We first randomly generate
q 3-wise independent hash functions h1, . . . , hq \in \{ 1, . . . , d\} \rightarrow \{ 1, . . . , t\} and q 4-
wise independent sign functions g1, . . . , gq : \{ 1, . . . , d\} \rightarrow \{  - 1,+1\} . Next, we define
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H : \{ 1, . . . , d\} q \rightarrow \{ 1, . . . , t\} and G : \{ 1, . . . , t\} q \rightarrow \{  - 1,+1\} :

H(i1, . . . , iq) := h1(i1) + \cdot \cdot \cdot + hq(iq) mod t,

G(i1, . . . , iq) = g1(i1) \cdot g2(i2) \cdot \cdot \cdot \cdot \cdot gq(iq).
To define R, we index the rows of R by \{ 1, . . . , d\} q and set row (i1, . . . , iq) to be
equal to G(i1, . . . , iq) \cdot eH(i1,...,iq), where ej denotes the jth identity vector. A crucial
observation that makes TensorSketch useful is that via the representation using
h1, . . . , hq and g1, . . . , gq we can compute RT\phi (z) in time O(q(nnz (z) + t log t)) (see
Pagh [32] for details). Thus, we can compute \Phi R in time O(q(nnz (A) + nt log t)).

Consider right sketching PCR on \Phi and k with a TensorSketch R as the
sketching matrix. The approximate solution is

x\scrK ,\bfR ,k := RV\Phi \bfR ,k(\Phi RV\Phi \bfR ,k)
+b = R\gamma \scrK ,\bfR ,k,

where \gamma \scrK ,\bfR ,k := V\Phi \bfR ,k(\Phi RV\Phi \bfR ,k)
+b. We can compute \gamma \bfR ,k in O(q(nnz (A) +

nt log t) + nt2) time. The prediction function is

f\scrK ,\bfR ,k(z) := \phi (z)Tx\scrK ,\bfR ,k = (RT\phi (z))T\gamma \scrK ,\bfR ,k,

so once we have \gamma \scrK ,\bfR ,k we can compute f\scrK ,\bfR ,k(z) in O(q(nnz (z)+t log t)) time. Thus,
the method is attractive from a computational complexity point of view if t \ll n or
d\gg n and d\gg t. The following theorem bounds the excess risk of x\scrK ,\bfR ,k.

Theorem 19. Let (\nu , \delta ) \in (0, 1/2). Let \lambda 1 \geq \cdot \cdot \cdot \geq \lambda n denote the eigenvalues of
K. If R is a TensorSketch matrix with

t = \Omega 

\Biggl( 
3qTr (K)

2

(\lambda k  - \lambda k+1)2\nu 2\delta 

\Biggr) 
columns, then with probability at least 1 - \delta ,

\scrE (x\scrK ,\bfR ,k) \leq \scrE (x\scrK ,k) +
(2\nu + \nu 2)\| f\| 22

n
,

where f is the expected value of b (recall the statistical framework in section 3.2).

Before proving this theorem, we remark that the bound on the size of the sketch
is somewhat disappointing in the sense that it is useful only if d \gg n (since Tr (K)
is likely to be large). However, this is only a bound, and possibly a pessimistic one.
Furthermore, once the feature expanded data has been embedded in Euclidean space
(via TensorSketch), it can be further compressed using standard Euclidean space
transforms like CountSketch and subgaussian maps (this is sometimes referred to as
two-level sketching), or compression can be applied from the left. We leave the task
of improving the bound and exploring additional compression techniques to future
research.

Proof. The square singular values of \Phi are exactly the eigenvalues of K, so The-
orem 15 asserts that the conclusions of the theorem hold if RT provides an (\epsilon , \delta )-
approximate Gram matrix for \Phi , where \epsilon = O(\nu (\lambda k  - \lambda k+1)/\lambda 1). To that end, we
combine the analysis of Avron, Nguyen, and Woodruff [6] of TensorSketch with
more recent results due to Cohen, Nelson, and Woodruff [14]. Although not stated
as a formal theorem, as part of a larger proof, Avron, Nguyen, and Woodruff show
that TensorSketch has an OSE-moment property that together with the results of
Cohen, Nelson, and Woodruff [14] implies that indeed the (\epsilon , \delta )-approximate Gram
property holds for the specified numbers of columns in R.
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6. Experiments. In this section we report experimental results, on real data,
that illustrate and support the main results of the paper, and demonstrate the ability
of our algorithms to find appropriately regularized solutions.

Datasets. We experiment with three datasets: two regression datasets (Twitter
Buzz and E2006-tfidf ) and one classification dataset (Gisette).

Twitter Social Media Buzz [26] is a regression dataset in which the goal is to
predict the popularity of topics as quantified by its mean number of active discussions
given 77 predictor variables such as number of authors contributing to the topic over
time, average discussion lengths, number of interactions between authors, etc. We
preprocess the data in a manner similar to previous work [29, 37]. That is, several of
the original predictor variables, as well as the response variable, are log-transformed
prior to analysis. We then center and scale to unit norm. Finally, we add quadratic
interactions, yielding a total of 3080 predictor variables (after preprocessing, the data
matrix is 583250\times 3080). We used this dataset to explore only suboptimality of the
objective and constraint satisfaction, as we have found that the generalization error
is very sensitive to selection of the test set (when splitting a subset of the data into
training and testing).

E2006-tfidf [28] is a regression dataset in which the features are extracted from
SEC-mandated financial reports published annually by a publicly traded company,
and the quantity to be predicted is volatility of stock returns, an empirical measure
of financial risk. We use the standard training-test split available with the dataset.5

We use this dataset only for testing generalization. The only preprocessing we per-
formed was subtracting the mean from the response variable, and reintroducing it
when issuing predictions.

The Gisette dataset is a binary classification dataset that is a constructed from
the MNIST dataset. The goal is to separate the highly confusable digits ``4"" and
``9"". The dataset has 6000 data points, each having 5000 features. We use the
standard training-test split available with the dataset (this dataset was downloaded
from the same website as the E2006-tfidf dataset). We convert the binary classification
problem to a regression problem using standard techniques (Regularized Least Squares
Classification). We use this dataset only for testing generalization.

Baselines. A first reference is the performance of plain PCR. For small problems,
the dominant right subspace needed to compute the PCR solution can be computed
via MATLAB's dense SVD routine. For larger problems, we compute the dominant
right subspace using PRIMME [39, 45], a state-of-the-art iterative algorithm for SVD.
As additional reference, we also report results of two alternative algorithms: CLS and
the iterative algorithm of Frostig et al. [18]. Both in the discussion and in the graphs,
we refer to the Frostig et al. algorithm as ``Iterative-PCR."" We use the implementation
of Iterative-PCR supplied by the authors,6 for which we used the default parameters,
except for the ``tol"" parameter, which we set to 10 - 6 instead of the default 10 - 3. We
found that the use of tol= 10 - 3 produces results that generalize poorly, while the use
of tol= 10 - 6 produces much better results. However, the running time of Iterative-
PCR with tol= 10 - 6 is considerably higher than the running time for tol= 10 - 3.
Iterative-PCR controls singular vector truncation via a cut-off parameter \lambda , while in
our experiments we set k (the number of principal components that are kept). We

5We downloaded the dataset from the LIBSVM website, https://www.csie.ntu.edu.tw/\sim cjlin/
libsvmtools/datasets/.

6https://github.com/cpmusco/fast-pcr

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://github.com/cpmusco/fast-pcr


SKETCHING FOR PRINCIPAL COMPONENT REGRESSION 479

achieve this effect by setting \lambda = (\sigma 2
k(A)+\sigma 2

k+1(A))/2 (when we report running times,
we do not include the time to compute the singular values). Finally, we remark that,
based on the documentation, the algorithm analyzed by Frostig et al. [18] does not
completely correspond to the default parameters of the implementation of Iterative-
PCR supplied by the authors (e.g., the default parameter for the ``method"" parameter
is ``LANCZOS,"" while ``EXPLICIT"" corresponds to the algorithm analyzed in [18]).

Suboptimality of objective and constraint satisfaction. We explore the
Twitter Buzz dataset from the optimization perspective, namely, measure the sub-
optimality in the objective (vs. PCR) and constraint satisfaction. Since n \gg d, we
use left sketching with subgaussian maps. We perform each experiment five times
and report the median value. Error bars, when present, represent the minimum and
maximum values of five runs. In the top panel of Figure 1, we use a fixed k = 60 and
vary the sketch size (left sketching only), while in the bottom panel we vary k and set
sketch size to be s = 4k. The left panel explores the value of the objective function,
appropriately normalized (divided by \| Axk - b\| 2 for fixed k, and divided by \| b\| 2 for
varying k). The right panel explores the regularization effect by examining the value
of the constraints \| VT

\bfA ,kxk\| 2/\| b\| 2.
In the left panel, we see that the value of the objective for the sketched PCR

solution follows the value of the objective for the PCR solution. In general, as the
sketch size increases, the variance in the objective value reduces (top left graph). The
normalized value of the constraint for sketched PCR is rather small (for reference,
we note that \| VT

\bfA ,kxOLS\| 2/\| b\| 2 = 0.4165) and generally decreases when the sketch
size increases (top right graph), but increases with k for a fixed ratio between s and
k (bottom right graph). Furthermore, the results of sketched PCR are very similar
to the results of Iterative-PCR (bottom panel), while running time is considerably
shorter (see Table 2).

The role of the constraints as a regularizer is illustrated by the results for CLS (for
fixed k we use t = 4k). As expected, CLS achieves lower objective value at the price
of larger constraint infeasibility. The values of \| VT

\bfA ,kxCLS\| 2/\| b\| 2 are much smaller
than the OLS value, but much larger than the values for sketched PCR. Furthermore,
it is hard to control the regularization effect for CLS: when sketch size increases, the
objective decreases and the constraint increases (compare to PCR and sketched PCR,
top panel).

Generalization results. We also explored the prediction error and the trade-
offs between compression and regularization. We perform each experiment five times
and report the median value. Error bars, when present, represent the minimum and
maximum value of those five runs.

We report the mean squared error (MSE) of predictions for the E2006.tfidf dataset
in Figure 2. We compare CLS, Iterative-PCR, right sketching, and two-sided sketch-
ing (the matrix is too large for exact PCR, and d \gg n, so right sketching is more
appropriate). In the left panel we fix k = 600 and vary the sketch size. The MSE
decreases as the sketch size increases for both sketching methods. For CLS, initially
the MSE decreases and is close to the MSE of the two sketching methods, but for large
sketch sizes the MSE starts to go up, likely due to decreased level of regularization.
We note that the minimum MSE achieved by CLS is larger than that achieved by
both sketching methods. A similar phenomenon is observed when we vary the value
of k in the right panel.

We report the classification error for the Gisette dataset in Figure 3. In the left
panel we fix k = 400 and vary the sketch size. For reference, the error rate of exact
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Fig. 1. Suboptimality of objective and constraint satisfaction for the Twitter Buzz dataset.
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Fig. 2. Mean squared error of predictions for the E2006.tfidf dataset.

PCR (with k = 400) is 2.8\% and the error rate for OLS is 9.3\%. Left sketching has an
error rate very close to the error rate of exact PCR, especially when s is large enough.
Right sketching does not perform as well as left sketching, but it too achieves a low
error rate for large s. For both methods, the error rate drops as the sketch sizes
increase, and the variance reduces. For CLS the error rate and variance initially
drop as the sketch size increases, but eventually when the sketch size is large enough,
the error rate and the variance increase. This is hardly surprising: as the sketch size
increases, CLS approaches OLS. This is due to the fact that CLS uses the compression
to regularize, and when the sketch size is large, there is little regularization. In the
right panel, we vary the value of k and set s = 4k (left sketching) and t = 4k (right
sketching and CLS). Left sketch and PCR consistently achieve about the same error
rate. For small values of t, CLS performs well, but when t is too large, the error starts
to increase. In contrast, right sketching continues to perform well with large values
of k. Again, we see that CLS mixes compression and regularization, and one cannot
use a large sketch size and modest amount of regularization with CLS.

Running time. In Table 2 we report a sample of the various running times of
the different algorithms. All experiments were conducted using MATLAB, although
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Fig. 3. Classification error for the Gisette dataset.

Table 2
Running times (in seconds). For sketched PCR, we report in parentheses the type of sketching

used (left, right, or two sided).

CLS (t = 400) PRIMME-PCR Iter-PCR

(tol=10 - 3,

iter=10)

Iter-PCR

(tol=10 - 6)

Sketched PCR

Twitter, k = 82 21.2 1730 742 4067 4.7 (left)

Twitter, k = 152 48.9 5907 1278 7759 8.4 (left)

E2006, k = 1000 100 14694 140 601 150 (two sided)

E2006, k = 2000 270 FAIL 320 791 815 (two sided)

Gisette, k = 400 2.0 497 7.1 30.3 0.2 (left)

Gisette, k = 1000 9.3 FAIL 9.3 39.4 0.9 (left)

the sketching routines were written in C. Running times were measured on a machine
with a 6-core Intel Xeon Processor E5-1650 v4 CPU and 128 GB of main memory,
running Ubuntu 16.04. For plain PCR, we report running time using PRIMME,
which we ran with default parameters and no preconditioner. For PRIMME, we cap
the number of iterations at 100,000, and write ``FAIL"" in the table if the PRIMME
failed to convergence within that cap. For Iterative-PCR we also report running times
when we set tol to the default value, and reduce the max number of iteration from
40 to 10. This results in much faster running time, but much degraded generalization
(not reported); for example, for E2006 the test MSE for Iterative-PCR (tol= 10 - 3,
iter= 10) is 0.32. With respect to running time, Iterative-PCR is competitive with
sketched PCR only for E2006, but with worse classification error. Using PRIMME for
PCR is not competitive with sketched PCR. However, we stress that we experimented
with only three datasets, so the comparison is not comprehensive.

7. Conclusions and future work. In this paper, we studied the use of sketch-
ing to accelerate the solution of PCR and PCP. In particular, for a data matrix A,
we relate the PCR/PCP solution of AR, where R is any dimensionality reduction
matrix, to the PCR/PCP solution of A. We presented a notion of approximate
PCR/PCP, motivated both from an optimization perspective and from a statistical
perspective, and provide conditions on R that guarantee rigorous theoretical bounds.
We then leverage the aforementioned results to design fast, sketching-based algorithms
for approximate PCR/PCP and demonstrate empirically the utility of our proposed
algorithms. Throughout, our focus in this paper has been on algorithms that use the
``sketch-and-solve"" approach.

There are multiple ways in which the current work can be extended and the
theoretical results improved. We have presented two notions of approximation: ap-
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proximate PCR and approximate PCP. Our results for approximate PCR use only
dimensionality reduction matrices R whose number of columns is equal to the target
rank. It is natural to conjecture that the use of dimensionality reduction matrices
with a higher number of columns will lead to stronger PCR bounds, but we prove
only PCP bounds. The underlying reason is that our bounds for PCR are based on
analyzing the distance between the column space of R and the column space of V\bfA ,k.
However, once the number of columns in R is different from the number of columns
in V\bfA ,k, the definition of d2(R,V\bfA ,k) is no longer applicable. One possible strategy
for analyzing PCR when R has more than k columns might be to use a generalization
of the distance between two subspaces that allows subspaces of different size; see [47]
for such generalizations. Another crucial component will then be to generalize the
Davis--Kahan theorem to bound such distances. We conjecture it is possible to derive
algorithms that depend on gaps between \sigma k and \sigma k+l, where l is some oversampling
parameter, as opposed to the smaller gap between \sigma k and \sigma k+1. We leave this for
future work.

Another interesting direction is in finding other ways to identify a valid approx-
imate dominant subspace. If we consider the statistical perspective and inspect (9),
we see that all we need is to find a subspace \scrS \subseteq range (A) of rank k such that
\| (I - P\scrS )A\| F is small, while our theoretical results try to achieve a stronger bound:
having the dominant subspaces align. One possible way for finding such an \scrS is using
so-called projection-cost preserving sketches [13]. We leave this for future work.

Appendix A. Bias-variance decomposition for \bfscrE (x\bfR ). The following ap-
pears, without proof, in [38]. For completeness, we include a proof.

Claim 20. The excess risk of x\bfR can be bounded as follows:

\scrE (x\bfR ) =
1

n
\| (I - P\bfA \bfR )Ax \star \| 22\underbrace{}  \underbrace{}  

\scrB (\bfx \bfR )

+ \sigma 2 rank (AR)

n\underbrace{}  \underbrace{}  
\scrV (\bfx \bfR )

.

Proof. The column space of AR is contained in the column space of A, so we
have P\bfA \bfR = P\bfA \bfR P\bfA . We now observe

\scrE (x\bfR ) =
1

n
\BbbE 
\bigl[ 
\| Ax\bfR  - Ax \star \| 22

\bigr] 
=

1

n
\BbbE 
\bigl[ 
\| P\bfA \bfR b - P\bfA f\| 22

\bigr] 
=

1

n
\BbbE 
\bigl[ 
\| P\bfA \bfR f  - P\bfA f\| 22

\bigr] 
+

1

n
\BbbE 
\bigl[ 
\| P\bfA \bfR \xi \| 22

\bigr] 
=

1

n
\BbbE 
\bigl[ 
\| P\bfA \bfR P\bfA f  - P\bfA f\| 22

\bigr] 
+ \sigma 2 rank (AR)

n

=
1

n
\| (I - P\bfA \bfR )Ax \star \| 22 + \sigma 2 rank (AR)

n
,

where in the third line we used the fact that the expected value of \xi is 0, and in
the fourth line we used that fact that for any matrix M and random vector y with
independent entries with 0 mean and \sigma 2 variance we have \BbbE 

\bigl[ 
yTMy

\bigr] 
= Tr (M).
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