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MULTIVARIATE TRACE ESTIMATION USING QUANTUM STATE
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Abstract. In this paper, we present a quantum algorithm for approximating multivariate traces,
i.e., the traces of matrix products. Our research is motivated by the extensive utility of multivariate
traces in elucidating spectral characteristics of matrices, as well as by recent advancements in lever-
aging quantum computing for faster numerical linear algebra. Central to our approach is a direct
translation of a multivariate trace formula into a quantum circuit, achieved through a sequence of
low-level circuit construction operations. To facilitate this translation, we introduce quantum matrix
states linear algebra (qMSLA), a framework tailored for the efficient generation of state preparation
circuits via primitive matrix algebra operations. Our algorithm relies on sets of state preparation
circuits for input matrices as its primary inputs and yields two state preparation circuits encoding the
multivariate trace as output. These circuits are constructed utilizing qMSLA operations, which enact
the aforementioned multivariate trace formula. We emphasize that our algorithm's inputs consist
solely of state preparation circuits, eschewing harder to synthesize constructs such as block encod-
ings. Furthermore, our approach operates independently of the availability of specialized hardware
like QRAM, underscoring its versatility and practicality.
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1. Introduction. In this paper we propose a quantum algorithm for approx-
imating multivariate traces, i.e., traces of the products of matrices. Formally, the
multivariate trace of matrices A1,A2, . . . ,Ak of compatible dimensions is defined as

MTrk (A1, . . . ,Ak) :=Tr (A1A2 \cdot \cdot \cdot Ak) .(1)

Approximating multivariate traces is motivated as follows. For a square A \in \BbbR n\times n,
its matrix moments Tr(Ak) = MTrk(A, . . . ,A) for k = 1,2, . . . , which reveal use-
ful spectral properties of A with applications in scientific computing [32] and other
fields, are multivariate traces. Furthermore, by introducing a set of shifts we have
MTrk(A - \alpha 1I, . . . ,A - \alpha kI) = Tr(p(A)) for some polynomial p(x) of degree k and
leading coefficient 1. The right-hand-side Tr(p(A)) is equal to

\sum n
i=1 p(\lambda i) where

\lambda 1, . . . , \lambda n are the eigenvalues of A, which is a spectral sum. Since many smooth func-
tions f(x) can be approximated well using polynomials [66], it is a common practice
to approximate spectral sums of the general form

\sum n
i=1 f(\lambda i) using restricted forms

Tr(p(A)). A well-known example is log detA=
\sum n
i=1 log(\lambda i). Many machine learning

techniques estimate spectral properties of various matrices by approximating appro-
priate spectral sums via polynomial spectral sums Tr(p(A)), e.g., Gaussian processes
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QUANTUM MULTIVARIATE TRACE ESTIMATION 173

[55], kernel learning [22], Bayesian learning [47], matrix completion [12], differential
privacy problems [34], graph analysis [25], Hessian and neural network property analy-
sis [54, 27], and many more [68, 14]. Other applications of multivariate traces appear
in computational physics, e.g., entanglement estimation [36, 42, 9, 26, 53], quantum
error mitigation [43], and quantum distinguishability measures [10].

Due to the ubiquity of matrix moments and spectral sums (and more generally
multivariate traces), there is an extensive literature on efficient algorithms for spectral
sum approximation. Examples of classical (conventional) algorithms for spectral sum
approximation1 are [33, 67]. Many of these classical methods are based on (a) estimat-
ing multivariate traces using randomized trace estimation techniques (Hutchinson's
method [37] and related methods [5, 4, 56, 49, 19]), and (b) approximating the function
or quadratic form using polynomial approximations, Lanczos Gaussian quadrature,
histogram, or some other rational approximation. While these methods are powerful
and useful, with the constant increase in the size of matrices encountered in appli-
cations, and ever increasing accuracy requirements (which lead to larger degrees in
approximating polynomials), developing novel algorithms for trace estimation is an
active research topic.

Quantum computers can efficiently perform certain linear-algebraic operations on
large computational spaces (exponential in the number of qubits) and offer the po-
tential to achieve significant speedups over classical computations. In recent years,
a variety of quantum numerical linear algebra (qNLA) [52, 46, 28, 11] and quan-
tum machine learning (QML) [57, 59, 7] methods have been proposed to harness
the computational power of quantum computing to achieve polynomial to exponen-
tial speedups over the best-known classical methods. In this paper, we consider the
problem of estimating multivariate traces.

1.1. Contributions. Most of the previous literature on qNLA and QML pro-
posed techniques that operate under stringent quantum input models, e.g., ones that
assume availability of speculative components such as QRAM [29]. However, in prac-
tice, availability of such components is nontrivial, e.g., efficient QRAMs are not
currently available (and are not expected to be available in the near-term future).
Moreover, recent results on classical dequantization (aka quantum-inspired classical
algorithms) [15, 16, 65] have shown that under analogous (to QRAM) classical data
structure assumptions, ``dequantized"" classical algorithms can achieve similar run-
times as their quantum counterparts. Therefore, we advocate the development of
qNLA algorithms that operate under only lax quantum input models. In particular,
algorithms that make no quantum access assumptions, i.e., start with a classical de-
scription of input data, are especially attractive. Thus, in this work, we develop a
quantum algorithm for multivariate trace estimation that uses an input model where
both matrices and vectors are presented as quantum state preparation circuits, rather
than relying on more restrictive input models.

In designing our quantum algorithm for trace estimation we take an approach
that differs from the aforementioned qNLA and QML works. Our algorithm for mul-
tivariate trace estimation is based on quantum matrix state linear algebra (qMSLA),
a novel framework for performing numerical linear algebra computations on quantum
computers. qMSLA utilizes matrix state preparation circuits as a practical and effi-
cient construct for representing and manipulating matrices and vectors in quantum

1In the context of this paper, whenever we talk about ``classical algorithms"" we mean algorithms
that use only classical computing, as opposed to ``quantum algorithms"" that also use quantum
computing (but may have a classical component).
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174 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

algorithms. The key concept behind qMSLA is the development of a set of basic linear
algebra operations that can be executed directly on circuits that represent matrices
in probability amplitudes of quantum states. For example, given matrix state prepa-
ration circuits for matrices A and B, qMSLA operation qmsla.kronecker outputs a
matrix state preparation circuit for A \otimes B. These operations enable the execution
of various matrix algebra tasks entirely within the quantum domain. In section 3
we propose a limited yet useful set of qMSLA operations and show how they can be
implemented efficiently.

Although there are foundational quantum circuits and algorithms, QLA and oth-
erwise, and common patterns for designing quantum circuits, these represent high-
level operations and do not provide general purpose matrix algebra subroutines, which
are necessary building blocks for computational linear algebra. qMSLA allows prac-
titioners to overcome this limitation by offering a matrix-level framework for doing
linear algebra on quantum computers, and thus designing quantum circuits by di-
rectly synthesizing quantum circuits that implement matrix equations. We believe
that the idea of constructing quantum circuits of target matrix computations (such
as the trace) using a series of primitive matrix algebra operations at the circuit level
might be of independent interest, as a new paradigm for doing matrix computations
in the quantum domain. Indeed, our approach is very much inspired by BLAS, and
we view qMSLA as a (as of yet limited) BLAS for QLA.

We leverage qMSLA to design a novel algorithm for solving multivariate trace
problems. Along with fulfilling the main goal of this study, this also showcases the
potential of the qMSLA approach. The algorithm seamlessly executes a sequence
of high-level qMSLA operation, eliminating the need for a separate, custom-built
quantum circuit. The algorithm's input are predesigned circuits, denoted as \scrU \bfA i for
matrices Ai (i from 1 to 2k).2 These circuits encode the matrices into quantum states,
that is, \scrU \bfA i

implements an amplitude encoding procedure for Ai [58, equation 3.60,
p. 115]. Our algorithm outputs two circuits, \scrU \psi and \scrU \phi , that prepare two quantum
states, | \psi \rangle and | \phi \rangle , such that their dot product (overlap in quantum computing par-
lance) is equal to the multivariate trace. This overlap can then be estimated using
various existing quantum algorithms (such as the Hadamard test and the swap test).
Alternatively, the circuits \scrU \psi and \scrU \phi can be used in the context of a larger quantum
algorithm. We emphasize that our approach is able to handle matrices that are not
necessarily Hermitian or even square. We also discuss how our algorithm can be used
to approximate multivariate traces of matrices given in classical memory, showing
that even in this case, under certain conditions, our algorithm entertains a small com-
putational gain over state-of-the-art classical trace estimators. We also discuss how
our algorithm can be used to approximate spectral sums.

The proposed algorithm makes only mild assumptions on the input matrices,
namely that it has access to matrix state preparation circuits for each input matrix.
Construction of such state preparation circuits for some matrices can be inexpensive
(possibly polylogarithmic in matrix size) [31, 38], [58, section 4.2.2]. At the baseline,
for a general matrix available in classical memory, it is possible to construct a state
preparation circuit for it in time that is linear in the number of entries in the matrix
and has similar depth [62], and this is the basis of a end-to-end classical-to-classical-
via-quantum use of our algorithm.

2In this study, we have developed an algorithm specifically tailored for the multiplication of an
even number of matrices. Odd numbers of matrices can be dealt with by introducing the identity
matrix as one of the input matrices.
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QUANTUM MULTIVARIATE TRACE ESTIMATION 175

1.2. Related work. For the classical setting, there is scarce literature on com-
puting multivariate traces per se, but there is extensive literature on stochastic estima-
tion of the trace of implicit matrices. The latter can be used to estimate multivariate
traces. Virtually all methods for stochastic trace estimation trace their origin to
Hutchinson's work [37], and the well-known Hutchinson's estimator, though Hutchin-
son actually cites Girard [30] in his abstract. Extensive followup, such as [5, 4, 56, 19],
improved on Hutchinson's results. The state-of-the-art estimator is Hutch++ [49],
which demonstrates improved convergence rates through randomized low-rank ap-
proximations. Classical stochastic trace estimators are often combined with polyno-
mial approximations to design stochastic estimators for spectral sums [33, 67].

Quantum computing offers a unique opportunity for faster linear algebra com-
putations due to its ability to represent and manipulate vectors in a superposition
state. This, combined with the power of entanglement, opens doors for potential
speedups compared to classical matrix algorithms. Recent advancements in this field
have explored various quantum techniques for fundamental linear algebra operations,
including principal component analysis [7], matrix multiplication [60], solving linear
systems of equations [35], and others [17, 28, 64, 2, 45]. Using quantum algorithms
for trace estimation and spectral sum approximation has been considered as well.

Early work on quantum trace estimation traces its origin to the one clean qubit
model of computations [63]. Given a circuit that implements a unitary operator A,
access to a maximally entangled state, and one clean pure ancilla qubit, they show
how to estimate 1

NTr(A), where N is the size of the matrix, as a state overlap mea-
sured via the Hadamard test. However, due to the N - 1 coefficient, the statistical error
is much larger than the one commonly observed by Hutchinson's method. Another
early work on quantum trace estimation is [24], which introduced a direct method for
multivariate trace estimation of multiple density matrices using a controlled-SWAP
gate. However, their circuit design is impractical for near-term devices. More re-
cently, three preprints suggested algorithms related to multivariate trace estimation
or spectral sum estimation. Luongo and Shao suggested several quantum algorithms
for spectral sum estimation [46]. Their algorithms are based on stringent quantum
access assumptions, such as block encoding and QRAM. Such assumptions pose sig-
nificant challenges [23, 51], e.g., implementing QRAMs might require a vast number of
qubits (trillions for 8 GB of RAM), and might even be infeasible. Shen et al. propose a
quantum algorithm that essentially implements Hutchison's estimator in the quantum
domain [61]. However, since creating random vector samples from the Rademacher
distribution is not efficient in the quantum domain, they show how to construct a ran-
dom state which they call the ``quantum Hutchinson state."" The distribution of state
vector of the quantum Hutchinson state entertains statistical properties on par with
the Rademacher vector when it comes to stochastic trace estimation. Bravyi et al.
consider approximating partition functions, i.e., Tr(e - \beta \bfH ) for some inverse tempera-
ture \beta and Hamiltonian H [8]. They consider both classical and quantum algorithms
for local and nonlocal Hamiltonians. Finally, Quek, Kaur, and Wilde, who were the
first to use the term ``multivariate trace estimation,"" suggested a constant quantum
depth circuit to estimate multivariate traces of density operators [53]. Their method
assumes that inputs are presented as copies of quantum states, and it computes the
multivariate trace of the density operators associated with those states.

As explained in the previous section, our algorithm is based on a framework
(qMSLA) for operating in the quantum domain on matrices via a set of primitive
operations. This approach is inspired by the well-known BLAS library in numerical
linear algebra [41]. Other efforts in this vein have been proposed in the quantum

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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176 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

domain. Although not labeled as ``BLAS,"" Gily\'en et al. show how to do basic matrix
arithmetic, including matrix addition, subtraction, and multiplication, using block en-
codings [28], and use these techniques to propose their seminal quantum singular value
transformation (QSVT) algorithm. In a review paper by Biamonte et al., the authors
catalogued functionalities crucial for quantum machine learning algorithms under the
umbrella term ``qBLAS"" [7]. These functionalities, which include fast Fourier trans-
forms and eigenvalue/eigenvector computations, are actually present (in the classical
domain) in LAPACK and not BLAS implementations. Another effort is a Q\#-specific
library called QBLAS [20]. QBLAS assumes the presence of QRAM hardware and
implements a simulated version. QBLAS offers functionalities like vector inner prod-
ucts, an HHL linear solver, matrix eigenvalue decomposition, and quantum phase
estimation. Despite the name referencing BLAS, the QBLAS library, like qBLAS,
focuses on higher-order linear algebra operations typically found in LAPACK and not
in BLAS implementations.

2. Preliminaries. In this section, we present the notations, definitions, and
background information necessary for describing our algorithms and their analyses.

2.1. Linear algebra notation. We denote scalars using Greek letters or using
x, y, . . . . Vectors are denoted by x,y, . . . and matrices by A,B, . . . . The s\times s identity
matrix is denoted Is. We assume 0-based indexing for vectors and matrices. This
is less common in the numerical linear algebra literature, but is more convenient in
the context of quantum computing. We use the convention that vectors are column
vectors, unless otherwise stated. For a vector x or a matrix A, the notation x\ast or A\ast 

denotes the Hermitian conjugate. We say that a matrix A is normalized if \| A\| F = 1.
The vectorization of A \in \BbbC m\times n, denoted by vec(A) \in \BbbC mn, is a column vector
obtained by stacking the columns of the matrix A on top of one another (i.e., column-
major vectorization): vec(A) = [a0,0, . . . , am - 1,0, a01, . . . , am - 1,1, . . . , am - 1,n - 1]

T.
Given matrices A\in \BbbC m\times n and B\in \BbbC p\times q, their direct sum, denoted by A\oplus B, is

an (m+ p)\times (n+ q) matrix obtained by putting A and B on the diagonal. That is,

A\oplus B :=

\biggl[ 
A 0m\times q

0p\times n B

\biggr] 
.

Allowing for matrices in which one of the dimensions has size zero, we can use the \oplus 
notation to also denote padding by columns or rows:

A\oplus 0p\times 0 :=

\biggl[ 
A

0p\times n

\biggr] 
, A\oplus 00\times q :=

\bigl[ 
A 0m\times q

\bigr] 
.

Although we can view vectors as matrices in which either the column dimension or
the row dimension is 1, we introduce specialized \oplus notations for vectors:

x\oplus y :=

\biggl[ 
x
y

\biggr] 
, xT \oplus yT :=

\bigl[ 
xT yT

\bigr] 
.

We rely on context to resolve any ambiguity in the use of \oplus .
Given matrices A \in \BbbC m\times n and B \in \BbbC p\times q, their Kronecker product A\otimes B is an

(mp)\times (nq) matrix with elements defined by ai,jbk,l. A useful representation is

A\otimes B=

m - 1\sum 
i=0

n - 1\sum 
j=0

p - 1\sum 
k=0

q - 1\sum 
l=0

ai,jbk,lE
mp\times nq
pi+k,qj+l,

where Em\times n
i,j denotes an m\times n matrix with 1 in the (i, j)th entry and 0 otherwise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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QUANTUM MULTIVARIATE TRACE ESTIMATION 177

2.2. Matrices and quantum states: Basic notations and definitions. We
use the state vector based formulation of quantum computing, i.e., the system's state
is represented by a unit vector in a Hilbert space. We assume without loss of generality
that the Hilbert space is \BbbC n, where n= 2q for q qubits. We let | 0\rangle q, | 1\rangle q, | 2\rangle q, . . . denote
the computational basis in a q-qubit system, and | \phi \rangle q, | \psi \rangle q, . . . some abstract states
in a q-qubit system. Given two states | \phi \rangle q and | \psi \rangle p on q and p qubits (respectively),
we denote by | \psi \rangle q| \phi \rangle p the q + p qubit state obtained by tensoring the two states to
obtain a state in \BbbC mn where n= 2q and m= 2p. Similar to many physics textbooks,
we assume that the MSB is in the lowest index in binary expansions, e.g., | i\rangle q =
| b0\rangle 1| b1\rangle 1 \cdot \cdot \cdot | bq - 1\rangle 1 =: | b0 \cdot \cdot \cdot bq - 1\rangle q, where b0 \cdot \cdot \cdot bq - 1 is the binary expansion of i.

Given an amplitude vector \alpha \in \BbbC n, where n is a power of 2, we use the ket
| \alpha \rangle to denote the log2 n-qubit system's state whose amplitudes are given by \alpha after
normalization. That is, | \alpha \rangle := 1

\| \alpha \| 2

\sum n - 1
i=0 \alpha i| i\rangle log2 n, where \alpha i is the ith entry of \alpha .

Note that under these conventions we have | i\rangle log2 n = | eni \rangle , where en0 ,e
n
1 , . . . are the

n-dimensional identity vectors (when the dimension of the vectors is clear from the
context we omit it). We also define | \alpha \rangle := 1

\| \alpha \| 2

\sum 
i\alpha i| i\rangle log2 n, where \alpha i is the complex

conjugation of \alpha i \in \BbbC . Given two amplitude vectors \alpha \in \BbbC n and \beta \in \BbbC m, we have
| \alpha \rangle | \beta \rangle = | \alpha \otimes \beta \rangle and this extends naturally to a higher number of multiplicands.

We use calligraphic letters to denote both quantum circuits and operators on the
state's Hilbert space, e.g., \scrU , \scrS , and \scrT , also using the same letter for a circuit and
the operator it induces. For a circuit \scrU on q qubits, we use M(\scrU )\in \BbbC n\times n (n= 2q) to
denote the unique unitary matrix such that for every \alpha \in \BbbC n applying \scrU on the state
| \alpha \rangle results in the state | M(\scrU )\alpha \rangle . We say that a circuit \scrU \ast is the inverse (or adjoint)
of circuit \scrU if M(\scrU ) =M(\scrU )\ast . Given a quantum system, we denote the application
of circuits sequentially with \cdot or omit totally.

A quantum register is defined as a contiguous subset of qubits of a multiqubit
system. The size of the register is determined by the number of qubits it encompasses.
Given a system with several quantum registers, we use the standard tensor product \otimes 
operator to denote the application of each circuit on the corresponding register, but
also use \cdot i to denote the action of a circuit \scrU to only register i of the system, e.g.,
\scrU \cdot i | \alpha \rangle (where the operation on the other register is the identity). We use 0-based
indexing for register numbering within a system.

Given a system with two quantum registers, with qubit sizes q(0) = log2 n and
q(1) = log2m, and a matrix A \in \BbbC m\times n, we use | | A\rangle \rangle to denote the state whose

amplitude vectors are \bfv \bfe \bfc (\bfA )
\| \bfA \| F . That is,

| | A\rangle \rangle := 1

\| A\| F

n - 1\sum 
j=0

m - 1\sum 
i=0

ai,j | mj + i\rangle q(0)+q(1) =
1

\| A\| F

m - 1\sum 
i=0

n - 1\sum 
j=0

ai,j
\bigm| \bigm| \bigm| \bigm| Em\times n

i,j

\bigr\rangle \bigr\rangle 
,

where aij denotes the (i, j)th entry of A. Since Em\times n
i,j = emi (enj )

T we have | | Em\times n
i,j \rangle \rangle :=

| enj \rangle | emi \rangle = | j\rangle q(0) | i\rangle q(1) . We use the notation | | A\rangle \rangle (instead of | vec(A)\rangle ) to help the
reader distinguish state descriptions that are based on matrices as opposed to vectors.
We remark that the use of double kets to denote matrix states can be traced to [21].

For a matrix A \in \BbbC m\times n we denote by q\bfA the number of qubits we need to hold
the state | | A\rangle \rangle . That is, q\bfA = log2mn. For a circuit \scrU , we denote g\scrU the number
of gates in \scrU , and by d\scrU the depth (critical path) of \scrU , and by q(\scrU ) the number of
qubits of \scrU .

2.3. Overlap between two quantum states. Two foundational quantum
algorithms for measuring the overlap (i.e., dot product or similarity) between two

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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178 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

|0〉1 H • H

|ν〉q / U

Fig. 1. Circuit implementing of Hadamard test.

quantum states are the Hadamard and swap tests. For completeness, we now recall
both.

For our purposes, it is useful to describe the Hadamard test as an algorithm that
accepts a description of a circuit \scrU and construct a new circuit that implements the
test.

Proposition 1 (Hadamard test). Given a classical description of the circuit \scrU 
on q qubit, there exists an algorithm that constructs a circuit HT\scrU on q+1 qubits (see
Figure 1 for the circuit) such that for any q-qubit state | \nu \rangle q we have

HT\scrU 

\Bigl( 
| 0\rangle 1 | \nu \rangle q

\Bigr) 
=

1

2
| 0\rangle 1 (| \nu \rangle q + \scrU | \nu \rangle q) +

1

2
| 1\rangle 1 (| \nu \rangle q  - \scrU | \nu \rangle q).(2)

The circuit HT\scrU serves as an implementation of the Hadamard test. Upon applying
the Hadamard test to | 0\rangle 1| \nu \rangle q, the probability of obtaining 0 after measurement of the
first qubit is

1

2
(1 +Re (\langle \nu | \scrU | \nu \rangle ) .

The cost of constructing HT\scrU is O(g\scrU ) and the depth is d\scrU + 2. To obtain the imag-
inary part, the phase gate \scrS = [ 1 0

0 i ] can be employed. In this complex version, we
simply apply \scrS \dagger after the initial Hadamard gate, and the probability of obtaining 0
after measurement of the first qubit is

1

2
(1 + Im (\langle \nu | \scrU | \nu \rangle )) .

Remark 2. If we have access to a circuit \scrU \nu such that \scrU \nu | 0\rangle q = | \nu \rangle q, and a circuit
\scrU \eta such that \scrU \eta | 0\rangle q = | \eta \rangle q, then one can use the Hadamard test for overlap estimation
(with relative phase information as well) by the following identity: \langle \nu | \eta \rangle = \langle 0| \scrU \ast 

\nu \scrU \eta | 0\rangle ,
e.g., in that case we have that

p(0) =
1

2
(1 +Re (\langle 0| \scrU \ast 

\nu \scrU \eta | 0\rangle )) =
1

2
(1 +Re (\langle \nu | \eta \rangle ))(3)

for the output of HT\scrU \ast 
\nu \scrU \eta , where p(0) denotes the probability of measuring 0 in the

first qubit (when only that qubit is measured).

Proposition 3 (swap test). For q qubits, there exists a circuit STq on 2q + 1
qubits (see Figure 2 for the circuit) such that for any two q-qubit states | \psi \rangle q and | \phi \rangle q
we have

STq

\Bigl( 
| 0\rangle 1 | \psi \rangle q | \phi \rangle q

\Bigr) 
=

1

2
| 0\rangle 1

\Bigl( 
| \psi \rangle q | \phi \rangle q + | \phi \rangle q | \psi \rangle q

\Bigr) 
+

1

2
| 1\rangle 1

\Bigl( 
| \psi \rangle q | \phi \rangle q  - | \phi \rangle q | \psi \rangle q

\Bigr) 
.

The circuit STq serves as an implementation of the swap test. Upon applying the
swap test to | 0\rangle 1| \psi \rangle q| \phi \rangle q, the probability of obtaining 0 after measurement of the first
qubit is

1

2
(1 + | \langle \phi | \psi \rangle | 2).

The cost of constructing STq is q+ 2 and the depth is 3.
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|0〉1 H • H
|ψ〉q ×
|φ〉q ×

Fig. 2. Circuit implementing of swap test.

3. Quantum matrix state linear algebra (qMSLA). Since quantum cir-
cuits essentially evolve quantum states by applying unitary transformations on them,
one can envision performing matrix computations using quantum circuits. Quantum
speedups on numerical linear algebra tasks will immediately lead to faster algorithms
in many scientific computing and machine learning tasks, since at the core, such
algorithms rely heavily on matrix computations [7]. Indeed, quite a few quantum al-
gorithms for scientific computing and machine learning have been proposed recently,
many of them relying on QLA breakthroughs such as the HHL algorithm [35] and
others [17, 28, 64, 2, 45].

All the aforementioned works make assumptions on the mechanism in which the
input is presented to the quantum algorithm, and that mechanism is of crucial im-
portance [13]. We refer to the mechanism in which input is presented to the quantum
algorithm as the input model of the quantum algorithm. Several input models have
been presented in the literature. Two prominent examples are the sparse-data ac-
cess model [1, 17] and various quantum data structure based input models [39, 40].
Recently, Chakraborty, Gily\'en, and Jeffery [13] showed that a variety of widely used
input models can be reduced to an input model in which matrices are input using
block encodings and vectors are input as state preparation circuits.

Definition 4 (state preparation circuit). We say that a log2 n-qubit circuit \scrU 
is a state preparation circuit for a vector x \in \BbbC n if applying \scrU to the state | 0\rangle log2 n

results in the state | x\rangle .
Definition 5 (block encoding of a matrix [28]). For \alpha \geq \| A\| F , a circuit \scrU is a

\alpha -block encoding of A\in \BbbC m\times n if

\alpha M(\scrU ) =
\biggl[ 

A \ast 
\ast \ast 

\biggr] 
,

where \ast denotes arbitrary entries. We refer to \alpha as the scale.

We refer to the input model in which matrices are accessed using block encodings
and vectors are accessed as state preparation circuits as the block encoding input
model. There are powerful algorithms that operate under the block encoding model.
In particular, in the block encoding model we can perform QSVT [28], a powerful
technique that leads to efficient algorithms for solving linear equations, amplitude
amplification, quantum simulation, and more [48].

In this paper we do not assume matrices are given as block encodings, and in-
stead consider an input model in which both matrices and vectors are input as state
preparation circuits; for matrices we use a matrix state preparation circuit.

Definition 6 (matrix state preparation circuit). We say that a (log2 n+log2m)-
qubit circuit \scrU is a matrix state preparation circuit for a matrix A\in \BbbC m\times n if applying
\scrU to the state | 0\rangle log2mn results in the state | | A\rangle \rangle . Equivalently, the first column of
M(\scrU ) is vec(A). For convenience, where appropriate, we add the matrix as subindex
when denoting state preparation circuits, e.g., \scrU \bfA . In such cases, with an abuse of
notation, the number of gates in \scrU \bfA is denoted by g\bfA , and the depth by d\bfA .
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180 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

Remark 7. A matrix state preparation circuit \scrU \bfA should be viewed as a data
structure bundling the actual circuit, along with meta-data that describes the size of
the resulting matrix (i.e., m and n). The meta-data in essence describes the partition
of the qubits on which the circuit operates into two registers, one corresponding to
column indices (MSB qubits, ``top"" qubits in circuit visualizations) and the other
corresponding to row indices (LSB qubits, ``bottom"" qubits in circuit visualizations).
We refer to the qubits that correspond to the column indices as column qubits, and
the register that corresponds to these indices as the column register, and likewise for
row qubits and row register.

Remark 8. It is also possible to track classically the Frobenius norm of the
matrix (and include it in the meta-data), though this is not necessary for the purpose
of multivariate trace estimation.

Remark 9. A vector is also a matrix where one of the dimensions has size 1.
So, our definition of a matrix state preparation circuit (Definition 6) subsumes vector
state preparation circuits (Definition 4). In vector state preparation circuits one of
the two registers has zero size: for a column vector we have only row qubits, and for
a row vector we have only column qubits.

We refer to the input model in which both matrices and vectors are accessed via
state preparation circuits as the state preparation input model. Are the block encod-
ing model and the state preparation model equivalent? We do not have a complete
answer to this question, though we do have some partial observations. First, given
a matrix state preparation circuit for A and a state preparation circuit for a vector
w whose entries are the row norms of A, it is possible to construct a block encoding
of A [18, section I.D]. We are unaware of any efficient algorithm that given only a
matrix state preparation circuit for A constructs a block encoding of A. Second, in
section 3.2.2 we show that given a circuit \scrU we can construct a matrix state prepa-
ration of M(\scrU ). Thus, given a block encoding of A we can construct a matrix state
preparation circuit for a matrix that contains A. Both observations together lead us
to conjecture that the state preparation model uses less stringent assumptions than
the block encoding model, though we leave formalizing this conjecture and proving
its correctness to future work.

There is one additional way in which the state preparation model has an advantage
over the block encoding model. The value of the scale parameter \alpha of the block
encoding is important to downstream efficiency. Roughly speaking, the smaller \alpha is,
shallower circuits suffice or less shots are required. Recalling that the minimum value
for \alpha for a block encoding of A is \| A\| F , we note that it is impossible to construct a
block encoding with the minimum \alpha unless A is unitary. In contrast, for any m\times n
matrix it is possible to construct an O(mn) depth matrix state preparation circuit in
O(mn) (classical) time, without any loss [62].

In this paper we show how to estimate multivariate traces and spectral sums in
the state preparation model. The main challenge is that in the state preparation
model we do not have access to powerful tools like QSVT. Our approach is based on
showing that given classical descriptions of state preparation circuits, we can construct
more complex state preparation circuits that implement several important matrix
algebra operations, thus providing a toolbox for performing matrix algebra in the
state preparation model. We refer to our framework as ``quantum Matrix State Linear
Algebra"" (qMSLA). Using this toolbox, we can encode multivariate traces in the state
preparation circuit via simple matrix identities. In this section we outline qMSLA,
while in the next section (section 4) we use qMSLA to propose a quantum algorithm
for multivariate trace estimation.
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QUANTUM MULTIVARIATE TRACE ESTIMATION 181

Table 1
Level 1 qMSLA operations. These are primitive operations that create or operate on state

preparation circuits using low-level circuit building tools. The classical cost for these operations is
consistently O(g(output)).

Input Output q(output) g(output) d(output) Operation name Subsection

n= 2q \scrU \bfI n 2q 2q 2 qmsla.identity 3.2.1

\scrU \scrU \bfM (\scrU ) 2q(\scrU ) g(\scrU ) + 2q d(\scrU ) + 2 qmsla.matrix 3.2.2

\scrU \bfA \scrU \bfA q\bfA g\bfA d\bfA qmsla.conjugate 3.2.3

\scrU \bfA \scrU 
\bfA \mathrm{T} q\bfA g\bfA d\bfA qmsla.transpose 3.2.4

\scrU \bfA \scrU \bfv \bfe \bfc (\bfA ) q\bfA g\bfA d\bfA qmsla.vec 3.2.5

\scrU \bfA , k \scrU \bfA \oplus 0
0\times (2k - 1)n

q\bfA + k g\bfA d\bfA qmsla.pad zero columns 3.2.6

\scrU \bfA ,\scrU \bfb \scrU \bfA \bfb 
\| \bfA \| F \| \bfb \| 2

\oplus \xi q\bfA g\bfA + g\bfb d\bfA + d\bfb qmsla.matrix vec 3.2.7

\scrU \bfA ,\scrU \bfB \scrU \bfA \otimes \bfB q\bfA + q\bfB g\bfA +g\bfB max(d\bfA , d\bfB ) qmsla.kronecker 3.2.8

\scrU \bfA 1
, . . . ,\scrU \bfA k

\scrU \bfA 1\otimes \bfA 2\otimes \cdot \cdot \cdot \otimes \bfA k

\sum 
i q\bfA i

\sum 
i g\bfA i max(d\bfA 1

, \cdot \cdot \cdot , d\bfA k ) qmsla.kronecker 3.2.9

Table 2
Level 2 qMSLA operations. These are composite operations built using level 1 operations. The

classical cost for these operations is consistently O(g(output)).

Input Output q(output) g(output) d(output) Operation name Subsection

\scrU \bfA , r \scrU \bfA \oplus 0(2r - 1)m\times 0
q\bfA + r g\bfA d\bfA qmsla.pad zero rows 3.3.1

\scrU \bfA , k, r \scrU \bfA \oplus 0
(2r - 1)m\times (2k - 1)n

q\bfA + k+ r g\bfA d\bfA qmsla.pad 3.3.1

\scrU \bfA \scrU \bfA \ast q\bfA g\bfA d\bfA qmsla.adjoint 3.3.2

\scrU \psi ,\scrU \phi \scrU \psi \ast \phi 
\| \psi \| 2\| \phi \| 2

\oplus \xi q\psi g\psi + g\phi d\psi + d\phi qmsla.overlap 3.3.3

In the following subsections we present various qMSLA operations, along with
discussion of their complexity. With few exceptions, each operation receives a vari-
able number of classical descriptions of a matrix state preparation circuit, and outputs
a classical description of a new state preparation circuit that implements some matrix
algebra operation between the input matrices. Thus, the algorithms are classical-to-
classical, but provide circuits to be executed on a quantum computer. For each oper-
ation, we provide visualization of the output circuit and analyze the gate complexity
and depth of the output circuit and the (classical) cost of forming the output circuit.

We split qMSLA into two levels. Level 1 includes primitive operations that create
or operate on state preparation circuits using low-level circuit building procedures,
while level 2 includes composite operations built using level 1 primitive operations.
Both levels are summarized in Tables 1 and 2.

In this section we present a high-level description on how to implement various
qMSLA operations. Low-level implementation details are deferred to the appendix.
We also introduce in the appendix another qMSLA level: level 0. Level 0 operates on
the circuit level and does not deal with matrix states at all. In essence, these are the
basic circuit building operations we require from an underlying quantum computing
framework (such as QISKIT) so that we can build qMSLA on top of that framework.
Most of the operations are implemented in various frameworks, but some are not, so
we explain how they can be implemented using only the ability to add and remove
gates. We then show how to implement level 1 operations using only level 0 operations.

Henceforth in this section, unless otherwise specified, we assume that A\in \BbbC m\times n,
\scrU ,\scrW ,\scrQ are quantum circuits, \sigma is a permutation function on all qubits, \scrS \sigma denotes
an implementation of a permutation \sigma using SWAP gates, and \xi \in \BbbC m(n - 1) represents
auxiliary information (garbage), which may be arbitrary.
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182 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

3.1. Prelude: Operating on a subset of the qubits and qubit permuta-
tions. In this subsection, we investigate quantum circuit operations targeting specific
subsets of qubits (i.e., registers), qubit permutation procedures, circuit composition,
and an efficient method for eliminating SWAP gates in state preparation circuits.
Understanding each of these operations is crucial for the implementation of various
qMSLA operations.

3.1.1. Operating on single registers of a matrix state. Consider a matrix
state | | A\rangle \rangle for A \in \BbbC m\times n. qMSLA is based on three types of operations: operating
on the column register alone, operating on the row register alone, and rearranging the
qubits between registers (using SWAP gates). In this subsection we seek to understand
how the first two evolve matrix states.

First, let us consider how the state evolves when we apply a circuit only on one
of the two registers. Looking at the product states of the two registers, assuming that
\alpha \in \BbbC n and \beta \in \BbbC m, we have the following immediate identities:

1. \scrU \cdot | \alpha \rangle | \beta \rangle results in the state | M(\scrU )(\alpha \otimes \beta )\rangle .
2. \scrQ \cdot 0 | \alpha \rangle | \beta \rangle = (\scrQ \otimes \scrI m)| \alpha \rangle | \beta \rangle results in the state | M(\scrQ )\alpha \rangle | \beta \rangle .
3. \scrW \cdot 1 | \alpha \rangle | \beta \rangle = (\scrI n \otimes \scrW )| \alpha \rangle | \beta \rangle results in the state | \alpha \rangle | M(\scrW )\beta \rangle .

Using these identities, we prove the following lemma.

Lemma 10. Consider the state | | A\rangle \rangle for A\in \BbbC m\times n, and circuits \scrU and \scrQ where
\scrU operates on log2 n qubits and \scrQ operates on log2m qubits. The following holds:

1. \scrU \cdot 0 | | A\rangle \rangle results in the state | | AM(\scrU )T\rangle \rangle .
2. \scrQ \cdot 1 | | A\rangle \rangle results in the state | | M(\scrQ )A\rangle \rangle .

Proof. We use the following identity: vec(ABC) = (CT \otimes A)vec(B)) [6, Propo-
sition 7.1.9]. We have

\scrU \cdot 0 | | A\rangle \rangle = (\scrU \otimes \scrI ) | vec (A)\rangle = | M(\scrU \otimes \scrI )vec (A)\rangle 
= | (M(\scrU )\otimes I)vec (A)\rangle 
=
\bigm| \bigm| vec \bigl( IAM(\scrU )T

\bigr) \bigr\rangle 
=
\bigm| \bigm| \bigm| \bigm| AM(\scrU )T

\bigr\rangle \bigr\rangle 
and

\scrQ \cdot 1 | | A\rangle \rangle = (\scrI \otimes \scrQ ) | vec (A)\rangle = | M(\scrI \otimes \scrQ )vec (A)\rangle 
= | (I\otimes M(\scrQ ))vec (A)\rangle 
= | vec (M(\scrQ )AI)\rangle 
= | | M(\scrQ )A\rangle \rangle .

3.1.2. Permutation of qubits and registers. Let q be the number of qubits
in a system, and consider a permutation \sigma : \{ 0, . . . , q - 1\} \rightarrow \{ 0, . . . , q - 1\} . Denote by
\scrS \sigma the unitary that permutes the qubits according to \sigma . In the computational basis
we have

\scrS \sigma | b0 \cdot \cdot \cdot bq - 1\rangle q =
\bigm| \bigm| b\sigma (0) \cdot \cdot \cdot b\sigma (q - 1)

\bigr\rangle 
q
,

where b0 \cdot \cdot \cdot bq - 1 is the binary expansion of the index of a basis state. A circuit
implementing \scrS \sigma can be built using SWAP gates. A simple algorithm for forming
\scrS \sigma is the following. Given the sequence (\sigma (0), . . . , \sigma (q - 1)), find a sequence of swaps
that sort the sequence (e.g., by tracking the swaps of a sorting algorithm). That is,
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QUANTUM MULTIVARIATE TRACE ESTIMATION 183

find (i1, j1), . . . , (iT , jT ) such that \sigma (iT ,jT ) \circ \cdot \cdot \cdot \circ \sigma (i1,j1) \circ \sigma = \sigma I , where \sigma (i,j) is the
permutation that swaps the entry i and j, and \sigma I is the identity permutation. Let
\scrS (i,j) denote the circuit which swaps qubits i and j (via a single SWAP gate), but keeps
other qubits in place. Now, \scrS (iT ,jT ) \cdot \cdot \cdot \scrS (i1,j1)\scrS \sigma = \scrI . By applying the inverse of these
swap operations from the left, we obtain an implementation of \scrS \sigma as \scrS (i1,j1) \cdot \cdot \cdot \scrS (iT ,jT ).
The set of swaps can be found using a sorting algorithm in O(q log q) operations. This
is also the bound on the number of gates in \scrS \sigma , and on the depth.

However, our algorithms typically permute full registers rather than individual
bits. In such cases, to distinguish register permutations from qubit permutations, we
use the bar notation \=\sigma to indicate that the permutation is to be applied to registers.
It is assumed to have signature \=\sigma : \{ 0, . . . , r  - 1\} \rightarrow \{ 0, . . . , r  - 1\} for r registers. In
particular, suppose we have r registers, of sizes q0, . . . , qr - 1, and consider a permuta-
tion \=\sigma : \{ 0, . . . , r  - 1\} \rightarrow \{ 0, . . . , r  - 1\} ; then defining the circuit \scrS R\=\sigma as the circuit on\sum m - 1
i=0 qi qubits for which, for all states | \psi 0\rangle q0 , . . . , | \psi r - 1\rangle qr - 1 we have

\scrS R\=\sigma \cdot | \psi 0\rangle q0 \cdot \cdot \cdot | \psi r - 1\rangle qr - 1
=
\bigm| \bigm| \psi \=\sigma (0)

\bigr\rangle 
q\=\sigma (0)
\cdot \cdot \cdot 
\bigm| \bigm| \psi \=\sigma (r - 1)

\bigr\rangle 
q\=\sigma (r - 1)

.

Example 11. Given the (log2m+ log2 n)-qubit system and a permutation \=\sigma T =
(1,0) (i.e., swap the order of the two registers) we have that

\scrS R\=\sigma \mathrm{T}
| \phi \rangle log2 n

| \psi \rangle log2m
= | \psi \rangle log2m

| \phi \rangle log2 n
.

We show in section 3.2.4 that \scrS R\=\sigma \mathrm{T}
applied to | | A\rangle \rangle results in

\bigm| \bigm| \bigm| \bigm| AT
\bigr\rangle \bigr\rangle 
.

3.1.3. Eliminating permutations in state preparation circuits. In the
subsequent sections, various qMSLA operations are described, and from these descrip-
tions, a common structure emerges in the output of straightforward implementations.
By observing this structure, it is possible to operate on the resulting circuit \scrU \bfX so
as to build an alternative circuit \scrU \prime 

\bfX which is also a matrix state preparation for X
(even though it might be the case that M(\scrU \bfX ) \not =M(\scrU \prime 

\bfX )), but is much more efficient
since it removes many SWAP gates. Details appear in Appendix A.4.

We call the elimination process EliminatePermutations. In translating the
high-level descriptions of sections 3.2 and 3.3 to low-level pseudocode descriptions,
we implicitly use EliminatePermutations as a meta-algorithm that transforms the
output circuit to more efficient ones. The high-level descriptions of sections 3.2 and 3.3
do not use EliminatePermutations. However, the circuit diagrams do show the
boundaries on which EliminatePermutations is applied, and various complexity
statements assume that SWAP gates have been eliminated using EliminatePermu-
tations.

3.2. Level-1 qMSLA operations. Level 1 operations create or operate on
state preparation circuits using low-level circuit building operations. For more details
on implementation, including pseudocode for all level 1 operations, see Appendix B.

3.2.1. Preparing an identity matrix: \bfscrU \bfI \bfitn \leftarrow qmsla.identity(\bfitn ). Given 2q-
qubits, split between two q-qubit registers, consider the maximally entangled state

| \psi \rangle 2q =
1\surd 
n

n - 1\sum 
k=0

| k\rangle q \otimes | k\rangle q ,

where n= 2q. We have

| \psi \rangle 2q =
1\surd 
n

n - 1\sum 
k=0

| k\rangle q \otimes | k\rangle q =
1\surd 
n

n - 1\sum 
n=0

\bigm| \bigm| \bigm| \bigm| ekeTk \bigr\rangle \bigr\rangle = | | In\rangle \rangle .
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184 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

Fig. 3. Graphical description of qmsla.identity (input: n; output: \scrU \bfI n).

Fig. 4. Graphical description of qmsla.matrix (Input: \scrU , Output: \scrU \bfM (\scrU )).

Thus, to implement a state preparation circuit \scrU \bfI n for In we need to find a circuit
that given | 0\rangle 2q creates the maximally entangled state | \psi \rangle 2q. It is well known that
the circuit depicted in Figure 3 prepares this state. Thus, g\bfI n = 2q and d\bfI n = 2.

3.2.2. State preparation for M(\bfscrU ): \bfscrU \bfM (\bfscrU )\leftarrow qmsla.matrix(\bfscrU ). Consider
a circuit \scrU on q qubits and denote n= 2q. Due to Lemma 10 we have

\scrU \cdot 1 \scrU \bfI n | 0\rangle 2q = \scrU \cdot 1 | | In\rangle \rangle 
= | | M(\scrU )In\rangle \rangle 
= | | M(\scrU )\rangle \rangle .

Thus, \scrU \cdot 1 \scrU \bfI n is a state preparation circuit for M(\scrU ). See Figure 4 for a graphical
description. We have g\bfM (\scrU ) = g(\scrU ) + 2q and d\bfM (\scrU ) = d(\scrU ) + 2. The complexity of
forming \scrU \bfM (\scrU ) is O(g\bfM (\scrU )). The idea of applying a circuit to one share of a maximally
entangled vector in order to encode the circuit's matrix in the amplitudes also appears
in [50].

In a sense, the ability to build \scrU \bfM (\scrU ) from a circuit \scrU hints that usage of the
state preparation model constitutes making weaker assumptions than the ones made
when using the block encoding model, since block encodings can be converted to state
preparation circuits.

3.2.3. Matrix conjugate: \bfscrU \bfA \leftarrow qmsla.conjugate(\bfscrU \bfA ). Given a state prepa-
ration circuit for a matrix A\in \BbbC m\times n, we can construct a state preparation circuit for
A by conjugating the circuit itself. This is shown in the following proposition.

Proposition 12. For a matrix state preparation circuit \scrU \bfA , we have

\scrU \bfA = \scrU \bfA .

Thus, given \scrU \bfA we can compute a description of \scrU \bfA with depth d\bfA in cost O(g\bfA ).
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Proof. Recall that the first column of M(\scrU \bfA ) is vec(A), so

M(\scrU \bfA ) =M(\scrU \bfA )

=

\left[   | \ast \cdot \cdot \cdot \ast 

vec (A)
...

...
| \ast \cdot \cdot \cdot \ast 

\right]   
=

\left[   | \ast \cdot \cdot \cdot \ast 

vec
\bigl( 
A
\bigr) ...

...
| \ast \cdot \cdot \cdot \ast 

\right]   
=M(\scrU \bfA ).

3.2.4. Matrix transpose: \bfscrU \bfA \bfT \leftarrow qmsla.transpose(\bfscrU \bfA ). Given a matrix
state preparation circuit for a matrix A \in \BbbC m\times n, we can construct a matrix state
preparation circuit for AT based on the following proposition. See Figure 5 for a
graphical description. It is easy to see then that g\bfA \mathrm{T} = g\bfA and d\bfA \mathrm{T} = d\bfA , if Elim-
inatePermutations is used to reduce the gate complexity and depth. The cost of
qmsla.transpose is O(g\bfA \mathrm{T}).

Proposition 13. Given (log2 n+log2m)-qubit state preparation circuit \scrU \bfA , the
circuit \scrS R(1,0) \cdot \scrU \bfA is a state preparation circuit for AT.

Proof. Denote \=\sigma T = (1,0). We have that

\scrS R\=\sigma \mathrm{T}
\cdot \scrU \bfA | 0\rangle log2mn

= \scrS R\=\sigma \mathrm{T}
| | A\rangle \rangle 

= \scrS R\=\sigma \mathrm{T}

\left(  1

\| A\| F

n - 1\sum 
j=0

m - 1\sum 
i=0

ai,j | mj + i\rangle log2mn

\right)  
= \scrS R\=\sigma \mathrm{T}

\left(  1

\| A\| F

n - 1\sum 
j=0

m - 1\sum 
i=0

ai,j | j\rangle log2 n
| i\rangle log2m

\right)  
=

1

\| AT\| F

n - 1\sum 
j=0

m - 1\sum 
i=0

ai,j | i\rangle log2m
| j\rangle log2 n

=
1

\| AT\| F

n - 1\sum 
j=0

m - 1\sum 
i=0

ai,j | ni+ j\rangle log2mn

=
\bigm| \bigm| \bigm| \bigm| AT

\bigr\rangle \bigr\rangle 
.

So, we see that \scrS R(1,0) \cdot \scrU \bfA is a state preparation circuit for AT.

Fig. 5. Graphical description of qmsla.transpose (input: \scrU \bfA ; output: \scrU \bfA \mathrm{T}).
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186 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

3.2.5. Vectorize: \bfscrU \bfv \bfe \bfc (\bfA )\leftarrow qmsla.vec(\bfscrU \bfA ). Notice that | | A\rangle \rangle = | | vec(A)\rangle \rangle 
when considering only probability amplitudes. Indeed, each state is obtained by a
different logical split of the qubits between the two registers. In other words, the
matrix state preparation circuit \scrU \bfA can be interpreted also as \scrU \bfv \bfe \bfc (\bfA ), where the
circuit itself is the same, but the meta-data (partition of the qubits to registers) is
different. Thus, qmsla.vec can be implemented via meta-data transformation. Gate
complexity and depth do not change, and the cost of the operation is O(g\bfA ).

3.2.6. Pad with zero columns: \bfscrU \bfA \oplus \bfzero \bfzero \times (\bftwo \bfitk  - \bfone )\bfitn 
\leftarrow qmsla.pad zero

columns(\bfscrU \bfA , \bfitk ) (\bfitk > 0). Consider a state preparation circuits \scrU \bfA , where A \in 
\BbbC m\times n. Given an integer k > 0, the following identity shows how to construct a
matrix state preparation circuit for [ A 0m\times (2k - 1)n ]:

\scrI k \otimes \scrU \bfA | 0\rangle k | 0\rangle log2mn
= | 0\rangle k | | A\rangle \rangle 
=
\bigm| \bigm| \bigm| \bigm| \bigl[ A 0

\bigr] \bigr\rangle \bigr\rangle 
,

where \scrI k is the k-qubit empty (identity) circuit. So, \scrU \bfA \oplus 0
0\times (2k - 1)n

= \scrI k \otimes \scrU \bfA . See
Figure 6 for a graphical description of qmsla.pad zero columns. It is easy to see then
that g\bfA \oplus 0

0\times (2k - 1)n
= g\bfA and d\bfA \oplus 0

0\times (2k - 1)n
= d\bfA and the cost of the algorithm is

O(g\bfA ).

3.2.7. Matrix-vector product: \bfscrU \bfy \leftarrow qmsla.matrix vec(\bfscrU \bfA ,\bfscrU \bfb ) where
y = \bfA \bfb 

\| \bfA \| \bfitF \| \bfb \| \bftwo 
\oplus \bfitxi \in \BbbC \bfitm \bfitn for some garbage \bfitxi \in \BbbC \bfitm (\bfitn  - \bfone ) and \| y\| \bftwo = 1. Assume

that A\in \BbbC m\times n and b\in \BbbC n. Consider applying \scrU T
\bfb to the MSB register (i.e., column

register) of the state | | A\rangle \rangle . We have (Lemma 10)

\scrU T
\bfb \cdot 0 | | A\rangle \rangle =

\bigm| \bigm| \bigm| \bigm| AM(\scrU T
\bfb )T

\bigr\rangle \bigr\rangle 
= | | AM(\scrU \bfb )\rangle \rangle 

=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| A
\left[   | \ast \cdot \cdot \cdot \ast 

\bfb 
\| \bfb \| 2

...
...

| \ast \cdot \cdot \cdot \ast 

\right]   \Biggr\rangle \Biggr\rangle 

=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\left[   | \ast \cdot \cdot \cdot \ast 

\bfA \bfb 
\| \bfb \| 2

...
...

| \ast \cdot \cdot \cdot \ast 

\right]   \Biggr\rangle \Biggr\rangle 

=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\left[      
\bfA \bfb 
\| \bfb \| 2

\ast 
...
...
\ast 

\right]      
\Biggr\rangle 

=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\left[      
\bfA \bfb 

\| \bfA \| F \| \bfb \| 2

\ast 
...
...
\ast 

\right]      
\Biggr\rangle 
,

where \ast denotes arbitrary amplitudes. The third equality follows from the fact that
the first column of M(\scrU \bfb ) is equal to b/\| b\| 2. The equality follows since the ket
notation | \cdot \rangle we use is oblivious to a global scaling by a positive real number (i.e.,
| \alpha x\rangle = | x\rangle for any real \alpha > 0), and so we can rescale the first element and the
additional arbitrary amplitudes below it. We now denote the values in the lower part
of the vector by \xi . The normalization we introduced by dividing by \| A\| F ensures
that \| y\| 2 = 1.

See Figure 7 for a graphical description of qmsla.matrix vec. The gate complexity
is g\bfA + g\bfb and the depth is bounded by d\bfA + d\bfb . The number of qubits is q\bfA . The
cost of the algorithm is O(g\bfA + g\bfb ) =O(g\bfy ).
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QUANTUM MULTIVARIATE TRACE ESTIMATION 187

Fig. 6. Graphical description of qmsla.pad zero columns (input: \scrU \bfA and k; output:
\scrU \bfA \oplus 0

0\times (2k - 1)n
).

Fig. 7. Graphical description of qmsla.matrix vec (input: \scrU \bfA and \scrU \bfb ; output: \scrU \bfA \bfb 
\| \bfA \| F \| \bfb \| 2

\oplus \xi ).

3.2.8. Kronecker product: \bfscrU \bfA \otimes \bfB \leftarrow qmsla.kronecker(\bfscrU \bfA ,\bfscrU \bfB ). Consider
two state preparation circuits \scrU \bfA and \scrU \bfB . We have that (\scrU \bfA \otimes \scrU \bfB ) \cdot | 0\rangle q\bfA +q\bfB =
| | A\rangle \rangle | | B\rangle \rangle . The state | | A\rangle \rangle | | B\rangle \rangle = | | A\rangle \rangle \otimes | | B\rangle \rangle is generally not equal to | | A\otimes B\rangle \rangle ,
and \scrU \bfA \otimes \scrU \bfB is not a state preparation circuit for A\otimes B. Nevertheless, the following
proposition shows that by permuting the order of the registers of | | A\rangle \rangle | | B\rangle \rangle we can
obtain the state | | A \otimes B\rangle \rangle . This allows us to construct a matrix state preparation
circuit \scrU \bfA \otimes \bfB for A\otimes B.

Proposition 14. Let

\sigma \otimes := (0,2,1,3).

Then

\scrS R\=\sigma \otimes 
\cdot | | A\rangle \rangle | | B\rangle \rangle = | | A\otimes B\rangle \rangle .

Proof. Suppose that A is m\times n and B is p\times q. First, we show that

\scrS R\=\sigma \otimes 

\bigm| \bigm| \bigm| \bigm| Em\times n
i,j

\bigr\rangle \bigr\rangle \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Ep\times qk,l

\Bigr\rangle \Bigr\rangle 
=
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Emp\times nqpi+k,qj+l

\Bigr\rangle \Bigr\rangle 
for all i, j, k, and l. Indeed,

\scrS R\=\sigma \otimes 

\bigm| \bigm| \bigm| \bigm| Em\times n
i,j

\bigr\rangle \bigr\rangle \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Ep\times qk,l

\Bigr\rangle \Bigr\rangle 
= \scrS R\=\sigma \otimes 

| j\rangle log2 n
| i\rangle log2m

| l\rangle log2 q
| k\rangle log2 p

= | j\rangle log2 n
| l\rangle log2 q

| i\rangle log2m
| k\rangle log2 p

=
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Eq\times nl,j

\Bigr\rangle \Bigr\rangle \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Ep\times mk,i

\Bigr\rangle \Bigr\rangle 
=
\bigm| \bigm| \bigm| enqqj+l\Bigr\rangle \bigm| \bigm| \bigm| emppi+k\Bigr\rangle 

=
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Emp\times nqpi+k,qj+l

\Bigr\rangle \Bigr\rangle 
.
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188 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

Fig. 8. Graphical description of qmsla.kronecker (input: \scrU \bfA and \scrU \bfB ; output: \scrU \bfA \otimes \bfB ).

Now,

\scrS R\=\sigma \otimes 
| | A\rangle \rangle | | B\rangle \rangle = \scrS R\=\sigma \otimes 

\left(  1

\| A\| F

m - 1\sum 
i=0

n - 1\sum 
j=0

aij
\bigm| \bigm| \bigm| \bigm| Em\times n

i,j

\bigr\rangle \bigr\rangle \right)  \Biggl( 1

\| B\| F

p - 1\sum 
k=0

q - 1\sum 
l=0

bkl

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Ep\times qk,l

\Bigr\rangle \Bigr\rangle \Biggr) 

= \scrS R\=\sigma \otimes 

\left(  1

\| A\| F \| B\| F

m - 1\sum 
i=0

n - 1\sum 
j=0

p - 1\sum 
k=0

q - 1\sum 
l=0

aijbkl
\bigm| \bigm| \bigm| \bigm| Em\times n

i,j

\bigr\rangle \bigr\rangle \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Ep\times qk,l

\Bigr\rangle \Bigr\rangle \right)  
=

1

\| A\| F \| B\| F

m - 1\sum 
i=0

n - 1\sum 
j=0

p - 1\sum 
k=0

q - 1\sum 
l=0

aijbkl\scrS \=\sigma \otimes 

\bigm| \bigm| \bigm| \bigm| Em\times n
i,j

\bigr\rangle \bigr\rangle \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Ep\times qk,l

\Bigr\rangle \Bigr\rangle 

=
1

\| A\otimes B\| F

m - 1\sum 
i=0

n - 1\sum 
j=0

p - 1\sum 
k=0

q - 1\sum 
l=0

aijbkl

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Emp\times nqpi+k,qj+l

\Bigr\rangle \Bigr\rangle 
= | | A\otimes B\rangle \rangle .

Based on the last proposition, given matrix state preparation circuits \scrU \bfA and
\scrU \bfB we can create a matrix state preparation circuit for \scrU \bfA \otimes \bfB . See Figure 8 for a
graphical description. Thus, we have g\bfA \otimes \bfB = g\bfA + g\bfB and d\bfA \otimes \bfB = max(d\bfA , d\bfB ),
once we apply EliminatePermutations to reduce the gate complexity and depth.
The cost of qmsla.kronecker is O(g\bfA \otimes \bfB ).

3.2.9. Multiple Kronecker products: \bfscrU \bfA \bfone \otimes \bfA \bftwo \otimes \cdot \cdot \cdot \otimes \bfA \bfitk \leftarrow qmsla.kronecker
(\bfscrU \bfA \bfone , . . . ,\bfscrU \bfA \bfitk ). Given a list of state preparation circuits \scrU \bfA 1 , . . .\scrU \bfA k

we can com-
pute \scrU \bfA 1\otimes \bfA 2\otimes \cdot \cdot \cdot \otimes \bfA k

using recursion, with the algorithm from the previous subsection
used to combine results. That is, if k = 1 we simply return the circuit itself. For
k \geq 2 we recursively form \scrU \bfA 1\otimes \cdot \cdot \cdot \otimes \bfA \lfloor k/2\rfloor and \scrU \bfA \lfloor k/2\rfloor +1\otimes \cdot \cdot \cdot \otimes \bfA k

, and then combine
the results to form \scrU \bfA 1\otimes \bfA 2\otimes \cdot \cdot \cdot \otimes \bfA k

using the algorithm from the previous subsection.
Assuming Ai \in \BbbC mi\times ni for i = 1, . . . , k, we have g\bfA 1\otimes \cdot \cdot \cdot \otimes \bfA k

= g\bfA 1 + \cdot \cdot \cdot + g\bfA k
and

d\bfA 1\otimes \cdot \cdot \cdot \otimes \bfA k
=max(d\bfA 1 , . . . , d\bfA k

), once we apply EliminatePermutations to reduce
the gate complexity and depth.

The recursive algorithm has total complexity of O(logk
\sum 2k
i=2 g\bfA i

). This arises
from the fact that each matrix appears in O(logk) EliminatePermutations op-
erations, with a cost of O(g(output)) each. Thus, it is better to use a nonrecursive
algorithm: In particular, we could compute the permutation associated with the Kron-
ecker products upfront, and apply the EliminatePermutations once, to reduce cost
to O(g\bfA 1\otimes \cdot \cdot \cdot \otimes \bfA k

).
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D
ow

nl
oa

de
d 

01
/2

3/
25

 to
 5

.1
98

.1
39

.6
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



QUANTUM MULTIVARIATE TRACE ESTIMATION 189

3.3. Level 2 qMSLA operations. Having defined a basic set of qMSLA prim-
itives, we can start composing them into more complex operations. Here, we describe
a few such operations that prove useful for estimating multivariate traces.

3.3.1. Pad with zero rows and padding diagonally: \bfscrU \bfA \oplus \bfzero (\bftwo \bfitr  - \bfone )\bfitm \times \bfzero 
\leftarrow 

qmsla.pad zero rows(\bfscrU \bfA , \bfitr ) (\bfitr > 0) and \bfscrU \bfA \oplus \bfzero (\bftwo \bfitr  - \bfone )\bfitm \times (\bftwo \bfitk  - \bfone )\bfitn 
\leftarrow qmsla.pad

(A, \bfitr , \bfitk ) (\bfitk , \bfitr > 0). Assuming we already have qmla.pad zero columns(\scrU \bfA ,r), then

qmlsa.pad zero rows(\scrU \bfA , r)
:= qmsla.transpose(qmsla.pad zero columns(qmsla.transpose(\scrU \bfA ), r)).

However, it is easy to see that this amounts to adding an empty register between the
column and the row register. Thus, g\bfA \oplus 0(2r - 1)m\times 0

= g\bfA and d\bfA \oplus 0(2r - 1)m\times 0
= d\bfA .

Both padding operations can be combined to a unified single padding operation:

qmlsa.pad(A, r, k) := qmsla.pad zero rows(qmsla.pad zero columns(\scrU \bfA , k), r)).

This amounts to adding two empty registers: one before the column register and one
between the two registers. Again, g\bfA \oplus 0

(2r - 1)m\times (2k - 1)n
= g\bfA and d\bfA \oplus 0

(2r - 1)m\times (2k - 1)n
=

d\bfA , and the cost is O(g\bfA ).

3.3.2. Matrix adjoint: \bfscrU \bfA \ast \leftarrow qmsla.adjoint(\bfscrU \bfA ). Since A\ast = (A)T we can
compose qmsla.conjugate and qmsla.transpose (the order does not matter) to compute
\scrU \bfA \ast given \scrU \bfA . Thus, g\bfA \ast = g\bfA and d\bfA  \star = d\bfA . The cost is O(g\bfA ).

3.3.3. Overlap: \bfscrU \bfitpsi \ast \bfitphi 
\| \bfitpsi \| \bftwo \| \bfitphi \| \bftwo 

\oplus \bfitxi \leftarrow qmsla.overlap(\bfscrU \bfitpsi ,\bfscrU \bfitphi ). Given two state

preparation circuits \scrU \psi and \scrU \phi of vectors \psi and \phi of the same size, we can build
a state preparation circuit for a unit vector of the form

y=

\left[    
\psi \ast \phi 

\| \psi \| 2\| \phi \| 2

...

...

\right]    .
Thus, the overlap (dot product) appears in the first probability amplitude. The idea is
to first form \scrU \psi \ast from \scrU \psi using qmsla.adjoint, and then apply qmsla.matrix vector to
obtain \scrU \bfy (where we normalize the vector by dividing by \| \psi \| 2). A summary appears
in Algorithm 1. Thus, the number of gates in the resulting circuit is g\psi + g\phi and the
depth is d\psi +d\phi , and the cost of the algorithm is O(g\psi + g\phi ). Note that the resulting
circuit does not use any additional control operation beyond the ones in \scrU \psi and \scrU \phi ,
and no additional qubits.

Algorithm 1 qmsla.overlap.

1: Input: Classical description of the circuits \scrU \psi ,\scrU \phi 
2:
3: \scrU \psi \ast \leftarrow qmsla.adjoint(\scrU \psi )
4: \scrU \bfy \leftarrow qmsla.matrix vec(\scrU \psi \ast ,\scrU \phi )
5: return \scrU \bfy 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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4 )

T UT
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UA2
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A3|0〉log2 n

/

|0〉log2 n
/
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6
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/
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4|0〉log2 n
/

Fig. 9. Visualization of the unitary transform \scrU \phi (\scrU \bfA 2
, . . . ,\scrU \bfA 6

) from the MVTracePrep al-
gorithm, where Ai \in \BbbC n\times n.

4. Encoding multivariate traces in quantum states. In this section, we
leverage qMSLA to introduce our main algorithm: MVTracePrep. Given state
preparation circuits for 2k matrices, MVTracePrep produces two (vector) state
preparation circuits, for which the overlap between the vectors is equal to the multi-
variate trace of the matrices up to normalization. More formally, assuming the inputs
to MVTracePrep are \scrU \bfA 1

, . . . ,\scrU \bfA 2k
, where \scrU \bfA i

is a matrix state preparation cir-
cuit for Ai, MVTracePrep outputs two state preparations circuits \scrU \psi and \scrU \phi for

vectors \psi and \phi (respectively) such that \psi \ast \phi = \bfT \bfr (\bfA 1\bfA 2\cdot \cdot \cdot \bfA 2k)
\| \bfA 1\| F \cdot \cdot \cdot \| \bfA 2k\| F .

A pseudocode description of MVTracePrep appears in Algorithm 2. For illus-
tration purposes, a high-level block circuit diagram of \scrU \phi (\scrU \bfA 2

, . . . ,\scrU \bfA 6
) (i.e., k = 3)

is shown in Figure 9 (\scrU \psi , which depends only on \scrU \bfA 1 , is very simple and is based on
qmsla.pad) with the SWAPs written explicitly (they can be eliminated using Elimi-
natePermutations). In the following subsections, we explain MVTracePrep and
its rationale, and we finally state and prove Theorem 18, which summarizes the main
properties of MVTracePrep.

4.1. Warm-up I: \bfitk = 2. As a warm-up, let us first consider the case of k = 2,
i.e., the trace of the product of four matrices. To keep notation simple, we denote
the four matrices by A,B,C, and D, and we want to compute Tr(ABCD). The
proposed algorithm is based on the following fact.

Fact 15 (Fact 7.4.9 from [6]). Let A \in \BbbC n\times m, B \in \BbbC m\times l, C \in \BbbC l\times k, D \in \BbbC k\times n.
Then,

Tr (ABCD) = vec (A)
T
(B\otimes DT)vec

\bigl( 
CT
\bigr) 
.(4)

This fact can easily be used to implement, via qMSLA operations, an algorithm
that takes \scrU \bfA ,\scrU \bfB ,\scrU \bfC , and \scrU \bfD and outputs two state preparation circuits whose over-
lap is Tr (ABCD) (in the parentheses we show which qMSLA operation is used in
each step):
Step 1: Given \scrU \bfC and \scrU \bfD , using qmsla.tranpose twice, compute circuits for CT and

DT, i.e., \scrU \bfC \mathrm{T} ,\scrU \bfD \mathrm{T} .
Step 2: Given \scrU \bfB and \scrU \bfD \mathrm{T} , using qmsla.kronecker, compute a circuit for B \otimes DT,

i.e., \scrU \bfB \otimes \bfD \mathrm{T} .
Step 3: Given \scrU \bfC \mathrm{T} , using qmsla.vec, compute a circuit for vec(CT), i.e., \scrU \bfv \bfe \bfc (\bfC \mathrm{T}).
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Algorithm 2 MVTracePrep.

1: Input: Classical description of the circuits \scrU \bfA 1
, \cdot \cdot \cdot \scrU \bfA 2k

2:
3: \{ Constructing \scrU \psi \} 
4: \scrU \bfA 1

\leftarrow qmsla.conjugate(\scrU \bfA 1)
5: \scrU \psi \leftarrow qmsla.pad zero rows(qmsla.vec(\scrU \bfA 1

), log2 n3n4 \cdot \cdot \cdot n2k)
6:
7: \{ Constructing \scrU \phi \} 
8: p\leftarrow k+ 1
9: for i= p to i= 2k do
10: \scrU \bfA \mathrm{T}

i
\leftarrow qmsla.transpose(\scrU \bfA i)

11: end for
12: if k is odd then
13: leven\leftarrow (k+ 1)/2 and lodd\leftarrow (k - 1)/2
14: \scrU 

\bfF 
(1)
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}
\leftarrow \scrU \bfA \mathrm{T}

p
\{ State prep for E(k+1)/2,k =AT

p \} 
15: \scrU 

\bfF 
(1)
\mathrm{o}\mathrm{d}\mathrm{d}

\leftarrow qmsla.kronecker(\scrU \bfA p - 1
,\scrU \bfA \mathrm{T}

p+1
) \{ State prep for Oi,k =Ap+1 \otimes AT

p - 1\} 
16: else
17: leven\leftarrow k/2 and lodd\leftarrow k/2
18: \scrU 

\bfF 
(1)
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}
\leftarrow qmsla.kronecker(\scrU \bfA p - 1

,\scrU \bfA \mathrm{T}
p+1

) \{ State prep for Ei,k =Ap+1 \otimes AT
p - 1\} 

19: \scrU 
\bfF 

(1)
\mathrm{o}\mathrm{d}\mathrm{d}

\leftarrow \scrU \bfA \mathrm{T}
p
\{ State prep for Ok/2,k =AT

p \} 
20: end if
21: for i= 2 to i= 2k - p do
22: if p+ i is odd then
23: \scrU \bfO \mathrm{i},\mathrm{k}

\leftarrow qmsla.kronecker(\scrU \bfA p - i ,\scrU \bfA \mathrm{T}
p+i

)

24: \scrU 
\bfF 

(i)
\mathrm{o}\mathrm{d}\mathrm{d}

\leftarrow qmsla.kronecker(\scrU \bfO \mathrm{i},\mathrm{k}
,qmsla.rvec(\scrU 

\bfF 
(i - 1)
\mathrm{o}\mathrm{d}\mathrm{d}

))

25: else
26: \scrU \bfE \mathrm{i},\mathrm{k}

\leftarrow qmsla.kronecker(\scrU \bfA p - i ,\scrU \bfA \mathrm{T}
p+i

)

27: \scrU 
\bfF 

(i)
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}
\leftarrow qmsla.kronecker(\scrU \bfE \mathrm{i},\mathrm{k}

,qmsla.rvec(\scrU 
\bfF 

(i - 1)
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}

))

28: end if
29: end for
30: \scrU \phi \leftarrow qmsla.matrix vec(\scrU 

\bfF 
(l\mathrm{o}\mathrm{d}\mathrm{d})
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}

,qmsla.vec(\scrU 
\bfF 

(l\mathrm{o}\mathrm{d}\mathrm{d})

\mathrm{o}\mathrm{d}\mathrm{d}

))

31:
32: return \scrU \psi ,\scrU \phi 

Step 4: Given \scrU \bfB \otimes \bfD \mathrm{T} and \scrU \bfv \bfe \bfc (\bfC \mathrm{T}), using qmsla.matrix vec, compute a circuit for
(\bfB \otimes \bfD \mathrm{T})\bfv \bfe \bfc (\bfC \mathrm{T})
\| \bfB \| F \| \bfD \| F \| \bfC \| F \oplus \xi 

\prime for some garbage \xi \prime \in \BbbC kl(mn - 1). Note that we use the

fact that \| vec(CT)\| 2 = \| C\| F and \| B\otimes DT\| F = \| B\| F \| D\| F . This is output
\scrU \phi .

Step 5: Given \scrU \bfA , using qmsla.conjugate, compute a circuit for A, i.e., \scrU \bfA .
Step 6: Given \scrU \bfA , using qmsla.vec, compute a circuit for vec(A), i.e., \scrU \bfv \bfe \bfc (\bfA ).

Step 7: Given \scrU \bfv \bfe \bfc (\bfA ), using qmsla.pad zero rows, compute a circuit for vec(A) \oplus 
0kl(mn - 1). This is output \scrU \psi .

Once we have \scrU \phi and \scrU \psi , we can estimate the overlap in order to estimate
Tr(ABCD). For example, we can use Algorithm 1.
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192 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

Proposition 16. Consider circuits \scrU \psi and \scrU \phi which are the output of the steps
described above. Consider the circuit which is the result of Algorithm 1 applied to \scrU \psi 
and \scrU \phi . It is a state preparation circuit for the vector

Tr (ABCD)

\| A\| F \| B\| F \| C\| F \| D\| F
\oplus \xi 

for some vector \xi \in \BbbC mnkl - 1.

Proof. Clearly \scrU \phi is a state preparation circuit for \phi = (\bfB \otimes \bfD \mathrm{T})\bfv \bfe \bfc (\bfC \mathrm{T})
\| \bfB \| F \| \bfD \| F \| \bfC \| F \oplus \xi 

\prime for

some garbage \xi \prime \in \BbbC kl(mn - 1), and \scrU \psi is a state preparation circuit for \psi = vec(A)\oplus 
0kl(mn - 1). We have that

\psi \ast \phi =
\bigl( 
vec

\bigl( 
A
\bigr) 
\oplus 0lk(mn - 1)

\bigr) \ast \Biggl( (B\otimes DT)vec
\bigl( 
CT
\bigr) 

\| B\| F \| D\| F \| C\| F
\oplus \xi \prime 

\Biggr) 

=
\bigl( 
vec (A)\oplus 0lk(mn - 1)

\bigr) T\Biggl( (B\otimes DT)vec
\bigl( 
CT
\bigr) 

\| B\| F \| D\| F \| C\| F
\oplus \xi \prime 

\Biggr) 

= vec (A)
T (B\otimes DT)vec

\bigl( 
CT
\bigr) 

\| B\| F \| D\| F \| C\| F

=
Tr (ABCD)

\| B\| F \| D\| F \| C\| F
.

Algorithm 1 on \scrU \psi and \scrU \phi computes a state preparation circuit for the vector

\psi \ast \phi 

\| \psi \| 2\| \phi \| 2
\oplus \xi = Tr (ABCD)

\| A\| F \| B\| F \| C\| F \| D\| F
\oplus \xi 

for some garbage \xi \in \BbbC mnkl - 1. This is because \| \psi \| 2 = \| A\| F and \| \phi \| 2 = 1 (since it
is the result of qmsla.matrix vec).

4.2. Warm-up II: \bfitk = 3. For six matrices (k = 3) there is no simple multi-
variate trace formula. However, we can twice clamp together two of the matrices to
reduce the number of matrices to four, and apply (4). Further algebra reduces the
trace to a formula that can be encoded using qMSLA operations. More concretely,

Tr (A1A2A3A4A5A6) =Tr (A1(A2A3)A4(A5A6))

= vec (A1)
T
(A2A3 \otimes AT

6 A
T
5 )vec

\bigl( 
AT

4

\bigr) 
= vec (A1)

T
(A2 \otimes AT

6 )(A3 \otimes AT
5 )vec

\bigl( 
AT

4

\bigr) 
=Tr

\Bigl( 
vec (A1)

T
(A2 \otimes AT

6 )(A3 \otimes AT
5 )vec

\bigl( 
AT

4

\bigr) \Bigr) 
= vec

\Bigl( 
vec (A1)

T
\Bigr) T \Bigl( 

A2\otimes AT
6 \otimes vec

\bigl( 
AT

4

\bigr) T\Bigr) 
vec

\bigl( 
A3\otimes AT

5

\bigr) 
= vec (A1)

T
\Bigl( 
A2 \otimes AT

6 \otimes vec
\bigl( 
AT

4

\bigr) T\Bigr) 
vec

\bigl( 
A3 \otimes AT

5

\bigr) 
.(5)

In the above, we applied (4) to matrices A1,A2A3,A4 and A5A6. In the third
equality, we used the Kronecker mixed product property. In the fourth equality we
used the fact that Tr(c) = c for scalars. Finally, we apply (4) again, this time on the
matrices vec(A1)

T,A2 \otimes AT
6 ,A3 \otimes AT

5 and vec(AT
4 ).

Equation (5) can be used to design, via qMSLA operations, circuits \scrU \phi and \scrU \psi for

\phi =

\Bigl( 
A2 \otimes AT

6 \otimes vec
\bigl( 
AT

4

\bigr) T\Bigr) 
vec

\bigl( 
A3 \otimes AT

5

\bigr) 
\| A2\| F \cdot \cdot \cdot \| A6\| F

\oplus \xi \prime 
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QUANTUM MULTIVARIATE TRACE ESTIMATION 193

and

\psi = vec
\bigl( 
A1

\bigr) 
\oplus 0w

for some garbage \xi \prime and appropriate size w. Computing overlap using Algorithm 1
produces the state

Tr (A1A2 \cdot \cdot \cdot A6)

\| A1\| F \cdot \cdot \cdot \| A6\| F
\oplus \xi 

for some garbage \xi . We omit the details and move directly to arbitrary k > 2, as the
details are very similar to the case of k= 2.

4.3. Multivariate trace formula for \bfitk > 2. We now consider the trace of the
product of A1, . . . ,A2k. We clamp A2 with A3 and A2k - 1 with A2k, finding that
we need to compute the trace of the product of A1,A2A3,A4, . . .A2k - 2,A2k - 1A2k.
These are 2k - 2 matrices. So, we recursively apply the formula for 2k - 2 inputs, and
after using again the Kronecker mixed product property and the fact thatTr (c) = c for
scalars, we obtain a multivariate trace formula. The details are somewhat technical,
so we first give the final result, and then prove it inductively.

First, we need a few additional notations. Given matrices A1, . . .A2k, we define
the following set of matrices:

Ei,k :=A2i \otimes AT
2(k+1 - i), i= 1, . . . ,

\biggl\lfloor 
k

2

\biggr\rfloor 
,

E(k+1)/2,k :=AT
k+1 (k is odd),

Oi,k :=A2i+1 \otimes AT
2(k - i)+1, i= 1, . . . ,

\biggl\lfloor 
k - 1

2

\biggr\rfloor 
,

Ok/2,k :=AT
k+1 (k is even).

Each of the matrices \{ Ei,k\} and \{ Oi,k\} pairs two matrices (except for the pivotal
matrix, which is not paired) of the sequence A2, . . . ,A2k via the Kronecker product.
Each matrix appears exactly once. The E matrices pair even indexed matrices, and
the O matrices pair odd indexed matrices. Next, we define a series of functions,
F (1), F (2), . . . , where F (p) is p-ary and given by

F (1)(X) :=X,

F (p)(X1, . . . ,Xp) :=X1 \otimes vec
\Bigl( 
F (p - 1)(X2, . . . ,Xp)

\Bigr) 
.

Theorem 17. With the above notations, if k is even

MTr2k (A1, . . . ,A2k)

= vec (A1)
T
F (k/2)(E1,k, . . . ,Ek/2,k)vec

\Bigl( 
F (k/2)(O1,k, . . . ,Ok/2,k)

\Bigr) 
and if k is odd

MTr2k (A1, . . . ,A2k)

= vec (A1)
T
F ((k+1)/2)(E1,k, . . . ,E(k+1)/2,k)vec

\Bigl( 
F ((k - 1)/2)(O1,k, . . . ,O(k - 1)/2,k)

\Bigr) 
.
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194 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

Proof. We prove the theorem by induction on k. For the base case, note that
k= 2 is exactly (4):

Tr (A1 \cdot \cdot \cdot A4) = vec (A1)
T
A2 \otimes AT

4 vec
\bigl( 
AT

3

\bigr) 
= vec (A1)

T
F (1)(E1,k)vec

\Bigl( 
F (1)(O1,k)

\Bigr) 
.

The inductive step is slightly different if k is even or odd. However, the difference
is very minor and sums up with slightly modified indices. Thus, for conciseness, we
show the inductive step only for even k to odd k+ 1. That is, assuming the formula
holds for an even k, we prove that the following formula (which is the formula for
k+ 1) holds:

Tr (A1A2 \cdot \cdot \cdot A2kA2k+1A2k+2)

= vec (A1)
T
F ((k+2)/2)(E1,k+1, . . . ,E(k+2)/2,k+1)

\times vec
\Bigl( 
F (k/2)(O1,k+1, . . . ,Ok/2,k+1)

\Bigr) 
.

To see that, we first note that

Tr (A1 \cdot \cdot \cdot A2k+2)

=Tr (A1(A2A3) \cdot \cdot \cdot A2k(A2k+1A2k+2))

= vec (A1)
T
F (

k
2 )(A2A3 \otimes AT

2k+2A
T
2k+1,O2,k+1, . . . ,O k

2 ,k+1)

\times vec
\Bigl( 
F (

k
2 )(E2,k+1, . . . ,E k+1

2 ,k+1)
\Bigr) 

= vec (A1)
T

\biggl( 
A2A3 \otimes AT

2k+2A
T
2k+1 \otimes vec

\Bigl( 
F (

k - 2
2 )(O2,k+1, . . . ,O k

2 ,k+1)
\Bigr) T\biggr) 

\times vec
\Bigl( 
F (

k
2 )(E2,k+1, . . . ,E k+1

2 ,k+1)
\Bigr) 

= vec (A1)
T
(A2 \otimes AT

2k+2)(A3 \otimes AT
2k+1)\otimes vec

\Bigl( 
F (

k - 2
2 )(O2,k+1, . . . ,O k

2 ,k+1)
\Bigr) T

\times vec
\Bigl( 
F (

k
2 )(E2,k+1, . . . ,E k+1

2 ,k+1)
\Bigr) 

= vec (A1)
T
(A2 \otimes AT

2k+2)

\biggl( 
A3 \otimes AT

2k+1 \otimes vec
\Bigl( 
F (

k - 2
2 )(O2,k+1, . . . ,O k

2 ,k+1)
\Bigr) T\biggr) 

\times vec
\Bigl( 
F (

k
2 )(E2,k+1, . . . ,E k+1

2 ,k+1)
\Bigr) 
.

In the second equality, we applied the inductive assumption. However, note that
due to index shift the even labeled pairs (E matrices) become odd labeled pairs (O
matrices), except for the first index. In the third equality we apply the recursive
definition of F (k/2), and in the fourth equality we use the Kronecker mixed product
property. The fifth equality follows by the fact that for any two matrices A,B and
row vector x, we have (AB)\otimes x=A(B\otimes x) [6, Fact 7.4.20]. Finally, we can always
put a trace around scalars and utilize (4) once again, to find that

Tr (A1 \cdot \cdot \cdot A2k+2)

= vec (A1)
T
A2 \otimes AT

2k+2 \otimes vec
\Bigl( 
F (

k
2 )(E2,k+1, . . . ,E k+1

2 ,k+1)
\Bigr) T

\times vec

\biggl( 
A3 \otimes AT

2k+1 \otimes vec
\Bigl( 
F (

k - 2
2 )(O2,k+1, . . . ,O k

2 ,k+1)
\Bigr) T\biggr) 

= vec (A1)
T
F (

k+2
2 )(E1,k+1, . . . ,E k+2

2 ,k+1)vec
\Bigl( 
F (

k
2 )(O1,k+1, . . . ,O k

2 ,k+1)
\Bigr) 
,
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QUANTUM MULTIVARIATE TRACE ESTIMATION 195

where in the second equality we applied the recursive definition of F ((k+2)/2) and
F (k/2) in reverse.

4.4. MVTracePrep. AlgorithmMVTracePrep implements the general trace
formula described in the previous subsection using qMSLA operations.

Theorem 18. Given classical descriptions of matrix state preparation circuits
\scrU \bfA 1

, . . .\scrU \bfA 2k
of matrices A1, . . . ,A2k, where the size of Ai is ni - 1\times ni for n0, . . . , n2k,

such that n0 = n2k, all of which are powers of 2, Algorithm MVTracePrep (Algo-
rithm 2) outputs two (vector) state preparation circuits, \scrU \psi for a vector \psi and \scrU \phi for

a vector \phi , on q= 2
\sum 2k
i=1 log2 ni qubits, such that

\langle \psi | \phi \rangle = Tr (A1 \cdot \cdot \cdot A2k)

\| A1\| F \cdot \cdot \cdot \| A2k\| F
.

\scrU \psi depends only on A1, while \scrU \phi depends only on A2, . . . ,A2k. The classical cost of

the algorithm is O(
\sum 2k
i=1 g\bfA i). The depth of \scrU \psi is d\bfA 1 and the gate complexity is g\bfA 1 .

The depth of \scrU \phi is maxi\in [2,4,\cdot \cdot \cdot ,2k] d\bfA i +maxi\in [3,5,\cdot \cdot \cdot ,2k - 1] d\bfA i and the gate complexity

is
\sum 2k
i=2 g\bfA i

.

Proof. Correctness of the algorithm follows Theorem 17, since it simply imple-
ments the various parts of the formula using qMSLA operations. Indeed, \scrU 

\bfF 
(i)
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}

and
\scrU 
\bfF 

(i)
\mathrm{o}\mathrm{d}\mathrm{d}

are state preparation circuits for

F(i)
even := F (i)(E1,k, . . . ,Ei,k),

F
(i)
odd := F (i)(O1,k, . . . ,Oi,k),

respectively, and \scrU \bfO i,k
and \scrU \bfE i,k are state preparation forOi,k and Ei,k (respectively).

However, further explanations are needed for lines 4 and 29. Since the output of
qmsla.matrix vec is a state preparation for the product with garbage, line 29 creates
a state preparation circuit for

\phi =

\left\{           
F (k/2)(\bfE 1,k, . . . ,\bfE k/2,k)\bfv \bfe \bfc 

\Bigl( 
F (k/2)(\bfO 1,k, . . . ,\bfO k/2,k)

\Bigr) 
\| \bfA 2\| F \cdot \cdot \cdot \| \bfA 2k\| F

\oplus \xi \prime k is even,

F ((k+1)/2)(\bfE 1,k, . . . ,\bfE (k+1)/2,k)\bfv \bfe \bfc 
\Bigl( 
F ((k - 1)/2)(\bfO 1,k, . . . ,\bfO (k - 1)/2,k)

\Bigr) 
\| \bfA 2\| F \cdot \cdot \cdot \| \bfA 2k\| F

\oplus \xi \prime k is odd.

To avoid the garbage contaminating the overlap, the algorithm set \psi to be equal to
vec(A1) padded with zeros. Thus, line 4 creates a state preparation circuit for

\psi = vec
\bigl( 
A1

\bigr) 
\oplus 00\times log2 n3n4\cdot \cdot \cdot n2k .

According to Theorem 17, we have that \psi \ast \phi = \bfT \bfr (\bfA 1\cdot \cdot \cdot \bfA 2k)
\| \bfA 1\| F \cdot \cdot \cdot \| \bfA 2k\| F .

We are left with analyzing the gate and depth complexities, along with the run-
ning time, considering qubit sizes. For \scrU \psi , following the conjugation and padding
of \scrU \bfA 1

, the gate and depth complexities are g\bfA 1
and d\bfA 1

, respectively, resulting in
a running time of O(g\bfA 1

). Subsequently, Kronecker products and the matrix vector
product introduce no additional complexity in terms of depth and gate complex-
ity. Consequently, the depth d\scrU \phi is maxi\in [2,4,\cdot \cdot \cdot ,2k] d\bfA i + maxi\in [3,5,\cdot \cdot \cdot ,2k - 1] d\bfA i , and

the gate complexity is
\sum 2k
i=2 g\bfA i

. The qubit count of both circuits is determined by
the sizes of matrices with even indices, given that \scrU \bfA i

has dimensions ni - 1 \times ni for
n0, . . . , n2k, where n0 = n2k. Thus, the qubit count is q= 2

\sum 2k
i=1 log2 ni.
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196 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

Now consider the running time. In the description in Algorithm 2 we use qMSLA
operations, each having complexity of O(g(output)). Unfortunately, this does not
imply that the final output of a sequence of qMSLA operations has complexity of
O(g(output)). Specifically, the description of MVTracePrep results in complexity
which is O(logk

\sum 2k
i=2 g\bfA i) (this is because each matrix appears in O(logk) qMSLA

operations, and for each one you pay for its gate complexity). However, a careful
implementation of the algorithm that writes parts of \scrU \bfA 1

, . . . ,\scrU \bfA 2k
to their final place,

and delays EliminatePermutations to the end, allows us to shave off the logk
factor. We defer the details to Appendix C.

5. Estimating multivariate traces. Algorithm MVTracePrep encodes
MTr2k(A1, . . . ,A2k) using two state preparation circuits \scrU \phi and \scrU \psi , where to overlap
between | \phi \rangle and | \psi \rangle is equal to MTr2k(A1, . . . ,A2k) up to normalization. These two
circuits can be used in the context of a larger quantum algorithm, or used to directly
estimate MTr2k(A1, . . . ,A2k) using various algorithms for estimating overlap (e.g.,
Hadamard test, swap test, and Algorithm 1; each can be combined with amplitude es-
timation acceleration [44, Example 4.5]). Here we analyze the overall cost needed for
estimating MTr2k(A1, . . . ,A2k) up to additive \epsilon error and discuss implications in the
context of an end-to-end algorithm that starts with matrices A1, . . . ,A2k explicitly
stored in classical memory. We focus on using the Hadamard test, and for simplicity
we assume the matrices are real. For complex matrices we need to employ the Hada-
mard test twice (the real and imaginary versions), but the analysis is essentially the
same.

Following (2), we have

HT\scrU \ast 
\psi \scrU \phi | 0\rangle 1 | 0\rangle q =

1

2
(| 0\rangle 1 (\scrI + \scrU 

\ast 
\psi \scrU \phi ) | 0\rangle q + | 1\rangle 1 (\scrI  - \scrU 

\ast 
\psi \scrU \phi ) | 0\rangle q)

for q= 2
\sum 2k
i=1 log2 ni. Due to (3) and the fact that the matrices are real we get that

p(0) =
1

2

\biggl( 
1 +Tr

\biggl( 
A1 \cdot \cdot \cdot A2k

\| A1\| F \cdot \cdot \cdot \| A2k\| F

\biggr) \biggr) 
,

where p(0) denotes the probability of measuring 0 in the first qubit (when only that
qubit is measured). Next, we compute an approximation \~p of p := p(0), and then we
can build an approximation \~t\approx t :=Tr( \bfA 1\cdot \cdot \cdot \bfA 2k

\| \bfA 1\| F \cdot \cdot \cdot \| \bfA 2k\| F ) via

\~t := 2\~p - 1.

Using quantum phase estimation we can estimate \~p s.t. | p - \~p| \leq \epsilon \prime with total com-
plexity (depth times shots) of O(\epsilon \prime 

 - 1
maxi(d\bfA i

)) (see [44, section 4.2]) and we have
that \bigm| \bigm| t - \~t

\bigm| \bigm| = | (2p - 1) - (2\~p - 1)| 
= 2 | p - \~p| 
\leq 2\epsilon \prime .

Thus, the total complexity is O(\epsilon  - 1maxi(d\bfA i
)) for approximating Tr( \bfA 1\cdot \cdot \cdot \bfA 2k

\| \bfA 1\| F \cdot \cdot \cdot \| \bfA 2k\| F )

to additive error \epsilon . Since \bfT \bfr (\bfA 1\cdot \cdot \cdot \bfA 2k)
\| \bfA 1\| F \cdot \cdot \cdot \| \bfA 2k\| F = Tr( \bfA 1\cdot \cdot \cdot \bfA 2k

\| \bfA 1\| F \cdot \cdot \cdot \| \bfA 2k\| F ), the total complexity

is O(\epsilon  - 1\| A1\| F \cdot \cdot \cdot \| A2k\| F maxi(d\bfA i)) for approximating Tr(A1 \cdot \cdot \cdot A2k) to \epsilon additive
error.
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QUANTUM MULTIVARIATE TRACE ESTIMATION 197

5.1. Quantum multivariate trace estimation with classical inputs. Con-
sider the case that the matricesA1, . . . ,A2k \in \BbbR n\times n are given in classical memory, and
our goal is to approximate MTr2k(A1, . . . ,A2k) to additive error \epsilon . For simplicity of
analysis, we assume that all matrices are n\times n. We do not assume sparsity of Ai (i.e.,
for each i we treat Ai as dense) or any other special property, like positive definite-
ness. To employ MVTracePrep, we need state preparation circuits \scrU \bfA 1

, . . . ,\scrU \bfA 2k
.

Given a classically stored matrix A \in \BbbC m\times n, a state preparation circuit for A can
be built using the algorithm described in [62] in O(mn). So the total combined cost
(classical, one time) of building \scrU \bfA 1

, . . . ,\scrU \bfA 2k
is O(kn2), and the depth of each circuit

is O(n2). The costs of the output of the MVTracePrep are

q= 4k log2 n+ 1, g=O(kn2), d=O(n2).

The classical cost of MVTracePrep is also O(kn2).
Using the Hadamard test and quantum phase estimation, as in the previous

subsection, we get total quantum complexity for \epsilon additive error of O(\epsilon  - 1\| A1\| F \cdot \cdot \cdot 
\| A2k\| Fn2). Thus, the total cost, classical and quantum, of approximating MTr2k
(A1, . . . ,A2k) to additive \epsilon error with constant probability is

O
\bigl( 
n2(k+ \epsilon  - 1\| A1\| F \cdot \cdot \cdot \| A2k\| F )

\bigr) 
.

By taking the median of O(log(1/\delta )) different executions of the algorithm, we can
boost the success probability to at least 1  - \delta , so the running time is O(n2(k +
\epsilon  - 1\| A1\| F \cdot \cdot \cdot \| A2k\| F log(1/\delta ))) for an additive (\epsilon , \delta ) estimator.

Comparison to classical methods. We now compare our algorithm to multi-
variate trace estimators that use only classical computation. The simplest classical
approach is to compute A1A2 \cdot \cdot \cdot A2k and then sum the diagonal entries. This al-
gorithm requires O(n3k) arithmetic operations and provides an exact value for the
matrix product trace. Our algorithm reduces the dependence on n from n3 to n2, but
provides a stochastic estimate.

More appropriate baselines are classical stochastic trace estimators. The state-
of-the-art algorithm is Hutch++ [49], which requires O(\epsilon  - 1 log(1/\delta )) matrix vector
products for a relative (\epsilon , \delta ) estimator for a symmetric positive definite A. Com-
puting the product of A = A1 \cdot \cdot \cdot A2k with a vector can be accomplished in O(n2k)
using repeated matrix-vector products. Overall, the cost of Hutch++ for the case we
consider in this section is O(n2k\epsilon  - 1 log(1/\delta )). In comparison, in our algorithm the
factor n2k does not appear with \epsilon and \delta . So, as long as \| A1\| F \cdot \cdot \cdot \| A2k\| F = o(k) we
improve the running time compared to Hutch++, though Hutch++ guarantees are
relative and not additive.

However, one can argue that using parallel computing with k compute nodes can
trivially reduce the cost of Hutch++ to O(n2\epsilon  - 1 log(1/\delta )), and this is a fairer com-
parison since our algorithm uses O(k) qubits. In fact, when input data is given in
an unstructured dense classical manner, it is hard to achieve any quantum advantage
since encoding the data will immediately incur an exponential cost in the number of
qubits. The classical algorithm for encoding a vector of size 2N as the amplitudes of
an N -qubit circuit (the algorithm from [62], which is implemented in various quantum
computing frameworks) requires O(2N ) gate complexity and depth. Yet, there is a
trade-off between the number of qubits and depth: recently it was shown [3] that a
quantum circuit with a depth of O(N2) and O(2N ) qubits can effectively load a 2N -
dimensional vector into a quantum state (here the quantum system has ancilla qubits).
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198 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

Regardless, an exponential cost is involved, and any exponential (or even polynomial)
reduction in cost (compared to classical) in any downstream algorithm (as is the case
for our algorithm) gets nullified.

The main potential for our algorithm is when the input matrices are huge matri-
ces with compact quantum circuit description. In such scenarios we have an encoding
of the matrices in an exponentially sized Hilbert space, but only pay costs that are
(hopefully) linear or polynomial in the number of qubits. Such situations can only
occur for scenarios where we can construct meaningful matrices directly on the quan-
tum state. The most likely candidates are Hamiltonians of quantum systems. Another
avenue worth exploring involves encoding a clever approximation of matrix A, rather
than encoding A directly. One can hope that such approximations could be generated
using cost-effective operations in the quantum domain, particularly those that have
low depth. Presumably, one can attempt to find such approximations that are not
necessarily cheaper in terms of matrix size, but more easily encoded into the quantum
state (depthwise), while preserving the spectral properties of A up to a small error.
We leave exploring these directions to future research.

We stress that the above discussion holds only for positive definite matrices, while
our algorithm is more general and can even be used to estimate multivariate traces of
nonsymmetric input matrices.

5.2. From multivariate traces to spectral sums. Multivariate trace esti-
mation can be used for spectral sum estimation, via polynomial approximation. A
well- established approach is to estimate Tr(f(A)) using Tr(p(A)) where p(\cdot ) is a
polynomial that approximates f(\cdot ). We do not consider how p(\cdot ) is computed; we
focus solely on how Tr(p(A)) can be computed via multivariate traces.

We suggest two methods for this task. The first is to use matrix moments. Sup-
pose p(x) =

\sum L
k=0 ckx

k is an L-degree polynomial. Then,

Tr (p(A)) =

L\sum 
k=0

ckTr
\bigl( 
Ak
\bigr) 
.

Therefore, we can approximate Tr(Ak) for k= 0, . . . ,L using our algorithm.3 As long
as we have access to enough qubits, we can compute them in parallel. Using these
trace values, the sum is computed classically.

The second approach translates Tr(p(A)) to a single multivariate trace. We first
rewrite p(x) in a factored form:

p(x) = cL(x - r1)(x - r2) \cdot \cdot \cdot (x - rL).

The shifts r1, . . . , rL are the roots of p(\cdot ), and as long as the polynomial has positive
degree they exist (perhaps with multiplicity in some of the roots). Now,

p(A) = cL(A - r1I)(A - r2I) \cdot \cdot \cdot (A - rLI)

so Tr(p(A)) = cLMTrL(A - r1I, . . . ,A - rLI).
It is well known that the roots of a polynomial expressed as a linear combination

of monomials, i.e., p(x) =
\sum L
k=0 ckx

k, are equal to the eigenvalues of the L \times L
companion matrix:

3For odd degrees we add a state preparation circuit for the identity matrix as input.
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QUANTUM MULTIVARIATE TRACE ESTIMATION 199\left[       
1 0 \cdot \cdot \cdot 0 0
0 1 \cdot \cdot \cdot 0 0
...

...
. . .

...
...

0 0 \cdot \cdot \cdot 1 0
 - c1/c0  - c2/c0 \cdot \cdot \cdot  - cL - 1/c0  - cL/c0

\right]       .

Indeed, the MATLAB roots function implements exactly this method. However, this
method has numerical stability issues, and there are better methods based on express-
ing the polynomial in the Chebyshev basis. See [66, Chapter 18] for a discussion.

The polynomial factorization based approach requires L distinct but related input
matrix state preparation circuits: each one of them is a preparation circuit of an A
shifted by some constant. This is in contrast to the moments based method, which
requires a single preparation circuit (for A only). Thus, this approach is especially
appealing in cases where we can generate circuits of shifted variants of A once we
have some base preparation circuit A itself.

6. Conclusions. In this work, we have presented a new quantum algorithm for
approximating multivariate traces. To that end we introduce the qMSLA framework.
qMSLA builds a set of fundamental matrix algebra building block operations for
circuits that encode matrices in quantum states. qMSLA facilitates the seamless
composition of basic operations to construct circuits, as we demonstrate with our
construction of circuits that encode multivariate traces.

We view the qMSLA-based approach as a conceptually promising paradigm for
designing a quantum algorithm for QLA and QML via high-level building blocks.
However, the current set of operations supported is limited, and this limits the set of
matrix computations that can be implemented. In particular, qMSLA is not expressive
enough to solve linear equations, solve least squares, compute eigenvalues, etc. For
broader applicability, qMSLA must be expanded. We envision several avenues for
future expansion of qMSLA via additional research:

\bullet Enrich the set of qMSLA operations: Incorporating additional im-
portant level-1 operations will allow us to express a wider array of matrix
algorithms. The two most important operations are matrix addition and
matrix-matrix multiplication. The former can be implemented using the lin-
ear combination of unitaries technique, while the latter is quite similar to the
already present matrix-vector product. Also, further expanding the existing
set of level 2 operations within qMSLA will further enhance its versatility
and enable the efficient construction of low-depth circuits for complex matrix
computations.

\bullet Extended matrix state preparation circuits: Developing an extended
version of the qMSLA framework that can handle ``garbage"" in ancilla qubits
of inputs and outputs is crucial. Quantum computations often involve in-
termediate results that are not essential for the final outcome. A framework
capable of efficiently dealing with such garbage data will significantly improve
the overall efficiency, as it will allow a wider set of basic matrix operations.

\bullet Methods for building efficient state preparation circuits: While the
qMSLA approach holds promise, the inputs are state preparation circuits,
so real-world application requires efficient state preparation circuits so that
we can even consider using qMSLA for them. Developing a suite of algo-
rithms for constructing state preparation circuits will dramatically enhance
the applicability of qMSLA.
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200 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

Appendices. The structure of the appendices is outlined as follows:
\bullet In Appendix A, we provide a detailed description of level 0 qMSLA opera-

tions. These fundamental circuit-level operations serve as building blocks for
higher levels of qMSLA operations.

\bullet Appendix B gives implementation details for level 1 qMSLA. In particular,
Appendix B defines a data structure for describing matrix state preparation
circuits and provides pseudocodes for all level 1 operations.

\bullet Appendix C describes a more efficient variant of MVTracePrep.

Appendix A. Level 0 qMSLA. In order to describe the implementation of
qMSLA in a concise yet complete framework independent manner, we base qMSLA's
implementation on a set of basic circuit level operations. We group these operations as
``level 0 qMSLA."" However, we stress that these operations are at the circuit level and
do not operate on state preparation circuits. In the next appendix, we explain how to
implement all level 1 qMSLA operations in terms of level 0 operations. We emphasize
that while our description of level 0 operations is independent of various quantum
computing frameworks (e.g., QISKIT, Q\#, PennyLane), nearly all operations are
present in such frameworks under various names. There are a couple of operations
that are not always present (circuit transpose and conjugate). For these we provide
implementation details.

As a design choice, all qMSLA operations we describe (here, and in subsequent
sections) are assumed to be nondestructive; they accept circuits and return a new
circuit, without overwriting inputs. Of course, in the context of an algorithm that is
implemented using a sequence of qMSLA operations, it is possible to use destructive
operations for more efficient implementation. We view this as a type of complier
optimization, which we leave for future research.

Table 3 provides a summary of all level 0 qMSLA operations. In the following
subsections, we provide additional details.

A.1. Creating new circuits: \bfscrU \leftarrow qmsla.qc empty(q), \bfscrU \leftarrow qmsla.qc
tensor(\bfscrQ ,\bfscrW ), \bfscrU \leftarrow qmsla.qc compose(\bfscrW ,\bfitQ ,\bfitsigma ). The first set of level 0 opera-
tions concern creating a new circuit. Circuits can be created in three ways: initiat-
ing an empty circuit, taking the tensor product of two circuits, and composing two
circuits.

Table 3
Level 0 qMSLA operations. These are basic circuit-level operations that allow us to imple-

ment higher-level qMSLA operations. The classical cost for these operations remains consistently
O(g(output)). In the table, \scrU ,\scrW ,\scrQ are quantum circuits, \scrG is a quantum gate, \sigma is a permutation,
and \delta is a list of qubit indices.

Input Output q(output) g(output) d(output) Operation name Subsection

q \scrI q q 0 0 qmsla.qc empty A.1
\scrW ,\scrQ \scrQ \otimes \scrW q(\scrW ) + q(\scrQ ) g(\scrW ) + g(\scrQ ) max(d(\scrW ), d(Q)) qmsla.qc tensor A.1

\scrW ,\scrQ , \sigma \scrS \sigma  - 1\scrQ \scrS \sigma \scrW q(\scrW ) g(\scrW ) + g(\scrQ ) d(\scrW ) + d(Q) qmsla.qc compose A.1

\scrQ , \scrG ,\delta \scrG \delta \scrQ q(\scrQ ) g(\scrQ ) + 1 d(\scrQ ) + 1 qmsla.qc add gate A.2
\scrU \scrU T q(\scrU ) g(\scrU ) d(\scrU ) qmsla.qc transpose A.3

\scrU \scrU q(\scrU ) g(\scrU ) d(\scrU ) qmsla.qc conjugate A.3
\scrU \scrU  - 1 q(\scrU ) g(\scrU ) d(\scrU ) qmsla.qc inverse A.3

\scrW , \sigma \scrS \sigma \scrW 4 q(\scrW ) g(\scrW ) d(\scrW ) qmsla.qc permute bits A.4
4Equality here holds only on the ground state. That is, if \scrU is the output, we only require that \scrU | 0\rangle q(\scrW ) =

\scrS \sigma \scrW | 0\rangle q(\scrW ).
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QUANTUM MULTIVARIATE TRACE ESTIMATION 201

\bfscrU \leftarrow qmsla.qc empty(\bfitq ). Create a new empty (no gates) circuit \scrU on q qubits.
The unitary matrix associated with the circuit is the identity matrix, i.e., M(\scrU ) = I2q .

\bfscrU \leftarrow qmsla.qc tensor(\bfscrQ ,\bfscrW ). Create a new circuit \scrU on q(Q) + q(\scrW ) qubits.
Apply \scrQ to the q(\scrQ ) MSB qubits and \scrW to the q(\scrW ) LSB qubits. The correspond-
ing unitary is the Kronecker (aka tensor) product of the unitaries, i.e., M(\scrU ) =
M(\scrQ )\otimes M(\scrW ).

\bfscrU \leftarrow qmsla.qc compose(\bfscrW ,\bfitQ ,\bfitsigma ). Create a new circuit \scrU on max(q(\scrQ ), q(\scrW ))
qubits which is made of first applying \scrW (on the MSB q(\scrW ) qubits), and then ap-
plying \scrQ . However, for i = 1, . . . , q(\scrW ) qubit \sigma (i) in \scrW 's output is wired to qubit i
in \scrQ . Mathematically, the operation is \scrU = \scrS \sigma  - 1\scrQ \scrS \sigma \scrW . However, no actual SWAP
gates are used. We note that this is exactly the ``compose"" operation in QISKIT.

A.2. Adding a gate: \bfscrU \leftarrow qmsla.qc add gate(\bfscrQ ,\bfscrG , \bfitdelta ). The qmsla.qc add
gate function constructs a new circuit by composing an existing circuit \scrQ with the
gate \scrG , which applied the qubits of \scrQ whose indices appear in the qubit list \delta . The
gate is added at the end of the circuits, on the output of \scrQ , where the wires in \delta 
outgoing from \scrQ are connected to \scrG using the ordering in \delta . Mathematically, the
operation is \scrU = \scrG \delta \scrQ , where \scrG \delta denotes the circuit on q(\scrQ ) qubits that consist solely
of \scrG applied to the qubits listed in \delta .

A.3. Transpose, conjugate, and inverse of a circuit: \bfscrU \bfT \leftarrow qmsla.qc
transpose(\bfscrU ), \bfscrU \leftarrow qmsla.qc conjugate(\bfscrU ), \bfscrU \ast \leftarrow qmsla.qc inverse(\bfscrU ). The
operations qmsla.qc transpose, qmsla.qc conjugate, and qmsla.qc inverse implement
the transpose of the unitary, the conjugate of the unitary, and the combination of
both to obtain the inverse (adjoint) of the unitary (respectively). To obtain the
inverse/adjoint circuit \scrU  - 1 from a given circuit \scrU , reverse the order of gates and
conjugate each gate. To create a conjugated circuit \scrU from a given circuit \scrU , conjugate
each gate without changing the order. To create a transposed circuit \scrU T from a circuit
\scrU , we simply invert and conjugate. The inverse operation is typically implemented in
most quantum computing frameworks (e.g., the ``inverse"" function in QISKIT), while
the transpose and conjugate operations are relatively straightforward to implement
in most frameworks, based on the description above. We summarize in the following
lemma.

Lemma 19.
1. Given a classical description for a circuit \scrU with n gates we can create a

classical description of a circuit \scrU T for which M(\scrU T)=M(\scrU )T in O(n) op-
erations. The depth and number of gates in the circuit are the same as for \scrU .

2. Given a classical description for a circuit \scrU with n gates we can create a clas-
sical description of a circuit \scrU for which M(\scrU ) =M(\scrU ) in O(n) operations.
The depth and number of gates in the circuit are the same as for \scrU .

3. Given a classical description for a circuit \scrU with n gates we can create a clas-
sical description of a circuit \scrU \ast for which M(\scrU \ast )=M(\scrU )\ast in O(n) operations.
The depth and number of gates in the circuit are the same as for \scrU .

A.4. Efficient qubit rearrangement: \bfscrU \leftarrow qmsla.qc permute bits(\bfscrW , \bfitsigma ).
Given a circuit \scrW and qubit permutation \sigma , the goal of qmlsa.qc permute bits is to
return a circuit that applies the qubit permutation \sigma on the output of\scrW , e.g., return
\scrS \sigma \scrW . However, for our purposes, it suffices that this holds only when the input
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202 L. MOR-YOSEF, S. UBARU, L. HORESH, AND H. AVRON

Algorithm 3 qmsla.qc permute bits.

1: Input: Classical description of circuit \scrW and permutation \sigma 
2:
3: \scrW  - 1\leftarrow qmsla.qc inverse(\scrW )
4: \scrI \leftarrow qmsla.qc empty(q(\scrW ))
5: \scrQ \leftarrow qmsla.qc compose(\scrI ,\scrW  - 1, \sigma  - 1)
6: \scrU \leftarrow qmsla.qc inverse(\scrQ )
7: return \scrU 

is the ground state. That is, qmsla.qc permute bits(\scrW , \sigma ) returns a circuit \scrU such
that \scrU | 0\rangle q(\scrW ) = \scrS \sigma \scrW | 0\rangle q(\scrW ). Since we do require equality for all input states, just
for the ground state, we can implement \scrU without any SWAP gates, and with the
same depth as \scrU . A pseudocode description is provided in Algorithm 3. We remark
qmsla.qc permute bits is different from other level 0 operations in that it utilizes level
0 qMSLA operations, yet it does not qualify for level 1 operation due to its lack of
clear linear algebraic interpretation.

Mathematically, we can verify that qmsla.qc permute bits indeed achieves its de-
sired goals:

\scrU | 0\rangle q =\scrQ 
 - 1 | 0\rangle q

= (\scrS \sigma 1
\scrW  - 1\scrS \sigma  - 1

1
\scrI ) - 1 | 0\rangle q

= (\scrS \sigma 1
(\scrS \sigma 1
\scrW ) - 1\scrI ) - 1 | 0\rangle q

= \scrI  - 1\scrS \sigma 1\scrW \scrS \sigma  - 1
1
| 0\rangle q

= \scrS \sigma 1\scrW | 0\rangle q ,(6)

where we used the fact that for any permutation \sigma we have that \scrS \sigma | 0\rangle q = | 0\rangle q. This
demonstrates that the output circuit \scrU applies the permutation circuit \scrS \sigma to the
original circuit \scrQ on the ground state, as intended.

EliminatePermutations. We now explain the EliminatePermutations
process mentioned in the main text. Suppose the output is a state preparation
circuit \scrU \bfX for some matrix X. Typically, \scrU \bfX starts with a series of SWAP gates
that effectively implements a permutation on the qubits, next some circuit \scrQ is ex-
ecuted, and finally another series of SWAP operations are executed, effectively im-
plementing another permutation on the qubits. In short, the output can be written
as \scrU \bfX = \scrS \sigma 1

\scrQ \scrS \sigma 2
. However, conceptually, since qMSLA concerns only the matrix

its outputs prepare (i.e., their operation on the ground state | 0\rangle ), any circuit \scrU \prime 
\bfX 

will do equally well as long as it is a state preparation circuit for X as well, even
if M(\scrU \bfX ) \not = M(\scrU \prime 

\bfX ). Given \sigma 1, \sigma 2, and \scrQ , EliminatePermutations constructs a
circuit \scrU \prime 

\bfX that prepares the same matrix as \scrU \bfX = \scrS \sigma 1\scrQ \scrS \sigma 2 but does not use any
SWAPs.

EliminatePermutations proceeds as follows. First, it eliminates any leading
SWAP gates, as swaps applied to | 0\rangle have no effect, i.e., \scrS \sigma 2

| 0\rangle = | 0\rangle . Next, Elim-
inatePermutations computes the inverse permutation \sigma  - 1

1 , inverts the circuit \scrQ ,
and composes the empty circuit with \scrQ  - 1. However, in the composition, wire i is
connected to wire \sigma 1(i) in \scrQ  - 1 input. Finally, EliminatePermutations inverts the
output circuit, resulting in \scrU \prime 

\bfX .
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D
ow

nl
oa

de
d 

01
/2

3/
25

 to
 5

.1
98

.1
39

.6
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



QUANTUM MULTIVARIATE TRACE ESTIMATION 203

Relationship between qmsla.qc permute bits and Eliminate
Permutations. qMSLA operation qmsla.qc permute bits is key in applying the
EliminatePermutations process. Suppose that for some output state prepara-
tion circuit \scrU \bfX we have identified a circuit \scrW and two permutations \sigma 1, \sigma 2 such that
\scrU \bfX = \scrS \sigma 1

\scrW \scrS \sigma 2
. Then \scrU \prime 

\bfX =qc permute bits(\scrW , \sigma 1) is also a state preparation circuit
for X. This can be verified as follows:

\scrU \prime 
\bfX | 0\rangle q = \scrS \sigma 1

\scrQ | 0\rangle q
= \scrS \sigma 1

\scrQ \scrS \sigma 2
| 0\rangle q

= \scrU \bfX | 0\rangle q .

In the main text of the paper, wherever we write EliminatePermutations (in
circuit diagrams and the text itself) we mean that when preparing that pseudocode
for Appendix B we have identified the permutations and applied qc permute bits.

Appendix B. Implementation details for level 1 qMSLA. In this section,
we give implementation details (pseudocode) for all level 1 qMSLA operations.

Pseudocodes are provided in Algorithms 4 and 5. However, to understand the
pseudocode we need first to discuss how matrix state preparation circuits are repre-
sented therein. A state preparation circuit is a structure with three fields: the circuit

Algorithm 4 Pseudocode for all level-1 qMSLA operations (part 1).

1: qmsla.identity(n):

2: q\leftarrow log2 n
3: \scrI 2q\leftarrow qmsla.qc empty(2q)
4: \scrU \leftarrow qmsla.qc add gate(\scrI 2q,\scrH ,0 : q)\{ Add Hadamard gates on each qubit of the

columns register\} 
5: \scrU \leftarrow qmsla.qc add gate(\scrU ,CNOT,0:q,q:2q)\{ Add CNOT gates on row qubit

controlled by corresponding column qubits\} 
6: return MatrixStatePreparation(\scrU , n,n)

1: qmsla.matrix(\scrU ):
2: q\leftarrow q(\scrU )
3: \scrU \bfI 2q \leftarrow qmsla.identity(2q(\scrU ))
4: \scrU \bfM (\scrU )\leftarrow qmsla.qc compose(\scrU \bfI 

2q(\scrU )
, \scrU \bfI 

2q(\scrU )
.rreg)

5: return MatrixStatePreparation(\scrU \bfM (\scrU ),2
q,2q)

1: qmsla.conjugate(\scrU \bfA ):

2: \scrU \bfA \leftarrow qmsla.qc conjugate(\scrU \bfA )
3: return MatrixStatePreparation(\scrU \bfA ,\scrU \bfA .m,\scrU \bfA .n)

1: qmsla.transpose(\scrU \bfA ):

2: \sigma T\leftarrow \scrU \bfA .creg+\scrU \bfA .rreg
3: \scrU \bfA \mathrm{T}\leftarrow qmsla.qc permute bits(\scrU \bfA , \sigma T)
4: return MatrixStatePreparation(\scrU \bfA \mathrm{T} ,\scrU \bfA .n,\scrU \bfA .m)

1: qmsla.vec(\scrU \bfA ):

2: return MatrixStatePreparation(\scrU \bfA ,\scrU \bfA .m \cdot \scrU \bfA .n,1)
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Algorithm 5 Pseudocode for all level-1 qMSLA operations (part 2).

1: qmsla.pad zero columns(\scrU \bfA , k):
2: \scrI k+q(\scrU \bfA )\leftarrow qmsla.qc empty(k+ q(\scrU \bfA ))
3: \scrU \bfA \oplus 0

0\times (2k - 1)n
\leftarrow qmsla.qc compose(\scrI k+q(\scrU \bfA ), \scrU \bfA , k : (log2mn+ k))

4: return MatrixStatePreparation(\scrU \bfA \oplus 0
0\times (2k - 1)n

,\scrU \bfA .m, (2k  - 1) \cdot \scrU \bfA .n)

1: qmsla.matrix vec(\scrU \bfA ,\scrU \bfb ):
2: \scrU T

\bfb \leftarrow qmsla.qc transpose(\scrU \bfb )
3: \scrW \leftarrow qmsla.qc compose(\scrU \bfA , \scrU T

\bfb , \scrU \bfA .creg))
4: \scrU \bfA \bfb 

\| \bfA \| F \| \bfb \| 2
\oplus \xi \leftarrow qmsla.vec(MatrixStatePreperation(\scrW ,\scrU \bfA .m,\scrU \bfA .n))

5: return \scrU \bfA \bfb 
\| \bfA \| F \| \bfb \| 2

\oplus \xi 

1: qmsla.kronecker(\scrU \bfA ,\scrU \bfB ):
2: \sigma \otimes \leftarrow \scrU \bfA .rreg+shift(\scrU \bfB .rreg, q\bfA ) + \scrU \bfA .creg+shift(\scrU \bfB .creg, q\bfA )
3: \scrU \leftarrow qmsla.qc tensor(\scrU \bfA ,\scrU \bfB )
4: \scrU \leftarrow qmsla.qc permute bits(\scrU , \sigma \otimes )
5: return MatrixStatePreparation(\scrU ,\scrU \bfA .m \cdot \scrU \bfB .m,\scrU \bfA .n \cdot \scrU \bfB .n)

1: qmsla.kronecker(\scrU \bfA 1
, . . . ,\scrU \bfA k

): (Assume k\geq 2)

2: \scrU \leftarrow qmsla.qc empty(
\sum k

1 q(\scrU i))
3: for i= 1 to i= k do

4: \scrU \leftarrow qmsla.qc compose(\scrU ,\scrU \bfA i
,
\sum i - 1
j=1 log2mjnj :

\sum i
j=0 log2mjnj)

5: end for

6: \sigma \otimes \leftarrow \scrU \bfA 1
.rreg +shift(\scrU \bfA 2

.rreg, q\bfA 1
) + \cdot \cdot \cdot + shift(\scrU \bfA k

.rreg,
\sum k - 1
i=1 q\bfA i

)+

\scrU \bfA 1
.creg +shift(\scrU \bfA 2

.creg, q\bfA 1
) + \cdot \cdot \cdot + shift(\scrU \bfA k

.creg,
\sum k - 1
i=1 q\bfA i

)
7: \scrU \bfA 1\otimes \bfA 2\otimes \cdot \cdot \cdot \otimes \bfA k

\leftarrow qmsla.qc permute bits(\scrU , \sigma \otimes )
8: return MatrixStatePreperation(\scrU \bfA 1\otimes \bfA 2\otimes \cdot \cdot \cdot \otimes \bfA k

,
\prod k
i=1 \scrU \bfA i

.m,
\prod k
i=1 \scrU \bfA i

.n)

(\scrU ), the number of rows in the prepared matrix (m), and the number of columns (n).
In the pseudocode, a state preparation circuit is constructed using the constructor
MatrixStatePreperation(\scrU ,m,n). The various fields of a state preparation structure
\scrU \bfA are accessed in the pseudocode as follows: \scrU \bfA .m for the number of rows, \scrU \bfA .n for
the number of columns, and \scrU \bfA for the circuit itself. Pseudocodes also use two logical
accessors: \scrU \bfA .creg and \scrU \bfA .rreg. \scrU \bfA .creg returns the list of qubits that correspond to
the column register, and \scrU \bfA .rreg returns the list of qubits that correspond to the row
register.

If qubits are provided as a numerical list, we use colon notation: 0 : n represents
elements from 0 to n - 1 (inclusive), and m : n represents elements from m to n - 1
(inclusive). Concatenating lists is denoted by the plus operator. The shift operator
shifts the indices in a list by a specified number.

Appendix C. A more efficient MVTracePrep. In this section, we propose
MVTracePrepOptimized---a more efficient variant of MVTracePrep than the
variant in the main text. MVTracePrep translates Theorem 18 directly into a cir-
cuit via the series of qMSLA operations. This showcases the appeal of
qMSLA's approach. Each qMSLA operation is efficient, with cost that is proportional
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to the size of the output (i.e., O(g(output))), so the overall cost is rather attractive:
O(logk

\sum 2k
i=2 g\bfA i

). Nevertheless, careful inspection of the final output reveals that a

more efficient construction is possible, one that costs only O(
\sum 2k
i=2 g\bfA i

), though it is
no longer a straightforward translation of Theorem 18.

The key observation is that if we do not apply EliminatePermutation at all,
the output circuit \scrU \phi has a very special structure. First, there is a layer which consists
of the tensor product of a subset of the circuits \{ \scrU \bfA i

\} . Then there is a series of SWAPs
that implements a permutation. Finally, there is another layer which consists of the
tensor product of another subset of the circuits \{ \scrU \bfA i

\} . See Figure 9 for an illustration.
Thus, to build the circuit, we can build the first layer, build the last layer, compute
the middle permutation, and finally compose the first layer with the final layer with
the qubit permutation in a gate efficient manner via qmsla.qc compose.

MVTracePrepOptimized (Algorithm 7) does exactly this. The main challenge
is in finding the qubit permutation of the SWAP layer. MVTracePrepOptimized
finds the permutation by tracking the execution of the various qMSLA operations in
MVTracePrep logically, i.e., computing only the qubit permutation they induce.
See Algorithm 6 for pseudocode for implementing this. MVTracePrepOptimized
uses Algorithm 6 as a subroutine.

Algorithm 6 GenerateMVTracePrepPermutation.

1: Input: List of reindexed qubit registers from 0 to total number of qubits:
[rreg1, creg1, . . . , rreg2k, creg2k]

2: p\leftarrow k+ 1
3: if k is odd then
4: leven\leftarrow (k+ 1)/2 and lodd\leftarrow (k - 1)/2
5: \tau 

\bfF 
(1)
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}
\leftarrow \{ creg = rregp, rreg= cregp\} \{ Permutation for E(k+1)/2,k =AT

p \} 
6: \tau 

\bfF 
(1)
\mathrm{o}\mathrm{d}\mathrm{d}

\leftarrow \{ creg = cregp+1 + rregp - 1, rreg = rregp+1 + cregp - 1\} \{ Permutation for

Oi,k =Ap+1 \otimes AT
p - 1\} 

7: else
8: leven\leftarrow k/2 and lodd\leftarrow k/2
9: \tau 

\bfF 
(1)
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}
\leftarrow \{ creg = cregp+1 + rregp - 1, rreg = rregp+1 + cregp - 1\} \{ Permutation for

Ei,k =Ap+1 \otimes AT
p - 1\} 

10: \tau 
\bfF 

(1)
\mathrm{o}\mathrm{d}\mathrm{d}

\leftarrow \{ creg = rregp, rreg = cregp\} \{ Permutation for Ok/2,k =AT
p \} 

11: end if
12: for i= 2 to i= 2k - p do
13: if p+ r is odd then
14: \tau \bfO \mathrm{i},\mathrm{k}

\leftarrow \{ creg = cregp+i + rregp - i, rreg = rregp+i + cregp - i\} 
15: \tau 

\bfF 
(i)
\mathrm{o}\mathrm{d}\mathrm{d}

\leftarrow \{ creg = \tau \bfO \mathrm{i},\mathrm{k}
.creg, rreg = \tau \bfO \mathrm{i},\mathrm{k}

.rreg + \tau 
\bfF 

(i - 1)
\mathrm{o}\mathrm{d}\mathrm{d}

.creg +\tau 
\bfF 

(i - 1)
\mathrm{o}\mathrm{d}\mathrm{d}

.rreg\} 
16: else
17: \tau \bfE \mathrm{i},\mathrm{k}

\leftarrow \{ creg = cregp+i + rregp - i, rreg = rregp+i + cregp - i\} 
18: \tau 

\bfF 
(i)
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}
\leftarrow \{ creg = \tau \bfE \mathrm{i},\mathrm{k}

.creg, rreg = \tau \bfE \mathrm{i},\mathrm{k}
.rreg + \tau 

\bfF 
(i - 1)
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}

.creg + \tau 
\bfF 

(i - 1)
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}

.rreg\} 
19: end if
20: end for

21: \sigma  - 1
even\leftarrow F

(l\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n})
even .creg +F

(l\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n})
even .rreg

22: \sigma  - 1
odd\leftarrow F

(l\mathrm{o}\mathrm{d}\mathrm{d})
odd .creg +F

(l\mathrm{o}\mathrm{d}\mathrm{d})
odd .rreg

23: return \sigma := \sigma even\sigma 
 - 1
odd
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Algorithm 7 MVTracePrepOptimized.

1: Input: Classical description of the circuits \scrU \bfA 1
, . . . ,\scrU \bfA 2k

where Ai \in \BbbC mi\times ni
2:
3: \{ Constructing \scrU \psi \} 
4: \scrU \bfA 1

\leftarrow qmsla.conjugate(\scrU \bfA 1)
5: \scrU \psi \leftarrow qmsla.pad(qmsla.vec(\scrU \bfA 1

), log2 n3n4 \cdot \cdot \cdot n2k,0)
6:
7: \{ Constructing \scrU \phi \} 
8: all regs\leftarrow []
9: idx = 0
10: for i= 1 to i= 2k do
11: reg i\leftarrow idx + [\scrU \bfA i

.rreg + \scrU \bfA i
.creg] \{ concat qubits list and add idx for each

element in the list\} 
12: idx\leftarrow idx + size(reg i)
13: all regs\leftarrow all regs.append(reg i)
14: end for
15: \sigma \leftarrow GenerateMVTracePrepPermutation(all regs)
16: \scrU even\leftarrow \scrU \bfA 2

17: \scrU odd\leftarrow \scrU  - 1
\bfA 3

18: for i= 2 to i= k do
19: \scrU even\leftarrow qmsla.qc tensor(\scrU even,\scrU \bfA 2i)
20: if 2i < 2k - 2i then
21: \scrU even\leftarrow qmsla.qc tensor(\scrU even,\scrU \bfA 2k - 2i

)
22: end if

23: \scrU odd\leftarrow qmsla.qc tensor(\scrU odd,\scrU  - 1
\bfA 2i+1

)

24: if 2i < 2k - 2i then
25: \scrU odd\leftarrow qmsla.qc tensor(\scrU odd,\scrU  - 1

\bfA 2k - 2i - 1
)

26: end if
27: end for
28: \scrU \phi \leftarrow qmsla.compose(\scrU even,\scrU odd, \sigma )
29: return \scrU \psi ,\scrU \phi 
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