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Experimental Design for Nonparametric Correction of Misspecified Dynamical
Models∗

Gal Shulkind† , Lior Horesh‡ , and Haim Avron§

Abstract. We consider a class of misspecified dynamical models where the governing term is only approximately
known. Under the assumption that observations of the system’s evolution are accessible for various
initial conditions, our goal is to infer a nonparametric correction to the misspecified driving term such
as to faithfully represent the system dynamics and devise system evolution predictions for unobserved
initial conditions. We model the unknown correction term as a Gaussian Process and analyze the
problem of efficient experimental design to find an optimal correction term under constraints such
as a limited experimental budget. We suggest a novel formulation for experimental design for this
Gaussian Process and show that approximately optimal (up to a constant factor) designs may be
efficiently derived by utilizing results from the literature on submodular optimization. Our numerical
experiments exemplify the effectiveness of these techniques.
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1. Introduction. The evolution of a wide variety of dynamical systems can be described
by mathematical models which embody differential equations [28]. Such dynamical models
are employed ubiquitously for description, prediction, and decision-making under-uncertainty.
While the primary role of a mathematical model is to provide a consistent link between the
input and output of a system or phenomenon under investigation, multiple considerations are
at play when designing a model, involving a series of choices which influence its complexity
and realism. These choices represent trade-offs between different competing objectives includ-
ing model accuracy, robustness, functional complexity, scalability, computational complexity
and interpretability.

Acknowledging that “essentially all models are wrong” [13], a fundamental question is
“what is the desired level of fidelity required by the model?” This question cannot be an-
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swered in isolation, as often the required level of fidelity cannot be assessed directly, especially
when mathematical models are embedded within an end-goal optimization or a decision pro-
cess. In such circumstances, prominent modeling errors creep into simulation-based insights,
potentially resulting in inaccurate state descriptions, unstable model inferences, or erroneous
control outputs, designs, or decisions. Thus, as a guiding principle, uncertainty propagation
should be holistically accounted for to ensure that we invest sufficient, yet nonredundant,
effort into each stage in the information flow value chain [48].

For a broad range of applications, especially in the control space, the modeler’s abil-
ity to devise a model of higher fidelity than required for the application enables deliberate
compromise of an adequate model in exchange for reduced model complexity, which entails
more economic computation. Examples would be model reduction approaches such as proper
orthogonal decomposition and discrete empirical interpolation method [57, 18] as well as mul-
tifidelity modeling, where routine computation of high fidelity models may be intractable for
the underlying task, necessitating the use of low fidelity proxies [2, 47, 4, 61, 29, 49].

Conversely, for a variety of applications the goal is to improve the accuracy of an in-
adequate model such as to comply with minimum desired fidelity requirements [14, 44, 66].
One such scenario is in situations where domain knowledge or a first principles approach
are employed for the description of a system of interest. Conventionally, in such settings, a
human expert derives a low-complexity approximate model for description of the dynamics
[57, 35, 31, 74, 44, 67, 66]. However, real-world phenomena often involve additional, weak
effects that are not accounted for in typical expert derived models, rendering such models
inadequate representations of reality. For example, in designing electrical circuits, ideal linear
models are often assumed for circuit components such as resistors, capacitors and inductors;
however, available components tend to exhibit weak but complicated nonlinear characteristics
not accounted for by the approximate models [17, 50, 23]. Another example is in deriving
models for flow systems, where idealized models may be assumed for the medium and its
boundaries, neglecting weak nonlinear phenomena and deteriorating the fidelity of the result-
ing models [26, 73]. In other settings multiphysics coupling effect may not be readily apparent
or properly characterized by the modeler [22, 63, 20] or multidimensional model construction
may harness approximated models to accommodate computational limitations [78, 11, 70].
Other common sources of model misspecification may be related to simplified representation
of the domain geometry [71], isotropic modeling of anisotropic medium [69, 75, 1] and so on.
Additionally, the model may be misspecified due to either conscious or nonconscious choices
made regarding the numerical solution of the underlying system: immature truncation of in-
finite expansions, round-off errors, approximate solutions of linear or nonlinear terms, etc.
[36, 39, 76, 72].

In lieu of deriving an approximate model which may confer an inadequate representation
of the system’s dynamic, a common alternative is to take a completely agnostic, data-driven
approach and apply either parametric or nonparametric techniques to learn the dynamics
purely based on empirical data collected from the system [34, 51, 57]. However, such an
agnostic approach may entail models with several potential shortcomings [38, 45]:

• failure to utilize crucial prior knowledge regarding the system and its dynamics,
• reliance on the availability of a large set of training examples to derive complex models

of sufficient fidelity,
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• poor generalization performance for out-of-sample instances,
• limited means for interpretability due to the agnosticism of the underlying functional

form.
In this study we explore a third approach of symbiotizing these two information sources

effectively: on the one hand a crude misspecified system model as derived based on domain
knowledge, and on the other hand empirical measurements and data to complement the mis-
specified model. Our goal is to learn a generalized, nonparametric representation for the
system dynamics, based on the approximate model and the empirical data. We focus on un-
derstanding how this learning process can be performed efficiently, with only a limited budget
for experiments to probe the system and collect empirical data points [32, 37, 68]. Specifically,
we explore the role of the initial approximate model in guiding the design of experiments for
collection of empirical data that best informs the model correction objective.

The choice between parametric and nonparametric representation of the correction term
depends upon the knowledge available to the modeler and in particular, how well the functional
class of the correction model is fully understood. When an explicit parametric representa-
tion of the correction term is known, the model correction problem reduces to a meta-level
parametric estimation problem [12, 66, 33]. In more general settings, where various functional
representations (or combinations of which) from a function class may comprise the correction
term, a nonparametric approach may be more appropriate [41]. The nonparametric option
requires weaker, implicit assumptions regarding the desired correction, and is therefore appli-
cable to a broader class of problems. We have chosen to focus on that case in the current study.

Nonparametric formulations offer great versatility in defining nonlinear functional repre-
sentations [5, 52, 9], as well as scalable means for their learning [7, 6]. Thus, in this study,
we take the approach proposed by Kennedy and O’Hagen [41] and represent the misspeci-
fied function as a Gaussian processes (GP) with some prescribed kernel which incorporates
our prior regarding the correction term. The model correction learning problem is then fully
determined.

Novelty of the paper. While modeling misspecified systems has been addressed in a prior
article [41], the main contribution of this study is the formulation of the experimental design
problem in the dynamical systems context, its efficient solution, and rigorous performance
analysis. Motivated by an end-goal of accelerating the learning curve and inferring the correc-
tion with a minimal number of observations, we propose a Bayesian D-optimal experimental
design scheme [24, 59] where we maximize the information gain through collection of informa-
tive data. Following the work of Krause and Golovin [42] we prove that mutual information
can be regarded as a monotonic submodular function in our settings. Based upon this obser-
vation, we gain access to the wealth of machinery available for optimization of submodular
set functions [53, 55, 15, 56] and thereby provide solid performance guarantees.

To summarize, our main innovations are the following:
• We pose the problem of experimental design for dynamical systems, aiming to prescribe

experimental parameters for efficient collection of empirical data to rapidly obtain
information about the unknown system under limited budget constraints.
• We show that under some approximations our experimental design criteria may be put

in a form that allows us to adapt recent results from the field of sensor placement in
GPs to retrieve efficient near-optimal solvers utilizing the property of submodularity.
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• We offer a careful analysis of the approximation bounds involved in our derivations
and numerically demonstrate our results in several use cases.

Limitations of the proposed method. In this study we present a general framework for
studying misspecified dynamical systems. However, we have made some limiting assumptions
to define concrete models which allow deriving quantitative results. Specifically, we assume
throughout that the correction term is representable effectively as a GP with some prescribed
kernel and that the noise is Gaussian (with arbitrary covariance). The kernel we choose
for the GP representation incorporates our prior knowledge about the correction function.
As our numerical simulations will demonstrate, taking the GP kernel to be a Gaussian RBF,
essentially posing a smoothness prior on the correction term, has merit and could be motivated
in a variety of physical settings. However, if more prior information is available it could
be incorporated in our model by proper choice of an alternative, tailored kernel. It is also
important to note that other forms for modeling the correction term or noise can be considered,
with corresponding quantitative results derived in those settings.

Additionally, we conceptually think of the correction term as one having only a small
effect on the system evolution over time. We quantify this assumption in a series of theoretical
results that guarantee approximation bounds that depend on an appropriate misspecification
parameter δ which we define. As the misspecification becomes larger our bounds become
looser.

Study structure. The paper is structured as follows. In section 2 we formulate the problem
of misspecified dynamical systems. In section 3 we briefly review the GP formulation and
its application in concise representation of correction terms. Section 4 studies experimental
design in the context of misspecified models. In section 5 we perform numerical experiments
to validate and demonstrate our results, and in section 6 we conclude the work.

2. Problem formulation. The behavior of a broad variety of dynamical models can be
described by ordinary differential equations (ODE) [28], and thus we consider a misspecified
system of first order ODEs (higher order systems may be converted into first order form by
the usual techniques):

d

dt
y(t) = G(y(t)) + F(y(t))(1)

with t time, y(t) = [y1(t), . . . , yd(t)]
> a vector signal of interest, and F(y(t)) = [F1(y(t)), . . . ,

Fd(y(t))]>,G(y(t)) = [G1(y(t)), . . . , Gd(y(t))]> vector valued functions, F(·),G(·) : Rd → Rd
governing the system dynamics.

We are interested in settings where the temporal evolution of y(t) is dominated by the
component G(·), whereas the correction term F(·) is assumed to have only a small effect over
short time spans. Concretely, define the auxiliary system

d

dt
yG(t) = G(yG(t)),(2)

and then our interest is in the regime where, initialized in the same state y(0) = yG(0),
the two systems track each other closely over some prescribed time span tf . Specifically, we
assume that ∀t ∈ [0, tf ] we have that y(t) is close to yG(t) in a sense that will be quantitatively
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defined in section 4. One way of ensuring this is requiring ‖F(·)‖ � ‖G(·)‖ over some domain
D ⊆ Rd and short enough time spans tf . The model (1) is misspecified in the sense that
G(·) is assumed known, whereas the small additive correction function F(·) is not available.
Situations like this may arise, e.g., when we have at our disposal some approximation G(·)
to a system of interest, perhaps derived via expert domain knowledge, which does not fully
capture the true dynamics driving the system.

In this paper, our goal is to utilize system evolution paths y(t) as observed in experiments
to learn a representation for the correction term F(·). The resulting “corrected” model allows
making accurate predictions about the system evolution. We specifically focus on designing
efficient experiments that facilitate rapid learning of the correction term under a limited
experimental budget.

2.1. Initial conditions. We consider applications where we are at liberty to perform a
limited number of at most K experiments to facilitate learning the correction term F(·).
The kth experiment entails preparing the system at some fixed initial conditions at time zero
y(k)(0) ∈ Y and observing its subsequent evolution y(k)(t) for t > 0 as determined by the (not
fully known) model (1). (Fixing initial conditions at time t = t0 the output of the first order
ODE system (1) is determined ∀t > t0 [28].) We take the set Y to be a finite collection of
possible experimental conditions that we may choose to start the system from. It may be a
finely discretized grid over a continuous region of accessible initial conditions, e.g., expressing
power constraints Y ⊂

{
y : ‖y‖22 ≤ P

}
, or otherwise meeting an application specific set of

restrictions.
Let Y0 ⊆ Y, |Y0| ≤ K be the set of selected initial conditions that seed the K experiments.

Informative prescription of Y0 is a primary concern in this study, as in many practical scenarios
experiments are costly and it is important to design them carefully in order to extract as much
information as possible from the limited set of measurements.

2.2. An observation model. The empirical evolution data y(k)(t), k = 1, . . . ,K allows us
to probe the system dynamics and learn a representation for the correction term. To set the
framework we specify a discrete and noisy observation model.

In this work we assume readings are collected on a discrete time grid. As the kth experiment
unfolds the system evolves from the initial state y(k)(0) ∈ Y0 according to y(k)(t) and we
gain access to T temporal observations on a discrete time grid t ∈ T = {t1, . . . , tT }. Let
Ym ≡

{
y| ∃k, i s.t. y = y(k)(ti)

}
be the set of size K̃ ≡ |Ym| = KT of system states recorded

during the K experiments seeded by states in Y0.
For a given trajectory y(t), it is apparent from (1) that the correction term F(·) can be

evaluated at points along the path via

F(y(t)) =
d

dt
y(t)−G(y(t)).(3)

With oracle access to the derivative d
dty(t) we could attain point samples of F(y) ∀y ∈ Ym

through (3) as G(y) is assumed known. However, with only discrete samples on the tra-
jectory we do not have access to d

dty(t). Instead, we assume access to noisy derivative esti-

mates d
dt ỹ

(k)(ti), e.g., by simple numerical differences, or more advanced techniques performing



MODEL MISSPECIFICATION CORRECTION 885

smoothing over the trajectory [19, 72] according to

d

dt
ỹ(k)(ti) =

d

dt
y(k)(ti) + εk,i k = 1, . . . ,K, i = 1, . . . , T,(4)

with εk,i ∼ N (0,Σε), independent and identically (i.i.d.) Gaussian noise. We form noisy
estimates for the correction term F̃(y(k)(ti)) by substituting:

F̃(y(k)(ti)) ≡
d

dt
ỹ(k)(ti)−G(y(k)(ti)) =

d

dt
y(k)(ti)−G(y(k)(ti)) + εk,i

= F(y(k)(ti)) + εk,i.(5)

For what follows, we sometimes ease notation by writing fj ≡ F(yj), and f̃
j ≡ F̃(yj) for

the noisy readings yj ∈ Ym, j = 1, . . . , K̃. In these symbols the noisy measurement model
(5) reads

f̃
j

= F(yj) + εj , j = 1, . . . , K̃,(6)

and εj ∼ N (0,Σε) are Gaussian i.i.d.

3. Correction estimation. The experimental framework detailed in the last section re-
sulted in a set of K̃ noisy point estimates for the correction term F̃(Ym) = {F̃(y)|y ∈ Ym}
which form our training set. Our interest lies in estimating F(·) over some domain D ⊆ Rd,
but even in the noiseless setting and in the limit where the sampling interval approaches zero,
we generally cannot achieve a dense cover over D with a finite number of trajectories y(k)(t).
Thus, some structure or prior information must be assumed for the correction term, such as
degree of smoothness or adherence to a specific functional form, to allow for its estimation
from the collected data.

In this section we take a Bayesian approach, setting a GP formulation for the problem [40],
allowing us to express prior knowledge over the correction term F(·) and enabling inference
from the finite number of collected noisy samples to the underlying values over the entire
domain D. The estimated correction term may subsequently be used to make evolution
predictions for arbitrary initial conditions.

3.1. Gaussian processes. To correct the ODE model we assume a probabilistic setting
in which F(y) is a vector-valued GP F(y) ∼ GP(m(y),k(y,y′)) defined over some bounded
region D ⊆ Rd with m(·) : Rd → Rd the mean function and k(·, ·) : Rd × Rd → Rd×d the
covariance function [62]. Every finite collection of sample points {F(y1),F(y2), . . .} is then dis-
tributed as multivariate Gaussian. The mean vector is retrieved by stacking m(y1),m(y2), . . .
and the second-order statistics are given according to E[[F(yi)]m[F(yj)]n] = [k(yi,yj)]m,n [3].
For what follows we make the simplifying assumptions m(y) ≡ 0 and k(y,y′) = k(y,y′)Id,
i.e., the vector components are zero mean and independent and share a common scalar kernel
function, as in the usual scalar-valued GP setting. Our techniques and methods can be gen-
eralized to the biased and correlated-components setting, but we restrict our model here for
brevity.

Let F̃(A) be a set of noisy measurements collected at some set of sampling points A:
F̃(A) = {F(y) + ε|y ∈ A} , where ε ∼ N (0,Σε) is i.i.d. additive noise. We are interested
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in predicting the value of the process in unobserved locations. The posterior for F(B) =
{F(y)|y ∈ B}, where B is some arbitrary set of sampling points, is given according to F(B)|F̃(A)
∼ N (µB|A,ΣB|A) with [3],

µB|A=k(B,A)[k(A,A) + Σ]−1F̃(A),(7)

ΣB|A=k(B,B)−k(B,A)[k(A,A)+Σ]−1k(A,B),(8)

and k(S1,S2) ∈ R|S1|d×|S2|d has block structure with elements [k(yi,yj)]mn ∀yi ∈ S1,y
j ∈ S2

and m,n = 1, . . . , d and Σ = Σε ⊗ I|A|.
The GP formalism facilitates expression of prior knowledge over unknown functions F(·),

as determined by the choice of kernel, capturing notions of similarity between values at dif-
ferent positions. Popular choices for the kernel function include the Gaussian RBF k(y,y′) =
exp(− 1

2σ2
k
‖y−y′‖2) with σ2

k the kernel bandwidth and the polynomial kernel k(y,y′) = (1 +

〈y,y′〉)m with m ∈ N+ the order. The Gaussian RBF kernel is of particular interest as it
is universal in the sense that with a large enough training set, estimation according to (7)
can approximate any continuous bounded function on a compact domain [52]. With the GP
model set, the value of F(y) at any y ∈ D may be estimated according to (7) based on the
noisy measurements F̃(Ym).

3.2. Feature space representation. With the assumptions of the last subsection, the d-
dimensional vector-valued GP F(y) is comprised of d independent GPs Fi(y) ∼ GP(0, k(y,y′)),
i = 1, . . . , d. Next, we follow [77, 62, 21] and review the correspondence between these GPs
and equivalent linear regression models defined in the feature space associated with k(y,y′).

Indeed, Mercer’s theorem guarantees the existence of a sequence of eigenfunctions {φj(y)} ,
j = 1, 2, . . . such that k(y,y′) =

∑
j φj(y)φj(y

′) = 〈φ(y),φ(y′)〉, where 〈·; ·〉 is an inner
product. For a given y, we say that φj(y) is its jth feature in the feature space associated
with k(y,y′) and φ(y) ≡ [φ1(y), φ2(y), . . .]> is the feature transformation from the input
space to the feature space.

Let θij ∼ N (0, 1), i = 1, . . . , d, j = 1, 2, . . . be a sequence of i.i.d. standard Gaussian
variables. For notational convenience we define θi ≡ [θi1, θi2, . . .]

>, i = 1, . . . , d, and Θ =
[θ1, . . . ,θd]

>. We will see that the following identity holds in distribution:

Fi(y) =
∑

j
θijφj(y) ≡ 〈θi,φ(y)〉, i = 1, . . . , d,(9)

i.e., the GP inference of section 3.1 is equivalent to a Bayesian linear regression model in the
feature space.

To see that (9) holds notice that both sides of the equality are zeros mean GPs over y.
The covariance function of the left hand term is k(y,y′) by definition. The covariance function
of the right hand term is

E
[∑

j
θijφj(y)

∑
j′
θij′φj′(y

′)
]

=
∑

jj′
E
[
θijθij′

]
φj(y)φj′(y

′).=
∑

j
φj(y)φj(y

′) = k(y,y′).

(10)

Given noisy data F̃(Ym) = F(Ym) + ε with ε ∼ N (0,Σε) i.i.d. noise, inference in the
GP can be equivalently performed by estimating the regression coefficients Θ and making
predictions for F(y) as per (9).
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4. Experimental design. In section 3 we reviewed inference in a GP setting and suggested
applying this formulation for estimating the correction term F(·) based on the set of noisy
measurements F̃(Ym). The observation set Ym, as determined by the initial conditions set
Y0, was assumed given and not under our control.

In this section we study efficient experimental design in the misspecified context. That
is, our goal would be to select an informative set of experiments, parametrized through the
initial conditions Y0, such as to facilitate rapid learning of the correction term F(·) under
a limited experimental budget constraint. We quantify the expected utility associated with
choosing sets of initial conditions and suggest an efficient near-optimal (up to a constant
factor) algorithm for choosing the best such experimental setup.

4.1. D-Bayes optimality. Estimation of F(y) for generic y ∈ D is made possible through
the collection of noisy samples F̃(Ym) and application of the methodology of section 3. The
quality of inference strongly depends on the sampling set Ym. For example, if the set Ym is
highly localized in some region in D it is reasonable to expect that inference of F(·) becomes
more accurate there at the expense of farther locals in D. We are generally interested in
estimating F(·) over the whole of D and so we are interested in developing a mechanism that
allows this.

Invoking the feature space representation of section 3.2 we see that performing inference in
the GP based on a ground set of noisy measurements F̃(Ym) may be viewed as first estimating
Θ and then applying (9) to retrieve estimates for the rest of D. From this viewpoint, the
estimation error in F(y) originates from the error in Θ and so our goal is to decrease these as
much as possible by maximizing the quality of inference from F̃(Ym) to Θ. Various statistical
criteria have been developed for quantifying the quality of inference between observations and
underlying random variables [16, 14, 24, 59]. Here we follow D-Bayes optimality [10].

In this framework, the uncertainty associated with Θ is quantified through the Shannon
entropy H(·). Before the experiment we have initial uncertainty H(Θ) which is revised to
H(Θ|F̃(Ym)) following data collection. A D-Bayes optimal design minimizes the posterior
uncertainty H(Θ|F̃(Ym)), or equivalently maximizes the mutual information:

I(Θ; F̃(Ym)) ≡ H(Θ)−H(Θ|F̃(Ym)).(11)

In our setting we select a set of initial conditions Y0 and observe the corresponding outputs.
This chain of dependencies is made explicit as Y0 → Ym(Y0) → F̃(Ym(Y0)). The quality of
inference, viewed as a function of the initial conditional Y0, is given by

G(Y0) ≡ I(Θ; F̃(Ym(Y0))),(12)

and an optimal experimental design under the budget constraint |Y0| ≤ K, Y0 ⊆ Y is

Y?0 = argmax
Y0:|Y0|≤K,Y0⊆Y

G(Y0).(13)

4.2. Output trajectory proxy. The design problem (13) entails choosing a set Y0 of K
initial conditions and observing K̃ noisy measurements F̃(Ym(Y0)), which are utilized for
estimating F(·) over D.
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As we are concerned with misspecified systems such that the complete system model (1)
is unknown, we are unable to predict system trajectories based on initial conditions at time
zero. In particular, we do not have a priori access to the mapping between the sets Y0 and
Ym, such that evaluation of the cost function (12) and thus solution of the design problem
(13) are not possible. However, at this point our assumption that the system is only slightly
misspecified in short time spans, i.e., that the correction term F(·) introduces a small effect
on the trajectory, turns out to be useful in retrieving approximate solutions.

For any given set of initial conditions Y0 we invoke the approximate system model (2) to
obtain a proxy Yg for the true set of future states Ym. Let y(k)(0) ∈ Y0 be the initial conditions

seeding the kth experiment, and designate the approximate ensuing trajectory y
(k)
G (t). Collect

the approximate trajectories in Yg ≡ {y|∃k, i s.t. y = y
(k)
G (ti)}, and note that the set Yg may

be evaluated in advance given Y0. For example, for a linear misspecified system d
dtyG(t) =

AyG(t) for some fixed A ∈ Rd×d, the trajectories comprising Yg may be determined according

to y
(k)
G (ti) = eAtiy

(k)
G (0), where e(·) is the matrix exponential according to the usual definition.

In what follows we propose a proxy for the cost function (12), where Yg is used in lieu of
the unknown Ym, and derive approximation bounds for the discrepancy between the two. We
show that that these bounds scale with the deviation between the actual and approximate
system outputs y(·) and yG(·). Specifically, we have the following.

Theorem 1. Let G̃(Y0) ≡ I(Θ; F̃(Yg(Y0))) with ε ∼ N (0,Σε), and let δ be a positive
constant such that the maximum covariance discrepancy between the true and approximate
models is bounded according to

∀k1, k2, i1, i2 :
∣∣∣k(y(k1)(ti1),y(k2)(ti2))− k(y

(k1)
G (ti1),y

(k2)
G (ti2))

∣∣∣ ≤ δ .
We have

∣∣∣G̃(Y0)−G(Y0)
∣∣∣ ≤ −dK̃ log

1− δ(dK̃)
3
2

σmin(Σε)

(14)

with σmin(·) the minimal singular value, and K̃ = KT the number of measurements.

Proof. Using the definition of mutual information1 we have

G(Y0) = I(Θ; F̃(Ym(Y0))) = H(F̃(Ym(Y0)))−H(F̃(Ym(Y0))|Θ),(15)

G̃(Y0) = I(Θ; F̃(Yg(Y0))) = H(F̃(Yg(Y0)))−H(F̃(Yg(Y0))|Θ).(16)

Conditioned on Θ the remaining uncertainty in the measurements is just the random noise
and we have H(F̃(Ym(Y0))|Θ) = H(F̃(Yg(Y0))|Θ) = H(ε) such that

G(Y0)− G̃(Y0) = H(F̃(Ym(Y0)))−H(F̃(Yg(Y0))).(17)

1I(x; y)=H(x)−H(x|y)=H(y)−H(y|x).
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Notice that both F̃(Ym(Y0)) and F̃(Yg(Y0)) are collections of K̃ Gaussian random vectors
(of dimension d each) as noisy samples from the GP. Now apply the generic formula for the
entropy of a Gaussian random vector:2

H(F̃(Ym(Y0))) = log((πe)K̄detΣm),

H(F̃(Yg(Y0))) = log((πe)K̄detΣg),(18)

where K̄ ≡ dK̃ and

Σm = k(Ym,Ym) + Σε ⊗ IK̃ ,

Σg = k(Yg,Yg) + Σε ⊗ IK̃ .(19)

So,

G̃(Y0)−G(Y0) = log(det(Σg))− log(det(Σm)).(20)

Now define X ≡ 1
δ (Σg −Σm) ↔ Σg = Σm + δX with X ∈ RK̄×K̄ satisfying ∀i, j |Xij | ≤ 1

according to our assumption of bounded covariance differences.
Σg,Σm are both positive-definite and invertible such that we can write

det(Σg) = det(Σm + δX) = det(Σm)det(I + δΣ−1
m X).(21)

Substituting (21) in (20) we have

G̃(Y0)−G(Y0) = log(det(I + δΣ−1
m X))= log(det(X̃))(22)

with X̃ ≡ I + δΣ−1
m X. We turn next to bounding log(det(X̃)). First notice

∣∣[δΣ−1
m X]ij

∣∣ = δ

∣∣∣∣∣∑
r

Σ−1
m,irXrj

∣∣∣∣∣ ≤ δ∑
r

∣∣∣Σ−1
m,irXrj

∣∣∣
≤ δ

∑
r

∣∣∣Σ−1
m,ir

∣∣∣≤δ‖Σ−1
m ‖∞

≤ δ
√
K̄‖Σ−1

m ‖2 = δ
√
K̄σmax(Σ−1

m )

=
δ
√
K̄

σmin(Σm)
≤ δ

√
K̄

σmin(Σε)
,

where we used the matrix norm inequality ‖A‖∞≤
√
K̄‖A‖2 for A ∈ RK̄×K̄ and σmax(·).

Thus we have that X̃ has diagonal elements centered around 1, i.e., for all i

∣∣∣X̃ii − 1
∣∣∣ ≤ δ

√
K̄

σmin(Σε)

2x ∈ Rk,x ∼ N (µ,Σ)⇒ H(x) = log((πe)kdetΣ).
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and the row-sums over nondiagonal entries satisfy for all i

∑
r 6=i

∣∣∣X̃ir

∣∣∣ ≤ δ
√
K̄(K̄ − 1)

σmin(Σε)
.

Designating the eigenvalues of X̃ as {λi} and applying the Gershgorin circle theorem, we have

1− δK̄
3
2

σmin(Σε)
≤ |λi| ≤ 1 +

δK̄
3
2

σmin(Σε)
.(23)

Using log(det(X̃)) =
∑
i

log(|λi|), this implies that

K̄ log

(
1− δK̄

3
2

σmin(Σε)

)
≤ log(det(X̃)) ≤ K̄ log

(
1 +

δK̄
3
2

σmin(Σε)

)
,(24)

where the left hand side is to be interpreted as minus infinity when the argument of the log
function is negative. Finally, using G̃(Y0) − G(Y0) = log(det(X̃)) and log(1+x)≤− log(1−x)
we have

|G̃(Y0)−G(Y0)| ≤ −K̄ log

(
1− δK̄

3
2

σmin(Σε)

)
.(25)

Notice that the bound of Theorem 1 becomes looser as the noise decreases. That is, notice
that the value of G(Y0) increases in this case in about the same proportion so the relative
error remains similar. As an illustration, consider the case Σε = σ2

ε I. Using notation used in
the proof of Theorem 1 and Σ ≡ Σε ⊗ IK̃ we have

G(Y0) = H(F̃(Ym(Y0)))−H(F̃(Ym(Y0))|Θ)

= log(det(k(Ym,Ym)+Σ))− log(det(Σ))

= log(det(I+Σ−1k(Ym,Ym))).

Now observe

λi(I+Σ−1k(Ym,Ym)) = 1+λi(Σ
−1k(Ym,Ym))≥1+

σmin(k(Ym,Ym))

σ2
ε

so

log(det(I+Σ−1k(Ym,Ym))) ≥ dK̃ log

(
1+

σmin(k(Ym,Ym))

σ2
ε

)
and we have

G(Y0) ≥ dK̃ log

(
1+

σmin(k(Ym(Y0),Ym(Y0)))

σ2
ε

)
.
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Corollary 2. Let k(y,y′) = k(‖y−y′‖) be a shift-invariant kernel with k(·) Lipschitz contin-

uous with constant L over D′ ≡
{
y1−y2|y1,y2 ∈ D

}
, and assume ∀k, i : ‖y(k)(ti)−y(k)

G (ti))‖≤∆.
We have

∣∣∣G̃(Y0)−G(Y0)
∣∣∣ ≤ −dK̃ log

1−2L∆(dK̃)
3
2

σmin(Σε)

 .(26)

Proof. For any k1, k2, i1, i2 we have∣∣∣k(y(k1)(ti1),y(k2)(ti2))−k(y
(k1)
G (ti1),y

(k2)
G (ti2))

∣∣∣
=
∣∣∣k(‖y(k1)(ti1)−y(k2)(ti2)‖)−k(‖y(k1)

G (ti1)−y
(k2)
G (ti2)‖)

∣∣∣
≤ L

∣∣∣‖y(k1)(ti1)−y(k2)(ti2)‖−‖y(k1)
G (ti1)−y

(k2)
G (ti2)‖

∣∣∣
≤ L‖(y(k1)(ti1)−y

(k1)
G (ti1))−(y(k2)(ti2)−y

(k2)
G (ti2))‖

≤ L
(
‖y(k1)(ti1)−y

(k1)
G (ti1)‖+‖y(k2)(ti2)−y

(k2)
G (ti2)‖

)
≤ 2L∆,

and the result follows by substitution in (14).

Corollary 3. Let k(y,y′) = (1 + 〈y,y′〉)m be the polynomial kernel, B ≡ supy∈D ‖y‖, and

assume ∀k, i : ‖y(k)(ti)− y
(k)
G (ti))‖≤∆, and then

∣∣∣G̃(Y0)−G(Y0)
∣∣∣ ≤ −dK̃ log

1−m∆(2B + ∆)(1 +B2)m−1(dK̃)
3
2

σmin(Σε)

 .(27)

Proof. Consider the following chain of inequalities:∣∣∣k(y(k1)(ti1),y(k2)(ti2))−k(y
(k1)
G (ti1),y

(k2)
G (ti2))

∣∣∣
=
∣∣∣(1 +

〈
y(k1)(ti1),y(k2)(ti2)

〉)m
−
(

1 +
〈
y

(k1)
G (ti1),y

(k2)
G (ti2)

〉)m∣∣∣
(a)

≤ m(1 +B2)m−1
∣∣∣〈y(k1)(ti1),y(k2)(ti2)

〉
−
〈
y

(k1)
G (ti1),y

(k2)
G (ti2)

〉∣∣∣
= m(1+B2)m−1|

〈
y

(k1)
G (ti1)−y(k1)(ti1),y(k2)(ti2)

〉
+
〈
y(k1)(ti1),y

(k2)
G (ti2)−y(k2)(ti2)

〉
+
〈
y

(k1)
G (ti1)−y(k1)(ti1),y

(k2)
G (ti2)−y(k2)(ti2))

〉
|

≤ m(1+B2)m−1(∆B+B∆+∆2)

= m∆(2B+∆)(1+B2)m−1,

where (a) is due to the Lipschitz constant of the function f(x) = (1 + x)m being smaller than
m(1 + supx∈D |x|)m−1. The result follows by substitution in (14).
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Theorem 1 and Corollaries 2 and 3 bound the discrepancy between G(Y0) and its proxy
G̃(Y0). As the trajectory uncertainty becomes smaller the two become more tightly aligned
as quantified by our results in this subsection.

4.3. Near optimal solution. Based on the results of Theorem 1 and the ensuing corollar-
ies, in lieu of problem (13) we pose a relaxed proxy that circumvents around the uncertainty
associated with the system output. Namely, we are interested in the solution of

Ỹ?0 = argmax
Y0:|Y0|≤K,Y0⊆Y

G̃(Y0).(28)

Generic combinatorial optimization problems such as (28) exhibit prohibitive computa-
tional complexity, as the solution generally involves enumeration over all possible subset com-
binations satisfying the constraints, which is exponential in the size of the set |Y0|. We prove
that G̃(Y0) holds favorable properties, rendering the optimization problem (28) amenable to
approximate solution by means of computationally efficient algorithms with provable guaran-
tees. We start with some useful definitions.

Definition 4. Let V be a set and G : 2V → R a set function.
1. G is submodular if it satisfies the property of decreasing marginals: ∀S, T ⊆V such

that S⊆T and x∈V\T it holds that G(S∪{x})−G(S)≥G(T ∪ {x})−G(T ).
2. G is monotonic (increasing) if ∀S, T ⊆V s.t. S⊆T we have G(S)≤G(T ).

Our next step is to show that the set function G̃(Y0) is submodular and monotonic (similar
to [43]), a fact that allows us to make use of the rich literature on submodular optimization.

Theorem 5. Let G̃ : 2Y → R be the set function defined in Theorem 1. Then G̃ is mono-
tonic (increasing) and submodular.

Proof. First we prove submodularity. Let Y0 ⊂ Y and y ∈ Y\Y0, such that the system
output proxy for y is given as F̃(Yg(y)). Expanding the mutual information according to
I(Θ; F̃(Yg(Y0))) = H(F̃(Yg(Y0)))−H(F̃(Yg(Y0))|Θ) we have

G̃(Y0∪{y})−G̃(Y0) = H(F̃(Yg(Y0))∪F̃(Yg(y)))−H(F̃(Yg(Y0))

− [H(F̃(Yg(Y0))∪F̃(Yg(y)|Θ)−H(F̃(Yg(Y0)|Θ)](29)

= H(F̃(Yg(y))|F̃(Yg(Y0)))−H(F̃(Yg(y))|Θ),

where we used the conditional independence of the elements of F̃(Yg(Y0)) ∪ F̃(Yg(y)) given
Θ, so H(F̃(Yg(Y0))∪F̃(Yg(y))|Θ) = H(F̃(Yg(Y0))|Θ) +H(F̃(Yg(y))|Θ).

Now apply the results of (29) twice for two specific choices for Y0, namely, Y0 ← Y1
0 and

Y0 ← Y2
0 such that Y1

0 ⊆ Y2
0 :

[G̃(Y1
0∪{y})−G̃(Y1

0 )]−[G̃(Y2
0∪{y})−G̃(Y2

0 )]

= H(F̃(Yg(y))|F̃(Yg(Y1
0 )))−H(F̃(Yg(y))|F̃(Yg(Y2

0 ))).

Conditioning on a larger set cannot increase entropy and we have H(F̃(Yg(y))|F̃(Yg(Y1
0 ))) ≥

H(F̃(Yg(y))|F̃(Yg(Y2
0 ))) such that G̃(Y1

0∪{y})−G̃(Y1
0 ) ≥ G̃(Y2

0 ∪ {y})−G̃(Y2
0 ) and G̃ is sub-

modular.
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Algorithm 1 Greedy Submodular Maximization.

S ← ∅
for i = 1 to K do
x? = argmaxx∈V\S G(S ∪ {x}) see (31)
S ← S ∪ {x?}

end for
Return S

To prove monotonicity it is enough to show G̃(Y0∪{y})−G̃(Y0) ≥ 0. This time expand
the mutual information according to I(Θ; F̃(Yg(Y0))) = H(Θ)−H(Θ|F̃(Yg(Y0))):

G̃(Y0∪{y})−G̃(Y0) = H(Θ|F̃(Yg(Y0)))−H(Θ|F̃(Yg(Y0))∪F̃(Yg(y))) .(30)

Conditioning can never increase entropy so

H(Θ|F̃(Yg(Y0))) ≥ H(Θ|F̃(Yg(Y0))∪F̃(Yg(y)))

and the result follows.

The class of submodular combinatorial optimization problems has been extensively studied
in the past [27]. While submodular optimization problems are known to be NP-hard, it is
known that the computationally efficient greedy solver delineated in Algorithm 1 is guaranteed
to achieve a good approximation (up to a constant factor) to the optimal solution [53, 55], as
stated in the next lemma.

Lemma 6 (Nemhauser, Wolsey, and Fisher [55]). Let G be a monotonic, submodular set
function. Let S? = argmaxS⊆V,|S|≤K G(S) be an optimal solution and Sgr a set retrieved by
the greedy maximization Algorithm 1. We have the following guarantee for the performance
of the greedy algorithm:

G(Sgr) ≥ (1− e−1)G(S?).
Moreover, no polynomial time algorithm can provide a better approximation guarantee unless
P = NP [25].

Computational complexity. To determine the computational complexity of Algorithm 1
notice that we have K iterations, where in each iteration we evaluate |V \ S| candidate sets
of the form G(S ∪ {x}) to determine the one of biggest value. We usually have |S| � |V|
such that |V \ S| ≈ |V| and we perform approximately |V| set evaluations for each of the K
iterations. Defining C as the maximal cost per candidate set evaluation we have that the total
computational cost scales as O(K|V|C). For our purposes C is the cost of a single evaluation
of (31) determining the mutual information of a candidate set. This scales as O(K3) as a
determinant of a square matrix of size O(K) per axis, implying an overall cost-scaling for our
method of O(K4|V|). While the worst case computational complexity of the greedy solver
cannot be improved in the general case, as it is linear in the candidate set size and number
of chosen elements, we discuss in section 4.4.1 a variant algorithm with an equal worst case
performance which in practice tends to offer substantially improved running time on most
typical problem instances. No other algorithm can retrieve a greedy solution to a submodular
maximization problem with fewer computations than the variant we discuss [53].
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Proposed method. Applied to our setting, the Algorithm 1 performs successive evaluations
of the proxy function G̃(·) for candidate sets YC0 ≡ Y0 ∪ {y}, where y ∈ Y \ Y0. During the
kth iteration the candidate sets YC0 are of size k. We utilize the following identity to facilitate
the flow of the algorithm:

G̃(YC0 ) = H(F̃(Yg(YC0 )))−H(F̃(Yg(YC0 ))|Θ)

= log((πe)dK̃detΣg)− log((πe)dK̃detΣg|Θ) = log(detΣg)− log(detΣg|Θ).(31)

In the above, Σg and Σg|Θ are the covariance matrices for the ensemble of K̃ samples

F̃(Yg(YC0 )), taken without and with conditioning on the feature space coefficients Θ, re-
spectively. Notice that conditioned on Θ the measurements covariance matrix Σg|Θ is block-
diagonal with block submatrices being the noise covariance matrix, and the no-conditioning
covariance matrix Σg can be retrieved by adding the aforementioned noise matrix to the
corresponding kernel covariance matrix k(F̃(Yg(YC0 )), F̃(Yg(YC0 ))).

Denoting the result of running the greedy maximization Algorithm 1 on the proxy function
G̃(Y0) with Ỹgr

0 we have our final result.

Theorem 7. Let the maximum covariance discrepancy between the true and approximate
models be bounded according to

∀k1, k2, i1, i2 :
∣∣∣k(y(k1)(ti1),y(k2)(ti2))− k(y

(k1)
G (ti1),y

(k2)
G (ti2))

∣∣∣ ≤ δ,
and then we have

G(Ỹgr
0 ) ≥ (1− e−1)(G(Y?0 ) +O(log(1− const · δ))).

Proof. This is immediate from Lemma 6 and Theorem 1.

The last theorem demonstrates that applying the greedy maximization algorithm on the
proxy function G̃(·) retrieves a solution Ỹgr

0 which is near optimal for the original function
G(·), which is what we want.

4.4. Leveraging additional techniques in submodular optimization. In this section we
briefly survey additional results of interest from the literature on submodular maximization.

4.4.1. Lazy greedy submodular maximization. The computational complexity of the
greedy algorithm, while tractable in many settings, can be driven down further using the
submodularity property of the set function. The so-called lazy greedy maximization algorithm
(Algorithm 2) which relies on the submodulairty of G is often found to empirically decrease
running time by orders of magnitude [53]. Our numerical experiments of section 5 utilize this
algorithm for all relevant simulations.

4.4.2. Submodular maximization with matroid constraints. We identified our approxi-
mated experimental design problem (28) as one of maximizing a submodular function under
a cardinality constraint on a subset of Y. With the argument identified as submodular we can
define variants of the cardinality constrained problem that may be of interest in applications
and retain the efficient approximation property of (28).
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Algorithm 2 Lazy Greedy Submodular Maximization.

1: S ← ∅ ∀x ∈ V : m[x]←∞
2: for i = 1 to K do
3: STOP← 0
4: while ∼ STOP do
5: x? = argmaxx∈V\S G(S ∪ {x})
6: m[x?] = G(S ∪ {x})−G(S)
7: if m[x?] ≥ argmaxx m[x] then
8: STOP← 1
9: end if

10: end while
11: S ← S ∪ {x?}
12: end for
13: Return S

We briefly mention submodular maximization with matroid constraints [42, 15], where in
lieu of (28) we solve

Y ?
0 = argmax

Y0:Y0∈I
G̃(Y0)(32)

and I is a matroid combinatorial structure [56]. Matroids can concisely capture complicated
constraints on Y0, for example, let {Y i} be a partition of Y, i.e.,

⋃
i Y i = Y, ∀i 6= j : Y i

⋂
Yj =

∅. With the partition in place, a constraint on Y0 of the form Y0
⋂
Y i ≤ Ki can be shown

to be a matroid constraint of the form Y0 ∈ I. A constraint like this is useful for designing
experiments to learn misspecified models where we cannot choose more than a limited number
Ki of initial conditions to lie in any specific region Y i, e.g., due to some physical impediment
for repeating experiments with similar conditions. It may be shown that an efficient greedy
algorithm can approximate the optimal solution of problems such as those mentioned despite
the exact problem being generally NP-hard.

5. Numerical experiments. In this section we discuss results of numerical experiments
validating and demonstrating our techniques.

5.1. Correction term fitting via GP regression. For the first experiment we consider a
misspecified system in d = 2 dimensions, where the known component is a fixed linear (matrix)
operator, G(y(t)) = Ay(t) with

A =

[
+0.02 +0.10
−0.10 −0.06

]
,

and the misspecified component is set according to F([y1, y2]>) = [0.01y2
1, 0.01y2

2]>. We ob-
serve the system evolution over the time span t ∈ [0, 6], collecting T = 11 equally spaced
time samples per experiment. The sampled time evolution sequences y(k)(t) were computed
exactly, and we collected noisy samples F̃(·) along the evolution path as per the observation
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Figure 1. Time evolution of system output. (left) Training set, with actual evolution in solid lines and
misspecified predictions in dashed lines. (right) Test set, with corrected predictions overlaid.

model (6), where the measurement noise was taken as Σε = σ2
ε I with σ2

ε = 10−4. These
samples were then collected into F̃(Ym) as defined in section 3.

Figure 1 (left) depicts K = 40 trajectories y(t) (solid lines) induced by a set Y0 of initial
conditions (black dots). Elements y ∈ Y0 were drawn from a uniform distribution over the
square D = [−1,+1]×[−1,+1]. For comparison, we overlay the corresponding trajectories of
the misspecified model yG(t) taking into account solely the linear driving term G(·) (dashed
lines).

For the GP regression we use a Gaussian kernel with σ2
w = 1.0 scaled for local variance

1
|D|
∫∫
D |F1(y)|2dy = 1

|D|
∫∫
D |F2(y)|2dy = 4·10−5. These specifications are then used to obtain

an estimate for the correction term F̂(y). Figure 2 depicts the estimation error ‖F̂(y)−F(y)‖2
for y ∈ D, overlaid with the training sequences. As is evident from these plots the estimation
fidelity is high in the regions where training data is readily available.

Finally, in Figure 1 (right) the estimated correction term F̂(·) was used to test prediction
performance over some arbitrary set of initial conditions and compare to the misspecified
predicted evolution. The corrected curves (striped lines) are evidently closer to the true paths
(solid lines) compared to the misspecified predictions (dashed lines).

5.2. Experimental design for a dynamical system. In this subsection we experiment with
and implement the experimental design procedures detailed in section 4. We are interested
in designing a succession of K = 9 experiments. The experimental design entails selecting
an optimal set Y0 ⊆ Y of initial conditions from which to start the system off. With the
misspecified system as defined in the previous subsection, we take the possible selection set Y
to be a uniformly spaced two dimensional 13×13 grid in D = [−1,+1]×[−1,+1] as depicted in
Figure 3 (left). We implement the lazy greedy algorithm and design an approximately optimal
selection set Y0, marked with black squares in Figure 3 (left). Performance is compared to a
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Figure 2. Estimation error ‖F̂(·) − F(·)‖2. White overlaid traces depict the training set time evolution
sequences.

Figure 3. Experimental design setup. (left) Training data collected in two setups, first random and second
based on designing experiments to match the misspecified dynamics. (right) Example of prediction test on some
arbitrary initial conditions.

seed of equal size chosen randomly over Y marked in black circles. Prediction performance
over some arbitrary test set of initial conditions is presented in Figure 3 (right) and a heat
map for the estimation error in F̂(·) is plotted in Figure 4.
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Figure 4. Absolute error in the correction term |F̂i(·) − Fi(·)|. (left) Random initial conditions. (right)
Experimental design.

Figure 5. Estimation error vs. training set size.

Our next experiment, summarized in Figure 5, involved changing the training set size,
keeping track of estimation performance as measured according to

∫∫
D ‖F̂(y) − F(y)‖2dy

(estimated via numerical integration). Our dynamical system is as previously described, and
we compare several correction strategies as summarized in Figure 2.

The first comparison is against a fully data driven estimator, which has no knowledge
(not even approximate) of the system dynamics. We use training sequences as determined by
our misspecified experimental design procedure but learn the full dynamics by applying GP
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regression with a Gaussian RBF kernel of scaled power 10−2 (due to the higher energy of the
unknown function when the entire driving term is to be learned) and estimate the full system
dynamics. The two other estimators are the ones previously described, namely, estimating just
the correction component using the knowledge about the approximate (misspecified) system
dynamics, done once with a random seed training set and again with a training set seeded
by a choice of initial conditions determined according to our misspecified experimental design
procedure.

The results are averaged over 40 realizations of this setup. Also for comparison we show
the energy of the correction term

∫∫
D F(y)dy and the energy of the entire dynamics term∫∫

D [F(y) + G(y)] dy which quantify the effective error associated with the misspecified and
the completely unknowable models.

Evidently the fully data driven approach is always the worst as it ignores the data em-
bedded in the approximated model. However, with an increasing number of experiments the
difference between this approach and the ones taking into account the approximate dynamics
tends to diminish, as the data becomes abundant and no prior assumptions about the model
are needed. The approach taking into account the known component in designing the exper-
imental setup is superior as it utilizes all available knowledge. The random training ignoring
the known dynamics component incurs a cost in terms of estimation performance compared
to the experimental design approach.

5.3. A misspecified gravitational field. Experimental design is crucial when the cost of
experiments is high. One plausible scenario is one in which a gravitational field is estimated by
controlled experiments of placing an object and observing its free fall. (Such experiments are
likely to be costly.) Accurate models of a gravitational field can be useful in planning satellite
trajectories around a planet. We use an artificial simplified simulation of the above in which
we explore a problem of motion in a two dimensional gravitational field. If the gravitational
field around the planet is fully characterized, then this motion can be easily simulated through
the laws of mechanics. In our setting we assume that the gravitational field is not fully known,
and in reality this could happen due to, e.g., nonuniform mass distribution for the planet or
gravitational influence from other nearby heavy masses [54, 64, 65].

Concretely, the two dimensional space is populated with a set of fixed objects, e.g., stars,
with the ith object having3 mass mi and position xi and we are interested in solving for
the motion of some free-moving unit mass, i.e., a satellite, in the corresponding gravitational
field. Let x(t) = [x1(t), x2(t)]T be the coordinate vector of the free-moving unit mass. The
equations of motion governing the time evolution of x(t) are prescribed by classical mechanics
and given according to [30]:

d2

dt2
x(t) = −

∑
i

mi x(t)− xi

‖x(t)− xi‖3
.(33)

This is a second order ODE expressing Newton’s second law of motion and the gravitational
field force. Namely, the acceleration experienced by the satellite is equal to the sum of forces

3Our notation in this subsection is such that subscripts index vector components and superscripts index
objects.
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acting on it. The force exerted on the satellite by the ith mass is aligned with the vector
connecting the two and is directly proportional to mi and inversely proportional to the squared
distance between them.

The second order ODE may be converted into first order form by introducing new variables
and defining the transformation

(34) [y1(t), y2(t), y3(t), y4(t)]> ≡ [x1(t), x2(t),
d

dt
x1(t),

d

dt
x2(t)].

In the new variables the equations of motion read as follows:

d

dt
y1(t) = y3(t),(35)

d

dt
y2(t) = y4(t),(36)

d

dt
y3(t) = −

∑
i

mi y1(t)− xi1
‖[y1(t), y2(t)]> − xi‖3

,(37)

d

dt
y4(t) = −

∑
i

mi y2(t)− xi2
‖[y1(t), y2(t)]> − xi‖3

,(38)

which is a first order system of ODE as in (1).
We consider a known but misspecified model that takes into account a single fixed mass

in the origin with m1 = 0.2 and x1 = [0, 0]>. The true model however includes two additional
masses m2 = 0.1,m3 = 0.4 and x2 = [0, 4]>,x3 = [0.5, 3.8]>. With these symbols, we have

G(y(t))=

[
y3(t), y4(t),

−m1(y1(t)−x1
1)

‖[y1(t), y2(t)]>−x1‖3
,
−m1(y2(t)−x1

2)

‖[y1(t), y2(t)]>−x1‖3

]>
,(39)

F(y(t))=

0, 0,
∑
i=2,3

−mi(y1(t)−xi1)

‖[y1(t), y2(t)]>−xi‖3
,
∑
i=2,3

−mi(y2(t)−xi2)

‖[y1(t), y2(t)]>−xi‖3

> .(40)

For this experiment the signal y(t) is four dimensional such that at any moment it captures
the location as well as vector velocity of the satellite. Similarly, initial conditions are specified
in this four dimensional space.

We limit our attention to correction functions of the functional form F([y1, y2, y3, y4]) =
[0, 0,F3,4([y1, y2])]>, i.e., the gravitational field correction is strictly a function of the spatial
coordinates (y1, y2) and has only two unknown components. We thus consider the problem
of estimating F3,4 : R2 → R2, and our results and techniques naturally carry over to this
scenario.

For the kernel we use a Gaussian RBF with σ2
k = 1.0 scaled for local variance 10−3 and the

measurement noise is Σε = 10−4I. Experiments run in the time frame t ∈ [0, 3.0] and T = 20
data samples are collected per experiment. The selection set Y is a set of size |Y| = 300 of
initial conditions, whose spatial coordinates (y1, y2) are depicted in Figure 6 (left) in addition
to the mass configuration in space. Also shown are training sets of size K = 7 as selected
via an agnostic experimental design procedure and a misspecified aided one. In Figure 6
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Figure 6. Experimental design in a misspecified gravitational field. Training set as determined via an
agnostic approach and a misspecified aided approach (left) and prediction over a random test set (right).

(right) we showcase prediction performance on a random test set. Both the agnostic and the
misspecified designs perform well here compared to the misspecified predictions.

Figure 7 plots the estimation error of F̂3,4(·) for the setup above for the agnostic design
(left) and the misspecified guided design (right), which performs slightly better when compared
according to the mean squared error over the domain of interest D delineated inside the dashed
line.

Finally in Figure 8 we compare the mean square error for the two methods as a function of
K, as determined empirically by averaging the results of 400 noise realizations. For reference,
the dashed red line depicts the mean energy in the unknown term F3,4(·).

6. Conclusions and future extensions. We have introduced a flexible GP based formalism
for expressing misspecified models for dynamical systems, and a corresponding technique for
making inference and learning the misspecified dynamics based on empirical data collected
from system evolution sequences. We formulated a corresponding optimal experimental design
problem as one of choosing informative initial conditions that facilitate rapid learning of the
system and suggested an efficient algorithm with guarantees to find approximate such designs
under an experimental budget constraint.

Several aspects of our work may be extended. We leave the following ideas and direc-
tions for future research. In this study, we have assumed that empirical data is collected
only after experimental design has been performed. However, in various configurations, it is
possible to consider an online adaptive experimental design formulation, where sequential pre-
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Figure 7. Estimation error map for F̂3,4(·) for an agnostic choice of training set (left) and a misspecified
aided design (right). White overlaid traces depict the training set time evolution sequences.

Figure 8. Average estimation error vs. training set size.
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dictions are made based on past observations. While one can consider a setting in which the
aforementioned design process is being reexecuted following each observation (with updated
knowledge), such an approach may be suboptimal. Recent studies have been considering
approaches such as dynamic programming in the context of Bayesian optimization to devise
experimental design in a less myopic fashion [58, 46]. On another matter, in the current study,
the design space involved a discrete lattice of prospective seed coordinates (initial conditions
starting points). Alternative, spatially continuous parametrization of the seeding points may
be more appropriate in other circumstances and may enable harnessing scalable, continuous
optimization strategies for determination of the initial states. While we attempted to gen-
eralize the functional form of the correction model by the utilization of a GP as a generic
form of model correction, the overall relationship of the correction term to the misspecified
model is still in the form of an additive term. This popular choice may be appropriate for
a broad range of applications, but obviously, for others, more sophisticated forms should be
considered.

In this study, we have focused our attention at the link of submodularity and the mutual
information measure. In future studies it would be beneficial to explore the relation between
submodularity and other inference performance measures. Additionally we leave for future
research full consideration of the measurement error in dynamical systems state variables for
enhancing the modeling power of our formulations. Last, from a computational standpoint,
the incorporation of efficient, random features based methods [60, 8] for accelerated predictions
over the corrected system would enable scalability of the approach toward complex large-scale
problems.

Acknowledgment. The authors wish to thank the anonymous reviewers for their valuable
comments.
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