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1. Introduction

The Conjugate Gradient (CG) method is an iterative algorithm for solving linear systems of
equations Ax = b, where A is symmetric and positive de�nite. The convergence of the method
depends on the spectrum of A; when its eigenvalues are clustered, the method converges
rapidly. In particular, CG converges to within a �xed tolerance in O(

√
κ), where κ = κ(A) =

λmax(A)/λmin(A) is the spectral condition number of A.
When the spectrum of A is not clustered, a preconditioner can accelerate convergence. The

Preconditioned Conjugate Gradients (PCG) method applies the CG iteration to the linear
system (B−1/2AB−1/2)(B1/2x) = B−1/2b using a clever transformation that only requires
applications of A and B−1 in every iteration; B also needs to be symmetric positive de�nite.
The convergence of PCG is determined by the spectrum of (B−1/2AB−1/2), which is the same
as the spectrum of B−1A. If a representation of B−1 can be constructed quickly and applied
quickly, and if B−1A has a clustered spectrum, the method is very e�ective. There are also
variants of PCG that require only one of A and B to be positive de�nite, and variants that
allow them to be singular, under some technical conditions on their null spaces.
Combinatorial preconditioning is a technique that relies on graph algorithms to construct

e�ective preconditioners. The simplest applications of combinatorial preconditioning target a
class of matrices that are isomorphic to weighted undirected graph. The coe�cient matrix A
is viewed as its isomorphic graph GA. A specialized graph algorithm constructs another graph
GB such that the isomorphic matrix B is a good preconditioner for A. The graph algorithm
aims to achieve two goals: the inverse of B should be easy to apply, and the spectrum of
B−1A should be clustered. It turns out that the spectrum of B−1A can be bounded in terms
of properties of the graphs GA and GB; in particular, the quality of embeddings of GA in GB

(and sometimes vice versa) plays a fundamental role in these spectral bounds.
This chapter focuses on explaining the relationship between the spectrum of B−1A and

quantitative properties of embeddings of the two graphs. The last section surveys algorithms
that construct combinatorial preconditioners.
We omit most proofs from this chapter; some are trivial, and the others appear in the

paper cited in the statement of the theorem or lemma.
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2. Symmetric Diagonally-Dominant Matrices and Graphs

We begin by exploring the structure of diagonally-dominant matrices and their relation to
graphs.

2.1. Incidence Factorizations of Diagonally-Dominant Matrices.

De�nition 2.1. A square matrix A ∈ Rn×n is called diagonally-dominant if for every i =
1, 2, . . . n we have Aii ≥

∑
i 6=j |Aij|.

Symmetric diagonally dominant matrices have symmetric factorizations A = UUT such
that each column of U has at most two nonzeros, and all nonzeros in each column have the
same absolute values. We now establish a notation for such columns.

De�nition 2.2. Let 1 ≤ i, j ≤ n, i 6= j. The length-n positive edge vector denoted 〈i,−j〉
and the negative edge vector 〈i, j〉 are de�ned by

〈i,−j〉k =

 +1 k = i
−1 k = j

0 otherwise.
and 〈i, j〉k =

 +1 k = i
+1 k = j

0 otherwise.
.

The reason for the assignment of signs to edge vectors will become apparent later. A vertex
vector 〈i〉 is the unit vector

〈i〉k =

{
+1 k = i

0 otherwise.

A symmetric diagonally dominant matrix can always be expressed as a sum of outer prod-
ucts of edge and vertex vectors, and therefore, as a symmetric product of a matrix whose
columns are edge and vertex vectors.

Lemma 2.3. ([6]) Let A ∈ Rn×n be a diagonally dominant symmetric matrix. We can
decompose A as follows

A =
∑
i<j
Aij>0

|Aij| 〈i, j〉 〈i, j〉T

+
∑
i<j
Aij<0

|Aij| 〈i,−j〉 〈i,−j〉T

+
n∑
i=1

Aii − n∑
j=1
j 6=i

|Aij|

 〈i〉 〈i〉T
Matrix decompositions of this form play a prominent role in support theory, so we give

them a name:
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De�nition 2.4. A matrix whose columns are scaled edge and vertex vectors (that is, vectors
of the forms c 〈i,−j〉, c 〈i, j〉, and c 〈i〉) is called an incidence matrix. A factorization A =
UUT where U is an incidence matrix is called an incidence factorization. An incidence
factorization with no zero columns, with at most one vertex vector for each index i, with at
most one edge vector for each index pair i, j, and whose positive edge vectors are all of the
form c 〈min(i, j),−max(i, j)〉 is called a canonical incidence factorization.

Lemma 2.5. Let A ∈ Rn×n be a diagonally dominant symmetric matrix. Then A has an
incidence factorization A = UUT , and a unique canonical incidence factorization.

2.2. Graphs and Their Laplacians Matrices. We now de�ne the connection between
undirected graphs and diagonally-dominant symmetric matrices.

De�nition 2.6. Let G = ({1, 2, . . . n}, E, c, d) be a weighted undirected graph on the vertex
set {1, 2, . . . , n} with no self loops and no parallel edges, and with weight functions c : E →
R \ {0} and d : {1, . . . , n} → R+ ∪ {0}. That is, the edge set consists of unordered pairs of
unequal integers (i, j) such that 1 ≤ i, j ≤ n. The Laplacian of G is the matrix A ∈ Rn×n

such that

Aij =


d(i) +

∑
(i,k)∈E |c(i, k)| i = j

−c(i, j) (i, j) ∈ E
0 otherwise.

A vertex i such that d(i) > 0 is called a strictly dominant vertex. If c = 1, the graph is
not considered weighted. If c > 0 and is not always 1, the graph is weighted. If some weights
are negative, the graph is signed.

Lemma 2.7. The Laplacians of the graphs de�ned in De�nition 2.6 are symmetric and
diagonally dominant. Furthermore, these graphs are isomorphic to symmetric diagonally-
dominant matrices under this Laplacian mapping.

We prefer to work with vertex weights rather than allowing self loops because edge and
vertex vectors are algebraically di�erent.
In algorithms, given an explicit representation of a diagonally-dominant matrix A, we can

easily compute an explicit representation of an incidence factor U (including the canonical
incidence factor if desired). Sparse matrices are often represented by a data structure that
stores a compressed array of nonzero entries for each row or each column of the matrix.
Each entry in a row (column) array stores the column index (row index) of the nonzero, and
the value of the nonzero. From such a representation of A we can easily construct a sparse
representation of U by columns. We traverse each row of A, creating a column of U for each
nonzero in the upper (or lower) part of A. During the traversal, we can also compute all
the d(i)'s. The conversion works even if only the upper or lower part of A is represented
explicitly.
We can use the explicit representation of A as an implicit representation of U , with each o�-

diagonal nonzero of A representing an edge-vector column of U . If A has no strictly-dominant
rows, that is all. If A has strictly dominant rows, we need to compute their weights using a
one-pass traversal of A.
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3. Support Theory

Support theory is a set of tools that aim to bound the generalized eigenvalues λ that
satisfy Ax = λBx from above and below. If B is nonsingular, these eigenvalues are also the
eigenvalues of B−1A, but the generalized representation allows us to derive bounds that also
apply to singular matrices.

De�nition 3.1. Let A and B be n-by-n complex matrices. We say that a scalar λ is a
�nite generalized eigenvalue of the matrix pencil (pair) (A,B) if there is a vector v 6= 0 such
that Av = λBv and Bv 6= 0. We say that ∞ is a in�nite generalized eigenvalue of (A,B)
if there exists a vector v 6= 0 such that Bv = 0 but Av 6= 0. Note that ∞ is an eigenvalue
of (A,B) if and only if 0 is an eigenvalue of (B,A). The �nite and in�nite eigenvalues of a
pencil are determined eigenvalues (the eigenvector uniquely determines the eigenvalue). If
both Av = Bv = 0 for a vector v 6= 0, we say that v is an indeterminate eigenvector, because
Av = λBv for any scalar λ.

The tools of support theory rely on symmetric factorizations A = UUT and B = V V T ;
this is why incidence factorizations are useful. In fact, the algebraic tools of support theory
are particularly easy to apply when U and V are incidence matrices.

3.1. From Generalized Eigenvalues to Singular Values. If A = UUT then Λ(A) =
Σ2(UT ), where Λ(A) is the set of eigenvalues of A and Σ(UT ) is the set of singular values of
UT , and Σ2 is the set of the squares of the singular values. The following lemma extends this
trivial result to generalized eigenvalues.

Lemma 3.2. ([2])Let A = UUT and B = V V T with null(B) = null(A) = S. We have

Λ (A,B) = Σ2
(
V +U

)
and

Λ (A,B) = Σ−2
(
U+V

)
.

In these expressions, Σ(·) is the set of nonzero singular values of the matrix within the
parentheses, Σ` denotes the same singular values to the `th power, and V + denotes the Moore-
Penrose pseudoinverse of V .

The lemma characterizes all the generalized eigenvalues of the pair (A,B), but for large
matrices, it is not particularly useful. Even if U and V are highly structured (e.g., they are
incidence matrices), U+ and V + are usually not structured and are expensive to compute.
The next section shows that if we lower our expectations a bit and only try to bound Λfrom
above and below, then we do not need the pseudo-inverses.

3.2. The Symmetric Support Lemma. In the previous section we have seen that the
singular values of V +U provide complete information on the generalized eigenvalues of (A,B).
If we denote Wopt = V +U , we have

VWopt = V V +U

= U .
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It turns out that any W such that VW = U provides some information on the generalized
eigenvalues of (A,B).

Lemma 3.3. ([9]) Let A = UUT and let B = V V T , and assume that null(B) ⊆ null(A).
Then

max {λ | Ax = λBx,Bx 6= 0} = min
{
‖W‖22 | U = VW

}
.

This lemma is fundamental to support theory and preconditioning, because it is often
possible to prove that W such that U = VW exists and to give a-priori bounds on its norm.

3.3. Norm bounds. The Symmetric Product Support Lemma bounds generalized eigen-
values in terms of the 2-norm of some matrix W such that U = VW . Even if we have a
simple way to construct such a W , we still cannot easily derive a corresponding bound on
the spectrum from the Symmetric-Support Lemma. The di�culty is that there is no simple
closed form expression for the 2-norm of a matrix, since it is not related to the entries of
W in a simple way. It is equivalent to the largest singular value, but this must usually be
computed numerically.
Fortunately, there are simple (and also some not-so-simple) functions of the elements of

the matrix that yield useful bounds on its 2-norm. The following bounds are standard and
are well known and widely used (see [5, Fact 9.8.10.ix] and [5, Fact 9.8.15]).

Lemma 3.4. The two norm of W ∈ Ck×m is bounded by

‖W‖22 ≤ ‖W‖2F =
k∑
i=1

m∑
i=1

W 2
ij ,(3.1)

‖W‖22 ≤ ‖W‖1‖W‖∞ =

(
m

max
j=1

k∑
i=1

|Wij|

)(
k

max
i=1

m∑
j=1

|Wij|

)
.(3.2)

The next two bounds are standard and well known; they follow directly from ‖WW T‖2 =
‖W‖22 and from the fact that ‖S‖1 = ‖S‖∞ for a symmetric S.

Lemma 3.5. The two norm of W ∈ Ck×m is bounded by

‖W‖22 ≤ ‖WW T‖1 = ‖WW T‖∞ ,(3.3)

‖W‖22 ≤ ‖W TW‖1 = ‖W TW‖∞ .(3.4)

The following bounds are more specialized. They all exploit the sparsity of W to obtains
bounds that are usually tighter than the bounds given so far.

Lemma 3.6. ([11]) The two norm of W ∈ Ck×m is bounded by
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‖W‖22 ≤ max
j

∑
i:Wi,j 6=0

‖Wi, : ‖22 = max
j

∑
i:Wi,j 6=0

m∑
c=1

W 2
i,c ,(3.5)

‖W‖22 ≤ max
i

∑
j:Wi,j 6=0

‖W : ,j‖22 = max
i

∑
j:Wi,j 6=0

k∑
r=1

W 2
r,j .(3.6)

The bounds in this lemma are a re�nement of the bound ‖W‖22 ≤ ‖W‖2F . The Frobe-
nious norm, which bounds the two norm, sums the squares of all the elements of W . The
bounds (3.5) and (3.6) sum only the squares in some of the rows or some of the columns,
unless the matrix has a row or a columns with no zeros.
There are similar re�nements of the bound ‖W‖22 ≤ ‖W‖1‖W‖∞.

Lemma 3.7. ([11]) The two norm of W ∈ Ck×m is bounded by

‖W‖22 ≤ max
j

∑
i:Wi,j 6=0

|Wi,j| ·

(
m∑
c=1

|Wi,c|

)
,(3.7)

‖W‖22 ≤ max
i

∑
j:Wi,j 6=0

|Wi,j| ·

(
k∑
r=1

|Wr,j|

)
.(3.8)

3.4. Support numbers. Support numbers generalize the notion of the maximal eigenvalue
of a matrix pencil.

De�nition 3.8. A matrix B dominates a matrix A if for any vector x we have xT (B−A)x ≥
0. We denote domination by B � A.

De�nition 3.9. The support number for a matrix pencil (A,B) is

σ(A,B) = min {t|τB � A, for all τ ≥ t} .

If B is symmetric positive de�nite and A is symmetric, then the support number is always
�nite, because xTBx/xTx is bounded from below by min Λ(B) > 0 and xTAx/xTx is bounded
from above by max Λ(A), which is �nite. In other cases, there may not be any t satisfying
the formula; in such cases, we say that σ(A,B) =∞.

Example 3.10. Suppose that x ∈ null(B) and that A is positive de�nite. Then for any
τ > 0 we have xT (τB − A)x = −xTAx < 0. Therefore, σ(A,B) =∞.

Example 3.11. If B is not positive semide�nite, then there is some x for which xTBx < 0.
This implies that for any A and for any large enough τ , xT (τB − A)x < 0. Therefore,
σ(A,B) =∞.

The next result, like the Symmetric Support Lemma, bounds generalized eigenvalues.
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Theorem 3.12. ([9]) Let A and B be symmetric, let B also be positive semide�nite. If
null(B) ⊆ null(A), then

σ(A,B) = max {λ|Ax = λBx,Bx 6= 0} .

A primary motivation for support numbers is to bound (spectral) condition numbers. For
symmetric matrices, the relation κ(A) = λmax(A)/λmin(A) holds. Let κ(A,B) denote the
condition number of the matrix pencil (A,B), that is, κ(B−1A) when B is non-singular.

Theorem 3.13. When A and B are symmetric positive de�nite, then κ(A,B) = σ(A,B)σ(B,A).

A common strategy in support theory is to bound condition numbers by bounding both
σ(A,B) and σ(B,A). Typically, one direction is easy and the other is hard.
Applications usually do not solve singular systems. Nonetheless, it is often convenient to

analyze preconditioners in the singular context. For example, �nite element systems are often
singular until boundary conditions are imposed, so we can build B from the singular part of
A and then impose the same boundary-constraints on both matrices.

3.5. Splitting. Support numbers are convenient for algebraic manipulation. One of their
most powerful properties is that they allow us to split complicated matrices into simpler
pieces (matrices) and analyze these separately. Let A = A1 + A2 + · · ·Aq, and similarly,
B = B1 + B2 + · · · + Bq. We can then match up pairs (Ai, Bi) and consider the support
number for each such pencil separately.

Lemma 3.14. ([17, Lemma 4.7]) Let A = A1 + A2 + · · ·Aq,and similarly, B = B1 + B2 +
· · ·+Bq, where all Ai and Bi are symmetric and positive semide�nite. Then

σ(A,B) ≤ max
i
σ(Ai, Bi)

Proof. Let σ = σ(A,B), let σi = σ(Ai, Bi), and let σmax = maxi σi. Then for any x

xT (σmaxB − A)x = xT

(
σmax

∑
i

Bi −
∑
i

Ai

)
x

=
∑
i

xT (σmaxBi − Ai)x

≥
∑
i

xT (σiBi − Ai)x

≥ 0 .

Therefore, σ ≤ σmax. �

The splitting lemma is quite general, and can be used in many ways. In practice we want to
break both A and B into simpler matrices that we know how to analyze. The term �simpler�
can mean sparser, or lower rank, and so on. In order to get a good upper bound on the
support number, the splitting must be chosen carefully. Poor splittings give poor bounds.
Here is an example.
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Example 3.15. Let A =

[
3 −2
−2 2

]
=

[
2 −2
−2 2

]
+

[
1 0
0 0

]
= A1 + A2, and B =[

2 −1
−1 2

]
=

[
1 −1
−1 1

]
+

[
1 0
0 1

]
= B1+B2. Then the Splitting Lemma says σ(A,B) ≤

max {σ(A1, B1), σ(A2, B2)}. It is easy to verify that σ(A1, B1) = 2 and that σ(A2, B2) = 1;
hence σ(A,B) ≤ 2. Note that B1 can not support A2, so correct pairing of the terms in A
and B is essential. The exact support number is σ(A,B) = λmax(A,B) = 1.557.

4. Embeddings and Combinatorial Support Bounds

To bound σ(A,B) using the Symmetric Support Lemma, we need to factor A and B into
A = UUT and B = V V T , and we need to �nd a W such that U = VW . We have seen
that if A and B are diagonally dominant, then there is an almost trivial way to factor A
and B such that U and V are about as sparse as A and B. But how do we �nd a W such
that U = VW? In this chapter, we show that when A and B are weighted (but not signed)
Laplacians, we can construct such W using an embedding of the edges of GA into paths in
GB. Furthermore, when W is constructed from an embedding, the bounds on ‖W‖2 can be
interpreted as combinatorial bounds on the quality of the embedding.

4.1. De�ning W using Path Embeddings. We start with the construction of a matrix
W such that U = VW .

Lemma 4.1. Let (i1, i2, . . . , i`) be a sequence of integers between 1 and n, such that ij 6= ij+1

for j = 1, . . . `− 1.Then

〈i1,−i`〉 =
`−1∑
j=1

〈ij,−ij+1〉 ,

where all the edge vectors are length n.

To see why this lemma is important, consider the role of a column of W . Suppose that
the columns of U and V are all positive edge vectors. Denote column c of U by

U : ,c = 〈min(i1, i`),−max(i1, i`)〉 = (−1)i1>i` 〈i1,−i`〉 ,

where the (−1)i1>i` evaluates to −1 if i1 > i` and to 1 otherwise. This column corresponds to
the edge (i1, i`) in GUUT . Now let (i1, i2, . . . , i`) be a simple path in GV V T (a simple path is
a sequence of vertices (i1, i2, . . . , i`) such that (ij, ij+1) is an edge in the graph for 1 ≤ j < `
and such that any vertex appears at most once on the path). If U = VW , then

U : ,c = VW : ,c =
k∑
r=1

V : ,rWr,c .

Let r1, r2, . . . , r`−1 be the columns of V that corresponds to the edges of the path (i1, i2, . . . , i`),
in order. That is, V : ,r1 = 〈min(i1, i2),−max(i1, i2)〉, V : ,r2 = 〈min(i2, i3),−max(i2, i3)〉, and
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so on. By the lemma,

U : ,c = (−1)i1>i` 〈i1,−i`〉

= (−1)i1>i`
`−1∑
j=1

〈ij,−ij+1〉

= (−1)i1>i`
`−1∑
j=1

(−1)ij>ij+1V : ,rj .

It follows that if we de�ne W : ,c to be

Wr,c =

{
(−1)i1>i`(−1)ij>ij+1 r = rj for some 1 ≤ j < `

0 otherwise,

then we have U : ,c = VW : ,c. We can construct all the columns of W in this way, so that W
satis�es U = VW .
A path of edge vectors that ends in a vertex vector supports the vertex vector associated

with the �rst vertex of the path.

Lemma 4.2. Let (i1, i2, . . . , i`) be a sequence of integers between 1 and n, such that ij 6= ij+1

for j = 1, . . . `− 1.Then

〈i1〉 = 〈i`〉+
`−1∑
j=1

〈ij,−ij+1〉 ,

where all the edge and vertex vectors are length n.

The following theorem generalizes these ideas to scaled positive edge vectors and to scaled
vertex vectors. The theorem also states how to construct all the columns of W . The theorem
summarizes results in [9, 4].

Theorem 4.3. Let A and B be weighted (unsigned) Laplacians and let U and V be their
canonical incidence factors. Let π be a path embedding of the edges and strictly-dominant
vertices of GA into GB, such that for an edge (i1, i`) in GA, i1 < i`, we have

π(i1, i`) = (i1, i2, . . . , i`)

for some simple path (i1, i2, . . . , i`) in GB, and such that for a strictly-dominant i1 in GA,

π(i1) = (i1, i2, . . . , i`)

for some simple path (i1, i2, . . . , i`) in GB that ends in a strictly-dominant vertex i` in GB.
Denote by cV (ij, ij+1) the index of the column of V that is a scaling of 〈ij,−ij+1〉. That is,

V : ,cV (ij ,ij+1) =
√
−Bij ,ij+1

〈min(ij, ij+1),−max(ij, ij+1)〉 .
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Similarly, denote by cV (ij) the index of the column of V that is a scaling of 〈ij〉,

V : ,cV (ij) =

√√√√√Bij ,ij −
n∑

ik=1
ik 6=ij

∣∣Bik,ij

∣∣ 〈ij〉 ,

and similarly for U .
We de�ne a matrix W as follows. For a column index cU(i1, i`) with i1 < i` we de�ne

Wr,cU (i1,i`) =

 (−1)ij>ij+1
√
Ai1,i`/Bij ,ij+1

if r = cV (ij, ij+1) for
some edge (ij, ij+1) in π(i1, i`)

0 otherwise.

For a column index cU(i1), we de�ne

Wr,cU (i1) =



√
Ai1,i1−

∑
j 6=i1|Ai1,j|

Bi`,i`−
∑
j 6=i` |Bi`,j|

if r = cV (i`)

(−1)ij>ij+1

√
Ai1,i1−

∑
k 6=i1|Ai1,k|

|Bij ,ij+1 |
if r = cV (ij, ij+1) for

some edge (ij, ij+1) in π(i1)
0 otherwise.

Then U = VW .

Proof. For scaled edge-vector columns in U we have

VW : ,cU (i1,i`) =
∑
r

V : ,rWr,cU (i1,i`)

=
∑

r=cV (ij ,ij+1)
for some edge

(ij ,ij+1) in π(i1,i`)

V : ,rWr,cU (i1,i`)

=
`−1∑
j=1

√∣∣Bij ,ij+1

∣∣ 〈min(ij, ij+1),−max(ij, ij+1)〉 (−1)ij>ij+1

√
Ai1,i`
Bij ,ij+1

=
√
|Ai1,i`|

`−1∑
j=1

〈ij,−ij+1〉

= U : ,cU (i1,i`) .
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For scaled vertex-vector columns in U we have

VW : ,cU (i1) =
∑
r

V : ,rWr,cU (i1)

= V : ,cV (i`)WcV (i`),cU (i1,i`) +
∑

r=cV (ij ,ij+1)
for some edge

(ij ,ij+1) in π(i1)

V : ,rWr,cU (i1)

=

√
Bi`,i` −

∑
j 6=i`

|Bik,i` | 〈i`〉

√
Ai1,i1 −

∑
j 6=i1 |Ai1,j|

Bi`,i` −
∑

j 6=i` |Bi`,j|

+
`−1∑
j=1

√∣∣Bij ,ij+1

∣∣ 〈min(ij, ij+1),−max(ij, ij+1)〉

·(−1)ij>ij+1

√
Ai1,i1 −

∑
j 6=i1 |Ai1,j|∣∣Bij ,ij+1

∣∣
=

√
Ai1,i1 −

∑
j 6=i1

|Ai1,j| 〈i`〉+

√
Ai1,i1 −

∑
j 6=i1

|Ai1,j|
`−1∑
j=1

〈ij,−ij+1〉

=

√
Ai1,i1 −

∑
j 6=i1

|Ai1,j| 〈i1〉

= U : ,cU (i1) .

�

The generalization of this theorem to signed Laplacians is more complex, because a path
from i1 to i` supports an edge (i1, i`) only if the parity of positive edges in the path and in
the edge is the same. In addition, a cycle with an odd number of positive edges spans all the
vertex vectors of the path. For details, see [6].
Theorem 4.3 plays a fundamental role in many applications of support theory. A path

embedding π that can be used to construct W exists if and only if the graphs of A and B
have related in a speci�c way, which the next lemma speci�es.

Lemma 4.4. Let A = UUT and B = V V T be weighted (but not signed) Laplacians with
arbitrary symmetric-product factorizations. The following conditions are necessary for the
equation U = VW to hold for some matrix W (by Theorem 4.3, these conditions are also
su�cient).

(1) For each edge (i, j) in GA, either i and j are in the same connected component in GB,
or the two components of GB that contain i and j both include a strictly-dominant
vertex.

(2) For each strictly-dominant vertex i in GA, the component of GB that contains i in-
cludes a strictly-dominant vertex.



COMBINATORIAL PRECONDITIONERS 12

Proof. Suppose for contradiction that one of the conditions is not satis�ed, but that there
is a W that satis�es U = VW . Without loss of generality, we assume that the vertices are
ordered such that vertices that belong to a connected component in GB are consecutive.
Under that assumption,

V =


V1

V2

. . .
Vk

 ,

and

B =


B1

B2

. . .
Bk

 =


V1V

T
1

V2V
T
2

. . .
VkV

T
k

 .

The blocks of V are possibly rectangular, whereas the nonzero blocks of B are all diagonal
and square.
We now prove the necessity of the �rst condition. Suppose for some edge (i, j) in GA,

i and j belong to di�erent connected components of GB (without loss of generality, to the
�rst two components), and that one of the components (w.l.o.g. the �rst) does not have a
strictly-dominant vertex. Because this component does not have a strictly-dominant vertex,
the row sums in V1V

T
1 are exactly zero. Therefore, V1V

T
1
~1 = ~0, so V1 must be rank de�cient.

Since (i, j) is in GA, the vector 〈i,−j〉 is in the column space of the canonical incidence
factor of A, and therefore in the column space of any U such that A = UUT . If U = VW ,
then the vector 〈i,−j〉 must also be in the column space of V , so for some x

〈i,−j〉 = V x =


V1

V2

. . .
Vk



x1

x2
...
xk

 =


V1x1

V2x2
...

Vkxk

 .

Therefore, V1x1 is a vertex vector. By Theorem 4.3, if V1 spans a vertex vector, it spans
all the vertex vectors associated with the vertices of the connected component. This implies
that V1 is full rank, a contradiction.
The necessity of the second condition follows from a similar argument. Suppose that vertex

i is strictly dominant in GA and that it belongs to a connected component in GB (w.l.o.g.
the �rst) that does not have a vertex that is strictly dominant in GB. This implies that for
some y

〈i〉 = V y =


V1

V2

. . .
Vk



y1

y2
...
yk

 =


V1y1

V2y2
...

Vkyk

 .

Again V1y1 is a vertex vector, so V1 must be full rank, but it cannot be full rank because
V1V

T
1 has zero row sums. �
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Not every W such that U = VW corresponds to a path embedding, even if U and V are
the canonical incidence factors of A and B.In particular, a column of W can correspond to a
linear combination of multiple paths. Also, even if W does correspond to a path embedding,
the paths are not necessarily simple. A linear combination of scaled positive edge vectors
that correspond to a simple cycle can be identically zero, so the coe�cients of such linear
combinations can be added to W without a�ecting the product VW . However, it seems that
adding cycles to a path embedding cannot reduce the 2-norm of W , so cycles are unlikely to
improve support bounds.

4.2. Combinatorial Support Bounds. To bound σ(A,B) using the Symmetric Support
Lemma, we factor A into A = UUT , B into B = V V T , �nd a matrix W such that U = VW ,
and bound the 2-norm of W from above. We have seen how to factor A and B (if they are
weighted Laplacians) and how to construct an appropriate W from an embedding of GB in
GA. We now show how to use combinatorial metrics of the path embeddings to bound ‖W‖2.
Bounding the 2-norm directly is hard, because the 2-norm is not related in a simple way to

the entries ofW . But the 2-norm can be bounded using simpler norms, such as the Frobenius
norm, the in�nity norm, and the 1-norm (see section 3.3). These simpler norms have natural
and useful combinatorial interpretations when W represents a path embedding.
To keep the notation and the de�nition simple, we now assume that A and B are weighted

Laplacians with zero row sums. We will show later how to deal with positive row sums. We
also assume that W corresponds to a path embedding π. The following de�nitions provide a
combinatorial interpretation of these bounds.

De�nition 4.5. The weighted dilation of an edge of GA in an path embedding π of GA into
GB is

dilationπ(i1, i2) =
∑

(j1,,j2)

(j1,,j2)∈π(i1,i2)

√
Ai1,i2
Bj1,j2

.

The weighted congestion of an edge of GB is

congestionπ(j1, j2) =
∑

(i1,,i2)

(j1,,j2)∈π(i1,i2)

√
Ai1,i2
Bj1,j2

.

The weighted stretch of an edge of GA is

stretchπ(i1, i2) =
∑

(j1,,j2)

(j1,,j2)∈π(i1,i2)

Ai1,i2
Bj1,j2

.

The weighted crowding of an edge in GB is

crowdingπ(j1, j2) =
∑

(i1,,i2)

(j1,,j2)∈π(i1,i2)

Ai1,i2
Bj1,j2

.
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Note that stretch is a summation of the squares of the quantities that constitute dilation,
and similarly for crowding and congestion. Papers in the support-preconditioning literature
are not consistent about these terms, so check the de�nitions carefully when you consult a
paper that deals with congestion, dilation, and similar terms.

Lemma 4.6. ([9, 28]) Let A and B be weighted Laplacians with zero row sums, and let π be
a path embedding of GA into GB. Then

σ(A,B) ≤
∑

(i1,i2)∈GA

stretchπ(i1, i2)

σ(A,B) ≤
∑

(j1,j2)∈GB

crowdingπ(j1, j2)

σ(A,B) ≤
(

max
(i1,i2)∈GA

dilationπ(i1, i2)

)
·
(

max
(j1,j2)∈GB

congestionπ(j1, j2)

)
.

We now describe one way to deal with matrices with some positive row sums. The matrix B
is a preconditioner. In many applications, the matrix B is not given, but rather constructed.
One simple way to deal with positive row sums in A is to de�neπ(i1) = (i1). That is, vertex
vectors in the canonical incidence factor of A are mapped into the same vertex vectors in the
incidence factor of B. In other words, we construct B to have exactly the same row sums
as A. With such a construction, the rows of W that correspond to vertex vectors in U are
columns of the identity.

Lemma 4.7. Let A and B be weighted Laplacians with the same row sums, let π be a path
embedding of GA into GB, and let ` be the number of rows with positive row sums in A and
B. Then

σ(A,B) ≤ `+
∑

(i1,i2)∈GA

stretchπ(i1, i2)

σ(A,B) ≤
(

max

{
1, max

(i1,i2)∈GA
dilationπ(i1, i2)

})
·
(

max

{
1, max

(j1,j2)∈GB
congestionπ(j1, j2)

})
.

Proof. Under the hypothesis of the lemma, the rows and columns of W can be permuted into
a block matrix

W =

(
WZ 0
0 I`×`

)
,

where WZ represents the path embedding of the edges of GA into paths in GB. The bounds
follow from the structure of W and from the proof of the previous lemma. �

The sparse bounds on the 2-norm of a matrix lead to tighter combinatorial bounds.
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Lemma 4.8. Let A and B be weighted Laplacians with zero row sums, and let π be a path
embedding of GA into GB. Then

σ(A,B) ≤ max
(j1,j2)∈GB

∑
(i1,i2)∈GA

(j1,j2)∈π(i1,i2)

stretchπ(i1, i2) ,

σ(A,B) ≤ max
(i1,i2)∈GA

∑
(j1,j2)∈GA

(j1,j2)∈π(i1,i2)

crowdingπ(j1, j2) .

We can derive similar bounds for the other sparse 2-norm bounds.

4.3. Subset Preconditioners. To obtain a bound on κ(A,B), we need a bound on both
σ(A,B) and σ(B,A). But in one common case, bounding σ(B,A) is trivial. Many support
preconditioners construct GB to be a subgraph of GA, with the same weights. That is, V is
constructed to have a subset of the columns in U . If we denote by V̄ the set of columns of
U that are not in V , we have

B = V V T

A = UUT

= V V T + V̄ V̄ T

= B + V̄ V̄ T .

This immediately implies xTAx ≥ xTBx for any x, so λmin(A,B) ≥ 1.

4.4. Combinatorial Trace Bounds. The Preconditioned Conjugate Gradients (PCG) al-

gorithm requires Θ(
√
κ(A,B) iterations only when the generalized eigenvalues are distributed

poorly between λmin(A,B) and λmax(A,B). For example, if there are only two distinct
eigenvalues, PCG converges in two iterations. It turns out that a bound on trace(A,B) =∑
λi(A,B) also yields a bound on the number of iterations, and in some cases this bound is

sharper than the O(
√
κ(A,B) bound.

Lemma 4.9. ([29]) The Preconditioned Conjugate Algorithm converges to within a �xed
tolerance in

O

(
3

√
trace(A,B)

λmin(A,B)

)
iterations.

A variation of the Symmetric Support Lemma bounds the trace, and this leads to a com-
binatorial support bound.

Lemma 4.10. Let A = UUT ∈ Rn×n and let B = V V T ∈ Rn×n, and assume that null(B) =
null(A). Then

trace(A,B) = min
{
‖W‖2F | U = VW

}
.
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Proof. Let W be a matrix such that U = VW . For every x /∈ null(B) we can write

xTAx

xTBx
=

xTVWW TV Tx

xTV V Tx

=
yTWW Ty

yTy
,

where y = V Tx. Let S ⊆ Rn be a subspace orthogonal to null(B) of dimesion k, and de�ne
TS =

{
V Tx | x ∈ S

}
. Because S is orthogonal to null(B) we have dim(TS) = k. The sets{

xTAx/xTBx | x ∈ S
}
and

{
yTWW Ty | y ∈ TS

}
are identical so their minimums are equal

as well. The group of subspaces {TS | dim(S) = k, S ⊥ null(B)} is a subset of all subspaces
of dimension k, thererfore

max
dim(S) = k
S ⊥ null(B)

min
x ∈ S
x 6= 0

xTUUTx

xTV V Tx
= max

dim(S) = k
S ⊥ null(B)

min
y ∈ TS
y 6= 0

yTWW Ty

yTy

≤ max
dim(T )=k

min
y ∈ T
y 6= 0

yTWW Ty

yTy
.

According to the Courant-Fischer Minimax Theorem,

λn−k+1(WW T ) = max
dim(T )=k

min
y ∈ T
y 6= 0

yTWW Ty

yTy

and by the generalization of Courant-Fischer in [3],

λn−k+1(UU
T , V V T ) = max

dim(S) = k
V ⊥ null(B)

min
x∈S

xTUUTx

xTV V Tx
.

Therefore, for k = 1, . . . , rank(B) we have λn−k+1(A,B) ≤ λn−k+1(WW T ) so trace(A,B) ≤
trace(WW T ) = ‖W‖2F . This shows that trace(A,B) ≤ min

{
‖W‖2F | U = VW

}
.

According to Lemma 3.2 the minimum is attainable at W = V +U . �

To the best of our knowledge, Lemma 4.10 is new. It was inspired by a specialized bound
on the trace from [29]. The next theorem generalizes the result form [29]. The proof is trivial
given De�nition 4.5 and Lemma 4.10
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Theorem 4.11. Let A and B be weighted Laplacians with the same row sums, let π be a
path embedding of GA into GB. Then

trace(A,B) ≤
∑

(i1,i2)∈GA

stretchπ(i1, i2) ,

trace(A,B) ≤
∑

(j1,j2)∈GB

crowdingπ(j1, j2) .

5. Combinatorial Preconditioners

The earliest graph algorithm to construct a preconditioner was proposed by Vaidya [31] (see
also [4]). He proposed to use a so-called augmented maximum spanning tree of a weighted
Laplacian as a preconditioner. This is a subset preconditioner that drops some of the edges
in GA while maintaining the weights of the remaining edges. When B−1 is applied using
a sparse Cholesky factorization, this construction leads to a total solution time of O(n7/4)
for Laplacians with a bounded degree and O(n6/5) when the graph is planar. For regular
unweighted meshes in 2 and 3 dimensions, special constructions are even more e�ective [20].
Vaidya also proposed to use recursion to apply B−1, but without a rigorous analysis; in
this scheme, sparse Gaussian elimination steps are performed on B as long as the reduced
matrix has a row with only two nonzeros. At that point, the reduced system is solved by
constructing a graph preconditioner, and so on. Vaidya's preconditioners are quite e�ective
in practice [12]. A generalization to complex matrices proved e�ective in handling a certain
kind of ill conditioning [19].
Vaidya's bounds used a congestion-dilation product. The research on subset graph precon-

ditioners continued with an observation that the sum of the stretch can also yield a spectral
bound, and that so-called low-stretch trees would give better worst-case bounds than the
maximum-spanning trees that Vaidya used [8]. Constructing low-stretch trees is more com-
plicated than constructing maximum spanning trees. When the utility of low-stretch trees
was discovered, one algorithm for constructing them was known [1]; better algorithms were
discovered later [15]. Low-stretch trees can also be augmented, and this leads to precondition-
ers that can solve any Laplacian system with m nonzeros in O(m4/3), up to some additional
polylogarithmic factors [26, 29]. By employing recursion, the theoretical running time can
be reduced to close to linear in m [27]. An experimental comparison of simpli�ed versions
of these sophisticated algorithms to Vaidya's algorithm did not yield a conclusive result [30].
Heuristic subset graph preconditioners have also been proposed [16].
Gremban and Miller proposed a class of combinatorial preconditioners called support-tree

preconditioners [18, 17]. Their algorithms construct a weighted tree whose leaves are the
vertices of GA. Therefore, the graph GT of the preconditioner T has additional vertices.
They show that applying T−1 to extensions of residuals is equivalent to using a preconditioner
B that is the Schur complement of T with respect to the original vertices. Bounding the
condition number κ(A,B) is more di�cult than bounding the condition number of subset
preconditioners, because the Schur complement is dense. More e�ective versions of this
strategy have been proposed later [23, 21, 22].
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E�orts to generalize these constructions to matrices that are not weighted Laplacians
followed several paths. Gremban showed how to transform a linear system whose coe�cient
matrix is a signed Laplacian to a linear system of twice the size whose matrix is a weighted
Laplacian. The coe�cient matrix is a 2-by-2 block matrix with diagonal blocks with the same
sparsity pattern as the original matrix A and with identity o�-diagonal blocks. A di�erent
approach is to extend Vaidya's construction to signed graphs [6]. The class of symmetric
matrices with a symmetric factorization A = UUT where columns of U have at most 2
nonzeros contains not only signed graphs, but also gain graphs, which are not diagonally
dominant [7]; it turns out that these matrices can be scaled to diagonal dominance, which
allows graph preconditioners to be applied to them [14].
The matrices that arise in �nite-element discretization of elliptic partial di�erential equa-

tions (PDEs) are positive semi-de�nite, but in general they are not diagonally dominant.
However, when the PDE is scalar (e.g., describes a problem in electrostatics), the matri-
ces can sometimes be approximated by diagonally dominant matrices. In this scheme, the
coe�cient matrix A is �rst approximated by a diagonally-dominant matrix D, and then
GD is used to construct the graph GB of the preconditioner B. For large matrices of this
class, the �rst step is expensive, but because �nite-element matrices have a natural repre-
sentation as a sum of very sparse matrices, the diagonally-dominant approximation can be
constructed for each term in the sum separately. There are at least three ways to construct
these approximations: during the �nite-element discretization process [10], algebraically [2],
and geometrically [32]. A slightly modi�ed construction that can accommodate terms that
do not have a close diagonally-dominant approximation works well in practice [2].
Another approach for constructing combinatorial preconditioners to �nite element prob-

lems is to rely on a graph that describes the relations between neighboring elements. This
graph is the dual of the �nite-element mesh; elements in the mesh are the vertices of the
graph. Once the graph is constructed, it can be sparsi�ed much like subset preconditioners.
This approach, which is applicable to vector problems like linear elasticity, was proposed
in [24]; this paper also showed how to construct the dual graph algebraically and how to
construct the �nite-element problem that corresponds to the sparsi�ed dual graph. The �rst
e�ective preconditioner of this class was proposed in [13]. It is not yet known how to weigh
the edges of the dual graph e�ectively, which limits the applicability of this method. However,
in applications where there is no need to weigh the edges, the method is e�ective [25].
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