
Raymond and Beverly Sackler Faculty of Exact Sciences
School of Computer Science

Advanced Algorithmic Techniques

in Numerical Linear Algebra:

Hybridization and Randomization

Thesis submitted for the degree of Doctor of Philosophy
by

Haim Avron

This work was carried out under the supervision of

Prof. Sivan Toledo

Submitted to the Senate of Tel Aviv University

July 2010

To my dear wife and wonderful son.

Acknowledgments

First and foremost, I would like to thank my advisor, Professor Sivan Toledo. Sivan
is a true mentor. I do not think one can hope for a better advisor. Working with Sivan
was a truly pleasurable learning experience. I appreciate the time he spent working with
me, and for teaching me how research is done in academe.

I wish to thank Professor Daniel Cohen-Or for the opportunity to work with his
research group. I would also like to thank Dr. Anshul Gupta for mentoring me during
my IBM summer internship in 2008. I learned a lot about research on Numerical Linear
Algebra while working with Anshul. It is also a pleasure to thank my other co-authors and
collaborators (both of papers included in this thesis and papers not included in this thesis):
Esmond Ng, Gil Shklarski, Andrei Sharf, Chen Grief, Doron Chen, Petar Maymounkov
and Prabhanjan Kambadur. I would like to especially thank Mark Tygert for very helpful
discussions, ideas and insights for my two papers on randomized numerical linear algebra.

Thanks to my friends and lab partners over the years, Gil Shklarski, Aviad Zuc, Andrei
Sharf, Tuli Uchitel, Michal Spivak, Nir Shasha, Avi Ben Aroya, Sharon Buckner, Guy
Karlibach and Alex Druinsky. I wish to thank them for their friendship and numerous
interesting discussions.

I wish to thank my dear parents for their love, encouragements and on-going support
over the years. Without them pushing me from a young age, even though I did not want
to be pushed, I would never have gotten to where I got.

Last but not least, I wish to thank my dearest wife Yifat, for her love and friendship,
and for keeping up with me while I chase my dreams. This thesis is dedicated to her.

5

Abstract

The main theme of this thesis is the use of hybridization and randomization to de-
velop new algorithms for solving important problems in numerical linear algebra. The
importance of numerical linear algebra cannot be overstated. Numerical linear algebra
is ubiquitous in scienti�c computing. For example, modeling real-world changing condi-
tions, such as weather, air �ow around a plane, automobile body deformation in a crash
almost always requires solving linear systems or computing eigenvalues. In the last few
decades there has been considerable progress in the development of general purpose lin-
ear solvers. Nevertheless, concurrently the the number and scale scienti�c applications
increased dramatically, and today, more then ever, many research and industrial centers
are in need of widely-applicable e�cient linear solvers. This thesis explores two exciting
methodologies, hybridization and randomization, which seem promising in the e�ort to
push the boundary of numerical linear algebra.

We begin by exploring the use of hybridization. There are two methodologies for
solving both sparse and dense systems of linear equations: direct and iterative. Direct
solvers factor the coe�cient matrix into a product of simpler matrices whose inverse is
easy to apply. Iterative solvers start with an approximate solution and iteratively re�ne
it. Each of the two methodologies has advantages and disadvantages. Direct methods
tend to be generic, robust, predictable and e�cient. But their scalability is limited: they
may run out of memory, and be too slow for very large matrices. Iterative methods
scale much better, but are usually more fragile and slower than direct methods. These
di�culties are usually overcome by using a preconditioner, but this reduces generality.
But preconditionning also opens the door for hybridization: a direct method can be used
to form the preconditioner. By embedding a direct method inside the iterative method we
are able to enhance its robustness and e�ciency without sacri�cing too much generality.

In chapter 2 we present an hybrid linear solver for equations arising from a �nite
element discretization of scalar elliptic partial di�erential equations. Matrices arising from
�nite-element discretization of scalar elliptic partial di�erential equations have certain
algebraic properties that can be utilized for constructing an e�ective linear solver. We
present a study of these properties and a novel solver based on them. The solver uses new
purely algebraic methods for approximating the element matrices by symmetric diagonally
dominant ones. The resulting matrix is then approximated using standard combinatorial
preconditioners, which are factored using a direct solver. When all the element matrices
are approximable, which is often the case, the solver is provably e�cient. When there
are inapproximable elements, the solver identi�es those elements, and does not sparsify
their part in the model. As this portion becomes larger, this solver automatically behaves
more like a direct solver. Experimental results show that on problems in which some of
the element matrices are ill conditioned, this solver is more e�ective than an algebraic

7

Abstract 8

multigrid solver, than an incomplete-factorization solver, and than a direct solver. This
is a joint work with Doron Chen, Gil Shklarski and Sivan Toledo.

In chapter 3 we propose and analyze a new tool to help solve sparse linear least-squares
problems minx ‖Ax − b‖2. Our method is based on a sparse QR factorization of a low-

rank perturbation Â of A. More precisely, we show that the R factor of Â is an e�ective
preconditioner for the least-squares problem minx ‖Ax − b‖2, when solved using LSQR.
We propose applications for the new technique. When A is rank de�cient we can add
rows to construct a well-conditioned preconditioner. When A is sparse except for a few
dense rows we can drop these dense rows from A to obtain Â to avoid �ll in R . Another
application is solving an updated or downdated problem. If R is a good preconditioner for
the original problem A, it is a good preconditioner for the updated/downdated problem

Â. We can also solve what-if scenarios, where we want to �nd the solution if a column of
the original matrix is changed/removed. We present a spectral theory that analyzes the
generalized spectrum of the pencil (A∗A,R∗R) and applications of this theory. This is a
joint work with Esmond Ng and Sivan Toledo.

Two applications of the row perturbation techniques are explored in depth in chap-
ters 4 and 5. Chapter 4 presents a solver for rank-de�cient overdetermined least squares
systems. Our solver forms a well-conditioned preconditioner using the techniques pre-
sented in chapter 3 . Numerical experiments establish the e�ectiveness of our solver.

Chapter 5 exploits another technique from chapter 3 to address a problem in computer
graphics. The chapter presents a novel method for reconstructing a piecewise smooth
surface from noisy 3D scanner data. The method forms an `1 minimization problem
(which is, in our case, a second-order cone problem) which is solved using a log-barrier
interior point method. This requires the solution of many least-squares problems with
several dense rows. The technique of row-removal from chapter 3 is used to address the
dense rows. The signi�cance of the results lie in the realm of computer graphics, but
they also demonstrate the utility of the results from chapter 3. This is a joint work with
Andrei Sharf, Chen Greif and Daniel Cohen-Or.

Chapter 6 explores the use of inde�nite incomplete factorization as preconditioners. In-
complete LDL∗ factorizations sometimes produce an inde�nite preconditioner even when
the input matrix is Hermitian positive de�nite. MINRES and the most popular variant
of CG cannot use such preconditioners; they require a positive de�nite preconditioner. A
less known variant of CG, called ORTHOMIN, can be used with an inde�nite precondi-
tioner, but its performance has not been experimentally investigated. We experimentally
evaluated ORTHOMIN, and discovered that it su�ers from numerical problems. We pro-
pose a new variant of ORTHOMIN that uses selective orthogonalization to mitigate the
numerical problems. We also present a new variant of MINRES which can be precondi-
tioned using any non-singular Hermitian matrix as long as the original system is positive
de�nite. Finally, we present extensive numerical experiments. The evaluation of these
algorithms is important, as they allow the use of incomplete-factorization preconditioners
for Hermitian positive de�nite systems, even when the preconditioner is inde�nite, with-
out resorting to a more expensive non-symmetric iterative Krylov-subspace solver. This
is a joint work with Anshul Gupta and Sivan Toledo.

The second theme of this thesis is randomization. Randomization is arguably the
most exciting and innovative idea to have hit linear algebra in a long time. Several
such algorithms have been proposed and explored in the past decade. Some forms of

Abstract 9

randomization have been used for decades in linear algebra. For example, the starting
vectors in Lanczos algorithms are always random. But recent research led to new uses
of randomization: random mixing and random sampling, which can be combined to form
random projections. These ideas have been explored theoretically and have found use
in some specialized applications, but they have had little in�uence so far on mainstream
numerical linear algebra.

In chapter 7 we present an analysis of the convergence of randomized trace estima-
tors. Starting at 1989, several algorithms have been proposed for estimating the trace of
a matrix by 1

M

∑M
i=1 z

T
i Azi, where the zi are random vectors; di�erent estimators use dif-

ferent distributions for the zis, all of which lead to E(1
M

∑M
i=1 z

T
i Azi) = trace(A). These

algorithms are useful in applications in which there is no explicit representation of A
but rather an e�cient method compute zTAz given z. Existing results only analyze the
variance of the di�erent estimators. In contrast, we analyze the number of samples M
required to guarantee that with probability at least 1−δ, the relative error in the estimate
is at most ε. We argue that such bounds are much more useful in applications than the
variance. We found that these bounds rank the estimators di�erently than the variance;
this suggests that minimum-variance estimators may not be the best. We also make two
additional contributions to this area. The �rst is a specialized bound for projection ma-
trices, whose trace (rank) needs to be computed in electronic structure calculations. The
second is a new estimator that uses less randomness than all the existing estimators. This
is a joint work with Sivan Toledo.

Both themes, hybridization and randomization, are used in chapter 8. The limited
impact of randomized algorithms in numerical linear algebra was the driving force be-
hind the research in chapter 8, but it was the understanding that randomized algorithms
should be fused with other ideas, like hybridization, that o�ered the solution. As already
mentioned, no practical randomized linear solver has been demonstrated so far, although
theoretical algorithms have been suggested. The performance of algorithms and codes
on modern computers is a complex issue, one that cannot always be fully captured by
complexity analysis. Performance depends on many issues and can really only be truly
measured by developing and testing the software on di�erent platforms. Furthermore, of-
ten the running time of randomized numerical linear algebra algorithms is exponential in
the number of required accuracy bits. We show that by combining randomized algorithms
with older ideas, and through careful engineering, randomized numerical linear algebra
algorithms can be made practical.

More speci�cally, we describe a least-square solver for dense highly overdetermined
systems that achieves residuals similar to those of direct QR factorization based solvers
(lapack), outperforms lapack by large factors, and scales signi�cantly better than any
QR-based solver. Our solver uses a traditional iterative solver to solve the system, but
the preconditioner is built using a randomized algorithm. This fusion of randomization
and hybridization is what makes the algorithm fast and reliable. This is a joint work with
Petar Maymounkov and Sivan Toledo.

Contents

Acknowledgments 5

Abstract 7

Chapter 1. Introduction 12
1.1. A brief background: solving linear equations 13
1.2. Combinatorial preconditioners for scalar elliptic �nite-element models 16
1.3. Using perturbed QR factorizations to solve linear least-squares problems 19
1.4. A solver for rank-de�cient overdetermined least-squares problems 24
1.5. Application: `1-sparse reconstruction of sharp point set surfaces 25
1.6. Experimental study of solving HPD systems using inde�nite incomplete

factorizations 29
1.7. Randomized algorithms for estimating the trace of an implicit symmetric

positive semi-de�nite matrix 33
1.8. Engineering a random-sampling numerical linear algebra algorithm 37

Chapter 2. Combinatorial Preconditioners for Scalar Elliptic Finite-Element
Problems 41

2.1. Introduction 41
2.2. Nearly-Optimal Element-by-Element Approximations 43
2.3. Scaling and Assembling Element Approximations 53
2.4. Sparsi�cation of the Assembled SDD Approximation 54
2.5. Dealing with Inapproximable Elements 56
2.6. Asymptotic Complexity Issues 57
2.7. Experimental Results 57
2.8. Open Problems 68

Chapter 3. Using Perturbed QR Factorizations to Solve Linear Least-Squares
Problems 69

3.1. Introduction 69
3.2. Background 70
3.3. Preliminaries 71
3.4. Spectral Theory 75
3.5. Applications To Least-Square Solvers 82
3.6. An Algorithm for Perturbing to Improve the Conditioning 86
3.7. Numerical Examples 88
3.8. Conclusions 90

Chapter 4. A Solver for Rank-de�cient Overdetermined Least-squares Problems 92
4.1. Introduction 92

10

Contents 11

4.2. Algorithms 93
4.3. Implementation 94
4.4. Experimental Results 95
4.5. Conclusions 99

Chapter 5. Application: `1-sparse Reconstruction of Sharp Point Set Surfaces 102
5.1. Introduction 102
5.2. Related Work 104
5.3. `1 Sparsity Overview 106
5.4. Reconstruction Model 107
5.5. An E�cient Convex Optimization Solver 112
5.6. Results and Discussion 114
5.7. Conclusions 118

Chapter 6. Experimental study of solving HPD systems using inde�nite incomplete
factorizations 121

6.1. Introduction 121
6.2. The U -conjugate Arnoldi Iteration 122
6.3. PCG-ODIR 124
6.4. Inde�nitely Preconditioned CG 125
6.5. Inde�nitely Preconditioned MINRES 128
6.6. Numerical experiments and discussion 130
6.7. Conclusions and Open Questions 137

Chapter 7. Randomized algorithms for estimating the trace of an implicit symmetric
positive semi-de�nite matrix 138

7.1. Introduction 138
7.2. Hutchinson's Method and Related Work 138
7.3. Three and an Half Estimators 139
7.4. Comparing the Quality of Estimators 141
7.5. Analysis of the Gaussian Estimator 143
7.6. General Bound for Normalized Rayleigh quotient Estimators 146
7.7. Analysis of Hutchinson's Estimator 147
7.8. Reducing Randomness: Analyzing Unit Vector Estimators 149
7.9. Experiments 151
7.10. Conclusions 153

Chapter 8. Engineering a Random-Sampling Numerical Linear Algebra Algorithm 154
8.1. Introduction 154
8.2. Overview of the algorithm 154
8.3. Theory 157
8.4. Algorithm and Implementation 161
8.5. Numerical experiments 164
8.6. Discussion and related work 171

Bibliography 174

CHAPTER 1

Introduction

Numerical linear algebra is ubiquitous in scienti�c computing. For example, modeling
real-world changing conditions, such as weather, air �ow around a plane, automobile body
deformation in a crash, the motion of stars in a galaxy, etc. almost always requires solving
linear systems or computing eigenvalues. Linear solvers that are specialized to speci�c
application areas, say solving the pressure equation in ocean models, work well on the
linear systems that arise in these applications. But as the number of scienti�c applications
increases, it is not always practical to rely solely on special purpose solvers. Many research
and industrial centers are in need of widely-applicable general-purpose solvers. During
my PhD research I worked on developing new general purpose algorithms based on two
ideas: hybrid linear solvers, and randomization.

There are two methodologies for solving both sparse and dense systems of linear equa-
tions: direct and iterative. Direct solvers factor the coe�cient matrix into a product of
simpler matrices whose inverse is easy to apply. Iterative solvers start with an approx-
imate solution and iteratively re�ne it. A brief description of these techniques appears
later in the introduction.

Each of these two methodologies has its advantages. Direct methods tend to be generic,
robust, predictable and e�cient. But their scalability is limited: they may run out of
memory, and be too slow for very large matrices. Iterative methods scale much better,
but are usually more fragile, less robust and slower than direct methods. These di�culties
are usually overcome by using a preconditioner. Many preconditionning schemes are
tailored to �t a speci�c problem, and the solver loses generality. But preconditionning also
opens the door for hybridization: a direct method can be used to �nd a preconditioner.
By embedding a direct method inside the iterative method we are able to enhance its
robustness and e�ciency without sacri�cing generality.

Hybrid solvers are the �rst theme of the thesis. Chapter 2 describes a support-
preconditionning scheme for scalar elliptic �nite-element matrices. Chapters 3, 4 and
5 show how a factorization of a perturbed matrix can be used as a preconditioner for
least-squares problems. Chapter 6 explores the use of incomplete inde�nite factorization
in short recurrence iterative methods.

Chapter 7 changes direction. It focuses on the second theme of the thesis, random-
ization. Randomization is arguably the most exciting and innovative idea to have hit
linear algebra in a long time. Several such algorithms have been proposed and explored
in the past decade (see, e.g, [186, 89, 80, 179, 162, 88, 178, 71, 45] and the references
therein). Some forms of randomization have been used for decades in linear algebra. For
example, the starting vectors in Lanczos algorithms are always random. But recent re-
search led to new uses of randomization: random mixing and random sampling, which can
be combined to form random projections. These ideas have been explored theoretically
and have found use in some specialized applications (e.g., data mining [153, 45]), but

12

1.1. Background 13

they have had little in�uence so far on mainstream numerical linear algebra. What is
exciting about randomization is that it may well be the key to the next big leap in capa-
bilities. In the last few decades there has been considerable progress in the development
of general purpose linear solvers. Although, these solvers work very well, the potential for
improving them using well-researched techniques is limited. To make the next big leap in
performance, new techniques must be discovered, investigated, and deployed.

Chapter 8 fuses ideas from both themes, hybridization and randomization. It presents
an e�cient randomized dense least-squares solver. The algorithm combines the use of
randomization with hybridization: a preconditioner built using a randomized algorithm
is used within a deterministic iterative solver. We believe that chapter 8 may present
a roadmap of how randomized algorithms should be used in numerical linear algebra.
Randomized algorithms are often too weak to be used on their own, and must be com-
bined with older ideas to yield practical solvers. We discuss this issue more later in the
introduction.

Some of my research results are not included in this thesis. One is an application of
the trace-estimation algorithm: a method to estimate the number of triangles in a graph,
an important problem in data-mining [15]. I participated in the the optimization and
performance evaluation of software library for high-performance computing [137]. During
my MSc studies, I developed a parallel sparse direct solver for unsymmetric matrices [23].
I also co-authored a book chapter on combinatorial preconditioners [210].

The rest of this chapter surveys the results of this thesis. It aims to be self-contained;
it starts with an brief background, and continues with descriptions of the actual results,
with each section summarizing one chapter in the thesis. The summaries do not contain
proofs but rather focus on the motivation, intuition and main results.

1.1. A brief background: solving linear equations

This thesis deals mainly with solving linear systems using a general purpose solver
(the only exception is chapter 7). In particular, we are interested in solving the system
Ax = b where A ∈ Rn×n and b ∈ Rn, or the least-squares system x = arg minx ‖Ax− b‖2

where A ∈ Rm×n and b ∈ Rm. The distinction between a general-purpose solvers and
specialized solvers is not always clear-cut. In the context of this thesis we seek solvers
that use only algebraic properties of A and that do not use any information about the
scienti�c problem in which the matrix arose. For example, a solver that works for any
symmetric positive de�nite matrix (i.e., a symmetric matrix with all positive eigenvalues)
is a general purpose solver. A solver that solves a discretization of a continuous ocean
model by coarsening the discretization is a specialized solver.

This section surveys existing techniques for designing general purpose solvers.

1.1.1. Direct Solvers. Direct solvers solve equations involving a matrix by factor-
izing the matrix as a product of two or more simpler matrices. For example, the most
commonly used factorization for general systems is A = LU where L is lower triangular
and U is upper triangular. This factorization, called the LU factorization, is a version of
Gaussian elimination. Using this factorization the equation Ax = b can be solved for any
b: solve Ly = b and then solve Ux = y. This is, of course, a simpli�ed presentation of an
actual solver, since there are issues of stability that need to be addressed. Nevertheless,

1.1. Background 14

the basic structure remains the same: factor the matrix into a product of simpler matrices,
and solve a short sequence of simple linear systems.

There are variants of this technique for di�erent types of linear systems. For a sym-
metric positive de�nite (SPD) matrix a Cholesky factorization, A = LLT , is used (L is
lower triangular). For least-squares problems a QR factorization, A = QR, is used (Q
is orthonormal, R is upper triangular). For dense systems, the conventional implementa-
tions of these methods run in time that is cubic in the dimension of the problem, Θ(n3)
for LU and Cholesky, Θ(nm2) for QR. So-called fast methods [206, 80] are not widely
used.

If A is large and sparse (that is only a small number of matrix entries are nonzero) then
we can avoid the cubic complexity by using methods that take advantage of sparsity. These
types of solvers are not the focus of this thesis; it su�ces to say that there are excellent
implementations of sparse direct solvers (for example, SuiteSparse [73], taucs [211],
mumps [10], hsl [90], PasTiX [122], SuperLU [82], paradiso [187], wsmp [115] and
many more). On many classes of sparse matrices, their asymptotic run time is much
better than cubic, but it is very rarely near linear. The super-linear execution times limit
the scalability of sparse direct solvers. Nevertheless, it is important to compare any new
solver to state-of-the-art sparse direct solvers; we do so in this thesis where appropriate.

1.1.2. Kyrlov-Subspace Iterative Methods. Krylov-subspace iterative methods
for solving large systems of linear equations treat the matrix as a black box. The only
operation they perform is to multiply vectors by the matrix. Using this basic operation,
they �nd approximations to the solution inside the so-called Krylov-subspaces,

Kn(A, b) =
{
b, Ab,A2b, . . . , An−1n

}
.

Popular iterative methods include CG [124] (for SPD matrices), LSQR [166] (least-
squares problems) and GMRES [185] (for general matrices). On certain classes of matri-
ces, these solvers achieve better scalability than direct solvers.

1.1.3. Preconditionning. In many cases, Krylov-subspace methods are slow unless
a preconditioner is used. The convergence rate of iterative methods depends on properties
of A. For example, the convergence of CG depends on the condition number of A, the
ratio between its largest and smallest singular values. If a preconditioner M is used, then
the system that is solved is M−1Ax = M−1b. If the condition number of M−1A is small
andM−1 is easy to apply, the preconditioner is e�ective. Preconditioners allow us to move
between two extremes: pure direct solvers and pure iterative solvers. IfM = A, the solver
is essentially a direct solver; ifM is the identity matrix, the solver is an un-preconditioned
iterative method.

1.1.4. Spectral Analysis of Preconditioners. Analyzing preconditioners for sym-
metric positive de�nite and symmetric positive semi-de�nite (SPSD) matrices is usually
done in terms of generalized eigenvalues and generalized condition number.

De�nition 1.1.1. Let S and T be n-by-n Hermitian positive semide�nite matrices. We
say that a scalar λ is a �nite generalized eigenvalue of the matrix pencil (pair) (S, T) if
there is a vector v 6= 0 such that

Sv = λTv

1.1. Background 15

and Tv 6= 0. We say that ∞ is a in�nite generalized eigenvalue of (S, T) if there exists
a vector v 6= 0 such that Tv = 0 but Sv 6= 0. Note that ∞ is an eigenvalue of (S, T)
if and only if 0 is an eigenvalue of (T, S). The �nite and in�nite eigenvalues of a pencil
are determined eigenvalues (the eigenvector uniquely determines the eigenvalue). If both
Sv = Tv = 0 for a vector v 6= 0, we say that v is an indeterminate eigenvector, because
Sv = λTv for any scalar λ. We denote the set of determined generalized eigenvalues of
(S, T) is denoted by Λ(S, T).

Throughout this chapter eigenvalues are ordered from smallest to largest. We will
denote the kth eigenvalue of S by λk(S), and the kth determined generalized eigenvalue
of (S, T) by λk(S, T). Therefore λ1(S) ≤ · · · ≤ λl(S) and λ1(S, T) ≤ · · · ≤ λd(S, T), where
l is the number of eigenvalues S has, and d is the number of determined eigenvalues that
(S, T) has.

De�nition 1.1.2. Let S and T be n-by-n Hermitian positive semide�nite matrices with
the same null space. The generalized condition number κ(S, T) is the ratio between
the largest determined generalized eigenvalue and the smallest determined eigenvalue of
(S, T).

The behavior of preconditioned iterative methods is determined by the clustering of
the generalized eigenvalues, and number of iterations is proportional to the generalized
condition number. CG will converge in O(

√
κ(A,M)) iterations. LSQR on A precondi-

tioned by R will converge in O(
√
κ(A∗A,R∗R) iterations.

1.1.5. General-purpose Preconditioning Methods. There are many ways to
form a preconditioner M but most of them are specialized.

Arguably, the most obvious paradigm for designing general-purpose preconditionning
methods is hybridization. An hybrid iterative-direct method builds a factorization of a
di�erent yet related matrix Ã, thus M = Ã. The desired properties for Ã are similarity
to A and ease of factorization. By embedding a direct solver into an iterative method, we
sometimes gain provable and practical robustness and e�ciency. This thesis shows that
by using hybridization we can design provably e�ective general-purpose linear solvers.

One such strategy is based on incomplete factorizations [30, 184]. It is widely used
and often works well. Direct methods tend not to scale well because of �ll-in, which are
positions that are zero in the matrix but are nonzero in the factors; in a sense the factors
tend to �lose sparsity�. Incomplete factorization schemes address this problem directly
using some sparsity preserving heuristic. For example, drop-tolerance incomplete factor-
izations truncate values that are smaller than some prescribed drop tolerance. Support
preconditioning is another strategy based on hybridization. We discuss it further below.

Two other techniques worth mentioning in this context of general purpose precondi-
tionning are sparse approximate inverses [31] and algebraic multigrid [183].

1.1.6. Support Preconditionning. Support preconditionning is a combinatorial
method for constructing preconditioners.

A matrix A ∈ Rn×n is diagonally-dominant if for i = 1, . . . , n we have

Aii ≥
∑
j 6=i

|Aij| .

1.2. Combinatorial preconditioners
for FEM 16

Symmetric diagonally-dominant (SDD) matrices can be viewed as weighted graphs and
vice versa: G(A) = (V,E) where V = {1, . . . , n} and E = {(i, j) s.t. i 6= j andAij 6= 0}.
The weight of (i, j) is |Aij|.

Support theory provides tools for bounding the condition number of M−1A based on
combinatorial properties of G(A) and G(M). Using support theory we can move from
the linear algebra domain to the graph theory domain, and build preconditioner using
combinatorial graph-theoretic techniques. Both the requirement that M is easy-to-factor
and that M approximates A well can be stated as graph-theoretic proprieties of G(M)
and of G(M) relative to G(A). Once G(M) is found M is formed and factored.

Over the last decade many provably e�ective preconditioners have been developed for
SDD matrices, including some nearly linear time algorithms ([215, 113, 41, 152, 140,
203, 141], to name a few) based on support theory. Some progress has been recently
made in the attempt to extend support preconditioners to non diagonally-dominant ma-
trices [44, 194, 69, 221].

1.2. Combinatorial preconditioners for scalar elliptic �nite-element models

A popular method for numerically solving partial di�erential equations is the �nite
element method. The method constructs a matrixK and a vector b and solves the equation

Kx = b .

The matrix K ∈ Rn×n is called a sti�ness matrix, and it is a sum of element matrices,
K =

∑
e∈EKe. Matrix Ke is zero outside a small set of ne rows and columns. In most

cases ne is uniformly bounded by a small integer (in our experiments ne is 4 or 10). We
denote the set of nonzero rows and columns of Ke by Ne. We denote by KR

e the restriction
of matrix Ke to Ne. The system Kx = b is a �nite element linear system.

Chapter 2 describes a solver for a subclass of �nite element systems. Let Nn
1 be a

linear subspace of Rn that is spanned by the vector
[
1 1 · · · 1

]T
; we drop n where the

dimension is obvious. Our solver solves �nite element systems where null(K) = Nn
1 and

null(KR
e) = Nne

1 for all e ∈ E.
Although the statement of the matrices for which our solver works on is purely alge-

braic, we have a speci�c application area in mind. Consider the following linear second-
order elliptic problem: �nd a u : Ω −→ R satisfying

(1.2.1)
−∇ · (θ(x)∇u) = f on Ω

u = u0 on Γ1 ,
θ∂u/∂n = g on Γ2 .

The domain Ω is a bounded open set of Rd and Γ1 and Γ2 form a partition of the boundary
of Ω. The conductivity θ is a spatially varying d-by-d symmetric positive de�nite matrix,
f is a scalar forcing function, u0 is a Dirichlet boundary condition and g is a Neumann
boundary condition. Equation (1.2.1) is the Poisson Equation, and it arises in many
applications including electrostatics, mechanical engineering and theoretical physics. The
variant f = 0 is called the Laplace Equation, and it arises in many applications including
electromagnetism, astronomy and �uid dynamics.

Preconditionning methods for these type of equations have existed before our work.
The main novelty in our work was the use of support preconditioners. Till our work,
support preconditioners were restricted to SDD matrices, although there has been some

1.2. Combinatorial preconditioners
for FEM 17

theoretical work on extending them to �nite element methods [43, 194, 69]. We con-
tributed additional results to this theory, and we have implemented and evaluated a
practical solver.

This contribution is in some sense specialized and in another sense general-purpose.
It is specialized in that matrices with the required structure arise mostly from speci�c
physical models. It is general-purpose in that the algorithm itself is purely algebraic.

Chapter 2 is based on a paper on this solver that was published in the SIAM Journal
on Matrix Analysis and Applications [16], co-authored by Doron Chen, Gil Shklarski,
and Sivan Toledo. Both I and another PhD student in Tel-Aviv University, Gil Shklarski,
made signi�cant (but separate) contributions to this paper.

1.2.1. Overview of the Solver. Our method begins by forming a symmetric diagonally-
dominant approximation L to K. The approximation is formed by building an approxi-
mation Le for each element matrix Ke. Our approximation of the element matrices are
provably good. Our solver then splits the elements into two sets. One set, denoted E(t),
contains all the elements in which the approximation is better than some parameter t,
and the other set contains the inapproximable elements. We now scale each Le so that the
sum L≤t =

∑
e∈E(t) αeLe of scaled approximations is spectrally close to K≤t =

∑
e∈E(t) Ke.

This is achieved by setting αe = min Λ(Ke, Le).
The matrix L≤t is itself an SDD matrix. Our algorithm uses one of the combinatorial

algorithms discussed in 1.1.6 to construct another SDD matrix M≤t that approximates
L≤t. The di�erence between M≤t and L≤t is that M≤t can be factored more quickly
into sparse triangular factors than L≤t. We now �nd a scaling factor γ such that γM≤t +∑

e6∈E(t) Ke is spectrally close to K. To �nd γ we �rst �nd some vector v that is orthogonal

to null(M≤t). We then set γ to its generalized Rayleigh quotient:

γ =
vTK≤tv

vTM≤tv
.

The null space of M≤t is determined by the connected components of its graph, so it is
easy to quickly �nd such a v (we use a random v in this subspace). Our preconditioner
is M = γM≤t +

∑
e 6∈E(t) Ke. To solve the equation we factor M and use its factors as

a factored preconditioner in a preconditioned symmetric Krylov-subspace solver such as
CG and MINRES.

Our algorithm uses the SDD approximation approach, which is illustrated in 1.2.1:
the system matrix K is approximated using an SDD matrix L, and a preconditioner
M is built for L. The two crucial observations are the approximation chain-rule and
element-by-element approximability. The approximation chain-rule states that if L is
a good approximation of K and M is a good approximation of L then M is a good
approximation of K. The formal statement is

κ(K,M) ≤ κ(K,L) · κ(L,M) .

The element-by-element approximability rule says that to approximate K =
∑

e∈EKe

you can build an approximation Le for each Ke and use L =
∑

e∈E αeLe, where αe =
min Λ(Ke, Le), as an approximation of K. The formal statement is

κ(K,L) ≤ max
e∈E

κ(Ke, Le) .

1.2. Combinatorial preconditioners
for FEM 18

PDE K L M

(a) (b) (c) (d)

Figure 1.2.1. Illustration of the SDD approximation approach. Part (a)
illustrates the original scalar elliptic partial di�erential equation. Part (b)
illustrates its �nite-element discretization; each triangle corresponds to a
single Ke, and each node represents an unknown. The matrix K =

∑
eKe.

Part (c) illustrates an SDD approximation L ofK. Each triangle of resistors
corresponds to Le and L =

∑
e Le. Part (d) illustrates M , a preconditioner

of L.

The SDD approximation approach is not new. Reitzinger et al. [118, 174, 142] have
used complicated and rather expansive algorithms to approximate theKe's by Le's. More-
over, their solver was sensitive to element approximation di�culties. The second group of
works by Boman, Hendrickson and Vavasis [44], Gupta [117], and Wang and Sarin [221]
construct the matrices Le's using geometrical, physical and discretization-speci�c informa-
tion (not using only the K ′es). Their works are therefore limited to speci�c �nite-element
formulations. This limitation is also evident in the fairly limited experiments performed
with those preconditioners (i.e., results limited to speci�c element types).

1.2.2. Our Contributions. Our goal was to produce a high quality solver. To
achieve this goal we had to make substantial theoretical and practical contributions:

(1) We designed a novel and e�cient nearly optimal algorithm for approximating
the element matrices (Ke's) using SDD matrices (Le's). Our algorithm is purely
algebraic and works for any element type.

(2) We study the issue of approximability.
(3) We noticed that a single bad approximation can ruin preconditioner quality. We

presented a scheme to smoothly handle inapproximable elements.
(4) We engineered a practical solver and performed an extensive comparative study.

1.2.3. Implementation and Experimental Results. The last part in this e�ort is
a practical implementation of our solver and a comparative study. We have implemented
most of the code in C and used matlab's [155] cmex API for a benchmarking interface.
We have used Vaidya's combinatorial preconditioner from taucs, which is the implemen-
tation reported in [63]. We have factored our preconditioner using cholmod 1.0 sparse
Cholesky by Tim Davis, with metis [138] �ll reducing permutation.

We compared our solver against a direct solver (cholmod 1.0 with metis), against
a preconditioned drop-tolerance incomplete Cholesky solver, and against an algebraic

1.3. Using perturbed QR
for Least-squares problems 19

multigrid (AMG) solver (BoomerAMG [123]). We tested these solvers on various three
dimensional models, with various element types.

The full results appear in Chapter 2. Here we only summarize the results:

(1) Generally, our solver was robust; it produced consistent results for varying pa-
rameters and problem sizes. It was not always the fastest, but it was predictable
and reliable. In no cases did it perform poorly.

(2) On small problems the direct solver was the most robust and faster than any
other method. But when problem is large the problem is no longer solvable using
a direct method because it does not �t into memory (we used a machine with
about 8GB of RAM).

(3) On large problems, even very ill-conditioned ones, when all elements are well
approximable, our solver worked well, but AMG and drop tolerance incomplete
Cholesky are faster.

(4) On large problems with some inapproximable (and therefore ill-conditioned) ele-
ments, our solver was the fastest and most reliable. AMG performed poorly, and
incomplete Cholesky based solvers were unreliable. Inapproximable elements can
arise for many reasons. One example is the element matrix for an isosceles tri-
angle with two tiny angles and one that almost π [22, 193].

A preview of the results is given in Figure 1.2.2. This graphs shows that when some
elements are ill-conditioned our algorithm is superior. For the speci�c system the graph
on the left shows the distributions of κ(Ke) and κ(Ke, Le). The right graph shows the
running time of the various algorithms. The vertical axis represents wall-clock time for
all the phases of the solution and the horizontal axis represents the number of nonzeros in
the triangular factors of the preconditioner. The rightmost (largest) horizontal coordinate
in the graphs corresponds to the number of nonzeros in a complete sparse Cholesky factor
of the coe�cient matrix. The complete factorization runs out of space, so we estimate the
running time of the complete factorization based on the assumptions that it runs at 109

�oating-point operations per second. We see that our method, labeled �NOC+Vaidya� is
faster than other methods.

1.3. Using perturbed QR factorizations to solve linear least-squares problems

Consider the following simple observation. Let A be a given matrix and let Â = [AB].
Then (

Â∗Â
)−1

A∗A = (A∗A+B∗B)−1A∗A

= (A∗A+B∗B)−1 (A∗A+B∗B −B∗B)

= I − (A∗A+B∗B)−1B∗B .(1.3.1)

The rank of second term on the last line is at most the rank of B, so if B has low

rank, then
(
Â∗Â

)−1

A∗A is a low-rank perturbation of the identity. A symmetric rank-k

perturbation of the identity has at most k non-unit eigenvalues, which in exact arithmetic
guarantees convergence in k iterations in several Krylov-subspace methods. Therefore,
the Cholesky factor of Â∗Â (which is also the R factor from a QR factorization of Â) is
a good least-squares preconditioner for A. The same analysis extends to the case where
we drop rows of A. This idea has been used by practitioners [105].

1.3. Using perturbed QR
for Least-squares problems 20

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G395700_A1e3_Q

κ(K

e
)

κ(K
e
,L

e
)

0 0.5 1 1.5 2 2.5
x 10

8

0

1000

2000

3000

4000

5000

6000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e3_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

Figure 1.2.2. The results of the various �nite-element solvers on a matrix
with some very ill-conditioned elements. The left graph is the distribution
of element condition number. We see that there elements that are very ill
conditioned. The right graph is running time for various levels of �ll-in of
the Cholesky factor. Our solver is labeled �NOC+Vaidya�, and incomplete
Cholesky solver is labeled �cholinc�.

Chapter 3 generalizes this observation to other matrix perturbations: to the case where
Â is singular, to the case where rows are removed instead of added, to column exchanges,
and to preconditioners for Â rather than its R factor. We also bound the size of the non-
unit eigenvalues, which is important when A is rank de�cient. Using these generalizations
we propose a set of applications. Some of these applications are explored in subsequent
chapters. Chapter 4 proposes a solver for rank de�cient systems using the technique of
row additions. In Chapter 5 we use the row removal technique to solve certain types of
equations that occur in a graphics application.

Chapter 3 is based on a paper that was published in the SIAM Journal on Matrix
Analysis and Applications [20], co-authored by Esmond Ng and Sivan Toledo.

1.3.1. Theoretical Results. Chapter 3 explores matrix perturbations and their ap-
plications. The main bulk of the chapter is a comprehensive spectral analysis of the
generalized spectrum of matrix pencils that arise from row and column perturbations.
This analysis forms the theoretical basis for the applications discussed in the second part
of the chapter and in subsequent chapters. Here we review the main results of this analysis
without proving them.

The �rst part of the analysis shows that if the number of rows/columns that are
added, dropped, or replaced is small, then most of the generalized eigenvalues are 1. The
number of runaway eigenvalues, the ones that are not 1, is bounded by the number of rows
added or dropped (for row perturbations) or by twice the number of columns replaced
(for column perturbations). This guarantees rapid convergence of an iterative method if
the R factor is used as a preconditioner.

1.3. Using perturbed QR
for Least-squares problems 21

Theorem 1.3.1. Let A ∈ Cm×n and let B ∈ Ck×n and C ∈ Cr×n for some 1 ≤ k+r < n.
De�ne

χ =

[
B
C

]
.

The following claims hold:

(1) In the pencil (A∗A,A∗A + B∗B − C∗C), at most rank(χ) ≤ k + r generalized
determined eigenvalues may be di�erent from 1 (counting multiplicities).

(2) If 1 is not a generalized eigenvalue of the pencil (B∗B,C∗C) and A∗A+B∗B −
C∗C is full rank, then (a) the pencil (A∗A,A∗A + B∗B − C∗C) does not have
indeterminate eigenvectors, (b) the multiplicity of the eigenvalue 1 is exactly
dim null(χ) ≥ n − k − r, and (c) the multiplicity of the zero eigenvalue is ex-
actly dim null(A).

(3) The sum pencil (A∗A,A∗A+B∗B) cannot have an in�nite eigenvalue and all its
eigenvalues are in the interval [0, 1].

Theorem 1.3.2. Let D ∈ Cm×n and let E ∈ Cm×k and F ∈ Cm×k for some 1 ≤ k < n.
Let

A =
[
D E

]
∈ Cm×(n+k)

and let

Ã =
[
D F

]
∈ Cm×(n+k) .

In the pencil (A∗A, Ã∗Ã), at least n− k generalized �nite eigenvalues are 1.

The second part of the analysis concentrates on perturbations of a preconditioned
system. We address the following question: if M is an e�ective preconditioner for Â∗Â,
is it also an e�ective preconditioner for A∗A? The analysis shows that if the generalized
spectrum of Â∗Â is contained in a small interval, then nearly all of A∗A's spectrum is
contained in the same interval. The number of runaway eigenvalues, in this case ones that
are outside the interval, is bounded by the number of rows added or dropped (for row
perturbations) or by twice the number of columns replaced (for column perturbations).

This guarantees that if M is an e�ective preconditioner of Â∗Â due to well-conditioning
of the preconditioned matrix, it is also an e�ective preconditioner for A∗A.

Theorem 1.3.3. Let A ∈ Cm×n and let B ∈ Ck×n and C ∈ Cr×n for some 1 ≤ k+r < n.
Let M ∈ Cn×n be an Hermitian positive semide�nite matrix. Suppose that null(M) ⊆
null(A∗A), null(M) ⊆ null(B∗B) and null(M) ⊆ null(C∗C). If

α ≤ λ1(A∗A,M) ≤ λrank(M)(A
∗A,M) ≤ β .

then

α ≤ λr+1(A∗A+B∗B − C∗C,M) ≤ λrank(M)−k(A
∗A+B∗B − C∗C,M) ≤ β .

Theorem 1.3.4. Let D ∈ Cm×n and let E ∈ Cm×k and F ∈ Cm×k for some 1 ≤ k < n.
Let

A =
[
D E

]
∈ Cm×(n+k)

and let

Ã =
[
D F

]
∈ Cm×(n+k) .

1.3. Using perturbed QR
for Least-squares problems 22

Let M ∈ C(n+k)×(n+k) be an Hermitian positive semide�nite matrix, such that null(M) ⊆
null(A∗A) and null(M) ⊆ null(Ã∗Ã). Suppose that

α ≤ λ1(A∗A,M) ≤ λrank(M)(A
∗A,M) ≤ β .

Then we have
α ≤ λk+1(Ã∗Ã,M) ≤ λrank(M)−k(Ã

∗Ã,M) ≤ β .

The ability of preconditioned LSQR to solve a regularization of an ill-conditioned
least squares system is dependent on whether the numerical rank of the preconditioned
system is similar to the numerical rank of the original system. The third part of the
analysis shows that if a preconditioner is obtained from adding rows to A then, under
some restrictions, the numerical rank is maintained up to an appropriate relaxation of the
rank threshold. The restrictions are that the preconditioner is well-conditioned and the
norm of the perturbation is not too large.

Theorem 1.3.5. Let A ∈ Cm×n and let B ∈ Ck×n for some 1 ≤ k < n. Assume that
A∗A + B∗B is full rank. Denote α = ||A∗A||2. If there are d eigenvalues of A∗A that
are smaller than or equal to εα for some 1 > ε > 0, then d generalized eigenvalues of
(A∗A,A∗A+B∗B) are smaller than or equal to εκ(A∗A+B∗B).

Theorem 1.3.6. Let A ∈ Cm×n and let B ∈ Ck×n for some 1 ≤ k < n. Assume that
A∗A + B∗B is full rank. Denote α = ||A∗A||2 and suppose that ||B∗B||2 ≤ γα. If there
are d eigenvalues of A∗A that are larger than or equal to ηα for some 1 > η > 0 then d
generalized eigenvalues of (A∗A,A∗A+B∗B) are larger than or equal to η/(1 + γ).

When A ∈ Rm×n is rank de�cient, there is an entire subspace of minimizers of ‖Ax−
b‖2. When A is full rank but highly ill-conditioned, there is a single minimizer, but there
are many x's that give almost the same residual norm. Of these minimizers or almost-
minimizers, the user usually prefers a solution with a small norm. Formally, the set of
solution we are interested in is the minimizers of ‖Āx− b‖2, where Ā is the matrix with
the same singular value decomposition as A except that small singular values (below a
threshold) are truncated to zero. Finding Ā is expensive and non-practical. We have
shown that if we can �nd a matrix B ∈ Rk×n whose number of rows is exactly the same
as the number of singular values we wish to truncate, and A∗A+B∗B is well-conditioned,
then a direct method can �nd an approximation of a minimizer of ‖Āx − b‖2. This
minimizer usually has a small norm. Let [AB] = QR and P =

[
Im×m 0m×k

]
. Our

almost minimizer is x̂ = R−1(PQ)∗b.
The �rst lemma shows that this is an exact minimizer where‖Ax − b‖2 when A is

exactly rank-de�cient (no small singular values but there are 0 singular values).

Lemma 1.3.7. Let A ∈ Cm×n, B ∈ Ck×n and b ∈ Cm×r. Suppose that rank(A) =
n − k and [AB] has full rank. Let [AB] = QR be a QR factorization of [AB]. Let P =[
Im×m 0m×k

]
. The vector x̂ = R−1(PQ)∗b is a minimizer of minx ‖Ax− b‖2.

We now state the second theorem and then explain what it means.

Theorem 1.3.8. Let A ∈ Cm×n, B ∈ Ck×n and b ∈ Cm. Let Ā be the matrix with the
same singular value decomposition as A except that the k smallest singular values are
truncated to 0. Denote

C = [AB] andD =
[
Ā
B

]

1.3. Using perturbed QR
for Least-squares problems 23

Assume that C and D are both full rank. Let C = QR be a QR factorization of C and
D = Q̄R̄ be the QR factorization of D. Denote

δ =
σn−k+1(A)

σmin(C)

where σn−k(A) is the kth smallest singular value of A and σmin(C) is the smallest singular
value of C. Let P =

[
Im×m 0m×k

]
. De�ne the solutions

x̂ = R−1(PQ)∗b

and
ẑ = R̄−1(PQ̄)∗b .

Then, provided that δ < 1,

‖x̂− ẑ‖2

‖x̂‖2

≤ δ

1− δ

(
2 + (κ(R) + 1)

‖r‖2

‖R‖2‖ẑ‖2

)
where

r = b− Ax̂ .

According to Lemma 1.3.7 ẑ is a minimizer of ‖Āx − b‖2. This theorem shows that
under certain conditions x̂ approximates ẑ well, and is therefore an almost-minimizer.
The theorem states that if δ is small (which happens when C is well conditioned and A
has k tiny singular values) and R is not ill conditioned and not too large, and the norm of
r is not too large, then x̂ is a good approximation of the minimizer ẑ that we seek. The
quantity that is hard to estimate in practice is δ, which depends on the small singular
values of A. Therefore, the formula is useful mainly when we know a-priori the number
of small singular values of A.

1.3.2. Applications to Least-Squares Solvers. Chapter 3 suggest a few applica-
tions of the theory.

Dropping Dense Rows for Sparsity. The R factor of A = QR is also the Cholesky
factor of A∗A. Rows of A that are fairly dense cause A∗A to be fairly dense, which usually
cause R to be dense. In the extreme case, a completely dense row in A causes A∗A and
R to be completely dense. A simple solution is to drop fairly dense column before the
factorization starts, and use the factor as a preconditioner in LSQR. A sophisticated
algorithm to decide which rows to drop is an open research question.

Updating and Downdating. Updating a least-squares problem involves adding
rows to the coe�cient matrix A and to the right-hand-side b. Downdating involves drop-
ping rows. Our analysis shows that after adding and/or dropping a small number of rows
from/to A, the R factor of A is an e�ective preconditioner of the new system, as long as
the new system is full-rank.

Adding Rows to Solve Numerically Rank-De�cient Problems. When A is full
rank but highly ill-conditioned, it is desirable to solve a regularization of the least squares
problem minx ‖Ax−b‖2, that is a solution of small norm. The factorization A = QR is not
useful for solving ill-conditioned least-squares problems. The factorization is backward
stable, but the computed R is ill-conditioned. This often causes the solver to produce a
solution x = R−1Q∗b with a huge norm. We propose to add rows to the coe�cient matrix
A to avoid ill-conditioning in R. The factor R is no longer the R factor of A, but the R
factor of a perturbed matrix [AB]. Our analysis shows that if R is well-conditioned and

1.4. Solver for Rank-de�cient
LS Problems 24

only a small number of rows where added then R is an e�ective preconditioner for solving
the regularized least-squares problem using LSQR.

In Chapter 3 we present an e�cient algorithm that uses a threshold τ ≥ n+ 1 to �nd
a B such that ‖B∗B‖2 ≤ m‖A∗A‖2 and κ(A∗A + B∗B) ≤ τ 2. Along with �nding the
perturbation the R factor of the perturbed matrix is found, usually with a small amount
of additional work relative to �nding the R factor of the original matrix. Furthermore,
B's structure guarantees that R factor will �ll no more than the original factor. The
algorithm attempts to add as few rows as possible.

Solving What-If Scenarios. The theory presented in this section allows us to
e�ciently solve what-if scenarios of the following type. We are given a least squares
problem min ‖Ax− b‖2. We already computed the minimizer using the R factor of A or
using some preconditioner. Now we want to know how the solution would change if we �x
some of its entries, without loss of generality xn−k+1 = cn−k+1, . . . , xn = cn, where the ci's
are some constants. Our analysis shows that for small k the factor or the preconditioner of
A is an e�ective preconditioner for a modi�ed least-squares system that solves the what-if
scenario.

1.4. A solver for rank-de�cient overdetermined least-squares problems

Chapter 4 describes a sparse solver that I implemented based on the theory in Chap-
ter 3. The solver solves rank de�cient overdetermined least-squares problems. The solver
uses a QR or Cholesky factorization as a preconditioner for LSQR. The QR factorization
code is new; it avoids the use of column-pivoting, relying instead on the inherent regu-
larization features of LSQR, which is the outer solver. The use of LSQR also allows us
to use the Cholesky factorization of the normal equations without sacri�cing numerical
stability. The results in [61] ensure that as long as an appropriate threshold is used, the
solution is backward stable.

1.4.1. Algorithm. The �rst step of our algorithms is to �nd a matrix B ∈ Rk×n

such that κ([AB]) ≤ τ , where τ is an algorithmic parameter. To goal is to �nd a matrix
B with as few rows as possible, and with a single non-zero in each row. Our algorithm
then �nds a QR factorization of this matrix, [AB] = Q̃R̃ (in an implementation there is no

need to actually form Q̃). Exact details on how B is found appear in Chapter 4.
Once we have found the factorization, we have two options. One is to return x =

R̃−1(PQ̃)T b where P =
(
Im×m 0m×k

)
, and the other is to use R̃ as a preconditioner in

an iterative solution of the problem using LSQR. If LSQR is used, then the convergence
threshold must be set to re�ect the desired regularization, as explained in [166]. In our
implementation, we have used matlab's [209] built in LSQR function and set the single
convergence parameter to τ−1.

Instead of �nding the R̃ factor of [AB], we can �nd the Cholesky factorization of

ATA + BTB = R̃T R̃, which under exact arithmetic should be the same. The factor
can than be used in the iterative variant of our solver. It can also be used in the direct
formula x = R̃−1R̃−TAT b based on the identity PQ̃ = AR̃−1. A solver based on the direct
formula is not backward stable for the same reasons that solving the normal equations
is not backward stable [126, Section 20.4]. In the iterative solver, however, the factor is
used only as a preconditioner, so the method will be as stable if an appropriate threshold

1.5. `1-sparse Filtering 25

is used. The algorithm perturbs the Cholesky factorization in exactly the same way as in
the QR factorization.

1.4.2. Implementation and Numerical Experiments. We have implemented a
new sparse multifrontal QR factorization code. The algorithm used by the code is based
on the work presented in [151, 11] although some of the details are di�erent. The new
multifrontal QR factorization code is now a part of taucs1. The experiments reported
in Chapter 4 shows that our QR code performs well. Our algorithm was implemented on
top of this new sparse QR implementation.

The Cholesky version of the algorithm was implemented by modifying Tim Davis's
cholmod package [66, 77].

We run experiments to test the behavior of the solver on rank de�cient matrices. We
ran on all rank de�cient matrices in Tim Davis's collection that are small enough to �t
in memory, and large enough to be of interest. We found that our solver is extremely
fast: only a few iterations are needed, so the real bottleneck is the QR or Cholesky
factorization. It also �nds near-minimizer with small norm (only TSVD [40] �nds better
minimizers). On the other hand, it is not always easy to control the regularization and/or
show optimality (both are easier with TSVD).

1.5. Application: `1-sparse reconstruction of sharp point set surfaces

Chapter 5 demonstrate the e�ectiveness of the techniques developed in Chapter 3
by demonstrating a real-life computer-graphics applications which required a customized
linear solver.

The speci�c application is denoising of point clouds obtained from 3D laser scanners.
State-of-the-art 3D laser scanners are capable of producing large amounts of raw, dense
point sets. One of today's principal challenges in computer graphics is the development of
robust point processing and reconstruction techniques that deal with the inherent noise
of the acquired data set. In [21], which forms the basis for Chapter 5, we introduced an
`1-sparse method for reconstructing a piecewise smooth point set surface.

Our technique is motivated by recent advances in sparse signal reconstruction. The
underlying assumption in our work is that common objects, even geometrically complex
ones, can typically be characterized by a rather small number of features. This, in turn,
naturally lends itself to incorporating the powerful notion of sparsity into the model.
Sparsity is achieved using `1 minimization instead of the more common `2 (least-squares).
The use of an `1-sparse method gives rise to a reconstructed point set surface that consists
mainly of smooth modes, with the residual of the objective function strongly concentrated
near sharp features. Figure 1.5.1 demonstrates the e�ectiveness of our method on a
scanned model.

The switch from `2 to `1 does not come without a price. `2 minimization requires
solving least-squares equations, or simple generalizations of them. The `1 norm is not
di�erentiable, so formulations associated with it are harder to solve. Nevertheless, the
objective function is convex and as long as convexity is preserved, it is well understood
how to solve the problem in hand. Usually, these method translate the problem to a
series of regular least-squares equations. Thus, it is extremely important to solve these

1Available from http://www.tau.ac.il/~stoledo/taucs/.

1.5. `1-sparse Filtering 26

Figure 1.5.1. A demonstration of the e�ectiveness of the method pre-
sented in Chapter 5 on a scanned model. The Armadillo statue (left) is
scanned generating a noisy point-cloud (middle). Using our method we are
able to reconstruct it and recover its sharp features (right). Close-up view
of a cross section of its head reveals the sharpness of the reconstructed
surface.

equations quickly. As we shall see, the speci�c equations that arise by our method are
particularly challenging.

Using an interior-point log-barrier solver with a customized preconditioning scheme,
the solver for the corresponding convex optimization problem is competitive and the
results are of high visual quality. The linear equations are solved using an iterative-direct
hybrid solver that achieves running time similar to those achieved by a direct Cholesky
factorization of the normal equations, but without sacri�cing numerical stability. The
techniques of section 1.3 are used to deal with matrix sparsity issues.

The results of this project were summarized in a paper which was submitted, and
accepted subject to a minor revision, to the ACM Transactions on Graphics (the paper
was co-authored with Andrei Sharf, Chen Greif, and Daniel Cohen-Or) [21].

Most aspects of this project belong to the realm of computer graphics. Nevertheless,
the numerical aspect of solving the linear equations involved in the interior point method
was crucial and is highly relevant to this thesis. I was involved both in the numerical
aspect and in the computer-graphics aspect of the project. In this chapter I will focus
on the numerical aspects of the project. For completeness, Chapter 5 follows the paper
closely and its main foci is the computer graphics aspects.

1.5.1. Reconstruction Model. Our input is a point cloud, a set of positions xi ∈
X ⊆ R3 with corresponding input orientation vectors ni ∈ N ⊆ R3. The input cloud is
denoted by P (X,N). A point in the point cloud is the pair pi = (xi, ni). Our goal is to
�lter the point cloud so that it better describes a surface which is piecewise smooth with
(a small number of) sharp edges connecting the smooth parts.

Since scanned information is generally noisy, we cannot assume that we have high qual-
ity point orientations. Hence, similarly to [149], we decouple orientations and positions.
We solve �rst for the orientations, and then use them to compute consistent positions.
We formulate both problems in a similar `1 nature, yielding a consistent solution.

Our orientation reconstruction model is based on the following key observation: smooth
surfaces have smoothly varying normals, thus penalty functions should be de�ned on the
surface normals. Therefore, we use pairwise normal di�erences as an estimator for shape
smoothness. If two points pi and pj belong to the same smooth part, and their the dis-
tance is small enough in local feature size, then ni ≈ nj. Furthermore, we assume that
there is a minimum crease angle at singularities between smooth parts. Hence, at crease

1.5. `1-sparse Filtering 27

angles where pi and pj belong to di�erent smooth parts, the distance between ni and nj is
above a small threshold τ . This discussion leads to an observation that the reconstructed
normals should be such that only a small (i.e., sparse) number of local normal di�erences
are large.

We use computed orientations to de�ne consistent positions by assuming that the
surface can be well approximated by local planes. Given a pair of neighbor points (pi, pj),
we examine nij · (xi − xj), where nij is the average normal. Indeed, if both pi and pj
belong to a smooth part of the surface then nij · (xi − xj) ≈ 0. At sharp features we
expect nij · (xi − xj) 6= 0.

We now formulate speci�c optimization problem based on these observations. The
detailed derivations are in Chapter 5. We distinguish between the input point cloud
P (X in, N in) and the output point cloud P (Xout, N out).

Normals are reconstructed using the following optimization problem

N out = arg min
N

∑
(pi,pj)∈E

wij ‖ni − nj‖2 s.t. ∀i
∥∥ni − nini ∥∥2

≤ γn

where E is an adjacency set of P (X,N) computed using k-nearest neighbors, wij is a set
of prede�ned weights, and γn is a parameter proportional to the expected noise level.

Positions are projected along the reconstructed normals, that is

xouti = xini + tin
out
i .

The vector t of projection distances is found by solving the following optimization problem

arg min
t
‖At+ f‖1 s.t. ‖t‖2 ≤ γx

where A ∈ R|E|×|P | and f ∈ R|E| (|.| is the size). Each row of A correspond to a single
pair (pi, pj) ∈ E and is equal to[

· · · wij(n
out
ij)Tnouti · · · −wij(noutij)Tnoutj · · ·

]
.

Each index in f corresponds to a single pair (pi, pj) ∈ E and is equal to

fij = (noutij)T ·
(
xini − xinj

)
.

γx is a parameter proportional to the expected noise level.

1.5.2. Solving the Minimization Problem. Our method amounts to solving a two
convex optimization problems. These problems are nonlinear, but since they are convex
they can be solved e�ciently and reliably. Nevertheless, their non-linearity requires us
to solve many linear system, which in turn must be done quickly. For the orientations
phase we found that the method works well with a small value of k (number of neighbors).
Thus, the use of an external package called CVX [110] was su�cient for our needs. For
the positions phase the value of k must be much larger, and without a reliable solver for
the positions phase only very small problems can be solved.

Our solver for the positions phase uses a log-barrier primal-only method. This involves
solving a series of normal equations of the form

(1.5.1)
(
ATΣtA− g−1

(γ)IN×N + g−2
(γ)rr

T
)

∆t = w0,

where g(γ) < 0 is a scalar, Σt is a diagonal matrix,r ∈ R|P | is a dense vector and w0 ∈ R|E|.
Each solution is the search direction of a Newton iteration.

1.5. `1-sparse Filtering 28

It is imperative to solve these equations e�ciently, and this requires dealing with spar-
sity and conditioning issues. The matrix of the normal equations is symmetric positive
de�nite, but for large scale problems it tends to be ill-conditioned, which in turn may
result in an inaccurate search direction. Furthermore, the vector r is dense, whereas the
original problem is sparse by nature. Therefore, factoring the matrix using the Cholesky
decomposition may require a prohibitive amount of computational work and storage allo-
cation. It is thus better to rewrite the 1.5.1 as a least-squares equation and to adopt an
iterative solution technique.

We write

Ã =

 Σ
1/2
t A

(−g(γ))
−1/2IN×N

g−1
(γ)r

T

 .

It is easy to see that
(
ATΣtA− g−1

(γ)IN×N + g−2
(γ)rr

T
)

= ÃT Ã . We �nd the search direction

by solving the equivalent problem

arg min
∆t

∥∥∥Ã∆t− w
∥∥∥

2
,

where w0 = ÃTw (for brevity we omit here some details on w0 and w).
The dense row in Ã poses a problem because any direct method will over�ll. To deal

with this row we adopt a strategy suggested in section 1.3 (and discussed in Chapter 3).
We remove the dense row from Ã; let us call the resulting matrix Ã0. We then compute
the Cholesky factorization of the sparse matrix associated with Ã0:

RTR = ÃT0 Ã0,

using cholmod [79]. The R factor is used as a preconditioner for the augmented sys-
tem associated with Ã, and now we apply LSQR [166]. The important point here is
that removing r amounts to a rank-1 modi�cation of the matrix that corresponds to the
least squares operator. Therefore, only two iterations are needed for convergence in ex-
act arithmetic. The matrix ÃT0 Ã0 may become very ill-conditioned, and sometimes this
causes the Cholesky factorization to fail (it encounters a negative diagonal value because
of inaccurate arithmetic). In such cases we use SuiteSparseQR [75] to compute a QR
factorization instead and use R as a preconditioner.

Finally, we use one additional heuristic to speed up our solver. We have noticed that
in some of the iterations,

∣∣g(γ)

∣∣ tends to be considerably smaller than the maximum value

on the diagonal of Σt. In those cases, LSQR on Ã without a preconditioner tends to
converge very quickly, because the singular values of Ã are strongly clustered. We thus
work on Ã directly when conditioning allows for it (if ‖Σt‖2/

∣∣g(γ)

∣∣ ≥ 103), which saves
the cost of a preconditioner solve.

The iterative method stops when the backward error drops below a certain threshold.
This ensure backward stability relative to the desired level of accuracy. We use LSQR
so the relevant condition number is κ(Ã) (and not κ(ÃT Ã) as for the normal equations).
This guarantees that we �nd a good search directions. This is is crucial for the log-
barrier method, even if low convergence threshold are used. The threshold we used in our
experiments is 10−8. The accuracy of interior point method itself is based on a threshold.

1.6. Experimental study of solving HPD systems using inde�nite incomplete
factorizations 29

Table 1. Solve time of the position phase on various models. Matrix size
and #nnz columns refer to Ã.

Model #points k (#neighbors) |E| #nnz #newton its. Solve time

armadillo 99,416 10 545,086 1,286,528 24 46 sec
face 110,551 12 754,466 1,726,765 33 78 sec

Buddha 150,737 10 820,345 1,928,776 24 72 sec
funnel 201,655 8 860,831 2,116,119 22 66 sec
Escher 240,909 10 1,322,010 2,656,135 25 83 sec

We found that only a coarse level of accuracy was su�cient and further improvements
were visually insigni�cant.

Table 1 shows the solve time of the positions phase on various model. Solve time was
measured on a 64-bit Intel Core2 2.1 GHz using matlab. Other statistics are shown
too. We see that although the matrix involved is large, and around 20-30 iteration are
required, overall running time is not large. On average every linear equation is solved in
less than 3 seconds. This shows that our scheme is highly e�ective.

1.5.3. Summary from a Numerical Point of View. This project is, at its core,
a computer graphics project, with many insights in the computer graphics domain. Nev-
ertheless, it has a non-trivial numerical aspect, from which we draw some informal con-
clusions.

• The method of row removal is useful in practice. Real-life sparse matrices some-
times have dense rows that should be accounted for.
• By using an iterative method we are sometimes able to exploit sparsity in cases
where a direct method cannot. On the other hand, our matrices are small enough
so that a direct method is often e�ective. A good hybrid gets the best of both
worlds.
• The use of an iterative method also enables us to use Cholesky factorization of the
normal form while not sacri�cing stability. Many practitioners use the Cholesky
factorization of the normal equations because it is faster on sparse matrices.
They ignore the potential numerical problems involved. We can overcome these
problems by using the Cholesky factorization as a preconditioner rather then a
solver.
• Sometimes ill-conditioning causes the Cholesky factorization to fail (even if we
only try to obtain a preconditioner). In such cases a QR factorization should be
used. During the solution of the non-linear optimization problem this happened
to us only a few times, but it did happen.

1.6. Experimental study of solving HPD systems using inde�nite incomplete
factorizations

Incomplete factorization is a popular preconditioning technique [30, 184]. Incomplete
factorizations are attractive because they are simple to implement, generic in nature and
they usually exhibit good performance. For Hermitian positive de�nite (HPD) systems
the most natural incomplete factorization is incomplete Cholesky factorization. Unfortu-
nately, incomplete Cholesky factorization may fail. While the Cholesky factorization LL∗

1.6. Experimental study of solving HPD systems using inde�nite incomplete
factorizations 30

of a Hermitian positive de�nite matrix is guaranteed to exist, there is no such guarantee
of the existence of an incomplete factorization of this form. The reason is that the errors
introduced due to dropping entries from the factor may result in zero or negative diagonal
values.

The traditional approach to address this problem is to force positive de�niteness by
modifying the factorization process. Benzi's survey [30] of these methods notes that the
various techniques tend to fall into two categories: simple and inexpensive �xes that of-
ten result in low-quality preconditioners, or sophisticated strategies yielding high-quality
preconditioners that are expensive to compute. Some techniques to circumvent possi-
ble breakdown of incomplete Cholesky factorization involve using an LDL∗ factorization,
where D is diagonal; this can prevent breakdown in the construction of the precondi-
tioner, but the preconditioner might be inde�nite. An inde�nite preconditioner can be
problematic, even when the original matrix is positive de�nite, because it can result in a
breakdown of the symmetric Krylov-subspace solvers like CG [124] and MINRES [165]
. In CG, the breakdown is caused by a division by zero if the M−1-norm of the residual
becomes zero; In MINRES, the breakdown is caused when trying to compute the square
root of a negative value, when the algorithm computes the M−1-norm of the new basis
vector. Furthermore, the correctness proof of both CG and MINRES rely on the existence
of a Cholesky factor of the preconditioner [184].

As a result, the conventional wisdom has been that alternate Krylov-subspace meth-
ods, such as symmetric QMR [101, 102], GMRES [185], or BiCGStab [217], etc. must
be used if the preconditioner is inde�nite. However, using GMRES is expensive due to
the long recurrence (expensive orthogonalization steps and a high memory requirement).
Algorithms like QMR or BiCGStab do not minimize a norm of the residual or a norm of
the error as GMRES, CG, and MINRES do. In general, it is not possible to get both
optimality and a short recurrence with a non-symmetric method [95].

Although not very well known, a there exists a variant of CG which allows an inde�nite
preconditioner [14]. We will refer to this variant as PCG-ODIR2. To the best of our
knowledge this variant has not been experimentally compared to GMRES or QMR when
an inde�nite matrix is used to precondition an HPD system (the only implementation
of PCG-ODIR that we are aware of is [121]). In chapter 6 we experimentally explore
this case and develop a new variant of PCG-ODIR that addresses the numerical problems
demonstrated in the experiments. We also propose a new Krylov-subspace variant of
MINRES that guarantee convergence and allow an inde�nite preconditioner to be used.

1.6.1. Conjugate Gradients as a Lanczos process. At its core the Conjugate
Gradients method generates at each iteration an A-conjugate basis for the Krylov sub-
space. That is

span {q1, q2, . . . , qn} = Kn(A, b)

and

Q∗nAQn = Dn

2To be more precise, this variant is called simply PCG in [14]. In many cases the name PCG is used
for the preconditioned version of the traditional CG, so we decided to use the name PCG-ODIR because
this variants uses ODIR (unlike the the traditional preconditioned CG which uses OMIN).

1.6. Experimental study of solving HPD systems using inde�nite incomplete
factorizations 31

where

Qn =
[
q1 q2 · · · qn

]
and Dn is a diagonal matrix. Once we have found an A-conjugate basis the Conjugate
Directions method can be used to produce an optimal A-norm approximation (see �7 in
Shewchuk's tutorial [192]). The classical CG method couples the creation of the basis
with the application of the conjugate directions method in a clever way. A preconditioner
can be used but it must be positive de�nite, otherwise the algorithm may fail (because
of possible division by zero if the M−1-norm of the residual becomes zero), and in any
case the the correctness proof of CG relies on the existence of a Cholesky factor of the
preconditioner [184].

It is well-known that the CG iteration can be formulated instead as a Lanczos pro-
cess [165]. Using the Lanczos iteration we �nd an orthonormal basis Un such that
U∗nAUn = Tn where Tn is tridiagonal and HPD. Let Tn = R∗nRn be a Cholesky fac-
torization of Tn and de�ne

Qn = UnR
−1
n .

The columns of Qn form an A-orthonormal basis. Unfortunately, we have not advanced
towards a inde�nitely-preconditioned version of CG: to use the Lanczos version of CG
the preconditioner must be positive de�nite.

What is less known is that there is another, more straight-forward and robust, formu-
lation of CG as a Lanczos process. Instead of using the regular Lanczos iteration we can
use Lanczos with a non standard inner product. Let U be an HPD matrix such that UA
is Hermitian. The U -conjugate Lanczos iteration generates basis vectors q1, q2, . . . such
that

(1) Q∗nUQn = In×n,
(2) Q∗nUAQn = Tn (Tn is tridiagonal).

By selecting U = A we �nd an A-conjugate basis. This version of CG can be used with
an inde�nite preconditioner M : We apply the A-conjugate Lanczos iteration on M−1A.

This version of CG appears in [14] under the name PCG-ODIR.

1.6.2. Performance of PCG-ODIR. We have implemented PCG-ODIR and com-
pared it to other algorithms (GMRES, QMR, BiCGStab) that work with inde�nite pre-
conditioners. The results of these comparisons appear in Chapter 6. Unfortunately, the
performance is rather disappointing. PCG-ODIR is considerably faster than BiCGStab,
but it is only slightly faster than QMR. It is faster than GMRES only when both use the
same amount of memory, but not when both use the same preconditioner (in which case
GMRES uses more memory).

A simple experiment shows that the results can be attributed to inexact arithmetic.
Consider a version of PCG-ODIR where we use a long recurrence (which is more stable
numerically) instead of a short recurrence (i.e., Arnoldi iteration instead of Lanczos itera-
tion). Under exact arithmetic both the short recurrence and the long recurrence version of
PCG-ODIR are equivalent. But, as Table 2 suggests, under inexact arithmetic this is not
the case. We see that the long recurrence version of PCG-ODIR (labeled �ORTHODIR�
the name used in [14]) does considerably fewer iterations then the short-recurrence ver-
sion. We also see that CG sometimes performs many more iterations than ORTHODIR,
but happens rarely. In particular, whenever CG performs well so does PCG-ODIR. This

1.6. Experimental study of solving HPD systems using inde�nite incomplete
factorizations 32

Table 2. Numerical stability: comparing full conjugation to local conjuga-
tion. In the OILPAN (NO PRECOND) instance, the convergence threshold
was set to 10−5.

Matrix Droptol Precond

De�nite?

PCG-ODIR ORTHODIR CG

CFD1 2× 10−3 NO 125 its 77 its N/A

CFD1 4.5× 10−4 YES 85 its 69 its 85 its

CFD1 2× 10−4 YES 48 its 47 its 48 its

OILPAN NO

PRECOND

N/A 783 its 747 its 783 its

OILPAN 8× 10−3 NO 441 its 142 its N/A

OILPAN 1.5× 10−3 NO 63 its 58 its N/A

OILPAN 8× 10−4 YES 39 its 42 its 39 its

PWTK 4× 10−3 NO 149 its 103 its N/A

PWTK 1× 10−3 NO 77 its 55 its N/A

PWTK 8× 10−4 YES 61 its 55 its 61 its

suggest that the numerical problems are due to short recurrence, and it is related to the
quality of the preconditioner.

To summarize, our initial set of experiments showed that PCG-ODIR fails to ful�ll its
potential. Due to numerical stability issues more iterations are needed. This is a general
problem with CG, but it is aggravated when the preconditioner is of low quality (which
is usually the case if it is inde�nite). We now turn to an explanation of the problem and
a potential solution.

1.6.3. Selective orthogonalization. The formulation of CG as a Lanczos process
was already helpful for allowing an inde�nite preconditioner. We now use it to explain
and deal with numerical stability issues.

The basis vectors q1, q2, . . . are supposed to be A-conjugate, but due to rounding er-
rors they lose conjugacy. As long as the loss of conjugacy is bounded, that is ‖In×n −
Q∗nAQn‖2 ≤ δ for some small δ, we will �nd iterates that are close to their ideal coun-
terparts under exact arithmetic. Loss of conjugacy is not too severe if a long recurrence
is used, but using a long recurrence is wasteful in memory and computation, and usually
requires a restart at some stage. It is preferable to �nd a more economical method.

We propose the use of selective orthogonalization [167]. Instead of orthogonalizing the
current iterate with respect to all previous basis vectors, we (incrementally) form a small
set of vectors, say 5 vectors, and orthogonalize with respect to them (and with respect to
the last two iterates, as in the short-recurrence form). This small set of vectors should be
carefully selected so that it will restore A-conjugacy to Qn as much as possible.

A celebrated result by Paige [164] shows how to �nd such vectors for the regular Lanc-
zos process. Let q1, q2, . . . be the vectors formed by the Lanczos process on a Hermitian
matrix A and let Tn be the tridiagonal matrix Tn = Q∗nAQn. Let wj (j = 1, . . . , n) be the
eigenvectors of Tn and let zj = Qnwj be the corresponding Ritz vectors. Paige showed
that under inexact arithmetic there are constants γj,n+1 of order of the rounding unit such

1.7. Randomized Trace Estimation 33

that
z∗j qn+1 =

γj,n+1

|βn+1eTj wj|
where ej is the jth identity vector and βn+1 is a scalar computed during the Lanczos iter-
ation. An iterate has a strong direction only if |βn+1e

T
j wj| is small, which also means that

the Ritz vector has converged or almost converged. Selective orthogonalization consists
of saving converged and nearly converged Ritz vectors and orthogonalizing the Lanczos
iterates against them.

We have formulated PCG-ODIR as a Lanczos process with a non-standard inner prod-
uct, which opens the door for the use of selective orthogonalization. We call PCG-ODIR
with selective orthogonalization IP-CG (Inde�nitely Preconditioned CG).

1.6.4. Inde�nitely Preconditioned MINRES. The MINRES algorithm can be
used to solve Ax = b for any Hermitian matrix, and a preconditioner can be used as long
as it is Hermitian positive de�nite. Using the A-conjugate Lanczos iteration we developed
a variant of MINRES that requires the opposite: any Hermitian preconditioner can be
used as long as the matrix is positive de�nite. Numerical behavior of this algorithm can be
improved using selective orthogonalization. We call the resulting algorithm IPMINRES.
We leave the exact details for chapter 6.

1.6.5. Numerical experiments. We have conducted a detailed numerical study of
PCG-ODIR, IP-CG and IPMINRES and compared them to older algorithms (GMRES,
QMR, BiCGStab). The results are reported in chapter 6.

Our experiments show that PCG-ODIR, IP-CG and IPMINRES converge in fewer
iterations than QMR and BiCGStab. They are the fastest methods that use a short
recurrence. Our experiments also show that even with selective orthogonalization numer-
ical problems prevent IP-CG from ful�lling their full theoretical potential and GMRES
usually converges in fewer iterations. Nevertheless, PCG-ODIR, IP-CG and IPMINRES
often outperform GMRES by using a denser and more accurate incomplete factorization
to compensate for the extra memory that GMRES requires. IP-CG is faster than PCG-
ODIR, but PCG-ODIR is more economical in memory (which can be used for a denser
preconditioner).

1.7. Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-de�nite matrix

In chapter 7 we move to the second theme of this thesis: randomization. Unlike
previous chapters, chapter 7 does not deal with solving linear equations, but instead
explores the use of randomized algorithms for �nding the trace of an implicit matrix,
that is, a matrix represented as a function. More speci�cally, we explore algorithms that
compute the trace of a matrix represented as a quadratic form x 7→ xTAx. In some
application areas, like lattice Quantum Chromodynamics, one often needs to compute
the trace of a function of a large matrix, trace(f(A)). Explicitly computing f(A) for large
matrices is not practical, but computing the bilinear form xTf(A)x for an arbitrary x is
feasible [25, 26].

The standard approach for computing the trace of an implicit function is Monte-
Carlo simulation, where the trace is estimated by 1

M

∑M
i=1 z

T
i Azi, where the zi are random

vectors. The original method is due to Hutchinson [130]. Although this method has been

1.7. Randomized Trace Estimation 34

improved over the years ([29, 131, 224]) , no paper to date has presented a theoretical
bound on the number of samples required to achieve an ε-approximation of the trace.
Chapter 7's most important contribution is in providing rigorous bounds on the number
of Monte-Carlo samples required to achieve a maximum error ε with probability at least
1 − δ in several trace estimators. We also make a few other contribution: a specialized
bounds for the case of projection matrices, which are important in certain applications,
we o�er a new trace estimator and we experimentally evaluate the convergence of trace
estimators on a few interesting matrices.

Chapter 7 is based on a paper that was submitted for publication [24] in April 2010.

1.7.1. Hutchionson's method and related work. The problem of estimating the
trace of an implicit matrix has been explored since 1989. Before our work, the standard
Monte-Carlo method for estimating the trace of an implicit method is due to Hutchin-
son [130], who proved the following Lemma.

Lemma 1.7.1. Let A be an n×n symmetric matrix with trace(A) 6= 0. Let z be a random
vector whose entries are i.i.d Rademacher random variables (Pr(zi = ±1) = 1/2). zTAz
is an unbiased estimator of trace(A) i.e.,

E(zTAz) = trace(A)

and

Var(zTAz) = 2

(
‖A‖2

F −
n∑
i=1

A2
ii

)
.

Lemma 7.2.1 does not give a rigorous bound on the number of samples/matrix mul-
tiplications, and the variance term is not small enough to use Chebyshev's inequality
to derive a bound. This di�culty carries over to applications of this method, such as
[25, 26]. Hutchinson's method has been improved over the years, but the improvements
do not appear to have addressed this issue. Wong et al. [224] suggest using test vectors
z that are derived from columns of an Hadamard matrix. Iitaka and Ebisuzaki [131]
generalized Hutchinson's estimator by using complex i.i.d variables with unit magnitude;
they showed that the resulting estimator has lower variance than Hutchison's (but the
computation cost is also higher). Silver and Röder [196] use Gaussian i.i.d variables, but
without any analysis. Bekas et al. [29] focus on approximating the actual diagonal values,
also using vectors derived from an Hadamard matrix.

1.7.2. Summary of results. We analyze Hutchinson's estimator, the Gaussian es-
timator (i.e., using Gaussian i.i.d) and an additional new estimator. We analyze the
various estimators based using three di�erent metrics. The �rst metric is the variance of
the estimator. This is the only metric analyzed by Lemma 1.7.1 and in previous work.
We believe that this metric does not reveal enough information to a practitioner. A better
way to analyze an estimator is to bound the number of samples required to guarantee
that the probability of the relative error exceeding ε is at most δ. Let A be a symmetric
positive semi-de�nite matrix. A randomized trace estimator T is an (ε, δ)-approximator
of trace(A) if

Pr (|T − trace(A)| ≤ ε trace(A)) ≥ 1− δ .
This is our second metric. We also analyze a third metric, the number of random bits
used by the algorithm, i.e. the randomness of the algorithm. The trace estimators are

1.7. Randomized Trace Estimation 35

highly parallel; each Rayleigh quotient can be computed by a separate processor. If the
number of random bits is small, they can be precomputed by a sequential random number
generator. If the number is large (e.g., O(n) per Rayleigh quotient), the implementation
will need to use a parallel random-number generator. This concern is common to all
Monte-Carlo methods.

We analyze �ve di�erent trace estimators.

De�nition 1.7.2. A Gaussian trace estimator for a symmetric positive-de�nite matrix
A ∈ Rn×n is

GM =
1

M

M∑
i=1

zTi Azi ,

where the zi's are M independent random vectors whose entries are i.i.d standard normal
variables.

The Gaussian estimator does not constrain the 2-norm of the zi's; it can be arbitrarily
small or large. All the other estimators that we analyze normalize the quadratic forms by
constraining zT z to be equal to n. This property alone allows us to prove below a general
convergence bound.

De�nition 1.7.3. A normalized Rayleigh-quotient trace estimator for a symmetric posi-
tive semi-de�nite matrix A ∈ Rn×n is

RM =
1

M

M∑
i=1

zTi Azi ,

where the zi's are M independent random vectors such that zTi zi = n and E(zTi Azi) =
trace(A).

The second estimator we analyze is Hutchinson's.

De�nition 1.7.4. An Hutchinson trace estimator for a symmetric positive-de�nite matrix
A ∈ Rn×n is

HM =
1

M

M∑
i=1

zTi Azi ,

where the zi's are M independent random vectors whose entries are i.i.d Rademacher
random variables.

The �rst two estimators use a very large sample spaces. The Gaussian estimator
uses continuous random variables, and the Hutchinson estimator draws z from a set of
2n vectors. Thus the amount of random bits required to form a sample is Ω(n). Our
third estimator samples from a set of n vectors, so it only needs O(log n) random bits per
sample. This estimator samples from a smaller family by estimating the trace in a more
direct way: it samples the diagonal itself. The average value of a diagonal element of A is
trace(A)/n. So we can estimate the trace by sampling a diagonal element and multiplying
the result by n. This corresponds to sampling a unit vector from the standard basis and
computing the Rayleigh quotient.

1.7. Randomized Trace Estimation 36

De�nition 1.7.5. A unit vector estimator for a symmetric positive-de�nite matrix A ∈
Rn×n is

UM =
n

M

M∑
i=1

zTi Azi ,

where the zi's are M independent uniform random samples from {e1, . . . , en}.

In contrast to previous methods, the quadratic forms in the unit-vector estimator do
not depend in any way on the o�-diagonal elements of A, only on the diagonal elements.
Therefore, the convergence of UM is independent of the o�-diagonal elements. The distri-
bution of diagonal elements does in�uence, of course, the convergence to trace(A)/n. For
some matrices, this method must sample all the diagonal elements for UM to be close to
trace(A). For example, if A has one huge diagonal element, the average is useless until
we sample this particular element. On the other hand, if all the diagonal elements are
the same, the average converges to the exact trace after one sample.

Our last estimator is a variant of the unit vector estimator that uses randomization
to address this di�culty. Instead of computing the trace of A, it computes the trace of
FAFT where F is a unitary matrix. Since the mixing matrix F is a unitary, trace(A) =
trace(FAFT). We construct F using a randomized algorithm that guarantees with high
probability a relatively �at distribution of the diagonal elements of FAFT .

De�nition 1.7.6. A random mixing matrix is a unitary F = FD, where F and D be
n-by-n unitary matrices. The matrix F is a �xed unitary matrix called the seed matrix.
The matrix D is a unitary random diagonal matrix with diagonal entries that are i.i.d
Rademacher random variables: Pr(Dii = ±1) = 1/2.

De�nition 1.7.7. A mixed unit vector estimator for a symmetric positive semi-de�nite
matrix A ∈ Rn×n is

TM =
n

M

M∑
i=1

zTi FAFT zi ,

where the zi's are M independent uniform random samples from {e1, . . . , en}, and F is a
random mixing matrix.

Table 3 summarizes the results of our analyses. The proofs are in sections 7.5-7.8 of
chapter 7. The smallest variance is achieved by Hutchinson's estimator, but the Gaussian
estimator has a better (ε, δ) bound. Unit vector estimators use the fewest random bits,
but have an (ε, δ) bound that is worse than that of Gaussian and Hutchinson's estimators.

We also prove a result regarding convergence of the Gaussian trace estimator on pro-
jection matrix (i.e., a matrix with only 0 and 1 eigenvalues; the trace is equal to the ran).
In this special case only O(rank(A) log(2/δ)) samples (where δ is a probability of failure;
there is no dependence on ε). Finding the rank of a projection matrix is useful for comput-
ing charge densities (in electronic structures calculations) without diagonalization [29].

Lemma 1.7.8. Let A ∈ Rn×n be a projection matrix, and let δ > 0 be a failure probability.
For M ≥ 24 rank(A) ln(2/δ), the Gaussian trace estimator GM of A satis�es

Pr(round(GM) 6= rank(A)) ≤ δ .

1.8. Engineering a Random-sampling
Numerical Linear Algebra Algorithm 37

Estimator Variance of

one sample

Bound on # samples

for an (ε, δ)-approx

Random bits

per sample

Gaussian 2‖A‖F 20ε−2 ln(2/δ) in�nite;

Θ(n) in �oating

point

Normalized Rayleigh-quotient - 1
2ε

−2n−2 rank2(A) ln(2/δ)κ2f (A) -

Hutchinson's 2
(
‖A‖2F −

∑n
i=1A

2
ii

)
6ε−2 ln(2 rank(A)/δ) Θ(n)

Unit Vector n
∑n

i=1A
2
ii − trace2(A) 1

2ε
−2 ln(2/δ)r2D(A)

rD(A) = n·maxi Aii

trace(A)

Θ(log n)

Mixed Unit Vector - 8ε−2 ln
(
4n2/δ

)
ln(4/δ) Θ(log n)

Table 3. Summary of results: quality of the estimators under di�erent
metrics. The proofs appear in chapter 7.

1.7.3. Consequences. From a theoretical point of view, the (ε, δ) bound for the
Gaussian estimator seems good: for �xed ε and δ, only O(1) samples are needed. How-
ever, the ε−2 factor in the bound implies that the number of samples may need to scale
exponentially with the number of bits of accuracy (the number of samples in the bound
scales exponentially with log10 ε

−1). Therefore, in applications that require only a modest
ε, say ε = 0.1, the Gaussian estimator is good. But in applications that require a small ε,
even ε = 10−3, the number of samples required may be too high.

We also conducted numerical experiments on a few interesting matrices. Convergence
to a small error is slow, and close to the bound for the Gaussian estimator, so it appears
that this bound is tight or almost-tight. For example, see Figure 1.7.1; more experiments
are reported in chapter 7. Our experiments also did not show a considerable di�erence in
practice between the Gaussian, Hutchinson and mixed unit vector estimators.

Randomized trace estimators quickly give a crude estimate of the trace (correct to
within 10% or 1%, say), but they require a huge number of samples to obtain a very
accurate estimate. The ε−2 factor in the bound is common to many randomized algorithms
in numerical linear algebra, and is, unfortunately, often unsatisfactory for applications. In
the next chapter we present a linear solver that uses a randomized algorithm as an inexact
approximator within the context of a deterministic iterative solver. The overall strategy
yields a solver that is both fast and accurate. We believe that the most promising strategy
for using randomized algorithm in numerical linear algebra is by leveraging traditional
algorithms using (inexact) randomized algorithms. Unfortunately, we are not aware of a
suitable iterative algorithm for trace computations.

1.8. Engineering a random-sampling numerical linear algebra algorithm

The two themes of this thesis merge in chapter 8. Chapter 8 describes an high-
performance robust solver for dense overdetermined least-squares systems that is dramat-
ically faster than lapack's solver. These results also appear in a paper published in the
SIAM Journal on Scienti�c Computing [18].

The project started from the understanding that so far, randomized algorithm have
had only a limited impact in numerical linear algebra. No practical linear solver has
been demonstrated so far, although theoretical algorithms have been suggested. The

1.8. Engineering a Random-sampling
Numerical Linear Algebra Algorithm 38

0 500 1000 1500 2000 2500
10

−2

10
−1

10
0

10
1

Number of samples

R
el

at
iv

e
er

ro
r

Maximum error

Gaussian
Hutchinson
Mixed

0 500 1000 1500 2000 2500
10

−2

10
−1

10
0

10
1

Number of samples

R
el

at
iv

e
er

ro
r

Median error

Gaussian
Hutchinson
Mixed

Figure 1.7.1. Convergence of the estimators on a matrix of order 100, 000
whose elements are all 1. The graph on the left shows the maximum error
during 100 runs of the algorithm, and the graph on the right the median of
the 100 runs.

performance of algorithms and codes on modern computers is a complex issue, one that
cannot always be fully captured by theoretical complexity analysis. Performance depends
on many issues and can really only be truly measured by developing and testing the
software on di�erent platforms. Furthermore, as we have seen in the previous section,
running time of randomized algorithm usually depend on the required accuracy, and
often the running time is exponential in the number of required accuracy bits.

Our goal is to show that thorough careful engineering of a new least-squares solver,
which we call Blendenpik, and through extensive analysis and experimentation, random-
ized algorithm can beat state-of-the-art numerical linear algebra libraries in practice.
To beat traditional numerical linear algebra algorithms, randomized algorithms must be
combined with older, well-proved deterministic techniques, mainly iterative and precon-
ditioning techniques. For example, Blendenpik uses a classical preconditioned iterative
linear solver, but the preconditioner is built using a randomized algorithm.

Blendenpik outperforms lapack by large factors on realistic problem sizes (i.e., not
huge) while achieving similar accuracy. Our solver scales better than lapack's, so the
performance di�erence grows with problem size. We believe that the results reported in
Chapter 8 show the potential of random-sampling algorithms, and suggest that random-
ized algorithms should be considered for use in state-of-the-art numerical linear algebra
libraries.

1.8.1. Overview of the Algorithm. Our solver minimizes large highly overdeter-
mined systems x = arg minx ‖Ax− b‖2 where A ∈ Rm×n and b ∈ Rm. Traditionally, A is
factored using, say, a QR factorization, at a cost of Θ(mn2). A simple random-sampling
approach is to factor only a randomly-selected subset of A's rows. That is, we randomly
form an r × m sampling matrix S and factor SA = QR. This factorization cannot be
used to accurately minimize the sum of squares, but R can be used as a preconditioner
for an iterative solver like LSQR [166]. Obviously, if r = m then SA = A and LSQR

1.8. Engineering a Random-sampling
Numerical Linear Algebra Algorithm 39

will converge in one iteration, so with enough samples, R is a good preconditioner. How
many samples do we really need?

For matrices with random independent uniform entries, r = 4n usually yields a good
preconditioner, but this is not true for all matrices (e.g., one needs r = Ω(m) for the m-
by-n identity). It turns out that the number of samples needed is related to the coherence
of the matrix [54].

De�nition 1.8.1. Let A be an m × n full rank matrix and let U be an m × n matrix
whose columns form an orthonormal basis for the column space of A. The coherence of
A is de�ned as

µ(A) = max ‖Ui,∗‖2
2 .

The coherence of a matrix is always smaller than 1 and bigger than n/m. Note that
it does not depend on the condition number of A. Random sampling yields a good
preconditioner on incoherent matrices (matrices with small coherence). For example, if
µ(A) = n/m, then only Θ(n log n) rows need to be sampled to obtain a good precondi-
tioner. Unfortunately, we cannot always guarantee a bound on µ(A) in advance.

Drineas et al. [89] suggest to address this di�culty with a row-mixing strategy: they
multiply A from the left by F = FD where D is a random diagonal matrix with ±1 on it's
diagonal and F is an Hadamard matrix. Multiplying F by A can be done in O(mn logm)
operations using the fast Walsh-Hadamard transform. It can be shown that with high
probability, µ(FA) = O((n/m) logm). At this point, random sampling can be used to
form a preconditioner. Nguyen et al. [162] show that F can be replaced by the normalized
matrix of Fourier-type transforms (DFT3, DCT4, DHT5 and others).

To summarize, the algorithm proceeds as follows. A random diagonal matrix D with
±1 on its diagonal with equal probability is formed. Either DCT, DHT or the fast Walsh-
Hadamard transform are applied to DA. We then sample γn (γ is a parameter) rows from
FDA to form a new matrix. A reduced QR factorization of the matrix is found and R
is used as a preconditioner for LSQR. Assuming a constant number of LSQR iterations,
the total cost is Θ(mn logm+ n3) operations.

1.8.2. Numerical experiments. We have implemented the least-squares solver and
conducted extensive numerical experiments. Here we preview the results, while most of
the results appear in Chapter 8. The benchmark code is lapack's function dgels. The
code is implemented in C and uses blas routines for basic matrix operations. We set
LSQR's convergence threshold to 10−14, which is close to εmachine. We did not set it
lower to avoid stagnation of the iterative method close to convergence. We measured the
running times on a machine with two AMD Opteron 242 processors (we only used one)
running at 1.6 GHz with 8 GB of memory. Matrices were generated using matlab's
rand function (random independent uniform entries).

Figure 1.8.1 compares the running times of the new solver and lapack for increasingly
larger matrices. The y-axis is the ratio of lapack's running time to the new solver's
running time. All the matrices are well conditioned. For tiny matrices lapack is faster,

3Discrete Fourier Transform
4Discrete Cosine Transform
5Discrete Hartlely Transform

1.8. Engineering a Random-sampling
Numerical Linear Algebra Algorithm 40

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
LA

P
A

C
K

 ti
m

e
/ B

le
nd

en
pi

k
tim

e

m / 1000

m−by−(m / 40) well−conditioned matrices

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

3.5

LA
P

A
C

K
 ti

m
e

/ B
le

nd
en

pi
k

tim
e

m / 1000

m−by−(2 * m0.5) well−conditioned matrices

Figure 1.8.1. Comparison between lapack and the new solver for in-
creasingly larger matrices. Graphs show the ratio of lapack's running
time to the new solver's running time on random matrices with two kinds
of aspect ratios

but the new algorithm is faster even on fairly small matrices, and the ratio grows with
matrix size. On the largest matrices we tested, the new solver is about four times faster
than lapack. In other experiments (reported in Chapter 8) we have found that even
on highly incoherent matrices the solver is reliable and faster than lapack, although by
smaller factors than the results reported in Figure 1.8.1.

1.8.3. Conclusions. Blendenpik is competitive in the usual metrics of numerical lin-
ear algebra, and it demonstrates that randomized algorithms can be e�ective in general-
purpose numerical linear algebra software. We have not encountered cases of large dense
matrices where the solver fails to beat lapack, even in hard test cases, and we have
not encountered large variance in running time of the algorithm on a given matrix. Even
the convergence rate in the iterative phase is stable and predictable (unlike many algo-
rithms that use an iterative method). These results indicate the potential of randomized
algorithms, and that the potential can be realized by combining them with older, more
traditional techniques.

CHAPTER 2

Combinatorial Preconditioners for Scalar Elliptic Finite-Element

Problems

2.1. Introduction

This chapter1 presents novel combinatorial preconditioners for scalar elliptic �nite-
element problems based on element-by-element symmetric diagonally dominant approx-
imations. Symmetric diagonally dominant matrices are relatively easy to precondition.
This observation has led two groups of researchers to propose linear solvers that are
based on element-by-element approximation of a given coe�cient matrix by a diagonally
dominant matrix. The diagonally dominant approximation is then used to construct a
preconditioner, which is applied to the original problem. Before we describe their propos-
als and our new contributions, however, we describe the formulation of the problem.

These existing techniques, as well as our new algorithm, use a given �nite-element
discretization of the following problem: Find u : Ω −→ R satisfying

(2.1.1)
∇ · (θ(z)∇u) = −f on Ω

u = u0 on Γ1 ,
θ(z)∂u/∂n = g on Γ2 .

The domain Ω is a bounded open set of Rd and Γ1 and Γ2 form a partition of the boundary
of Ω. The conductivity θ is a spatially varying d-by-d symmetric positive de�nite matrix,
f is a scalar forcing function, u0 is a Dirichlet boundary condition and g is a Neumann
boundary condition.

We assume that the discretization of (2.1.1) leads to an algebraic system of equations

Kx = b .

The matrix K ∈ Rn×n is called a sti�ness matrix, and it is a sum of element matrices,
K =

∑
e∈EKe. Each element matrix Ke corresponds to a subset of Ω called a �nite

element. The elements are disjoint except perhaps for their boundaries and their union is
Ω. We assume that each element matrix Ke is symmetric, positive semide�nite, and zero
outside a small set of ne rows and columns. In most cases ne is uniformly bounded by a
small integer (in our experiments ne is 4 or 10). We denote the set of nonzero rows and
columns of Ke by Ne.

For the problem (2.1.1), all the element matrices are singular with rank ne − 1 and

null vector
[
1 1 · · · 1

]T
. This is a key aspect of techniques for approximating element

1The results in this chapter also appear in a paper co-authored with Doron Chen, Gil Shklarski and
Sivan Toledo which was published in the SIAM Journal on Matrix Analysis and Applications [16];
several examples and minor proofs appears in a technical report [22].
Most of the research was carried out by myself and another PhD student from Tel-Aviv University, Gil
Shklarski, in a collaborative e�ort. These results also appear in Gil's thesis [193].

41

2.1. Introduction 42

matrices by diagonally dominant ones: the methods only works when element matrices

are either nonsingular or are singular with rank ne − 1 and null vector
[
1 1 · · · 1

]T
.

While the general approach of element-by-element (EBE) preconditioning was pro-
posed as early as [129], Reitzinger and his collaborators were the �rst to propose element-
by-element approximation by symmetric and diagonally dominant (SDD) matrices [118,
174, 142]. They proposed two element-approximation techniques. In one technique, the
approximation problem is formulated as an optimization problem, in which one tries to
minimize the generalized condition number of a given element matrix Ke and an SDD
matrix Le; a generic optimization algorithm is then used to �nd Le. The second technique
uses symbolic algebra to formulate the approximation problem, and uses symbolic-algebra
algorithms to �nd Le. Both methods are quite expensive and slow. A row or a column
that is zero in Ke is also zero in Le, so the Le's are also very sparse. Once the Le's
are found, they are assembled. When all the Le's are SDD, their sum L is also SDD.
The matrix L is then used to construct an algebraic multigrid solver, which is used as a
preconditioner for K.

Boman, Hendrickson, and Vavasis proposed a di�erent element-by-element approxima-
tion technique [44]. They used geometric information about the elements and the values
of θ to directly construct Le. The approximation algorithm is inexpensive. They show
that under certain conditions on the continuous problem and on the �nite-element mesh,
the approximations are all good. They proposed to use L to construct a combinatorial
preconditioner rather then apply multigrid to L. This proposal was based on the obser-
vation that over the last decade, several provably good combinatorial graph algorithms
for constructing preconditioners for SDD matrices have been developed [215, 112, 113,
41, 200, 201, 93, 202, 152]. Some of them, as well as some combinatorial heuristics,
have been shown to be e�ective in practice [63, 135, 173, 175, 100, 172].

In this chapter, we extend this paradigm in two ways. First, we propose a novel,
e�ective, and purely algebraic method for approximating an element matrix Ke by an
SDD matrix Le. Our approximation algorithm is relatively inexpensive and provably
good: the spectral distance between Ke and Le is within a n2

e/2 factor of the best possible
for an SDD approximation of Ke, where ne is the number of nonzero rows and columns in
Ke. In particular, this means that our algorithm produces good approximations whenever
the algorithm of Boman et al. does. Furthermore, there exist element matrices that
are ill conditioned and that are far from diagonal dominance (in the sense that a small
perturbation of their entries cannot make them diagonally dominant), which our algorithm
approximates well.

Vavasis has shown [219] that some of the results in this chapter can be used to �nd an
optimal approximation of an element matrix Ke by an SDD matrix Le. Since his method
is computationally expensive it is not clear if it is e�ective in a practical solver. Our code
uses our provably good, cheap to compute, but suboptimal approximation instead.

Our second contribution to this paradigm is a technique to handle problems in which
some of the element matrices cannot be well approximated by SDD matrices. This may
arise because of anisotropy in θ, or because of ill-shaped elements, for example. Our
algorithm splits the elements into two sets: the set E(t) in which Le is a good approxi-
mation of Ke, and the rest (where t is a parameter that determines how good we require
approximations to be.) We then scale and assemble the good element-by-element approx-
imations to form L =

∑
e∈E(t) αeLe. Next, we use a combinatorial graph algorithm to

2.2. Nearly-Optimal Element-by-Element Approximations 43

construct an easy-to-factor approximation M of L. Finally, we scale M and add γM to
the inapproximable elements, to form γM +

∑
e6∈E(t) Ke. We factor this matrix and use

it as a factored preconditioner for K =
∑

eKe.
The splitting idea is simple, but there is no easy way to exploit it in most precon-

ditioning paradigms. In Reitzinger's method, for example, one could build an algebraic
multigrid solver for L =

∑
e∈E(t) αeLe, but how would one incorporate the inapproximable

elements into this solver? There is no obvious way to do this. An algebraic multigrid
solver for γM +

∑
e6∈E(t) Ke is unlikely to be much better as a preconditioner than an al-

gebraic multigrid solver for K, because γM +
∑

e6∈E(t) Ke is far from diagonal dominance
unless all the elements are approximable.

The reason that the splitting idea works well with combinatorial preconditioners is
that combinatorial preconditioning algorithms sparsify the SDD matrix L that is given
to them as input. The sparsi�cation makes the Cholesky factorization of the sparsi�ed
M much cheaper and sparser than the factorization of L. If most of the elements are
approximable, adding

∑
e 6∈E(t) Ke to γM is likely to yield a preconditioner that is still

cheap to factor.
Once the Cholesky factor of the preconditioners are computed, we use it in a pre-

conditioned symmetric Krylov-subspace solver such as Conjugate Gradients [68, 124],
SYMMLQ, or MINRES [165]. For most of the combinatorial algorithms that we can use
to construct M , it is possible to show that the preconditioner is spectrally close to K.
The spectral bounds give a bound on the number of iterations that the Krylov-subspace
algorithm performs.

Experimental results that explore the performance and behavior of our solver show
that the solver is highly reliable. In particular, on some problems other solvers, including
an algebraic-multigrid solver and an incomplete-Cholesky solver, either fail or are very
slow; our solver handles these problems without di�culty.

The rest of the chapter is organized as follows. Section 2.2 presents our element-
approximation method. The scaling of the element-by-element approximation is presented
in Section 2.3. The combinatorial sparsi�cation phase is described in Section 2.4 and the
handling of inapproximable elements in Section 2.5. The costs associated with the di�erent
phases of the solver are described in Section 2.6. Experimental results are presented in
Section 2.7. We mention some open problems that this research raises in Section 2.8.

2.2. Nearly-Optimal Element-by-Element Approximations

In this section we show how to compute a nearly optimal SDD approximation Le to a
given symmetric positive semide�nite matrix Ke that is either nonsingular or has a null
space consisting only of the constant vector.

2.2.1. De�ning the Problem. Let S be a linear subspace of Rn (the results of this
section also apply to Cn, but we use Rn in order to keep the discussion concrete). We
denote by RS ⊆ Rn×n the set of symmetric positive (semi)de�nite matrices whose null
space is exactly S.

De�nition 2.2.1. Given two matrices A and B in RS, a �nite generalized eigenvalue λ
of (A,B) is a scalar satisfying Ax = λBx for some x 6∈ S. The generalized �nite spectrum
Λ(A,B) is the set of �nite generalized eigenvalues of (A,B), and the generalized condition

2.2. Nearly-Optimal Element-by-Element Approximations 44

number κ(A,B) is

κ(A,B) =
max Λ(A,B)

min Λ(A,B)
.

(This de�nition can be generalized to the case of di�erent null spaces, but this is irrel-
evant for this chapter.) We informally refer to κ(A,B) as the spectral distance between
A and B.

We refer to the following optimization problem as the optimal symmetric semide�nite
approximation problem.

Problem 2.2.2. Let A be a symmetric positive (semi)de�nite matrix with null space S
and let B1, B2, . . . , Bm be rank-1 symmetric positive semide�nite matrices. Find coe�-
cients d1, d2, . . . , dm that minimize the generalized condition number of A and

Bopt =
m∑
j=1

d2
jBj

under the constraint null(Bopt) = null(A), or decide that the null spaces cannot match
under any dj's. We can assume without loss of generality that all the Bj's have unit norm.

A slightly di�erent representation of the problem is useful for characterizing the opti-
mal solution. Let Bj = ZjZ

T
j , where Zj is a column vector. Let Z be an n-by-m matrix

whose columns are the Zj's. Then
m∑
j=1

d2
jBj =

m∑
j=1

d2
jZjZ

T
j = ZDDTZT

where D is the m-by-m diagonal matrix with dj as its jth diagonal element. This yields
an equivalent formulation of the optimal symmetric semide�nite approximation problem.

Problem 2.2.3. Given a symmetric positive (semi)de�nite n-by-n matrix A with null
space S and an n-by-mmatrix Z, �nd anm-by-m diagonal matrixD such that null(ZDDTZT) =
S and that minimizes the generalized condition number κ(A,ZDDTZT), or report that
no such D exists.

We are interested in cases where range(Z) = range(A), where the problem is clearly
feasible.

Vavasis has pointed out [219] that minimizing κ(ZTDTDZ,A) is equivalent to �nding
a diagonal non-negative matrix S that minimizes max Λ(ZTSZ,A) such that min Λ(ZTSZ,A) ≥
1, and taking D = S1/2. He showed that this optimization problem can be solved as a
convex semide�nite programming problem: �nd the minimum t and the corresponding S
for which the constraints min Λ(tA, ZTSZ) ≥ 1 and min Λ(ZTSZ,A) ≥ 1 can be satis�ed
simultaneously. Convex semide�nite programming problems can be solved in polynomial
time. An algorithm based on this observation can �nd an optimal SDD approximation,
but applying it might be costly. We have decided to pursue a di�erent direction by �nding
a suboptimal but provably good approximation using a fast and simple algorithm.

2.2.2. From Generalized Condition Numbers to Condition Numbers. The
main tool that we use to �nd nearly optimal solutions to Problem (2.2.2) is a reduction of
the problem to the well studied problem of scaling the columns of a matrix to minimize
its condition number.

2.2. Nearly-Optimal Element-by-Element Approximations 45

De�nition 2.2.4. Given a matrix A, let σmax be the largest singular value ofA and σmin be
the smallest nonzero singular value of A. The condition number of A is κ(A) = σmax/σmin.
If A ∈ RS then κ(A) = κ(A,P⊥S), where P⊥S is the orthogonal projector onto the subspace
orthogonal to S.

The following lemma, which is a generalization of [43, Theorem 4.5], is the key to the
characterization of Bopt.

Lemma 2.2.5. Let A = UUT and B = V V T , where U and V are real valued matrices of
order n ×m. Assume that A and B are symmetric, positive semide�nite and null(A) =
null(B). We have

Λ (A,B) = Σ2
(
V +U

)
and

Λ (A,B) = Σ−2
(
U+V

)
.

In these expressions, Σ(·) is the set of nonzero singular values of the matrix within the
parentheses, Σ` denotes the same singular values to the `th power, and V + denotes the
Moore-Penrose pseudoinverse of V .

Proof. Both U and V have n rows, so U+ and V + have n columns. Therefore, the
products V +U and U+V exist. Therefore,

Σ2
(
V +U

)
= Λ

(
V +UUT

(
V +
)T)

= Λ
((
V +
)T
V +UUT

)
= Λ

((
V V T

)+
UUT

)
= Λ

(
B+A

)
.

(Λ(·) denotes the set of eigenvalues of the argument.) For the second line we use the
following observation. If X is n-by-k and Y is k-by-n, then the nonzero eigenvalues of
XY and Y X are the same. The second line follows from this observation for X = (V +)

T

and Y = V +UUT . The third line follows from the equality
(
XXT

)+
= (X+)

T
X+ for an

order n-by-k matrix X [34, Proposition 6.1.6].
It is su�cient to show that Λ (B+A) = Λ(A,B) in order to prove the �rst part of

the lemma. Let λ ∈ Λ(A,B), then there exists a vector x ⊥ null(B) = null(A), such
that Ax = λBx. Since B is symmetric, x ∈ range(B) = range(BT). Therefore, B+Ax =
λB+Bx = λx. The last equality follows from the fact that B+B is a projector onto
range(BT) [34, Proposition 6.1.6]. Therefore, Λ (B+A) ⊇ Λ(A,B). Let λ ∈ Λ(B+A), then
there exists a vector x, such that B+Ax = λx. Therefore, Ax = BB+Ax = λBx. The
�rst equality follows from the fact that range(A) = range(B) and [34, Proposition 6.1.7].
Therefore, Λ (B+A) ⊆ Λ(A,B) which shows the equality.

The second result Λ (A,B) = Σ−2 (U+V) follows from replacing the roles of A and B
in the analysis above and from the equality Λ (A,B) = Λ−1 (B,A). The reversal yields

Λ (A,B) = Λ−1 (B,A) =
(
Σ2
(
U+V

))−1
= Σ−2

(
U+V

)
.

�

2.2. Nearly-Optimal Element-by-Element Approximations 46

This lemma shows that Problems 2.2.2 and 2.2.3 can be reduced to the problem of
scaling the columns of a single matrix to minimize its condition number. Let A = UUT

and let Z satisfy range(Z) = range(A). (If A is symmetric positive semide�nite but U
is not given, we can compute such a U from the Cholesky factorization of A or from its
eigendecomposition.) According to the lemma,

Λ(A,ZDDTZT) = Σ−2
(
U+ZD

)
.

Therefore, minimizing κ(A,ZDDTZT) is equivalent to minimizing the condition number
κ(U+ZD) under the constraint range(ZD) = range(Z).

The other equality in Lemma 2.2.5 does not appear to be useful for such a reduction.
According to the equality

Λ(A,ZDDTZT) = Σ2
(
(ZD)+ U

)
,

but unfortunately, there does not appear to be a way to simplify (ZD)+ U in a way that
makes D appear as a row or column scaling. (Note that in general, (ZD)+ 6= D+Z+.)

The problem of scaling the columns of a matrix to minimize its condition number has
been investigated extensively. Although e�cient algorithms for minimizing the condition
number of a rectangular matrix using diagonal scaling do not exist, there is a simple
approximation algorithm. It may be possible to use Vavasis's algorithm [219] to solve
this problem too, but this is not the concern of this work.

2.2.3. Computing the Pseudoinverse of a Factor of an Element Matrix.
Before we can �nd a scaling matrix D, we need to compute U+ from a given element
matrix Ke = UUT and to form U+Z.

We compute U+ in one of two ways. If the input to our solver is an element matrix Ke

with a known null space, we can compute U+ from an eigendecomposition ofKe. LetKe =
QeΛeQ

T
e be the reduced eigendecomposition of Ke (that is, Qe is n-by-rank(Ke) and Λe is

a rank(Ke)-by-rank(Ke) nonsingular diagonal matrix). We have Ke = QeΛ
1/2
e

(
QeΛ

1/2
e

)T
so we can set U = QeΛ

1/2
e , so U+ = Λ

−1/2
e QT

e .
Many �nite-element discretization techniques actually generate the element matrices

in a factored form. If that is the case, then some symmetric factor F of Ke = FF T is given
to our solver as input. In that case, we compute a reduced singular-value decomposition
SVD of F , F = QeΣeR

T
e , where Σe is square, diagonal, and invertible, and Re is square

and unitary, both of order rank(F). Since

Ke = FF T = QeΣeR
T
e ReΣ

T
eQ

T
e = QeΣ

2
eQ

T
e

is an eigendecomposition of Ke, we can set U = QeΣe and we have Ke = UUT . In this
case U+ = Σ−1

e QT
e . This method is more accurate when Ke is ill conditioned.

Note that in both cases we do not need to explicitly form U+; both methods provide
a factorization of U+ that we can use to apply it to Z.

Once we form U+Z, our solver searches for a diagonal matrix D that brings the
condition number of U+ZD close to the minimal condition number possible. This problem
is better understood when U+Z is full rank. Fortunately, in our case it always is.

Lemma 2.2.6. Let U be a full rank m-by-n matrix, m ≥ n, and let Z be an m-by-`
matrix with range(Z) = range(U). Then U+Z has full row rank.

2.2. Nearly-Optimal Element-by-Element Approximations 47

Proof. Since range(Z) = range(U), there exists an n-by-l matrix C such that Z =
UC. By de�nition, rank(Z) ≤ rank(C) ≤ n. Moreover, since range(Z) = range(U) and
U is full rank, we have that n = rank(Z). Therefore, rank(C) = n.

It is su�cient to show that C = U+Z to conclude the proof of the lemma. Since
U is full rank and m ≥ n, the product U+U is the n-by-n identity matrix. Therefore,
U+Z = U+UC = C.

�

Without the assumption range(Z) = range(U), the matrix U+Z can be rank de�cient
even if both U+and Z are full rank.

Example 2.2.7. Let

U =

 2 0
−1 −1
−1 1

 , Z =

1 1
1 −1
1 0

 .

The columns of U are orthogonal, range(Z) 6= range(U). This gives

U+ =

[
1/3 −1/6 −1/6
0 −1/2 1/2

]
and

U+Z =

[
0 1/2
0 1/2

]
,

which is clearly not full rank.

2.2.4. Nearly-Optimal Column Scaling. Given a matrix U+Z, we wish to �nd a
diagonal matrix D that minimizes the condition number of U+ZD, under the assumption
range(Z) = range(U), and under the constraint that range(ZD) = range(Z).

To keep the notation simple and consistent with the literature, in this section we use
A to denote U+Z and we use m and n to denote the number of rows and columns in
A = U+Z.

The key result that we need is due to van der Sluis [216], who showed that choosing
D̃ such that all the columns of AD̃ have unit 2-norm brings AD̃ to within a factor of√
n of the optimal scaling. Van der Sluis, extending an earlier result of Bauer for square

invertible matrices [28], analyzed the full-rank case.
Given anm-by-n matrix A, m ≥ n, and a nonsingular diagonal D van der Sluis de�ned

(2.2.1) κvdS(AD) =
‖AD‖2

minx6=0 ‖ADx‖2/‖x‖2

(his original de�nition is not speci�c to the 2-norm, but this is irrelevant for us). If
A is non-singular then κvdS(AD) = κ(AD). He, like Bauer, was interested in �nding
the diagonal matrix D that minimizes (2.2.1). This de�nition of the problem implicitly
assumes that A is full rank, otherwise κvdS(AD) = ∞ for any nonsingular diagonal D.
Also, if A is full rank then the minimizing D must give a full-rank AD. If A has more
columns than rows, we can use a complementary result by van der Sluis, one that uses row
scaling on a matrix with more rows than columns. Van der Sluis result show that if the
rows of D̃A have unit 2-norm, then κvdS(D̃A) is within a factor of

√
m of the minimum

possible. This gives us the result that we need, because κvdS(AD) = κvdS(DTAT).

Shapiro showed that, in the general case, van der Sluis' estimate on κvdS(AD̃) cannot be

2.2. Nearly-Optimal Element-by-Element Approximations 48

improved by more than a
√

2 factor [188]. The following are formal statements of the
last two cited results.

Lemma 2.2.8. (Part of Theorem 3.5 in [216]) Let A be an m-by-n full-rank matrix and
let D̃ be a diagonal matrix such that in D̃A all rows have equal 2-norm. Then for every
diagonal matrix D we have

κvdS(D̃A) ≤
√
mκvdS(DA) .

Lemma 2.2.9. (Theorem in [188]) For every ε > 0 there exists an n-by-n nonsingular,
real valued matrix A such that if:

(1) D̃ is a diagonal matrix such that all the diagonal elements of D̃ATAD̃ are equal
to one, and

(2) D is a diagonal matrix such that κ(AD) is minimized,

then

κ(AD̃) >
(√

n/2− ε
)
κ(AD) .

As we have shown in Lemma 2.2.6, that matrix A = U+Z whose columns we need to
scale is full rank, so van der Sluis's results apply to it.

We note that further progress has been made in this area for square invertible A's,
but it appears that this progress is not applicable to our application when A = U+Z
is rectangular (which is usually the case). Braatz and Morari showed that for a square
invertible A, the minimum of κ(AD) over all positive diagonal matrices D can be found
by solving a related optimization problem, which is convex [49]. Their paper states that
this result also applies to the rectangular case [49, Remark 2.5]; what they mean by
that comment is that the related optimization problem minimizes ‖AD‖2‖D−1A+‖2 [48],
whereas we need to minimize κ(AD) = ‖AD‖2‖(AD)+‖2.

2.2.5. Nearly-Optimal Symmetric diagonally dominant Approximations.
We now turn our attention to the matrices that arise as element matrices in �nite-element
discretizations of (1.2.1). Such a matrix Ke has null space that is spanned by the constant
vector and by unit vectors ej for every zero column j of Ke. The part of the null space
that is spanned by the unit vectors is irrelevant, so we assume that we are dealing with a

matrix A whose null space is spanned by constant vector
[
1 1 · · · 1

]T
.

We wish to approximate a symmetric semide�nite matrix A with this null space (or
possibly a nonsingular matrix) by a symmetric diagonally dominant matrix B,

Bii ≥
n∑
j=1
j 6=i

|Bij| .

To de�ne a matrix Z such that the expression ZDDTZT can generate any symmetric
diagonally dominant matrix, we de�ne the following vectors.

De�nition 2.2.10. Let 1 ≤ i, j ≤ n, i 6= j. A length-n positive edge vector, denoted
〈i,−j〉, is the vector

〈i,−j〉k =

 +1 k = i
−1 k = j

0 otherwise.

2.2. Nearly-Optimal Element-by-Element Approximations 49

A negative edge vector 〈i, j〉 is the vector

〈i, j〉k =

 +1 k = i
+1 k = j

0 otherwise.

A vertex vector 〈i〉 is the unit vector

〈i〉k =

{
+1 k = i

0 otherwise.

A symmetric diagonally dominant matrix can always be expressed as a sum of outer
products of scaled edge and vertex vectors. Therefore, we can conservatively de�ne Z
to be the matrix whose columns are all the positive edge vectors, all the negative edge
vectors, and all the vertex vectors.

If A is singular and its null space is the constant vector, we can do better. Chen and
Toledo provided a combinatorial characterization of the null space of SDD matrices [64].

Lemma 2.2.11. ([64]) Let A be a symmetric diagonally dominant matrix whose null
space is the constant vector. Then A is a sum of outer products of scaled positive edge
vectors. Furthermore, the null space of a symmetric diagonally dominant matrix with a
positive o�-diagonal element (corresponding to an outer product of a scaled negative edge

vector) cannot be span
[
1 1 · · · 1

]T
.

Therefore, if A is singular with this null space, we only need to include in the column
set Z the set of positive edge vectors. If A is nonsingular, we also include in Z negative
edge vectors and vertex vectors.

We can also create even sparser Z's; they will not allow us to express every SDD B
as B = ZDDTZT , but they will have the same null space as A. To de�ne these sparser
Z's, we need to view the edge vector 〈i,−j〉 as an edge that connects vertex i to vertex
j in a graph whose vertices are the integers 1 through n. The null space of ZZT is the
constant vector if an only if the columns of Z, viewed as edges of a graph, represent a
connected graph. Therefore, we can build an approximation B = ZDDTZT by selecting
an arbitrary connected graph on the vertices {1, . . . , n}. By [64, Lemma 4.2], if A is
nonsingular, we can include in Z the positive edge vectors of a connected graph plus one
arbitrary vertex vector.

If A is well conditioned (apart perhaps from one zero eigenvalue), we can build a good
approximation B = ZDDTZT even without the column-scaling technique of Lemma 2.2.5.
In particular, this avoids the computation of the pseudo-inverse of a factor U of A = UUT .
Clearly, if A is nonsingular and well conditioned, then we can use I as an approximation:
the generalized condition number κ(A, I) is κ(A). If A has rank n − 1 and the constant
vector is its null vector, then

BC(ne) =
1

ne


ne − 1 −1 −1 · · · −1
−1 ne − 1 −1 · · · −1
−1 −1 ne − 1 · · · −1
...

...
...

. . .
...

−1 −1 · · · · · · ne − 1



2.2. Nearly-Optimal Element-by-Element Approximations 50

yields

(2.2.2) κ(A,BC(ne)) = σmax(A)/σmin(A) ,

which we assumed is low (σmax(A) is the largest singular value of A, and σmin(A) is the
smallest nonzero singular value of A). The matrix BC(ne) is the Laplacian of the complete
graph, and it is clearly SDD. The identity (2.2.2) follows from the fact that BC(ne) is an
orthogonal projection onto range(A). The following lemma summarizes this discussion.

Lemma 2.2.12. Let A be a symmetric positive (semi)de�nite matrix. If A is nonsingular,

or if the null space of A is span
[
1 1 · · · 1

]T
, then there is an SDD matrix B such that

κ(A,B) ≤ κ(A).

This result may seem trivial (it is), but it is nonetheless important. The global sti�-
ness matrix K =

∑
eKe is often ill conditioned, but the individual element matrices Ke

are usually well conditioned. Since we build the approximation L =
∑

e Le element by
element, this lemma is often applicable: When Ke is well conditioned, we can set Le to be
an extension of BC(ne) into an n-by-n matrix. The rows and columns of the scaled BC(ne)

are mapped to rows and columns Ne of Le and the rest of Le is zero.
For well-conditioned A's, we can also trade the approximation quality for a sparser

approximation than BC(ne). The matrix

BS(ne) =
1

ne


ne − 1 −1 −1 · · · −1
−1 1 0 · · · 0
−1 1 · · · 0
...

...
. . .

...
−1 0 · · · 1


gives

(2.2.3) κ(A,BS(ne)) ≤ κ(A,BC(ne))κ(BC(ne), BS(ne)) = κ(A)κ(BS(ne)) =
neσmax(A)

σmin(A)
.

For small ne, this may be a reasonable tradeo�. The bound (2.2.3) follows from the
observation that the eigenvalues of BS(ne) are exactly 0, 1, and ne. We note that besides
generating a sparser matrix this kind of approximation preserves structural properties
such as planarity. This may be important for certain sparsi�cation algorithms [32, 140]
and subsequent factorization algorithms.

When A is ill conditioned, there may or may not be an SDD matrix B that approxi-
mates it well. The following two examples demonstrate both cases.

Example 2.2.13. Let

A =
1

2ε

1 + ε2 −ε2 −1
−ε2 ε2 0
−1 0 1


for some small ε > 0. This matrix has rank 2 and null vector

[
1 1 1

]T
, and it its

condition number is proportional to 1/ε2. Since A is diagonally dominant, there is clearly
an SDD matrix B (namely, A itself) such that κ(A,B) = 1. This matrix is the element
matrix for a linear triangular element with nodes at (0, 0), (0, ε), and (1, 0) and a constant
θ = 1. The ill conditioning is caused by the high aspect ratio of the triangle, but this

2.2. Nearly-Optimal Element-by-Element Approximations 51

ill conditioned matrix is still diagonally dominant. Small perturbations of the triangle
will yield element matrices that are not diagonally dominant but are close to a diagonally
dominant one.

Example 2.2.14. The matrix in Example 2.2.13 is a SDD matrix that is ill conditioned.
This is an obvious example of an ill-conditioned but well-approximable matrix. We now
show an example of a non-SDD (and not close to SDD) ill-conditioned matrix which is
still well-approximable. Let

A =
1

6ε


3(1 + ε2) ε2 1 −4ε2 0 −4

ε2 3ε2 0 −4ε2 0 0
1 0 3 0 0 −4
−4ε2 −4ε2 0 8(1 + ε2) −8 0

0 0 0 −8 8(1 + ε2) −8ε2

−4 0 −4 0 −8ε2 8(1 + ε2)


for some small ε > 0. This matrix is the element matrix for a quadratic triangular element
with nodes (0, 0), (0, ε) and (1, 0), quadrature points are midpoints of the edges with equal
weights, and material constant θ = 1.

This matrix is clearly ill conditioned since the maximum ratio between its diagonal
elements is proportional to 1/ε2.

To show that this matrix is approximable consider the following SDD matrix:

A+ =
1

6ε


4(1 + ε2) 0 0 −4ε2 0 −4

0 4ε2 0 −4ε2 0 0
0 0 4 0 0 −4
−4ε2 −4ε2 0 8(1 + ε2) −8 0

0 0 0 −8 8(1 + ε2) −8ε2

−4 0 −4 0 −8ε2 8(1 + ε2)

 .

We will show that κ(A,A+) ≤ 2. De�ne the matrix

A− =
1

6ε


(1 + ε2) −ε2 −1 0 0 0
−ε2 ε2 0 0 0 0
−1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Notice that A = A+ − A−. Since A− is symmetric positive de�nite this implies that
λmax(A,A+) ≤ 1. We will show that λmin(A,A+) ≥ 1/2. This condition is equivalent
to the condition that λmax(A+, A) ≤ 2, which is the equivalent to the condition that
2A − A+ is positive semide�nite. According to Lemma 3.3 in [32] it is enough to prove
that σ̄(A−, A+) ≤ 1

2
. This can easily be achieved by path embedding where we embed

the (1, 2) edge in A− with the path(1, 4) → (4, 2) and the edge (1, 3) with the path
(1, 6)→ (6, 3). Congestion is 1 because no edge is reused and for both paths the dilation
is 1

2
.

Example 2.2.15. Our example of a matrix that cannot be approximated well by an SDD
matrix is the element matrix for an isosceles triangle with two tiny angles and one that

2.2. Nearly-Optimal Element-by-Element Approximations 52

is almost π, with nodes at (0, 0), (1, 0), and (1/2, ε) for some small ε > 0. The element
matrix is

A =
1

2ε


1
4

+ ε2 1
4
− ε2 −1

2

1
4
− ε2 1

4
+ ε2 −1

2

−1
2

−1
2

1


This matrix has rank 2 and null vector

[
1 1 1

]T
. For any SDD matrix B with the same

null space, κ(A,B) ≥ ε−2/4 [22, 193] (this example is due to Shklarski).

2.2.6. A Heuristic for Symmetric diagonally dominant Approximations. In
Section 2.2.5 we have shown how to �nd a nearly-optimal SDD approximation B to a

symmetric positive (semi)de�nite matrix A whose null space is spanned by
[
1 · · · 1

]T
.

In this section we show a simple heuristic. We have found experimentally that it often
works well. On the other hand, we can show that in some cases it produces approximations
that are arbitrarily far from the optimal one. Thus, this section has two related goals: to
describe a simple heuristic that often works well, but to point out that it cannot always
replace the method of Section 2.2.5.

De�nition 2.2.16. Let A be a symmetric positive (semi)de�nite matrix. We de�ne A+

to be the SDD matrix de�ned by

(A+)ij =


aij i 6= j and aij < 0

0 i 6= j and aij ≥ 0∑
k 6=j − (A+)ik i = j .

Clearly, A+ is SDD.

It turns out that in many cases, κ(A,A+) is small, making A+ a good approximation
for A. The following lemma gives a theoretical bound for κ(A,A+). The proof for this
Lemma is due to Shklarski, and can be found in [22, 193].

Lemma 2.2.17. Let A be an SPSD ne-by-ne matrix with null(A) = span[1 . . . 1]T . Then
null(A+) = span[1 . . . 1]T , and κ(A,A+) ≤ √neκ(A). Moreover, if there exist a constant
c and an index i such that ‖A‖inf ≤ cAii, then κ(A,A+) ≤ cκ(A).

This means that if A is well conditioned and small, then A+ is always a fairly good
approximation. The matrix A+ is also sparser than A, and similarly to BS(n) its mesh
will be planar if the mesh of A was planar.

But when A is ill conditioned, A+ can be an arbitrarily bad approximation even though
A is approximable by some other SDD matrix.

Example 2.2.18. Let 0 < ε� 1, and let M ≥ 4
ε
,

A =


1 +M −1 0 −M
−1 1 +M −M 0
0 −M M 0
−M 0 0 M

−


0 0 0 0
0 0 0 0
0 0 1− ε −1 + ε
0 0 −1 + ε 1− ε

 .

2.3. Scaling and Assembling Element Approximations 53

This matrix is symmetric semide�nite with rank 3 and null vector
[
1 1 1 1

]T
. For

small ε, A is ill conditioned, with condition number larger than 8ε−2. Let

q1 =
1

2


1
1
1
1

 , q2 =
1

2


1
1
−1
−1

 , q3 =
1

2


1
−1
1
−1

 , and q4 =
1

2


1
−1
−1
1


be an orthonormal basis for R4. We have

qT1 Aq1 = 0

qT2 Aq2 = 2M

qT3 Aq3 = 2M + ε

qT4 Aq4 = ε .

Therefore, κ(A) ≥ 2M/ε ≥ 8ε−2. We show that the matrix A+ is a poor approximation
of A.

qT1 A+q1 = 0

qT2 A+q2 = 2M

qT3 A+q3 = 2M + 1

qT4 A+q4 = 1 .

Therefore,

κ(A,A+) >

(
1− 1− ε

2M + 1

)
ε−1 ≈ ε−1 .

Nevertheless, the SDD matrix

B =


ε+M −ε 0 −M
−ε ε+M −M 0
0 −M ε+M −ε
−M 0 −ε ε+M


is a good approximation of A, with κ(A,B) < 9. This bound follows from a simple path-
embedding arguments [32], which shows that 3A−B and 3B−A are positive semide�nite.
The quantitative parts of these arguments rest on the inequalities

1

2M
+

1

2M
+

1

3− ε
≤ 1

3− 4ε

and
1

2M
+

1

2M
+

1

1 + 2ε
<

1

1− 3ε
,

which hold for small ε.

2.3. Scaling and Assembling Element Approximations

Given a set of approximations {Le} to a set of element matrices {Ke}, our solver scales
the Le's so that their assembly L =

∑
e αeLe is a good approximation of K =

∑
eKe. We

can scale them in one of two equivalent ways. The next lemma shows that under these
scalings, if every Le is a good approximation of Ke, then L is a good approximation of

2.4. Sparsi�cation of the Assembled SDD Approximation 54

K. Both scaling rules require the computation of one extreme eigenvalue for each pair
(Ke, Le).

Lemma 2.3.1. Let {Ke}e∈E and {Le}e∈E be sets of symmetric positive (semi)de�nite
matrices with null(Ke) = null(Le). Let αe = min Λ(Ke, Le) and let βe = max Λ(Ke, Le).
Then

κ

(∑
e∈E

Ke,
∑
e∈E

αeLe

)
≤ maxκ (Ke, Le)

κ

(∑
e∈E

Ke,
∑
e∈E

βeLe

)
≤ maxκ (Ke, Le)

Proof. Scaling Le by αe transforms the smallest generalized eigenvalue of Λ(Ke, αeLe)
to 1, since

Λ(Ke, αeLe) =
1

αe
Λ(Ke, Le) .

Scaling Le clearly does not change the generalized condition number, so max Λ(Ke, αeLe) =
κ(Ke, Le).

By the splitting lemma [32],

min Λ

(∑
e∈E

Ke,
∑
e∈E

αeLe

)
≥ min {min Λ(Ke, αeLe)}e∈E

= min {1}e∈E
= 1 .

Also by the splitting lemma,

max Λ

(∑
e∈E

Ke,
∑
e∈E

αeLe

)
≤ max {max Λ(Ke, αeLe)}e∈E

= max {κ (Ke, Le)}e∈E .

Combining these two inequalities gives the result. The proof for scaling by βe is the
same. �

If we use inexact estimates α̃e for the minimum of Λ(Ke, Le), the bound becomes

κ

(∑
e∈E

Ke,
∑
e∈E

α̃eLe

)
≤ maxe {(αe/α̃e)κ (Ke, Le)}

mine (αe/α̃e)
,

and similarly for estimates of βe. This shows that κ
(∑

e∈EKe,
∑

e∈E α̃eLe
)
depends on

how much the estimates vary. In particular, if the relative estimation errors are close to
1, scaling by the estimates is almost as good as scaling by the exact eigenvalues.

2.4. Sparsi�cation of the Assembled SDD Approximation

Once we obtain an SDD approximation L =
∑

e αeLe of K, we can use a combinatorial
graph algorithm to construct an easier-to-factor SDD approximation M of L. Because M
is spectrally close to L and L is spectrally close to K, M is also spectrally close to K.

2.4. Sparsi�cation of the Assembled SDD Approximation 55

By applying [43, Proposition 3.6] to both ends of the generalized spectra, we obtain the
following lemma.

Lemma 2.4.1. Let K, L, and M be symmetric (semi)de�nite matrices with the same
dimensions and the same null space. Then

κ(K,M) ≤ κ(K,L)κ(L,M) .

There are several algorithms that can build M from L. All of them view an exactly
(but not strictly) SDD matrix L as a weighted undirected graph GL, to which they build
an approximation graph GM . The approximation GM is then interpreted as an SDD
matrix M . If L is strictly diagonal dominant, the approximation starts from an exactly
SDD matrix L − D, where D is diagonal with nonnegative elements. From L − D the
algorithm builds an approximation M̃ ; If M̃ is a good approximation to L − D, then
M̃ +D is a good approximation to L.

Lemma 2.4.2. Let A and B be symmetric positive (semi)de�nite matrices with the same
null space S, and let C be a positive symmetric (semi)de�nite with a null space that is a
subspace, possibly empty, of S. Then

Λ(A+ C,B + C) ⊆ [min Λ(A,B) ∪ {1},max Λ(A,B) ∪ {1}] .

Proof. The result is a simple application of the splitting lemma [32], since

max Λ(A+ C,B + C) ≤ max {max Λ(A,B),max Λ(C,C)}
= max {max Λ(A,B), 1}
= max Λ(A,B) ∪ {1} ,

and similarly for the smallest generalized eigenvalue. �

This lemma is helpful, since most of the algorithms that construct approximations of
SDD matrices provide theoretical bounds on Λ(L−D, M̃) that have 1 as either an upper
bound or a lower bound. When this is the case, adding D to L−D and to M̃ preserves
the theoretical condition-number bound.

The earliest algorithm for this subproblem is Vaidya's algorithm [32, 63, 215]. This
algorithm �nds a maximum spanning tree in GM and augments it with suitable edges.
The quantity of extra edges that are added to the tree is a parameter in this algorithm.
When few or no edges are added, κ(L,M) is high (but bounded by nm/2, where m is the
number of o�-diagonal elements in L), but L is cheap to factor (can be factored in O(n)
operations when no edges are added to the tree). When many edges are added, κ(L,M)
shrinks but the cost of factoring L rises. When GM is planar or nearly planar then the
algorithm is very e�ective, both theoretically and experimentally. For more general classes
of graphs, even with a bounded degree, the algorithm is less e�ective.

A heuristic for adding edges to the maximum spanning tree was proposed by Frangioni
and Gentile [100]. They designed their algorithm for SDD linear systems that arise in
the interior-point solution of network-�ow problems. There are no theoretical convergence
bounds for this algorithm.

Several algorithms are based on so-called low-stretch spanning trees. Boman and Hen-
drickson realized that a low-stretch spanning tree GM of GL leads to a better convergence-
rate bound than maximum spanning trees [42]. Elkin et al. showed simpler and lower-
stretch constructions for low-stretch trees [93]. Spielman and Teng proposed algorithms

2.5. Dealing with Inapproximable Elements 56

that create denser graphs GM (which are still based on low-stretch trees) [200, 201, 202].
The algorithms of Spielman and Teng lead to nearly-linear work bound for solving Lx = b.

There are other classes of combinatorial preconditioners, for example [113, 112, 152].
It is not clear whether they can be used e�ectively in our framework.

2.5. Dealing with Inapproximable Elements

When some of the element matrices cannot be approximated well by an SDD matrix,
we split the global sti�ness matrix K into K = K≤t +K>t, where K≤t =

∑
e∈E(t) Ke is a

sum of the element matrices for which we found an SDD approximation Le that satis�es
κ(Ke, Le) ≤ t for some threshold t > 0, and K>t =

∑
e6∈E(t) Ke is a sum of element

matrices for which our approximation Le gives κ(Ke, Le) > t.
We then scale the approximations in E(t) and assemble them to form L≤t =

∑
e∈E(t) αeKe.

We now apply one of the combinatorial graph algorithms discussed in Section 2.4 to con-
struct an approximation M≤t to L≤t. Once we have M≤t, we add it to K>t to obtain a
preconditioner M1 = M≤t +K>t.

This construction gives a bound on κ(K,M1), but it is a heuristic in the sense that
M1 may be expensive to factor. The analysis of κ(K,M1) is essentially the same as the
analysis of strictly dominant matrices in Section 2.4: by Lemma 2.4.2, a theoretical bound
Λ(K≤t,M≤t) ⊆ [α, β] implies Λ(K,M1) ⊆ [min{α, 1},max{β, 1}].

The scaling technique of Lemma 2.3.1 ensures that either α, β ≤ 1 or 1 ≤ α, β. But
the interval [α, β] may be quite far from 1. If the interval is far from 1, the bound on
κ(K,M1) can be considerably larger then the bound on κ(K≤t,M≤t). We observed this
behavior in practice (experiments not reported here). To avoid this danger, we scale M≤t
before adding it to K>t; that is, we use a preconditioner Mγ = γM≤t + K>t. We choose
γ as follows. We �nd some vector v that is orthogonal to null(M≤t) and compute its
generalized Raleigh quotient

γ =
vTK≤tv

vTM≤tv
.

The null space of M≤t is determined by the connected components of its graph, so it is
easy to quickly �nd such a v (we use a random v in this subspace). This de�nition ensures
that γ ∈ [α, β]. Since Λ(K≤t, γM≤t) ⊆ [α/γ, β/γ], we have 1 ∈ [α/γ, β/γ].

Lemma 2.5.1. Under this de�nition of Mγ, κ(K,Mγ) ≤ β/α, where the interval [α, β]
bounds Λ(K≤t,M≤t). In particular, if we take α and β to be the extremal generalized
eigenvalues of (K≤t,M≤t), we obtain

κ(K,Mγ) ≤ κ(K≤t,M≤t) .

We expect that this overall heuristic will be e�ective when E \ E(t) contains only
few elements. If only a few elements cannot be approximated, then K>t is very sparse,
so the sparsity pattern of Mγ = γM≤t + K>t is similar to that of M≤t. Since M≤t was
constructed so as to ensure that its sparsity pattern allow it to be factored without much
�ll, we can expect the same to hold for Mγ. If E \E(t) contains many elements, there is
little reason to hope that the triangular factor of Mγ will be particularly sparse.

If E \ E(t) contains very few elements a di�erent strategy can be used. Instead
of introducing the ill-conditioned elements into Mγ they can be ignored. Each ignored
element can be considered as an ne − 1 rank perturbation. The results we discuss in

2.7. Experimental Results 57

chapter 3 (and also appear in [20]) suggest that this will increase the number of iterations
by at most ne−1. Therefore, if the number of inapproximable elements is small only a few
more iterations will be needed. If many inapproximable elements are dropped convergence
can be slow.

2.6. Asymptotic Complexity Issues

In this section we explain the asymptotic complexity of the di�erent parts of our
solver. We do not give a single asymptotic expression that bounds the work that the
solver performs, but comment on the cost and asymptotic complexity of each phase of the
solver. The cost of some of the phases is hard to fully analyze, especially when E(t) (E.
The next section presents experimental results that complement the discussion here.

The �rst action of the solver is to approximate each element matrix Ke by an SDD
matrix αeLe. For a given element type, this phase scales linearly with the number of
elements and it parallelizes perfectly. The per-element cost of this phase depends on
the approximation method and on the number ne of degrees of freedom per element.
Asymptotically, all the approximation methods require n3

e operations per element, but
the uniform-clique is the fastest method. This phase also gives us κ(Ke, αeLe) which we
use to decide which elements belong to E(t) and which do not.

The next phase of the solver assembles the scaled SDD approximations in E(t). The
cost of this step is bounded by the cost to assemble K =

∑
eKe, which most �nite-

elements solvers (including ours), perform. The assemblies ofK and L performs O(
∑

e n
2
e)

operations: fewer than the �rst phase, but harder to parallelize.
The cost and the asymptotic complexity of the sparsi�cation of L depends on the

algorithm that is used. For Vaidya's sparsi�cation algorithm, which our code uses, the
amount of work is O(n log n +

∑
e n

2
e). For the algorithm of Spielman and Teng [200,

201, 202], the work is O(m logO(1)m) where m =
∑

e n
2
e.

Next, the algorithm assembles the element matrices Ke that are not in E(t) into M≤t.
The cost of this phase is also dominated by the cost of assembling K.

The cost of computing the Cholesky factorization of M is hard to characterize theo-
retically, because the cost depends on the nonzero pattern of M in a complex way. The
nonzero pattern of M depends on how many and which elements are not in E(t), and on
how much we sparsi�ed L≤t. The number of operations in a phase of the solver is not
the only determinant of running time, but also the computational rate. The Cholesky
factorization of M usually achieves high computational rates.

The cost of the iterative solver depends on the number of iterations and on the per-
iteration cost. The number of iterations is proportional to

√
κ(K,Mγ) ≤ t

√
κ(L,M≤t).

The amount of work per iteration is proportional to the number of nonzeros in K plus the
number of nonzeros in the Cholesky factor of M . The sparsi�cation algorithms of Vaidya
and Spielman and Teng control the number of iterations, and if E(t) = E than they also
control the density of the Cholesky factor.

2.7. Experimental Results

This section presents experimental results that explore the e�ectiveness of our solver.

2.7. Experimental Results 58

2.7.1. Setup. Our solver currently runs under matlab [155], but it is implemented
almost entirely in C. The C code is called from matlab using matlab's cmex interface.
The element-by-element approximations are computed by C code that calls lapack [12].
The assembly of the element-by-element approximations (and possibly the inapproximable
elements) is also done in C. The construction of Vaidya's preconditioners for SDD matrices
is done by C code [63]. The Cholesky factorization of the preconditioner is computed
by matlab's sparse chol function, which in Matlab 7.2 calls cholmod 1.0 by Tim
Davis. We always order matrices using metis version 4.0 [138] prior to factoring them.
The iterative Krylov-space solver that we use is a preconditioned Conjugate Gradients
written in C and based on matlab's pcg.; within this iterative solver, both matrix-vector
multiplications and solution of triangular linear systems are performed by C code.

In most experiments we compare our solver to an algebraic multigrid solver, Boomer-
AMG [123]. We use the version of BoomerAMG that is packaged as part of hypre 1.2.
We compiled it using gcc version 3.3.5, with options -O (this option is hypre's default
compilation option). We note that BoomerAMG is purely algebraic and does not exploit
the element-by-element information. There exist variations of algebraic multigrid that do
exploit the element structure [51, 62]. We have not experimented with these variants.
Our comparison with BoomerAMG is meant mainly to establish a credible baseline for
the results and not to explore the behavior of algebraic multigrid solvers.

In some experiments we compare our solver to solvers that are based on incomplete
Cholesky preconditioners [154, 159, 177, 218]. To compute these preconditioners, we
use matlab's built-in cholinc routine. Here too, the matrices are preordered using
metis.

Since many of our test problems are ill conditioned, we iterate until the relative residual
is at most 10−14, close to εmachine, in order to achieve acceptable accuracy.

We use two mesh generators to partition the three-dimensional problem domains into
�nite elements. We usually use tetgen version 1.4. [195]. In a few experiments we use
distmesh [170], which can generate both two- and three-dimensional meshes.

Running times were measured on a 1.6 GHz AMD Opteron 242 computer with 8 GB
of main memory, running Linux 2.6. This computer has 2 processors, but our solver only
uses one. We used a 64-bit version of matlab 7.2. This version of matlab uses the
vendor's blas, a library called acml. The measured running times are wall-clock times
that were measured using the ftime Linux system call.

2.7.2. Test Problems. We evaluated our solver on several three-dimensional prob-
lems. We used both linear and quadratic tetrahedral elements. Table 1 summarizes the
problems that we used in the experiments. The boundary conditions are always pure
Neumann ∂u/∂n = 0, and we removed the singularity by �xing the solution at a �xed
unknown (algebraically, we remove the row and column of K corresponding to that un-
known). We generate the right-hand side b of the linear system Kx = b by generating a
random solution vector x and multiplying it by K to form b.

In all the experiments reported below, except for a single experiment, our solver pro-
duced acceptable forward errors. The computed solution x̂ satis�ed

‖x̂− x‖2

‖x‖2

≤ 10−4 .

2.7. Experimental Results 59

Table 1. Notation for the test problems.

The Domain Ω
C A 3-dimensional cube
B A 3-dimensional box with aspect ratio 1-by-1-by-10000
CH A 1-by-1-by-1 cube with a 1-by-0.1-by-0.79 hole in the middle
SC A 10-by-10-by-10 cube containing a spherical shell of inner radius 3

and thickness 0.1.
The Mesh (the parameter indicates the number n of mesh points)
G 3-dimensional, generated by tetgen
D 3-dimensional, generated by distmesh
The Conductivity θ(x)
U uniform and isotropic, θ = I everywhere
J jump between subdomains but uniform and isotropic within

subdomain (e.g., θ = 104I in the spherical shell of domain SC and
Θ = I elsewhere); the parameter indicates the magnitude of the jump

A anisotropic within a subdomain (e.g. the spherical shell in SC) and
θ = I elsewhere; θ is always 1 in the x and y directions and the
parameter indicates the conductivity in the z direction.

The element type
L Linear tetrahedral element, 4-by-4 element matrix
Q Quadratic tetrahedral element, 10-by-10 element matrix

In one of the experiments with well-conditioned elements and jumping coe�cients with
ratio 108 (Section 2.7.5), when running Vaidya's preconditioner with the goal 0.6, the
forward error was 1.24 · 10−3.

2.7.3. Choosing the Parameter t. We begin with simple problems that are de-
signed to help us choose t, the approximation threshold. The behavior of our solver
depends on two parameters, t and the aggressiveness of the combinatorial sparsi�cation
algorithm. These parameters interact in complex ways, because both in�uence the spar-
sity of the Cholesky factor of M and the number of iterations in the Krylov-space solver.
It is hard to visualize and understand the performance of a solver in a two-dimensional (or
higher) parameter space. Therefore, we begin with experiments whose goal is to establish
a reasonable value for t, a value that we use in all of the subsequent experiments.

Figure 2.7.1 shows the results of these experiment, which were carried out on two
meshes, one generated by distmesh and the other by tetgen. The elements are all linear
tetrahedral, and their approximations Le are built using our nearly-optimal approximation
algorithm. The graphs on the left show the distributions of κ(Ke). With distmesh, we see
that the elements belong to two main groups, a large group of elements with generalized
condition numbers smaller than about 100, and a small set of so-called slivers with much
higher condition numbers, ranging from 200 to 108. From results not shown here, it
appears that for the non-slivers, κ(Ke, Le) is smaller than κ(Ke) by roughly a constant
factor. For the slivers, κ(Ke, Le) is close to κ(Ke). With tetgen, there are no highly
ill-conditioned elements, and the distributions of κ(Ke) and κ(Ke, Le) are smoother.

2.7. Experimental Results 60

10
0

10
5

10
100

0.2

0.4

0.6

0.8

1

Condition Number

P
er

ce
nt

CH_D8954_U_L

κ(K

e
)

0 2 4 6 8 10
x 10

5

10
1

10
2

10
3

10
4

NNZ in the Cholesky factor

Ite
ra

tio
ns

CH_D8954_U_L

t = 101

t = 102

t = 103

t = 104

t = 1015

10
0

10
5

10
100

0.2

0.4

0.6

0.8

1

Condition Number

P
er

ce
nt

CH_G32867_U_L

κ(K

e
)

0 2 4 6 8
x 10

6

10
1

10
2

10
3

10
4

NNZ in the Cholesky factor

Ite
ra

tio
ns

CH_G32867_U_L

t = 101

t = 102

t = 103

t = 104

t = 1015

Figure 2.7.1. The distribution of element condition numbers (left graphs)
and the number of iterations for several values of t and several sparsi�cation
levels (right graphs). The top row shows results on a mesh generated by
distmesh, and the bottom row on a mesh generated by tetgen.

The graphs on the right show the number of iterations that the Conjugate Gradients
algorithm performs for several values of t and various levels of sparsi�cation. In all the
graphs in the chapter whose horizontal axis is �ll in the Cholesky factor, the horizontal
axis ranges from 0 to the number of nonzeros in the Cholesky factor ofK. When t is small,
K>t is relatively dense, so the sparsi�cation algorithm cannot be very e�ective. Even when
we instruct Vaidya's algorithm to sparsify L≤t as much as possible, the Cholesky factor of
M remains fairly similar to the Cholesky factor of K. On the other hand, a small t leads
to faster convergence. With a large t we can construct M 's with very sparse factors, but
convergence is very slow. If all the elements are relatively well-conditioned then there is
little dependence on t, as can be seen in the bottom right �gure. A value of t near 1000
gives a good balance between high iteration counts caused by using Le's with fairly high
κ(Ke, Le) and the inability to construct a sparse preconditioner caused by a dense K>t.
We use the �xed value t = 1000 in the remaining experiments in order to clarify the role
of the other parameter in the algorithm.

2.7. Experimental Results 61

0 2 4 6 8 10
x 10

5

0

10

20

30

40

50

60

NNZ in the Cholesky factor

T
im

e
(s

ec
)

CH_D8954_U_L

Direct
AMG
NOC+Vaidya
cholinc

0 2 4 6 8
x 10

6

0

10

20

30

40

50

NNZ in the Cholesky factor

T
im

e
(s

ec
)

CH_G32867_U_L

Direct
AMG
NOC+Vaidya
cholinc

Figure 2.7.2. Running times for our solver, for incomplete Cholesky, for
BoomerAMG, and for a direct solver on simple 3-dimensional problems.
The graph on the left uses a mesh generated by distmesh, and the one
on the right a mesh generated by tetgen. See the �rst paragraph of
Section 2.7.4 for a complete explanation of the graphs.

We stress that the selection of t in practice should not be static; it should be based
on the actual distribution of the generalized condition numbers of the approximation and
on analysis similar to the one described in this section.

2.7.4. Baseline Tests. The next set of experiments shows the performance of our
solver relative to other solvers on the same problems and the same meshes, for a few
relatively easy problems. The graphs in Figure 2.7.2 compare the running time of our
solver to that of an incomplete Cholesky preconditioner, BoomerAMG, and a state-of-
the-art direct solver, cholmod. In these graphs the vertical axis represents wall-clock
time for all the phases of the solution and the horizontal axis represents the number of
nonzeros in the triangular factors of the preconditioner. The rightmost (largest) horizontal
coordinate in the graphs always corresponds to the number of nonzeros in a complete
sparse Cholesky factor of the coe�cient matrix. When the complete factorization runs
out of space, we still use this scaling of the horizontal axis, and we estimate the running
time of the complete factorization based on the assumptions that it runs at 109 �oating-
point operations per second. The direct solver and BoomerAMG only give us one data
point for each problem; their running times are represented in the graphs by horizontal
lines. We ran each preconditioned solver with several values of the parameter that controls
the sparsity of the factor (drop tolerance in incomplete Cholesky and the sparsi�cation
parameter in Vaidya's preconditioner). Therefore, for each preconditioned solver we have
several data points that are represented by markers connected by lines. Missing markers
and broken lines indicate failures to converge within a reasonable amount of time. Our
algorithm is labeled as �NOC+Vaidya�. NOC stands for �Nearly-Optimal Clique� because
our algorithm uses a clique topology for the approximation. Most of the remaining graphs
in this section share the same design.

The graphs in Figure 2.7.2 compare the running time of the solvers on easy problems
with a relatively simple domain and uniform coe�cients. The mesh produced by tetgen

2.7. Experimental Results 62

0 1 2 3
x 10

6

0

200

400

600

800

1000

1200

NNZ in the Cholesky factor

T
im

e
(s

ec
)

B_G196053_U_L

Direct
AMG
NOC+Vaidya
cholinc

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

C_G326017_U_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

Figure 2.7.3. Experimental results on two additional problems with uni-
form coe�cients; these problems are much larger than those analyzed in
Figure 2.7.2.

leads to a linear system that is easy for all the iterative solvers. With a good drop-
tolerance parameter, incomplete Cholesky is the fastest, with little �ll. Our solver is
slower than all the rest, even with the best sparsity parameter. The mesh produced by
distmesh causes problems to BoomerAMG, but incomplete Cholesky is faster than our
solver.

Although the performance of incomplete Cholesky appears to be good in the ex-
periments reported in Figure 2.7.2, it sometimes performs poorly even on fairly simple
problems. Figure 2.7.3 shows that on a high-aspect-ratio 3-dimensional structure with uni-
form coe�cients, incomplete Cholesky performs poorly: the sparser the preconditioner,
the slower the solver. Our solver, on the other hand, performs reasonably well even when
its factor is much sparser than the complete factor. On the high-aspect-ratio problem, as
well as on any problem of small to moderate size, the direct solver performs well. But as
the problem size grows the direct solver becomes slow and tends to run out of memory.
The rightmost graph in Figure 2.7.3 shows a typical example.

Figure 8.5.7 shows a breakdown of the running time of our solver for one particular
problem. The data shows that as the preconditioner gets sparse, the time to factor the
preconditioner decreases. The running time of the iterative part of the solver also initially
decreases, because the preconditioner gets sparser. This more than o�sets the growth in
the number of iterations. But when the preconditioner becomes very sparse, it becomes
less e�ective, and the number of iterations rises quickly.

2.7.5. Well-Conditioned Elements and Jumping Coe�cients. The next set of
experiments explores problems with a large jump in the conductivity θ. We instructed
the mesh generators to align the jump with element boundaries, so within each element,
there is no jump. This leads to a large κ(K), but the conditioning of individual element
matrices is determined by their geometry, not by θ. The results, shown in Figure 2.7.5,
show that the jump in θ does not in�uence any of the four solvers in a signi�cant way.

2.7.6. Ill-Conditioned Elements: Anisotropy. Some of the experiments shown
in Section 2.7.3 included ill-conditioned elements. The ill-conditioning of those elements

2.7. Experimental Results 63

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e1_Q

(1)
(1)+..+(3)
(1)+..+(5)
(1)+..+(7)

Notation for phases of the solver:

(1) Approximate Ke by Le

(2) Assembly L≤t =
∑

E(t) Le

(3) Sparsify L≤t to obtain M≤t

(4) Assembly of M = M≤t +K>t

(5) Order, permute, and factor M

(6) Assembly of K =
∑

E Ke

(7) Permute K and iterate

Figure 2.7.4. A breakdown of the running time of our solver, on a particu-
lar problem. The graph shows the time consumed by the di�erent phases of
the solver. Assembly phases are not separately shown because their running
time is negligible.

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_J1e4_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_J1e8_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

Figure 2.7.5. Running times for problems with jumping coe�cients. The
average of the ratio κ(Ke)/κ(Le, Ke) in both experiments is around 3.6 and
is nearly constant. The condition numbers of the Ke's are always small.

resulted from their geometrical shape. Other mesh generators may be able to avoid such
element shapes. Indeed, tetgen did not produce such elements, only distmesh did.
But in problems that contain anisotropic materials in complex geometries, ill-conditioned
elements are hard to avoid.

Figure 2.7.6 compares the performance of our solver with that of other solvers on a
problem in which the conductivity θ is anisotropic in one part of the domain. The results
clearly show that anisotropy leads to ill-conditioned element matrices. As the anisotropy
increases, BoomerAMG becomes slower and incomplete Cholesky becomes less reliable.
The anisotropy does not have a signi�cant in�uence on our solver. In experiments not
reported here, our solver behaved well even with anisotropy of 108. The incomplete-
factorization solver becomes not only slow, but also erratic, as the graphs in Figure 2.7.7

2.7. Experimental Results 64

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

Condition Number

P
er

ce
nt

Condition numbers

θ = 101

θ = 102

θ = 103

0 0.5 1 1.5 2 2.5
x 10

8

0

1000

2000

3000

4000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e1_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

0 0.5 1 1.5 2 2.5
x 10

8

0

1000

2000

3000

4000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e2_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

0 0.5 1 1.5 2 2.5
x 10

8

0

1000

2000

3000

4000

5000

6000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e3_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

Figure 2.7.6. The behavior of our solver and other solvers on a solid 3-
dimensional problem that contains a thin spherical shell with anisotropic
material. The mesh was generated by tetgen. We report here three ex-
periments with anisotropy rates 10, 102, and 103 (θ in the legend). The top
left graph shows the distribution of the element matrix condition numbers
in the di�erent experiments. The ratio κ(Ke)/κ(Le, Ke) is nearly constant
within every experiment. This ratio for the isotropic elements is similar in
all the experiments. For the anisotropic elements, the maximal ratio grows
from about 19 for anisotropy 10 to about 806 for anisotropy 103.

show. The convergence of our preconditioner is always steady, monotonically decreasing,
and the convergence rate is monotonic in the density of the preconditioner. The con-
vergence of incomplete Cholesky is erratic, not always monotonic, sometimes very slow.
Furthermore, sometimes one incomplete factor leads to much faster convergence than
a much denser incomplete factor. We acknowledge that in some cases, when targeting
larger relative residuals (like 10−2 or 10−5), incomplete factorization and multigrid precon-
ditioners are more e�ective than combinatorial preconditioners. This is evident in other
combinatorial preconditioners [63, 194]. This is clearly shown in Figure 2.7.7.

These results show that the ability of our solver to detect inapproximable elements and
to treat them separately allows it to solve problems that cause di�culty to other iterative

2.7. Experimental Results 65

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

Time (sec)

R
el

at
iv

e
R

es
id

ua
l

SC_G395700_A1e2_Q

NOC+Vaidya, NNZ = 1.1e6
NOC+Vaidya, NNZ = 1.4e6
NOC+Vaidya, NNZ = 6.9e6
NOC+Vaidya, NNZ = 47.0e6
NOC+Vaidya, NNZ = 202.1e6
AMG

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

Time (sec)

R
el

at
iv

e
R

es
id

ua
l

SC_G395700_A1e2_Q

Cholinc, NNZ = 0.4e6
Cholinc, NNZ = 1.4e6
Cholinc, NNZ = 6.1e6
Cholinc, NNZ = 16.8e6
Cholinc, NNZ = 41.9e6
AMG

Figure 2.7.7. The relative norm of the residual as a function of the run-
ning time (and implicitly, of the iteration count) on one anisotropic problem,
for our solver (left) and for incomplete Cholesky (right). The horizontal co-
ordinate in which individual plots start indicates the time to construct and
factor the preconditioner.

solvers. When there are few such elements, as there are here because the anisotropic shell
is thin, these elements do not signi�cantly increase the density of the factor of M . In
problems in which most of the elements are inapproximable by SDD matrices, M would
be similar to K and the characteristics of our solver would be similar to the characteristics
of a direct solver.

This is perhaps the most important insight about our solver. As problems get harder
(in the sense that more elements become inapproximable), its behavior becomes closer to
that of a direct solver. As problems get harder we lose the ability to e�ectively sparsify
the preconditioner prior to to factoring it. But unlike other solvers, our solver does not
exhibit slow or failed convergence on these di�cult problems.

2.7.7. Comparisons of Di�erent Element-by-Element Approximations. We
now explore additional heuristics for approximating Ke. The approximation methods that
we compare are:

Nearly Optimal Clique (NOC): Le = ZDDTZ, where the columns of Z is
the full set of edge vectors and D scales the columns of U+Z to unit 2-norm.
This method gives the strongest theoretical bound of the methods we tested on
κ(Ke, Le): it is at most n

2
e/2 times larger than the best possible for an SDD ap-

proximation of Ke. Here and in the next four methods, we set the scaling factor
αe to be max Λ(Ke, Le).

Nearly Optimal Star (NOS): Le = ZDDTZ, where the columns of Z are edge
vectors that form a star, 〈1,−2〉 , 〈1,−3〉 , . . . , 〈1,−ne〉 and D scales the columns
of U+Z to unit 2-norm. Sparser than the �rst but usually a worse approximation.

Uniform Clique (UC): Le is the extension of the ne-by-ne matrix BC(ne) to an
n-by-n matrix. Computing Le is cheap, but the approximation is only guaranteed
to be good when Ke is very well conditioned. The low cost of this method stems
from the facts that (1) BC(ne) is a �xed matrix, and (2) αn = max Λ(Ke), so we

2.7. Experimental Results 66

10
−2

10
0

10
2

10
4

10
60

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G93202_A1e2_Q

US
UC
NOS
NOC
PP
Theortical Bound

0 0.5 1 1.5 2 2.5
x 10

7

0

50

100

150

200

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G93202_A1e2_Q

US
UC
NOS
NOC
PP

10
−2

10
0

10
2

10
4

10
60

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G395700_J1e4_Q

US
UC
NOS
NOC
PP
BHV
Theortical Bound

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_J1e4_Q

US
UC
NOS
NOC
PP
BHV

Figure 2.7.8. Di�erent element-approximation methods. The graph on
the left shows the distribution of κ(Ke, Le) for each approximation method.
The method of Boman et al. is only applicable to well-conditioned elements,
so it is not included in the graphs in the top row. The theoretical bound
in the left �gure is calculated using the fact that the spectral distance of
NOC is within n2

e/2 of the best possible. In the bottom left �gure, the BHV
(diamond markers) plot occludes the US (star markers) plot.

do not need to estimate an extreme generalized eigenvalue, only a single-matrix
eigenvalue.

Uniform Star (US): Le is the extension of the ne-by-ne matrix BS(ne) to an n-by-
n matrix. Sparser than the uniform clique, but more expensive, since we compute
an extreme generalized eigenvalue to set αe.

Positive Part (PP): Le = (Ke)+, de�ned in Section 2.2.6.
Boman et al. (BHV): αeLe is the Boman-Hendrickson-Vavasis approximation of
Ke [44]. In their method, Le is a uniform star, and the scaling factor αe is
computed from quantities associated with the �nite-element discretization that
produces Ke.

The results are shown in Figure 2.7.8. When element matrices are fairly well con-
ditioned (bottom graphs), di�erent approximation methods exhibit similar qualitative

2.7. Experimental Results 67

0 5 10 15
x 10

4

0

50

100

150

200

250

300

350

n

T
im

e
(s

ec
)

scaling − Vaidya

Goal = 0.00
Goal = 0.40
Goal = 0.60
Goal = 0.80
Goal = 0.95
Goal = 1.00

0 5 10 15
x 10

4

0

20

40

60

80

100

120

n

T
im

e
(s

ec
)

scaling − all (best)

Direct
AMG
Vaidya, Goal = 0.60
Cholinc, Droptol = 0.10

Figure 2.7.9. Solution times as a function of mesh size, on the same phys-
ical problem (a cube with uniform coe�cients, discretized using linear tetra-
hedral elements). The graph on the left compares the running times of our
solver with di�erent levels of �ll, and the graph on the right compares our
solver (with the best-case �ll level) with BoomerAMG and the direct solver.
The �ll in our solver is controlled by a parameter called goal in these graphs.
A goal of 1 does not sparsify the approximation M≤t, and a goal of 0 spar-
si�es it as much as possible, resulting in a tree or forest graph structure for
L≤t.

behaviors. But when there are ill-conditioned elements, naive approximation methods
perform poorly. The results also show that the nearly-optimal approximation (which we
used in all the other experiments) performs well relative to other approximation methods,
but is usually not the best.

The comparison between PP and NOC in the top experiments in Figure 2.7.8 is in-
teresting. The top left graph indicates that PP is a better approximation in that experi-
ment. This was consistent in additional parameters that we explored and are not reported
here: absolute condition number, number of elements that were inapproximable (beyond
t = 1000), the distribution of the ratio κ(Ke, Le)/κ(Ke), sparsity of the preconditioner,
and time to compute the approximation.

Nevertheless, the number of iterations with the NOC+Vaidya preconditioner is sub-
stantially smaller (about half) of the number of iterations with the PP+Vaidya precondi-
tioner. The bottom line is that NOC+Vaidya performs better than PP+Vaidya. We do
not have a good explanation for this; it may be a good subject for future research.

2.7.8. Running Times for Growing Problem Sizes. The results in Figure 2.7.9
present the growth in running time of our solver as the problem size grows. For very dense
and very sparse preconditioners, the growth is highly nonlinear. This is consistent with the
theory of sparse direct solvers on one side and with the theory of Vaidya's preconditioners
on the other. For intermediate levels of �ll, running times grow more slowly, but they still
seem to grow superlinearly.

2.8. Open Problems 68

2.8. Open Problems

This chapter raises several interesting questions and challenges for further research.
We mention four. One challenge is to extend the optimal-scaling method of Braatz and
Morari [49] to rank-de�cient and rectangular matrices. It may be possible to use the
reduction in [219] to solve this problem, but we have not explored this. It is not even
clear whether van der Sluis's nearly-optimal scaling for rectangular matrices [216] is
also nearly-optimal for rank-de�cient matrices. Another interesting question is to �nd a
reliable and cheap-to-compute estimate of the spectral distance between a given symmetric
positive (semi)de�nite matrix A and the closest SDD matrix to A. Our method can be
used to estimate this distance, but for large matrices the method is expensive and its
estimates are loose. We have also shown that κ(A) is an upper bound on that distance,
but this bound can be arbitrarily loose. The third and probably most important challenge
is to �nd better ways to exploit the splitting K = K≤t +K>t. There may be several ways
to exploit it. For example, it is probably possible to build better preconditioners by
sparsifying L≤t with the objective to reduce �ll in the Cholesky factor of M≤t +K>t; the
algorithm that we used for the sparsi�cation phase ignores K>t and only tries to reduce �ll
in the factor ofM≤t. The fourth question is connected to the selection of parameters. Our
algorithm has several parameters: the approximation topology, approximation cuto� (t),
and the level sparsi�cation. The best choice for the parameters is a�ected by two other
parameters: characteristics of the problem at hand, and the convergence tolerance. In our
experiments, we �x the convergence tolerance, and �nd heuristically a set of parameters
that work reasonably well for most problems. It is interesting to see if auto-tuning can help
choose parameters, either beforehand or during run-time, that give best results for the
class of problems a user wishes to solve. Auto-tuning here refers to building a performance
model, perhaps over several runs, of how the algorithms behaves over a set of hard-to-
choose tuning parameters, and using that model to choose good values of the parameters.
This approach is widely used for dense linear algebra ([223]) and FFT ([103]), and being
increasingly explored for sparse matrix problem where one has to wait until the matrix is
available at run-time to do the exploration.

CHAPTER 3

Using Perturbed QR Factorizations to Solve Linear

Least-Squares Problems

3.1. Introduction

This chapter1 shows that the R factor from the QR factorization of a perturbation
Â of a matrix A is an e�ective least-squares preconditioner for A. More speci�cally, we
show the R factor of the perturbation is an e�ective preconditioner if the perturbation
can be expressed by adding/or dropping a few rows from A or if it can be expressed by
replacing a few columns.

If A is rank de�cient or highly ill-conditioned, the R factor of a perturbation Â is still
an e�ective preconditioner if Â is well-conditioned. Such an R factor can be used in LSQR
(an iterative least-squares solver [166]) to e�ciently and reliably solve a regularization of
the least-squares problem. We present an algorithm for adding rows with a single nonzero
to A to improve its conditioning; it attempts to add as few rows as possible.

We also show that if an arbitrary preconditioner M is e�ective for Â∗Â (where Â∗ is

the adjoint of Â), in the sense that the generalized condition number of (Â∗Â,M) is small,
then M is also an e�ective preconditioner for A∗A. This shows that we do not necessarily
need the R factor of the perturbation Â; we can use M as a preconditioner instead.

This chapter provides a comprehensive spectral analysis of the generalized spectrum
of matrix pencils that arise from row and column perturbations. The analysis shows that
if the number of rows/columns that are added, dropped, or replaced is small, then most
of the generalized eigenvalues are 1 (or lie in some interval when R is not an exact factor).
We bound the number of runaway eigenvalues, which are the ones that are not 1 (or
outside the interval), which guarantees rapid convergence of LSQR.

These results generalize a simple observation. Let A be a given matrix and let Â = [AB].
Then (

Â∗Â
)−1

A∗A = (A∗A+B∗B)−1A∗A

= (A∗A+B∗B)−1 (A∗A+B∗B −B∗B)

= I − (A∗A+B∗B)−1B∗B .(3.1.1)

1The results in this chapter also appear in a paper co-authored with Esmond Ng and Sivan Toledo which
was published in the SIAM Journal on Matrix Analysis and Applications [20]; proof of Theorem 3.3.4
appeared in a separate technical report [19]. This chapter also contains a more general version of
Theorem 3.4.1. This general version was shortened in the paper due to a requests from the reviewers to
shorten the paper. The numerical experiment in section 3.7.1, which was dropped from the paper due to
lack of space, is included as well.

69

3.2. Background 70

The rank of second term on the last line is at most the rank of B, so if B has low

rank, then
(
Â∗Â

)−1

A∗A is a low-rank perturbation of the identity. A symmetric rank-k

perturbation of the identity has at most k non-unit eigenvalues, which in exact arithmetic
guarantees convergence in k iterations in several Krylov-subspace iterations. Therefore,
the Cholesky factor of Â∗Â (which is also the R factor of Â) is a good least-squares
preconditioner for A. The same analysis extends to the case where we drop rows of A.
This idea has been used by practitioners [105]. A special case of this idea appears in
the graph sparsi�cation literature. In this case deleting or adding a row correpsonds to
deleting or adding an edge. See [180, 199].

We generalize this result in additional ways: to the case where Â is singular, to column
exchanges, and to preconditioners for Â rather than its R factor. We also bound the size
of the non-unit eigenvalues, which is important when A is rank de�cient.

The rest of this chapter presents relevant background, our spectral analysis of per-
turbed factorizations, an algorithm for choosing the perturbations, and numerical results.

3.2. Background

3.2.1. LSQR, an Iterative Krylov-Subspace Least-Squares Solver. LSQR is
a Krylov-subspace iterative method for solving the least-squares problem minx ‖Ax− b‖2.
The method was developed by Paige and Saunders in 1982 [166].

The algorithm is based on the bidiagonalization procedure due to Golub and Ka-
han [108]. A sequence of approximations {xk} is generated such that the residual
‖Axk − b‖2 decreases monotonically. The sequence {xk} is, analytically, identical to
the sequence generated by the conjugate gradients algorithm [124, 68] applied to A∗A.
Therefore, the convergence theory of conjugate gradients applied to A∗A applies directly
to the behavior of LSQR. In particular, the convergence of LSQR is governed by the
distribution of the eigenvalues of A∗A (and can be bounded using its condition number).
Another useful observation, which we will use extensively, is that if the matrix A∗A has
l distinct eigenvalues, then LSQR will converge in at most l iterations (this is a simple
consequence of the minimization property of conjugate gradients).

The relationship between the condition number and the convergence of LSQR and
the relationship between the number of distinct eigenvalues and convergence of LSQR are
essentially a special case of a result given by [161, Theorem 2.3] (Ng attributes the result
to Van der Vorst). This result analyzes the convergence of Conjugate Gradients when
all but k + r eigenvalues lie outside a given interval. The result can also be adapted to
singular matrices and LSQR, and it is used in Section 3.5.

In this chapter we use the preconditioned version of LSQR. Given an easy-to-invert
preconditioner R, we have

min
x
‖Ax− b‖2 = min

x
‖AR−1Rx− b‖2 .

This allows us to solve minx ‖Ax−b‖2 in two phases. We �rst solve miny ‖AR−1y−b‖2 and
then solve Rx = y. The �rst phase is solved by LSQR. The convergence is now governed
by spectrum (set of eigenvalues) of R−∗A∗AR−1, which is hopefully more clustered than
the spectrum of A∗A. The spectrum of R−∗A∗AR−1 is identical to the set of generalized
eigenvalues A∗Ax = λR∗Rx. We analyze these generalized eigenvalues.

3.3. Preliminaries 71

3.2.2. Sparse QR Factorizations. In some of the applications that we describe
below, the preconditioner is the R factor from a QR factorization of a perturbation of A.

The main approach to exploiting the sparsity of A in a QR factorization is to attempt
to minimize the �ll in the R factor. Since the R factor of A is also the Cholesky factor
of A∗A, we can use an algorithm that reduces �ll in sparse Cholesky by symmetrically
permuting the rows and columns of A∗A [104]. Such a permutation is equivalent to a
column permutation of A. Many algorithms can compute such a permutation without
ever computing A∗A or its sparsity pattern [76, 50].

When A is well-conditioned it is possible to solve the least-squares problem minx ‖Ax−
b‖2 using the QR factorization of A. When A is ill-conditioned it may be useful to regular-
ize the equation by truncating singular values that are too small (see subsection 2.7.2 in
[40]). A cheaper but e�ective regularization method approximates the truncated solution
using a rank revealing QR factorization of A [57, 58].

Designing a sparse rank revealing QR factorization is a challenging task. There are
basically two techniques to compute a rank revealing QR factorization. The �rst method,
which is guaranteed to generate a rank revealing factorization, is to �nd a regular QR
factorization and re�ne it to a rank revealing factorization [57]. In the sparse setting the
correction phase can be expensive and can produce considerable �ll. We can also �nd
a rank revealing QR factorization using column pivoting [106]. This method can fail
to produce a rank revealing factorization, but it usually does [99]. When A is sparse,
extensive column pivoting destroys the �ll reducing preordering, hence increasing �ll.
Column pivoting also requires more complex data structures and reduces the value of the
symbolic analysis phase of the factorization.

Sparse rank-revealing QR factorizations do use column pivoting, usually with heuris-
tics to restrict pivot selection (to avoid catastrophic �ll). The heuristic nature of the pivot
selection has a price: the ability of these factorizations to reveal rank is reduced compared
to strict pivoting [60, 171]. Some algorithms [37, 27] address this problem by adding a
correction phase at the end. The restricted pivoting in the �rst phase is aimed at reducing
the amount of work that is needed in the second phase. We use this correction idea in
one of our algorithms.

A sparse QR algorithm can be organized in three ways. The method of George
and Heath [104] rotates rows of A into R using Givens rotations. The multifrontal
method [151] uses Householder re�ections, and so does the left-looking method [74]. It is
not possible to incorporate column pivoting into methods that are based on rotating rows
into R, because there is no way to estimate the e�ect of pivoting on a particular column.
Consequently, column-pivoting QR factorizations are column-oriented, not row oriented,
in which case Householder re�ections are usually used rather than Givens rotations.

3.3. Preliminaries

In this section we give some basic de�nitions in order to establish terminology and
notation. These de�nitions are not new. We also restate known theorems that we will
use extensively in our theoretical analysis.

De�nition 3.3.1. Let S and T be n-by-n complex matrices. We say that a scalar λ is
a �nite generalized eigenvalue of the matrix pencil (pair) (S, T) if there is a vector v 6= 0

3.3. Preliminaries 72

such that
Sv = λTv

and Tv 6= 0. We say that ∞ is a in�nite generalized eigenvalue of (S, T) if there exists
a vector v 6= 0 such that Tv = 0 but Sv 6= 0. Note that ∞ is an eigenvalue of (S, T)
if and only if 0 is an eigenvalue of (T, S). The �nite and in�nite eigenvalues of a pencil
are determined eigenvalues (the eigenvector uniquely determines the eigenvalue). If both
Sv = Tv = 0 for a vector v 6= 0, we say that v is an indeterminate eigenvector, because
Sv = λTv for any scalar λ.

Throughout the chapter eigenvalues are ordered from smallest to largest. We will
denote the kth eigenvalue of S by λk(S), and the kth determined generalized eigenvalue
of (S, T) by λk(S, T). Therefore λ1(S) ≤ · · · ≤ λl(S) and λ1(S, T) ≤ · · · ≤ λd(S, T), where
l is the number of eigenvalues S has, and d is the number of determined eigenvalues that
(S, T) has.

The solution of the least-squares equation minx ‖Ax − b‖2 is also the solution of the
equation A∗Ax = A∗x. Matrix A∗A is Hermitian positive semide�nite. The LSQR
method is actually a Krylov-space method on A∗A, and a preconditioner for the method
is Hermitian positive semide�nite too. Therefore, the matrix pencils that we will consider
in this chapter are Hermitian positive semide�nite (H/PSD) pairs.

De�nition 3.3.2. A pencil (S, T) is Hermitian positive semide�nite (H/PSD) if S is
Hermitian, T is Hermitian positive semide�nite, and null(T) ⊆ null(S).

The generalized eigenvalue problem on H/PSD pencils is, mathematically, a gener-
alization of the Hermitian eigenvalue problem. In fact, the generalized eigenvalues of
an H/PSD can be shown to be the eigenvalues of an equivalent Hermitian matrix. The
proof appears in the Appendix. Based on this observation it is easy to show that other
eigenvalue properties of Hermitian matrices have an analogy for H/PSD pencils. For ex-
ample, an H/PSD pencil, (S, T), has exactly rank(T) determined eigenvalues (counting
multiplicity), all of them �nite and real.

A useful tool for analyzing the spectrum of an Hermitian matrix is the Courant-Fischer
Minimax Theorem [109].

Theorem 3.3.3. (Courant-Fischer Minimax Theorem) Suppose that S ∈ Cn×n is an
Hermitian matrix, then

λk(S) = min
dim(U)=k

max
x ∈ U
x 6= 0

x∗Sx

x∗x

and

λk(S) = max
dim(V)=n−k+1

min
x ∈ V
x 6= 0

x∗Sx

x∗x
.

As discussed above, the generalized eigenvalue problem on H/PSD pencils is a gener-
alization of the eigenvalue problem on Hermitian matrices. Therefore, there is a natural
generalization of Theorem 3.3.3 to H/PSD pencils, which we refer to as the Generalized
Courant-Fischer Minimax Theorem. We now state the theorem. Although it is a natural

3.3. Preliminaries 73

generalization of Theorem 3.3.3 we have not found any reference to it in the literature,
and since we believe it is of interest even separately we present its proof.

Theorem 3.3.4. (Generalized Courant-Fischer Minimax Theorem) Suppose that S ∈
Cn×n is an Hermitian matrix and that T ∈ Cn×n is an Hermitian positive semide�nite
matrix such that null(T) ⊆ null(S). For 1 ≤ k ≤ rank(T) we have

λk(S, T) = min
dim(U) = k
U ⊥ null(T)

max
x∈U

x∗Sx

x∗Tx

and

λk(S, T) = max
dim(V) = rank(T)− k + 1

V ⊥ null(T)

min
x∈V

x∗Sx

x∗Tx
.

We begin by stating and proving a generalization of the Courant-Fischer Theorem for
pencils of Hermitian positive de�nite matrices.

Theorem 3.3.5. Let S, T ∈ Cn×n be Hermitian matrices. If T is also positive de�nite
then

λk(S, T) = min
dim(U)=k

max
x∈U

x∗Sx

x∗Tx

and

λk(S, T) = max
dim(V)=n−k+1

min
x∈V

x∗Sx

x∗Tx
.

Proof. Let T = L∗L be the Cholesky factorization ofB. Let U be some k-dimensional
subspace of Cn, let x ∈ U , and let y = Lx. Since T is Hermitian positive de�nite (hence
nonsingular), the subspace W = {Lx : x ∈ U} has dimension k. Similarly, for any k-
dimensional subspace W , the subspace U = {L−1x : x ∈ W} has dimension k. We have

x∗Sx

x∗Tx
=
x∗L∗L−∗SL−1Lx

x∗L∗Lx
=
y∗L−∗SL−1y

y∗y
.

By applying the Courant-Fischer to L−∗SL−1, we obtain

λk(L
−∗SL−1) = min

dim(W)=k
max
y∈W

y∗L−∗SL−1y

y∗y

= min
dim(U)=k

max
x∈S

x∗Sx

x∗Tx
.

The generalized eigenvalues of (S, T) are exactly the eigenvalues of L−∗SL−1 so the �rst
equality of the theorem follows. The second equality can be proved using a similar argu-
ment. �

Before proving the generalized version of the Courant-Fischer Minimax Theorem we
show how to convert an Hermitian positive semide�nite problem to an Hermitian positive
de�nite problem.

3.3. Preliminaries 74

Lemma 3.3.6. Let S, T ∈ Cn×n be Hermitian matrices. Assume that T is also a posi-

tive semide�nite and that null(T) ⊆ null(S). For any Z ∈ Cn×rank(T) with rank(Z) =
rank(T), the determined generalized eigenvalues of (S, T) are exactly the generalized eigen-
values of (Z∗SZ,Z∗TZ).

Proof. We �rst show that Z∗TZ has full rank. Suppose that Z∗TZv = 0. We have
TZv ∈ null(Z∗). Therefore, TZv ⊥ rank(Z) = rank(T). Obviously TZv ∈ rank(T), so
we must have v = 0. Since null(Z∗TZ) = {0}, the matrix Z∗TZ has full rank.

Suppose that λ is a determined eigenvalue of (S, T). We will show that it is a deter-
mined eigenvalue of (Z∗SZ,Z∗TZ). The pencil (Z∗SZ,Z∗TZ) has exactly rank(Z∗TZ)
determined eigenvalues. We will show that Z∗TZ is full rank, so the pencil (Z∗SZ,Z∗TZ)
has exactly rank(T) eigenvalues. Since the pencil (S, T) has exactly rank(T) determined
eigenvalues, each of them an eigenvalue of (Z∗SZ,Z∗TZ), this will conclude the proof.

Now let µ be an eigenvalue of (Z∗SZ,Z∗TZ). It must be determined, since Z∗TZ has
full rank. Let y be the corresponding eigenvector, Z∗SZy = µZ∗TZy, and let x = Zy.
Now there are two cases. If µ = 0, then SZy = Sx = 0 (since Z∗ has full rank and at
least as many columns as rows). The vector x is in rank(Z) = rank(T), Tx 6= 0. This
implies that µ = 0 is also a determined eigenvalue of (S, T).

If µ 6= 0 the analysis is a bit more di�cult. Clearly, TZy ∈ rank(T) = rank(Z).
But rank(Z) = rank(Z∗+) [34, Proposition 6.1.6.vii], so Z∗+Z∗TZy = TZy [34, Propo-
sition 6.1.7]. We claim that SZy ∈ rank(Z). If it were not so, Zy must be in null(T) ⊆
null(S), but µ would have to be zero. Therefore, we also have Z∗+Z∗SZy = SZy, so by
multiplying Z∗SZy = µZ∗TZy by Z∗+ we see that µ is an eigenvalue of (S, T). �

We are now ready to prove Theorem 3.3.4, the generalization of the Courant-Fischer
Minimax Theorem. The technique is simple: we use Lemma 3.3.6 to reduce the problem
to a smaller-sized full-rank problem, apply Theorem 3.3.5 to characterize the determined
eigenvalues in terms of subspaces, and �nally show a complete correspondence between
the subspaces used in the reduced pencil and subspaces used in the original pencil.

Proof. (of the Generalized Courant-Fischer Minimax Theorem) Let Z ∈ Cn×rank(T)

have rank(Z) = rank(T). We have

λk(S, T) = λk(Z
∗SZ,Z∗TZ) = min

dim(W) = k
max
x∈W

x∗Z∗SZx

x∗Z∗TZx

and

λk(S, T) = λk(Z
∗SZ,Z∗TZ) = max

dim(W) = rank(T)− k + 1
min
x∈W

x∗Z∗TZx

x∗Z∗TZx
.

The leftmost equality in each of these equations follows from Lemma 3.3.6 and the right-
most one follows from Theorem 3.3.5.

We now show that for every k-dimensional subspace U ⊆ Cn with U ⊥ null(T), there
exists a k-dimensional subspace W ⊆ Crank(T) such that{

x∗Sx

x∗Tx
: x ∈ U

}
=

{
y∗Z∗SZy

y∗Z∗TZy
: y ∈ W

}
,

and vice versa. The validity of this claim establishes the min-max side of the theorem.

3.4. Spectral Theory 75

We �rst need to show that k ≤ rank(T). This is true because every vector in U is in
range(T), so its dimension must be at most rank(T).

De�ne W =
{
y ∈ Crank(T) : Zy ∈ U

}
. Let b1, . . . , bk be a basis for U . Because U ⊥

null(T), bj ∈ rank(T), so there is a yj such that Zyj = bj. Therefore, dimension of W is
at most k. Now let the vectors yi's be a basis of W and de�ne bi = Zyi. The bi's span
U , so there are at most k of them, so the dimension of W is at least k. Therefore, it is
exactly k.

Every x ∈ U is orthogonal to null(T), so it must be in rank(T). There exist a y ∈
Crank(T) such that Zy = x. So we have x∗Sx/x∗Tx = y∗Z∗SZy/y∗Z∗TZy. Combining
with the fact that y ∈ W , we have shown inclusion of one side. Now suppose y ∈ W .
De�ne x = Zy ∈ U . Again we have x∗Sx/x∗Tx = y∗Z∗SZy/y∗Z∗TZy, which shows the
other inclusion.

Now we will show that for every k-dimensional subspace W there is a subspace U that
satis�es the claim. De�ne U = {Zy : y ∈ W}. Because Z has full rank, dim(U) = k.
Also, U ⊆ rank(Z) = rank(T) so U ⊥ null(T). The equality of the Rayleigh-quotient sets
follows from taking y ∈ W and x = Zy ∈ U or vice versa. �

3.4. Spectral Theory

The generalized spectrum of (A∗A,A∗A) is very simple: the pencil has rank(A) eigen-
values that are 1 and the rest are indeterminate. This section characterizes the struc-
ture of spectra of perturbed pencils, (A∗A,A∗A + B∗B − C∗C) and (A∗A, Ã∗Ã), where
A =

[
D E

]
and Ã =

[
D F

]
.

These perturbations of A∗A shift some of the eigenvalues of (A∗A,A∗A). We call the
eigenvalues that moved away from 1 runaway eigenvalues. This section analyzes these
runaway eigenvalues, which govern the convergence of LSQR when a factorization or an
approximation of the perturbed matrix is used as a preconditioner.

To keep the notation simple, we de�ne the symmetric product A∗A, where A is an
m-by-n matrix, to be the n-by-n zero matrix when m = 0.

3.4.1. Counting Runaway Eigenvalues. We begin by bounding the number of
runaway eigenvalues. We show that when B, C, E, and F have low rank, the generalized
eigenvalue 1 has high multiplicity in these pencils. We also bound the multiplicity of
zero and indeterminate eigenvalues. The �rst result that we present bounds the number
of runaways (and other aspects of the structure of the spectrum) when we add and/or
subtract a symmetric product from a matrix.

Theorem 3.4.1. Let A ∈ Cm×n and let B ∈ Ck×n and C ∈ Cr×n for some 1 ≤ k+r < n.
De�ne

χ =

[
B
C

]
.

The following claims hold:

(1) In the pencil (A∗A,A∗A + B∗B − C∗C), at most rankχ) ≤ k + r generalized
determined eigenvalues may be di�erent from 1 (counting multiplicities).

(2) If 1 is not a generalized eigenvalue of the pencil (B∗B,C∗C) and A∗A+B∗B −
C∗C is full rank, then (a) the pencil (A∗A,A∗A + B∗B − C∗C) does not have
indeterminate eigenvectors, (b) the multiplicity of the eigenvalue 1 is exactly

3.4. Spectral Theory 76

dim null(χ) ≥ n − k − r, and (c) the multiplicity of the zero eigenvalue is ex-
actly dim null(A).

(3) The sum pencil (A∗A,A∗A+B∗B) cannot have an in�nite eigenvalue and all its
eigenvalues are in the interval [0, 1].

Proof. First, notice that v ∈ null(χ) if and only if v ∈ null(B) ∩ null(C). We prove
most of the claims by showing that if v is an eigenvector of the pencil (A∗A,A∗A+B∗B−
C∗C) corresponding to the eigenvalue λ, then the relationship of v to the null spaces of
A and the relationship of B∗Bv to C∗Cv, determine λ in the following way:

v ∈ null(A) v 6∈ null(A)
B∗Bv = C∗Cv indeterminate λ = 1
B∗Bv 6= C∗Cv λ = 0 λ 6= 0 and λ 6= 1

If v ∈ null(A) and B∗Bv = C∗Cv then clearly both A∗Av = 0 and (A∗A + B∗B −
C∗C)v = 0 so v is an indetermined eigenvector of (A∗A,A∗A+B∗B − C∗C).

Let v 6∈ null(A) be a vector such that B∗Bv = C∗Cv. Therefore

(A∗A+B∗B − C∗C) v = A∗Av 6= 0 ,

so v must be a �nite generalized eigenvector of (A∗A,A∗A+B∗B−C∗C) that corresponds
to the eigenvalue 1.

If v ∈ null(A) and B∗Bv 6= C∗Cv, then A∗Av = 0 and (A∗A + B∗B − C∗C)v =
A∗Av +B∗Bv − C∗Cv = B∗Bv − C∗Cv 6= 0, so v is an eigenvector corresponding to 0.

If v 6∈ null(A) and B∗Bv 6= C∗Cv, then λ can be neither 0 nor 1. It cannot be 0
because A∗Av 6= 0. It cannot be 1 because that would imply B∗Bv −C∗Cv = 0 which is
a contradiction to the assumption that B∗Bv 6= C∗Cv.

To establish Claim 1 notice that if v ∈ null(B) ∩ null(C) = null(χ) then clearly
B∗Bv = C∗Cv. So, if v is a determined generalized eigenvector corresponding to a
eigenvalue di�erent from 1, then v /∈ null(χ). Therefore, the dimension of the space
spanned by these vectors is bounded by rank(χ) ≤ k + r, which bounds the number of
such eigenvalues.

We now turn our attention to Claim 2. Assume that A∗A + B∗B − C∗C is full rank
and 1 is not a generalized eigenvalue of the pencil (B∗B,C∗C). Since A∗A+B∗B −C∗C
is full rank then for every vector v 6= 0 we have (A∗A + B∗B − C∗C)v 6= 0, so vector v
cannot be an indetermined eigenvector of (A∗A,A∗A+B∗B−C∗C), and the pencil has no
indetermined eigenvalues. The multiplicity of the eigenvalue 1 follows from the fact that if
v is a generalized eigenvector corresponding to 1 then we must have B∗Bv = C∗Cv. Since
1 is not a generalized eigenvalue of the pencil (B∗B,C∗C) then we must have B∗Bv =
C∗Cv = 0. Therefore, the space of eigenvectors corresponding to 1 is exactly null(χ). The
multiplicity of the eigenvalue 0 follows from the fact that every 0 6= v ∈ null(A) satis�es
A∗Av = 0 and (A∗A + B∗B − C∗C)v 6= 0 (because A∗A + B∗B − C∗C has full rank).
Therefore, v is indeed a generalized eigenvecctor. The converse is true from the table.

We now show that Claim 3 holds. In the sum pencil (A∗A,A∗A+B∗B), λ cannot be
in�nite. Suppose for contradiction that it is. Then (A∗A + B∗B)v = 0 but A∗Av 6= 0.
We get v∗(A∗A + B∗B)v = 0, but v∗(A∗A + B∗B)v = v∗A∗Av + v∗B∗Bv > 0. To show
that the generalized eigenvalues are in the range [0, 1], notice that if λ 6= 0 is a �nite

3.4. Spectral Theory 77

generalized eigenvalue of (A∗A,A∗A+B∗B) then there exist a vector v 6= 0 such that

λ =
v∗A∗Av

v∗(A∗A+B∗B)v

=
v∗A∗Av

v∗A∗Av + v∗B∗Bv
.

Since both v∗A∗Av and v∗B∗Bv are greater than or equal to 0 the claim follows immedi-
ately.

For completeness, we also characterize the in�nite eigenvectors of the pencil (A∗A,A∗A+
B∗B − C∗C). Such an eigenvector v satis�es

A∗Av 6= 0

(A∗A+B∗B − C∗C) v = 0 ,

or

(A∗A+B∗B)v = C∗Cv 6= 0 .

Thus, v is a generalized eigenvector of (A∗A+B∗B,C∗C) corresponding to the eigenvalue
1. �

The second result of this section characterizes the generalized spectra of symmetric
products that are formed by modifying a set of columns in a given matrix A. We denote
the columns of A that are not modi�ed in the factorization by D, the columns that are
to be modi�ed by E, and the new value in those columns by F .

Theorem 3.4.2. Let D ∈ Cm×n and let E ∈ Cm×k and F ∈ Cm×k for some 1 ≤ k < n.
Let

A =
[
D E

]
∈ Cm×(n+k)

and let

Ã =
[
D F

]
∈ Cm×(n+k) .

In the pencil (A∗A, Ã∗Ã), at least n− k generalized �nite eigenvalues are 1.

Proof. Expanding A∗A and Ã∗Ã, we obtain

A∗A =

[
D∗

E∗

] [
D E

]
=

[
D∗D D∗E
E∗D E∗E

]
and

Ã∗Ã =

[
D∗

F ∗

] [
D F

]
=

[
D∗D D∗F
F ∗D F ∗F

]
.

Let S be the vector space in Cn+k de�ned by

S =

{[
v
0

]
: v ∈ Cn such that E∗Dv = F ∗Dv

}
.

Clearly, dimS = dim null(E∗D−F ∗D) = n−rank(E∗D−F ∗D). The matrix E∗D−F ∗D
has k rows so rank(E∗D − F ∗D) ≤ k, which implies dimS ≥ n− k.

3.4. Spectral Theory 78

Let v be a vector such that E∗Dv = F ∗Dv. The vector

[
v
0

]
is a generalized eigen-

vector of (A∗A, Ã∗Ã) corresponding to the eigenvalue 1, because

A∗A

[
v
0

]
=

[
D∗D D∗E
E∗D E∗E

] [
v
0

]
=

[
D∗Dv
E∗Dv

]
=

[
D∗Dv
F ∗Dv

]
=

[
D∗D D∗F
F ∗D F ∗F

] [
v
0

]
= Ã∗Ã

[
v
0

]
.

Since S is a subset of the generalized eigenspace of (A∗A, Ã∗Ã) corresponding to the
eigenvalue 1, the multiplicity of 1 as a generalized eigenvalue is at least dimS ≥ n−k. �

3.4.2. Runaways in a Preconditioned System. We now show that if a precondi-
tioner M is e�ective for a matrix A∗A, then it is also e�ective for the perturbed matrices
A∗A+B∗B−C∗C and Ã∗Ã. If the rank of the matrices B, C, E, and F is low, then most
of the generalized eigenvalues of the perturbed preconditioned system will be bounded by
the extreme generalized eigenvalues of the unperturbed preconditioned system. In other
words, the number of runaways is still guaranteed to be small, but the non-runaways
are not necessarily at 1: they can move about the interval whose size determines the
condition number of the original preconditioned system. [161, Theorem 2.3] shows that
this spectral characterization guarantees rapid convergence; in exact arithmetic, after an
iteration for each row in B and C, the convergence rate bound is governed by the un-
perturbed condition number (after two iterations for every column exchanged for column
perturbations).

Theorem 3.4.3. Let A ∈ Cm×n and let B ∈ Ck×n and C ∈ Cr×n for some 1 ≤ k+r < n.
Let M ∈ Cn×n be an Hermitian positive semide�nite matrix. Suppose that null(M) ⊆
null(A∗A), null(M) ⊆ null(B∗B) and null(M) ⊆ null(C∗C). If

α ≤ λ1(A∗A,M) ≤ λrank(M)(A
∗A,M) ≤ β .

then

α ≤ λr+1(A∗A+B∗B − C∗C,M) ≤ λrank(M)−k(A
∗A+B∗B − C∗C,M) ≤ β .

Proof. Denote t = rank(M). We prove the lower bound using the second equality
of Theorem 3.3.4. Let p = rank(C), we have

λp+1(A∗A+B∗B − C∗C,M) = max
dim(U) = t− p
U ⊥ null(M)

min
x∈U

x∗(A∗A+B∗B − C∗C)x

x∗Mx
.

We prove the bound by showing that for one speci�c U , the ratio for any x ∈ U is at least
α. This implies that the minimum ratio in U is at least α, and that the maximum over
all admissible subspaces U is also at least α.

Let U = null(C∗C)∩rank(M). BecauseM is Hermitian positive semide�nite, null(M) ⊥
rank(M). This implies that U ⊥ null(M). Since null(M) ⊆ null(C∗C), we have dim(U) =
t − p (here we use rank(C∗C) ⊆ rank(M)). For every x ∈ U we have x∗(A∗A + B∗B −

3.4. Spectral Theory 79

C∗C)x = x∗(A∗A+B∗B)x ≥ x∗A∗Ax, so

x∗(A∗A+B∗B − C∗C)x

x∗Mx
≥ x∗A∗Ax

x∗Mx

≥ min
x∈rank(M)

x∗A∗Ax

x∗Mx

= λ1(A∗A,M)

≥ α .

Therefore,

min
x∈U

x∗(A∗A+B∗B − C∗C)x

x∗Mx
≥ α ,

so λp+1(A∗A+B∗B − C∗C,M) ≥ α. Since p = rank(C) ≤ r we have shown that

λr+1(A∗A+B∗B − C∗C,M) ≥ λp+1(A∗A+B∗B − C∗C,M) ≥ α .

For the upper bound we use a similar strategy, but with the �rst equality of Theo-
rem 3.3.4. Let l = rank(B), we have

λt−l(A
∗A+B∗B − C∗C,M) = min

dim(V) = t− l
V ⊥ null(M)

max
x∈V

x∗(A∗A+B∗B − C∗C)x

x∗Mx
.

Let V = null(B∗B) ∩ rank(M). Since M is Hermitian positive semide�nite V ⊥ null(M)
and dim(V) = (n− l)−(n−t) = t− l. For every x ∈ V we have x∗(A∗A+B∗B−C∗C)x =
x∗(A∗A− C∗C)x ≤ x∗A∗Ax, so

x∗(A∗A+B∗B − C∗C)x

x∗Mx
≤ x∗A∗Ax

x∗Mx

≤ max
x∈rank(M)

x∗A∗Ax

x∗Mx

= λt(A
∗A,M)

≤ β .

Since

max
x∈V

x∗(A∗A+B∗B − C∗C)x

x∗Mx
≤ β ,

we have λt−l(A
∗A+B∗B−C∗C,M) ≤ β, and since l = rank(B) ≤ k we have shown that

λt−k(A
∗A+B∗B − C∗C,M) ≤ λt−l(A

∗A+B∗B − C∗C,M) ≤ β .

�

We now give the analogous theorem when columns are modi�ed.

Theorem 3.4.4. Let D ∈ Cm×n and let E ∈ Cm×k and F ∈ Cm×k for some 1 ≤ k < n.
Let

A =
[
D E

]
∈ Cm×(n+k)

and let

Ã =
[
D F

]
∈ Cm×(n+k) .

3.4. Spectral Theory 80

Let M ∈ C(n+k)×(n+k) be an Hermitian positive semide�nite matrix, such that null(M) ⊆
null(A∗A) and null(M) ⊆ null(Ã∗Ã). Suppose that

α ≤ λ1(A∗A,M) ≤ λrank(M)(A
∗A,M) ≤ β .

Then we have
α ≤ λk+1(Ã∗Ã,M) ≤ λrank(M)−k(Ã

∗Ã,M) ≤ β .

Proof. We denote t = rank(M) and r = rank(E∗D−F ∗D) ≤ k (because E∗D−F ∗D
has k rows). We prove both sides by applying Theorem 3.3.4. We de�ne the linear
subspace of Cn+k

U =

{[
v
0

]
: v ∈ Cn andE∗Dv = F ∗Dv

}
∩ rank(M) .

Clearly, U is a linear space and U ⊥ null(M). For any

[
v
0

]
∈ null(M), the vector v ∈ Cn

satis�es E∗Dv = F ∗Dv = 0, because null(M) ⊆ null(A∗A) and null(M) ⊆ null(Ã∗Ã).
This implies that set of v's for which v ∈ null(E∗D − F ∗D) contains the set of v's for

which

[
v
0

]
∈ null(M). This allows us to determine the dimension of U ,

dim(U) = dim null(E∗D − F ∗D)− dim

({
v ∈ Cn :

[
v
0

]
∈ null(M)

})
= (n− r)− (n− t)
= t− r .

It is easy to see that for every x ∈ U we have A∗Ax = Ã∗Ãx, so

x∗Ã∗Ãx

x∗Mx
=
x∗A∗Ax

x∗Mx

≥ min
x∈rank(M)

x∗A∗Ax

x∗Mx

= λ1(A∗A,M)

≥ α .

Since, by the second equality of the Theorem 3.3.4,

λr+1(Ã∗Ã,M) = max
dimU = t− r
U ⊥ null(M)

min
x∈U

x∗Ã∗Ãx

x∗Mx
,

we conclude that λk+1(Ã∗Ã,M) ≥ λr+1(Ã∗Ã,M) ≥ α. Similarly, for every x ∈ U ,
x∗Ã∗Ãx

x∗Mx
=
x∗A∗Ax

x∗Mx

≤ max
x∈rank(M)

x∗A∗Ax

x∗Mx

= λt(A
∗A,M)

≤ β .

3.4. Spectral Theory 81

Since, by the �rst equality of the Theorem 3.3.4,

λt−r(Ã
∗Ã,M) = min

dimU = t− r
U ⊥ null(M)

max
x∈U

x∗Ã∗Ãx

x∗Mx
,

we conclude that λt−k(Ã
∗Ã,M) ≤ λt−r(Ã

∗Ã,M) ≤ β. �

3.4.3. Using the Simple Spectrum of A∗A to Bound the Magnitude of Run-
aways. In some cases it is useful to know that runaway eigenvalues are either very small
or very close to 1. For example we want to ensure that if we perturb an ill-conditioned A∗A
to a well-conditioned A∗A+B∗B, the numerical rank of A∗A and of (A∗A,A∗A+B∗B) are
the same, up to an appropriate relaxation of the rank threshold. We need the following
lemma.

Lemma 3.4.5. Suppose that S ∈ Cn×n is an Hermitian matrix and that T ∈ Cn×n is an
Hermitian positive de�nite matrix. For all 1 ≤ k ≤ n we have

λk(S)

λn(T)
≤ λk(S, T) ≤ λk(S)

λ1(T)
.

Proof. Let u1, . . . , un be a set of orthonormal eigenvectors corresponding to λ1(S), . . . , λn(S).
Using the subspaces Uk = span {u1, . . . , uk} and Vk = sp {uk, . . . , un} in the �rst and sec-
ond inequality of Theorem 3.3.4 respectively gives the two bounds. �

We now state and prove the main results.

Theorem 3.4.6. Let A ∈ Cm×n and let B ∈ Ck×n for some 1 ≤ k < n. Assume that
A∗A + B∗B is full rank. Denote α = ||A∗A||2. If there are d eigenvalues of A∗A that
are smaller than or equal to εα for some 1 > ε > 0, then d generalized eigenvalues of
(A∗A,A∗A+B∗B) are smaller than or equal to εκ(A∗A+B∗B).

Proof. We denote S = A∗A and T = A∗A + B∗B. We �rst note that λn(T) ≥
λn(S) ≥ α. By the lemma,

λk(S, T) ≤ λk(S)

λ1(T)
=
λk(S)λn(T)

λn(T)λ1(T)

=
λk(S)

λn(T)
κ(T)

≤ λk(S)

α
κ(T) .

For any k such that λk(S) ≤ εα, we obtain the desired inequality. �

Theorem 3.4.7. Let A ∈ Cm×n and let B ∈ Ck×n for some 1 ≤ k < n. Assume that
A∗A + B∗B is full rank. Denote α = ||A∗A||2 and suppose that ||B∗B||2 ≤ γα. If there
are d eigenvalues of A∗A that are larger than or equal to ηα for some 1 > η > 0 then d
generalized eigenvalues of (A∗A,A∗A+B∗B) are larger than or equal to η/(1 + γ).

3.5. Applications To Least-Square Solvers 82

Proof. We use the same notation as in the previous proof. We have λn(T) ≤
||A∗A||2 + ||B∗B||2 ≤ (1 + γ)α. Therefore

λk(S, T) ≥ λk(S)

λn(T)

≥ λk(S)

(1 + γ)α
,

which gives the desired bound for any k such that λk(S) ≥ ηα. �

The theorems show that the numerical rank of the preconditioned system is the same
as of the original system, up to an appropriate relaxation of the rank threshold. Suppose
that after the dth eigenvalue there is a big gap. That is, there are d eigenvalues of A∗A
are smaller than εα, and the remaining n − d are larger than ηα, where α is the largest
eigenvalue of A∗A. The ratio between the largest eigenvalue and the dth smallest is at
least 1/ε, and between the largest eigenvalue and the (n − d)th largest is at most 1/η.
Recall that 1 is the largest eigenvalue of (A∗A,A∗A+B∗B). Therefore, the ratio between
the largest eigenvalue of the pencil and the d smallest is at least κ−1(A∗A + B∗B)/ε,
and the ratio between the largest eigenvalue of (A∗A,A∗A+ B∗B) and the n− d largest
eigenvalues is at most (1 + γ)/η. Therefore if B∗B is not too large relative to A∗A, and
A∗A+B∗B is well-conditioned, then the ratios are roughly maintained.

In Section 3.6 below we present an e�cient algorithm that �nds a B such that
||B∗B||2 ≤ m||A∗A||2 and κ(A∗A + B∗B) ≤ τ 2, where τ ≥ n + 1 is a given thresh-
old, and a slightly more expensive algorithm that only requires τ ≥

√
2n and guarantees

||B∗B||2 ≤ ||A∗A||2.

3.5. Applications To Least-Square Solvers

This section describes applications of the theory to the solution of linear least-squares
problems. We show that we can often obtain useful algorithms by combining a sparse
QR factorization of a modi�ed matrix with a preconditioned iterative solver. We focus on
improving the utility and e�ciency of sparse QR factorizations, not on the more general
problem of �nding e�ective preconditioners.

In all the applications, we compute the R factor of a QR factorization of a modi�ed
matrix and use it as a preconditioner in LSQR. Our spectral theory in Section 3.4 shows
that the preconditioned system has only a few runaway eigenvalues. We then can use
[161, Theorem 2.3] to bound the number of iterations.

3.5.1. Dropping Dense Rows for Sparsity. The R factor of A = QR is also the
Cholesky factor of A∗A. Rows of A that are fairly dense cause A∗A to be fairly dense.
Hence, R will be dense. In the extreme case, a completely dense row in A causes A∗A
and R to be completely dense (unless there are exact cancellations, which are rare). This
happens even if the other rows of A all have a single nonzero.

If A has few rows that are fairly dense, we recommend that they be dropped before
the QR factorization starts. More precisely, these rows should be dropped even before the
column ordering is computed. If we dropped k dense rows, we expect LSQR to converge
in at most k + 1 iterations (see subsection 3.2.1).

Heath [120] proposed a di�erent method for handling dense rows (see also [39] and [160]),
in which the dominant costs are the factorization of the �rst m rows of A (same as in our

3.5. Applications To Least-Square Solvers 83

approach), k triangular solves with R∗, and a dense QR factorization of an (n + k)-by-k
matrix. In most cases (e.g., when R is denser than A), the asymptotic cost of the two
methods is similar; there are also cases in which one method is cheaper than the other
(in both directions).

3.5.2. Updating and Downdating. Updating a least-squares problem involves
adding rows to the coe�cient matrix A and to the right-hand-side b. Downdating in-
volved dropping rows. Suppose that we factored the original coe�cient matrix A, that
updating added additional rows represented by a matrix B, and that downdating removed
rows of A that are represented by a matrix C. The coe�cient matrix of the normal equa-
tions of the updated/downdated problem is A∗A+B∗B−C∗C. As long as this coe�cient
matrix is full rank and the number of rows in B and C is small, Theorem 3.4.3 guarantees
that the R factor of A is an e�ective preconditioner.

3.5.3. Adding Rows to Solve Numerically Rank-De�cient Problems. We
propose two methods for solving numerically rank-de�cient problems.

3.5.3.1. Using an Iterative Method. When A is rank de�cient, there is an entire sub-
space of minimizers of ‖Ax− b‖2. When A is full rank but highly ill-conditioned, there is
a single minimizer, but there are many x's that give almost the same residual norm. Of
these minimizers or almost-minimizers, the user usually prefers a solution with a small
norm.

The factorization A = QR is not useful for solving rank-de�cient and ill-conditioned
least-squares problems. The factorization is backward stable, but the computed R is ill-
conditioned. This usually causes the solver to produce a solution x = R−1Q∗b with a huge
norm. This also happens if we use R as a preconditioner in LSQR: the iterations stop
after one or two steps with a solution with a huge norm. Even after the �rst iteration the
solution vector has a huge norm.

The singular-value decomposition (SVD) and rank-revealing QR factorizations can
produce minimal-norm solutions, but they are di�cult to compute. The SVD approach
is not practical in the sparse case. The rank-revealing QR approach is practical ([171,
37, 27, 60, 120]), but sparse rank-revealing QR factorizations are complex and only a
few implementations are available.

The approach that we propose here is to add rows to the coe�cient matrix A to avoid
ill-conditioning in R. That is, we dynamically add rows to A to avoid ill-conditioning in
R. The factor R is no longer the R factor of A, but the R factor of a perturbed matrix [AB],
where B consists of the added rows. Section 3.6 outlines an algorithm for dynamically
adding rows to A, so that the R factor of the perturbed matrix will not be ill-conditioned.

The well-conditioned R factor of the perturbed matrix is then used as a preconditioner
for LSQR. The convergence threshold of LSQR allows the user to control a trade-o�
between the norm of the residual and the norm of the solution. Suppose that the user
wishes to �nd a minimizer of minx ‖Āx − b‖2, where Ā has the same singular value
decomposition as A except that the k smallest singular values of A are replaced by 0.
When LSQR's convergence threshold is larger than r = σn−k/σ1, it computes such a
minimizer [166].

When the R factor of [AB] is used as a preconditioner, correct truncation at σn−k
depends on the preconditioned system preserving the singular gap above σn−k. This is
why the results in subsection 3.4.3 are important: they guarantee this preservation.

3.5. Applications To Least-Square Solvers 84

In exact arithmetic, the number of rows in B bounds the number of iterations in
LSQR. It may be smaller if the runaway eigenvalues are clustered.

3.5.3.2. Using a Direct Method. If the number of rows in B is exactly the same as the
number of singular values we wish to truncate, and if A∗A+B∗B is well-conditioned, then
a direct method can �nd an approximation of a small-norm minimizer. Let A ∈ Cm×n and
let B ∈ Ck×n. Let [AB] = QR and P =

[
Im×m 0m×k

]
. We show that if the k smallest

singular values of A are small enough then x̂ = R−1(PQ)∗b is close to a minimizer of
minx ‖Āx− b‖2, as de�ned above.

We start with a simple lemma that forms the basis to our method.

Lemma 3.5.1. Let A ∈ Cm×n and let B ∈ Ck×n. Suppose that rank(A) = n− k and that
[AB] has full rank. Let [AB] = QR be a QR factorization of [AB]. All the singular values of
AR−1 are exactly 0 or 1.

Proof. The singular values ofAR−1 are the square root of the eigenvalues ofR−∗A∗AR−1.
The eigenvalues R−∗A∗AR−1 are exactly the eigenvalues of (A∗A,R∗R). It is easy to see
that R∗R = A∗A + B∗B. If we apply Claim 2 of Theorem 3.4.3 we conclude that the
multiplicity of the 0 eigenvalue of (A∗A,R∗R) is exactly dim null(A) = n− rank(A) = k,
and the multiplicity of the 1 eigenvalue of (A∗A,R∗R) is exactly n − rank(B) = n − k.
Therefore, n eigenvalues of (A∗A,R∗R), which are all the eigenvalues of (A∗A,R∗R), are
either 0 or 1. �

We now show our claim for the case that A is exactly rank de�cient by k, so Ā = A.
This is a simpler case than the case where the k smallest singular values are small but
not necessarily zero. In this case the vector x̂ = R−1(PQ)∗b is an exact minimizers of
minx ‖Āx− b‖2.

Lemma 3.5.2. Let A ∈ Cm×n, B ∈ Ck×n and b ∈ Cm×r. Suppose that rank(A) =
n − k and [AB] has full rank. Let [AB] = QR be a QR factorization of [AB]. Let P =[
Im×m 0m×k

]
. The vector x̂ = R−1(PQ)∗b is a minimizer of minx ‖Ax− b‖2.

Proof. We show that ŷ = Rx̂ = (PQ)∗b is the minimum norm solution to miny ‖AR−1y−
b‖2. The minimum solution norm to miny ‖AR−1y − b‖2 is

ymin =
(
AR−1

)+
b .

According to Lemma 3.5.1 the singular values of AR−1 are exactly 0 and 1. Therefore,(
AR−1

)+
=
(
AR−1

)∗
.

Notice that
AR−1 = P [AB]R−1 = PQRR−1 = PQ .

Therefore, ymin = (PQ)∗b = ŷ. �

We now analyze the case where A is has k small but possibly nonzero singular values.
In this case, x̂ = R−1(PQ)∗b is not necessarily a minimizer of minx ‖Ax− b‖2 and, more
importantly, not even a minimizer of minx ‖Āx− b‖2. But if

[
Ā
B

]
= Q̄R̄, then the vector

ẑ = R̄−1(PQ̄)∗b is a minimizer of minx ‖Āx − b‖2. If the truncated singular values are
small enough, then the pairs (Q,R) and (Q̄, R̄) will be closely related because they are
QR factorizations of nearby matrices. Therefore, x̂ and ẑ should not be too far from each
other. The next theorem shows that this is indeed the case.

3.5. Applications To Least-Square Solvers 85

Theorem 3.5.3. Let A ∈ Cm×n, B ∈ Ck×n and b ∈ Cm. Let Ā be the matrix with the
same singular value decomposition as A except that the k smallest singular values are
truncated to 0. Denote

C = [AB] andD =
[
Ā
B

]
Assume that C and D are both full rank. Let C = QR be a QR factorization of C and
D = Q̄R̄ be the QR factorization of D. Denote

δ =
σn−k+1(A)

σmin(C)

where σn−k(A) is the kth smallest singular value of A and σmin(C) is the smallest singular
value of C. Let P =

[
Im×m 0m×k

]
. De�ne the solutions

x̂ = R−1(PQ)∗b

and
ẑ = R̄−1(PQ̄)∗b .

Then, provided that δ < 1,

‖x̂− ẑ‖2

‖x̂‖2

≤ δ

1− δ

(
2 + (κ(R) + 1)

‖r‖2

‖R‖2‖ẑ‖2

)
where

r = b− Ax̂ .

Before we prove the theorem, we explain what it means. The algorithm computes x̂
and can therefore compute r = b − Ax̂. The theorem states that if δ is small (which
happens when C is well conditioned and A has k tiny singular values) and R is not ill
conditioned and not too large, and the norm of r is not too large, then x̂ is a good
approximation of the minimizer ẑ that we seek. The quantity that is hard to estimate in
practice is δ, which depends on the small singular values of A. Therefore, the method is
useful mainly when we know a-priori the number of small singular values of A.

Proof. Notice that x̂ is the solution of minx ‖Cx−P ∗b‖2 and that ẑ is the solution of
minx ‖Dx− P ∗b‖2. Furthermore, we can write D = C + ∆C where ‖∆C‖2 ≤ σn−k+1(A).
If we de�ne ε = σn−k+1(A)/‖C‖2 then κ(C)ε = δ < 1 and ‖∆C‖2 ≤ ε‖C‖2. We can apply
a variant of result from Wedin [222] (see [125, Theorem 2.1] for the speci�c version that
we use) and conclude that

‖x̂− ẑ‖2

‖x̂‖2

≤ δ

1− δ

(
2 + (κ(R) + 1)

‖r‖2

‖R‖2‖ẑ‖2

)
.

�

3.5.4. Solving What-If Scenarios. The theory presented in this chapter allows us
to e�ciently solve what-if scenarios of the following type. We are given a least squares
problem min ‖Ax− b‖2. We already computed the minimizer using the R factor of A or
using some preconditioners. Now we want to know how the solution would change if we
�x some of its entries, without loss of generality xn−k+1 = cn−k+1, . . . , xn = cn, where the
ci's are some constants. We denote A =

[
D E

]
, where E consists of k columns. To

solve the what-if scenario, we need to solve min ‖Dx1:n−k − (b−Ec)‖2. We solve instead
min ‖Ãx − (b − Ec)‖2 where Ã =

[
D 0

]
, a matrix that we obtain from A by replacing

3.6. An Algorithm for Perturbing to Improve the Conditioning 86

the last k columns by zeros. Clearly, the last k entries of x do not in�uence the norm of
the residual in this system, so we can ignore them. By Theorem 3.4.2, for small k the
factor or the preconditioner of A is e�ective for this least-squares system as well.

3.6. An Algorithm for Perturbing to Improve the Conditioning

In this section we show an algorithm that perturbs a given input matrix A to improve
its conditioning. The algorithm only adds rows, which all have a single nonzero. The al-
gorithm �nds the perturbation during and after a standard Householder QR factorization
(the technique applies to any column-oriented QR algorithm). Therefore, it can be easily
integrated into a sparse QR factorization code; unlike rank-revealing QR algorithms, our
algorithm does not exchange columns.

The goal of the algorithm is to build an R whose condition number is below a given
threshold τ , with as few modi�cations as possible. More speci�cally, the goal is to �nd a
B ∈ Ck×n and upper triangular R ∈ Cn×n such that

(1) A∗A+B∗B = R∗R,
(2) The Cholesky factors of A∗A and A∗A + B∗B are structurally the same (except

for accidental cancellations),
(3) κ(R) ≤ τ , and
(4) k is small.

We ensure that the �rst goal is met as follows. If, during the factorization of column j,
the algorithm �nds that it needs to add a row to B, it adds a row with zeros in columns
1 to j− 1. This ensures that the �rst j− 1 columns computed so far are also the factor of
the newly-perturbed matrix. (In fact, it always adds a row with a nonzero only in column
j.)

By restricting the number of non-zeros in each row of B to one, we automatically
achieve the second goal, since B∗B is diagonal.

The algorithm works in two stages. In the �rst stage, the matrix is perturbed during
the HouseholderQR factorization. In step j, we factor column j, and then run a condition-
number estimator to detect ill-conditioning in the leading j-by-j block of R. If this block
is ill-conditioned, we add a row to B, which causes only Rj,j to change. A trivial condition
estimation technique is to estimate the large singular value of A using its one or in�nity
norm, and then to estimate the smallest singular value using the smallest diagonal element
in R. This method, however, is not always reliable. There are incremental condition
estimators for triangular matrices that are e�cient and more reliable [36, 38, 35, 91].

Let cA = ||A||1 be an estimation of the norm of A. Other norms can be used, and
will modify some of the values below. All the rows of B will be completely zero except a
single non-zero, which we set to ±cA. Each row of B has a di�erent nonzero column. It
follows that B∗B is diagonal with ||B||2 = cA. Therefore,

||R||2 =
√
||R∗R||2 =

√
||A∗A+B∗B||2

≤
√
||A∗A||2 + ||B∗B||2

≤
√
nc2

A + c2
A

≤ cA
√
n+ 1 .

3.6. An Algorithm for Perturbing to Improve the Conditioning 87

Therefore, we add a row to B whenever the incremental condition estimator suspects that
||R−1||2 > τ/cA

√
n+ 1. If we estimate cA = ||A||2 directly (using power iteration), we

only need to ensure that ||R−1||2 > τ/cA
√

2, so we can use fewer perturbations.
Condition estimators can fail to detect ill-conditioning. For example, if we estimate

‖R−1‖2 ≈ 1/minj Rj,j, it will not perturb the following matrix at all. Let

Tn(c) = diag(1, s, . . . , sn−1)


1 −c −c · · · −c
0 1 −c · · · −c

. . .
...

...
... 1 −c
0 . . . 0 1


with c2 + s2 = 1 with c, s > 0. For n = 100 the smallest diagonal value of Tn(0.2) is 0.13,
but its smallest singular value is O(10−8) [109].

Better condition estimators will not fail on this example, but they may fail on others. It
is relatively easy to safeguard our algorithm against failures of the estimator. A few inverse
iterations on R∗R will reliably estimate the smallest singular value. Inverse iteration is
cheap because R is triangular. If we �nd that R is still ill-conditioned, we add more rows
to B and rotate them into R using Givens rotations. The resulting factorization remains
backwards stable.

To �nd a perturbation that will reduce the number of tiny singular values, we �nd an
approximation of the smallest singular value and a corresponding right singular vector of
R. Suppose that σ and v are such a pair, with ||v||2 = 1 and ||Rv||2 = σ. Let i be the
index of the largest absolute value in v. Since ||v||2 = 1 we must have |vi| ≥ 1/

√
n. We

add to B a row b∗,

bj =

{
cA j = i

0 j 6= i

We now have ∥∥∥∥[Rb∗
]
v

∥∥∥∥
2

≥ ‖b∗v‖2

= |b∗v|
≥ cAvi

≥ cA/
√
n .

If τ ≥ n+ 1 then ∥∥∥∥[Rb∗
]
v

∥∥∥∥
2

≥
√
n+ 1cA
τ

,

and the number of singular values that are smaller than
√
n+ 1cA/τ is reduced by one.

We repeat the process until all singular values are large enough. If we estimate cA = ||A||2
directly (using power iteration), then the constraint on τ can be relaxed to τ >

√
2n.

The combination of a less-than-perfect condition estimation with the kinds of pertur-
bations that we use during the factorization (rows with a single nonzero) can potentially
lead to a cascade of unnecessary perturbations. Suppose that the jth column of the ma-
trix is dependent (or almost dependent) on the �rst j−1 columns, but that the condition
estimator missed this and estimated that the leading j-by-j block of R is well conditioned.

3.7. Numerical Examples 88

Suppose further that after the factorization of column j+ 1, the condition estimator �nds
that the leading (j + 1)-by-(j + 1) block of R is ill conditioned (it is). Our algorithm
will perturb column j + 1, which does not improve the conditioning of R. This can keep
on going. From now on, R remains ill conditioned, so whenever the condition estimator
�nds that it is, our algorithm will perturb another column. These perturbations do not
improve the conditioning but they slow down the iterative solver. Situations like these are
unlikely, but in principle, they are possible. Therefore, we invoke the condition estimator
before and after each perturbation. If a perturbation does not signi�cantly improve the
conditioning, we refrain from further perturbations. We will �x the ill conditioning by
perturbing R after it is computed (it may also be possible to use inverse iteration to
produce a more reliable perturbation during the factorization rather than wait until it is
complete).

3.7. Numerical Examples

In this section we give simple numerical examples for the applications described in
Section 3.5. The goal is to illustrate the bene�ts of the tools developed in this chapter.

3.7.1. Dropping Dense Rows for Sparsity; Updating. Consider the matrix

A =


α1

. . .
αn

β1 · · · βn

 ,

for some (real or complex) α1, . . . , αn and β1, . . . , βn. Suppose that we want to �nd the
least squares solution to minx ||Ax − b||2. The R factor of the QR factorization of A
will be completely full, because A∗A is full. Therefore, solving the equation using the
QR factorization will take Θ(n3) time. If the equation is solved using LSQR then every
iteration will cost Θ(n) operations, but the number of iterations done is proportional to
κ(A). The value of κ(A) can be very large for certain values of α1, . . . , αn and β1, . . . , βn.

Our analysis suggests a new method for solving the problem. We can remove the
last row of A and form the preconditioner R = diag(α1, . . . , αn). Our analysis shows
that when solving the equation using LSQR preconditioned by R only 2 iterations will be
done. Each iteration still cost Θ(n) operations, amounting to a linear time algorithm for
solving the equation. In general, if there are m � n full rows, an application of LSQR
with a preconditioner that is only the diagonal will converge in m iterations, each of them
with Θ(nm) operations. The total running time will be Θ(nm2), while regular LSQR
will complete in Θ(n2m) operations, and a QR based algorithm will complete in a Θ(n3)
operations. With Heath's method [120] the total running time will be Θ((n + m)m2).
We conducted experiments that validate this analysis.

The same analysis also applies to updating problems. If we are given A without its last
row and compute the R factor of the input matrix, we can use this factor for e�ciently
solving least-squares problems involving an additional arbitrary constraint.

We conducted a simple experiment to test the actual convergence time using mat-
lab 7.2 [155]. We generated α1, . . . , αn and β1, . . . , βn using rand for various values of
n. We then ran all the algorithms, setting the tolerance of LSQR to 10−6, and measured

3.7. Numerical Examples 89

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

n

T
im

e
(s

ec
)

Regular LSQR
Perturbed LSQR
Sparse QR
Heath’s Method

Figure 3.7.1. Running time when solving the least squares equation
minx ||Ax− b||2, when A consists of a diagonal and a dense row. We mea-
sured all methods for an increasing matrix size. The x-axis is the number
of columns in the matrix. The diagonal and dense row values are chosen
randomly.

the solution time using matlab's internal timer. The results are shown in Figure 3.7.1.
It is easy to see that our method is superior to the other methods in this case.

3.7.2. Adding Rows to Solve Rank-De�cient Problems. Consider the matrix
A and vector b generated by the following commands in matlab:

rand('state', 0);
m = ceil(n/4);
A0 = rand(n, m);
[U,Sigma1,V] = svd(A0, 0);
Sigma = diag(10 .^ [linspace(1, -4, m-1) -12]);
A1 = U*Sigma*V';
A = [A1 rand(n, m)];
b = rand(m, 1);

3.8. Conclusions 90

The codes builds a n × n
2
matrix A, which is ill-conditioned (κ ≈ 1012 and norm around

1). We wish to solve the least squares problem min ‖Ax− b‖2. The matrix is built so that
column n/4 is close to a linear combination of the columns to its left. The �rst command
resets the random number generator so that in each run will generate the same matrix
and vector.

A QR factorization without pivoting generates a very small diagonal value (around
10−12) in position (n

4
, n

4
) of R. Using the factorization to solve minx ‖Ax− b‖2 leads to a

solution with norm around 1011. In many cases, the desired solution is the minimizer in
the subspace that is orthogonal to right singular vectors of A that correspond to singular
values around 10−12 and smaller. We refer to such solution as a truncated solution. A
QR factorization without pivoting is useless for �nding the truncated solution or an
approximation of it.

One way to compute a low-norm almost-minimizer of the truncated problem is to
use a rank-revealing QR. If A is dense (as in our example), this is an e�ective solution.
Rank-revealing QR factorization algorithms have also been developed for sparse matrices,
but they are complex and sometimes expensive (since they cannot control sparsity as well
as non-rank-revealing algorithms) [60, 171, 37].

In our example, running LSQR with a convergence threshold of r = 10−10 (for n = 100)
led to an acceptable solution (with norm around 103). With r = 10−15, LSQR returned a
solution with norm 1011, clearly not a good truncated solution. Due to the ill-conditioning
of A many iterations are required for LSQR to converge. Even with r = 10−10, LSQR
converged slowly, taking 423 iterations to converge.

We propose to use instead the algorithm described in Section 3.6 to generate an
e�ective preconditioner that allows LSQR to solve the truncated problem. We generated
two preconditioners using the two versions of our algorithm, one with cA = ||A||1 and
the other with cA = ||A||2. We set the threshold τ to 1010. In both cases a single row
was added with a single nonzero in column 25. The need to add a row was detected, in
both cases, using the incremental condition estimator during the initial QR factorization.
With cA = ||A||1 the condition number of the factor was κ(R) ≈ 3.41 × 105, while with
cA = ||A||2 the condition number was κ(R) ≈ 1.78×105. When using R as a preconditioner
to LSQR with threshold 10−10 a single iteration was enough to converge in both cases.
The norm of the minimizer x was of order 103 in both cases.

The di�erent methods that produced solutions with norm around 103 produced di�er-
ent solution vectors x with slightly di�erent norms (even the two preconditioned LSQR
methods). To see why, let v be the singular vector that corresponds to the singular value
10−12. LSQR uses the norm ||A∗(Ax− b)||2 as a stopping criterion. Adding ρv to a vector
x changes ||A∗(Ax−b)||2 by at most ρ×10−24, so even a large ρ rarely a�ects this stopping
criterion. Therefore, di�erent methods can return di�erent solutions, say x and x + ρv,
possibly with ρ� ‖x‖. Such solutions are very di�erent from each other, but with norms
and residual norms that both di�er by at most ρ × 10−12. Both solutions are good, but
they are di�erent; this is a re�ection of the ill conditioning of the problem.

3.8. Conclusions

This chapter presented theoretical analysis of certain preconditioned least-square solvers.
The solvers use a preconditioner that is related to a low-rank perturbation of the coe�-
cient matrix. The perturbation can be the result of an updating or downdating (following

3.8. Conclusions 91

the computation of a preconditioner or a factor of the original coe�cient matrix), of drop-
ping dense rows, or of an attempt to make the preconditioner well conditioned when the
coe�cient matrix is ill conditioned or rank de�cient. We note that further research is
required to determine how to drop rows e�ectively in sparse QR factorizations; we only
gave here evidence that this idea can be e�ective, but we did not provide a row-dropping
algorithm.

This chapter also proposed a speci�c method to perturb a QR factorization of an
ill-conditioned or rank-de�cient matrix.

Our theoretical analysis uses a novel approach: we count the number of generalized
eigenvalues that move away from a cluster of eigenvalues (sometimes consisting only of the
value 1) due to perturbations. This allows us to bound the number of iterations in iterative
least-squares solvers like LSQR, which are implicit versions of Conjugate Gradients on the
normal equations.

This approach complements the more common way of bounding iteration counts in
optimal Krylov-subspace solvers, which is based on bounding the condition number of the
preconditioned system.

We have also presented limited experimental results, which are meant to illustrate the
use of the techniques rather to establish their e�ectiveness or e�ciency. In the next chapter
we present extensive numerical experimentation that demonstrate the e�ectiveness of row
additions in solving rank de�cient overdetermined systems.

CHAPTER 4

A Solver for Rank-de�cient Overdetermined Least-squares

Problems

4.1. Introduction

This chapter shows the e�ectiveness of using perturbed factorizations (QR or Cholesky)
to solve (over)determined linear-least squares problems with a numerically rank de�cient
matrix. More speci�cally, it shows that the theoretical algorithms presented in Chapter 3
are indeed e�ective for sparse numerically rank-de�cient problems.

Given a numerically rank-de�cient matrix A ∈ Rm×n (m ≥ n), and a vector b ∈ Rm,
we want to �nd a vector x ∈ Rn that minimizes the residual ‖Ax−b‖2. If A is numerically
rank-de�cient the minimizer x will have a huge norm, and some type of regularization is
desired (see Section 2.7 in [40] and [119]). We assume that the desired regularization is
given in the form of a numerical threshold τ > 1, and that it is based on truncating the
small singular values. Let σ1, . . . , σn be the singular value of A and let r be index such
that

σ1

σr
≤ τ <

σ1

σr+1

.

Let Ā have the same singular value decomposition as A except that the n − r smallest
singular values are truncated to 0. The goal is to �nd a minimizer x of ‖Āx− b‖2 with a
small norm.

Figure 4.1.1 summarizes a few possible ways to try to tackle this problem. If no
factorization of the matrix is found, and no preconditioner is built, then an iterative
algorithm, such as LSQR [166], must be used. In this case the user must rely on the
the iterative method's inherent regularization features. If LSQR is used, this usually
yields good results from the numerical standpoint but can be very slow if the matrix is
ill-conditioned. If the user is willing to build a QR factorization of the matrix, A = QR,
he might try the direct formula x = R−1QTx (assuming that the matrix is not structurally
rank-de�cient). In this case the norm of x will be huge due to lack of regularization. Using
R as a preconditioner to LSQR will give the same results since the iterative method will
converge in one iteration and its regularization features will fail. Rank-revealing QR
factorization based on column pivoting [171, 37, 27, 60, 120] and SVD decompositions
enable the user to apply a regularization, but are considerably slower then pivot-less QR
factorization, and are harder to parallelize.

Our algorithm uses a pivot-less QR and Cholesky factorization, therefore allowing
faster running times, both sequential and parallel. We do so by forming a QR factorization
of a perturbed matrix or a Cholesky factorization of the normal form of the perturbed
matrix, and using it inside LSQR, relying on its inherent regularization features. The
use of LSQR also ensures that as long as we use an appropriate threshold our method is
backward stable [61], even if we use the Cholesky factorization of the normal equations.

92

4.2. Algorithms 93

Direct LSQR

No Factorization
or

Preconditioner

- potentially slow
low ‖Ax− b‖2

low ‖x‖2

low ‖AT r‖2

Perturbed-QR
Factorization

(new)

very fast
low ‖Ax− b‖2

low ‖x‖2

fast
low ‖Ax− b‖2

low ‖x‖2

low ‖AT r‖2

Perturbed-
Cholesky

Factorization
(new)

- very fast
low ‖Ax− b‖2

low ‖x‖2

low ‖AT r‖2

may fail
QR

Factorization
huge ‖x‖2 huge ‖x‖2

Rank-Revealing
QR

Factorization

potentially slow
harder to
parallelize

-

Truncated SVD controllable but
slow

-

Figure 4.1.1. Quick summary of algorithms for solving rank-de�cient lin-
ear least-squares problems. This table shows the advantage of the algorithm
used by our new solver.

Experiments on various test problems (reported in Section 4.4) show that our method
�nds well regularized solutions, and is faster than LSQR.

4.2. Algorithms

This section describes the algorithms used in our solvers. We only describe what
the algorithm does, and do not give a theoretical analysis of it. We refer the reader to
chapter 3 for the theoretical analysis of the algorithms.

The �rst step of our algorithms is to �nd a matrix B ∈ Rk×n such that κ([AB]) ≤ η ≤ τ ,
where η is an algorithmic parameter whose role we will discuss and investigate later. Our
experiments indicate that the choice η = τ is usually good. The goal is to �nd matrix B
with as few rows as possible, and with a single non-zero in each row. Our algorithm then
�nds a QR factorization of this matrix, [AB] = Q̃R̃ (in a practical implementation there

is no need to actually form Q̃).
We �nd B using an iterative algorithm that adds rows to B until κ([AB]) ≤ η. After

iteration i we have a matrix Bi with i rows, and hold a factorization of the matrix[
A
Bi

]
= Q̃iR̃i. We initialize B0 to an empty 0 × n matrix, and �nd the factorization

A = Q̃0R̃0 using a standard sparse QR algorithm. After we have found Bi we approximate
the condition number of R̃i using power iterations. If the condition number is small enough
we have found B = Bi. If the condition number is too large we �nd an approximate right

4.3. Implementation 94

singular vector of the smallest singular value. We then add a row to Bi that holds a single
non-zero valued ‖A‖1 in the index of largest magnitude in the singular vector, thereby
forming Bi+1. In order to calculate Q̃i+1 and R̃i+1 we need to update an already existing
factorization with a new row with single non-zero. We use the method of Irony et al [198]
(which is a special case of Davis and Hager [78]) to do so.

If we inspect the above procedure we see that only Θ(nnz(R)) operations are required
for each perturbation. Nevertheless, this procedure can be very time consuming if many
perturbations are done. It is useful to optimize the algorithm so that it can detect most
perturbations during the initial factorization of the matrix, therefore saving work by doing
them early. In a column-oriented factorization if a column has a tiny norm, this implies
a small singular pair. We can do the perturbations on the spot, which is much cheaper
than waiting till the end of the factorization. We do a perturbation if the diagonal value
is smaller than ‖A‖1

√
n+ 1/η.

After we have found the factorization, we have two options. Either return

(4.2.1) x = R̃−1(PQ̃)T b

where P =
(
Im×m 0m×k

)
, or use R̃ as a preconditioner in an iterative solution of the

problem using LSQR. If LSQR is used the convergence threshold must be set to re�ect
the desired regularization. See [166] for a discussion on the relationship between regular-
ization and convergence thresholds in LSQR. In our implementation we used matlab's
[209] built in LSQR function and set the single convergence parameter to τ−1.

If we use the direct method we have an additional requirement that κ([AB]) ≈ σ1/σr,
which we achieve by setting η = τ . In the LSQR method any value smaller than τ can
be used for η. In this method the value of η entails a trade-o�. If we use a smaller
value for η our algorithm will be more accurate in regularizing the problem, but more
row-perturbations will be required and more iterations will be done in the iterative phase.
We explore this trade-o� in our experiments (Section 4.4).

Instead of �nding the R factor of [AB] we can �nd the Cholesky factorization of ATA+

BTB = R̃T R̃, which under exact arithmetic should be the same. The factor can than
be used in the iterative variant of our solver. It can also be used in the direct formula
x = R̃−1R̃−TAT b based on the identity PQ̃ = AR̃−1. A solver based on the direct formula
will be not be backward stable for the same reasons as the normal equations method is
not backward stable (see Section 20.4 of [126]). In the iterative solver the factor is used
only as a preconditioner, so the method will be as stable if an appropriate threshold is
used. The perturbations in the Cholesky factorization are found using exactly the same
way as they are found in the QR factorization.

The algorithms described above are applicable, without modi�cations except replacing
the transpose operation with the adjoint operation, for complex A and b. We described
the real-valued variant since in this work we tried the algorithms only on real-valued
matrices.

4.3. Implementation

We have implemented and tested all the variants of the algorithms described in Sec-
tion 4.2. To examine the QR based algorithms we have developed a completely new sparse
QR factorization code. To experiment with the Cholesky based algorithms we modi�ed
an existing sparse Cholesky with our perturbation technique.

4.4. Experimental Results 95

4.3.1. A New Sparse QR Factorization with Row Additions. We have imple-
mented a new sparse multifrontal QR factorization code. The algorithm used by the code
is based on the work presented in [151, 11] although some of the details are di�erent.
The new multifrontal QR factorization code is now a part of taucs1. The experiments
reported in subsection 4.4.2 shows that our code performs well.

Optimally, the diagonal value of R should be examined, and if necessary a perturbation
done, right after its corresponding column is formed. In this way no redundant operations
will be done. In practice, a well implemented QR factorization code will try to employ
level-3 Basic Linear Algebra Subroutines (blas) [85] operations, thereby delaying the
examination of the diagonal values.

The blas operations are employed inside a factorization kernel. This kernel is applied
on each supercolumn. It is responsible for forming its frontal matrix, and then partially
factoring it using the blas. Only the pivotal columns are factored, and updates are
applied to the non pivotal part. The end result is set of rows in R and a reduced block
that is kept for the factorization of subsequent supercolumns.

Our code examines the diagonal values only after the partial factorization of the frontal
matrix is complete. If we detect a diagonal value below the threshold, we need to do a
perturbation in the corresponding column. We add the perturbation row to the partially
factored frontal matrix, and use Givens rotations to refactor the perturbed frontal matrix,
thereby updating the newly found rows in R and the reduced block. Givens rotations are
restricted only to the rows and columns in the current frontal matrix.

4.3.2. Modi�cations to cholmod. As explained in Section 4.2 we can use the
Cholesky factorization of ATA+BTB = R̃T R̃ instead of the QR factorization of [AB]. To
do so we need a Cholesky factorization code that can �nd perturbations. We chose to
implement the Cholesky-variant of our solver by modifying an existing factorization code.
In particular, we chose to modify Tim Davis's cholmod package [66, 77].

To �nd perturbations during the factorization we modi�ed the dense kernel, which
is responsible for factoring the frontal matrices. The kernel �rst assembles the frontal
matrix. Next, the pivotal part of the frontal matrix is factored using a blas operation.
We need to handle two cases: the initial factorization may fail due to singularity and/or
numerical inde�niteness, or the result might have a small diagonal value. In both cases
we do a perturbation on the unfactored frontal matrix and restart the factorization of the
pivotal part. The factorization of the pivotal part is cheap, so the overhead is small. The
rest of the dense kernel is left unmodi�ed.

4.4. Experimental Results

This section presents experimental results that explore the e�ectiveness of our solver.

4.4.1. Setup. Our solvers is currently a hybrid betweenMatlab 7.2 [155] code and
C-code. The most important part of the computation, adding rows and �nding the factor-
ization, is implemented in C, either as part of the taucs library (for QR factorizations) or
as modi�cations to cholmod (for Cholesky factorizations). We use matlab for running
LSQR. Another use for matlab is as a scripting tool to run the experiments, which calls

1Available from http://www.tau.ac.il/~stoledo/taucs/.

4.4. Experimental Results 96

taucs or cholmod using the cmex interface. While some computation (as opposed to
scripting) is done by matlab (running of LSQR) the time spent on those computations
was a very small portion of the overall time spent by the algorithm (only a few iterations
were needed). Therefore, the running time we report indicate well the running time of a
pure C implementation.

Test matrices were obtained from the University of Florida sparse matrix collec-
tion [72]. For the baseline experiments, where we compared the performance of the
factorization code alone, we used all matrices which are not square and that can be
factorized in memory using a QR factorization. For experiments involving regulariza-
tion of overdetermined rank de�cient systems we focused on three interesting matrices:
LPI_GRAN (matrix 717), LANDMARK (matrix 903) and GRAPHICS (matrix 981).
Those matrices are rank de�cient and large enough to be interesting.

Running times were measured on a 3.0 GHz Intel Pentium 4 computer with 2 GB of
main memory, running Linux 2.6. This computer has 2 processors, but our solver only
uses one. We used a 32-bit version of Matlab 7.2. The measured running times are wall-
clock times that were measured using the ftime Linux system call. We use lapack [12]
and atlas [223] for blas operations.

4.4.2. Baseline Experiments. The goal of our �rst set of experiments was to test
the performance of our new baseline QR code. We ran our factorization code without
doing any perturbations, and tested that the code performance was good enough. We
compared our QR code to other available implementations of QR factorizations: mat-
lab's built-in implementation (which is based on the method of George and Heath [104])
and sqr2 [157, 3]. We also compared the performance of our code to cholmod's im-
plementation of factorizing ATA.

Figure 4.4.1 examines performance of our new code shows that it out performs cholmod
and sqr2 . The left graph shows performance on large (more than 10, 000 non-zeros) ma-
trices with more rows than columns, which are the matrices of interest for this chapter.
For completeness, the right graph of Figure 4.4.1 examines performance on matrices with
more columns than rows.

We see that our solver is always either comparable or faster than matlab and sqr2 on
underdetermined systems, although it usually does not �nd the sparsest factor. cholmod
is much faster than our code. It appears that QR factorization of A cannot compete, in
terms of speed, with Cholseky factorization of ATA. The missing points in the cholmod
plot are cases where the matrix was rank de�cient and the Cholesky factorization failed.
The missing points in the sqr2 plot are cases where sqr2 failed. For underdetermined
systems we could only compare to cholmod (sqr2 failed on all these matrices). Our
code is nearly always faster than matlab by large factors.

4.4.3. Experiments on Structurally and Numerically Rank De�cient Ma-
trices. The next phase was to test the solver on rank de�cient matrices. We compare six
solvers:

(1) Direct method: using QR factorization with empty B (no row additions).
(2) LSQR without any preconditionning. We run a maximum of 1000 iterations.
(3) Perturbed-Direct: build QR factorization with non empty B (adding rows), solve

using equation 4.2.1.

4.4. Experimental Results 97

13 14 15 16 17 18 19
0.125

0.25

0.5

1

2

4

8

16
Solve Time

Matrix Index

T
im

e
/ T

A
U

C
S

 T
im

e

MATLAB
SQR2
CHOLMOD

13 14 15 16 17 18 19
0.25

0.5

1

2

4
NNZ Count

Matrix Index

N
N

Z
 C

ou
nt

 /
T

A
U

C
S

 N
N

Z
 C

ou
nt

MATLAB
SQR2
CHOLMOD

140 160 180 200 220 240 260
0.1

1

10

100

1000
Factor + find QTx Time

Matrix Index

M
A

T
LA

B
 T

im
e

/ T
A

U
C

S
 T

im
e

140 160 180 200 220 240 260
0.125

0.25

0.5

1

2

4

8
NNZ Count

Matrix Index

M
A

T
LA

B
 N

N
Z

 C
ou

nt
 /

T
A

U
C

S
 N

N
Z

 C
ou

nt
Figure 4.4.1. Solve time and number of non-zeros in R for various codes
for �nding the QR factorization of A or the Cholesky factorization of ATA.
The left graph is for matrices with more rows than columns (overdetermined
systems), and the right graph is for matrices with columns than rows (un-
derdetermined systems). Matrices are sorted according to the number of
non-zeros. Shown are only matrices with more than 1000 non-zeros.

(4) Perturbed-LSQR (QR): buildQR factorization with non emptyB (adding rows),
use R as preconditioner in LSQR.

(5) Perturbed-LSQR (CHOL): build Cholesky factorization of ATA + BTB, us as
preconditioner in LSQR.

(6) Truncated SVD (TSVD) [40]. This is not a practical algorithm for large sparse
matrices like these, and we use it for evaluating the numerical quality results.

Test matrices were taken from Tim Davis's collection. We found three interesting rank
de�cient matrices: LANDMARK, LPI_GRAN and GRAPHICS. See Table 4.4.2 for in-
formation on these matrices. We evaluate the quality of the solutions based on three
parameters:

(1) The norm of the residual ‖r‖2. This is the actual term that is minimized and we
expect this value to be close to the minimum.

(2) Orthogonality of the residual to rank(A): ‖AT r‖2/(‖A‖2 · ‖r‖2). This is the term
minimized by LSQR. It should be treated as an approximation to ‖ĀT r‖2/(‖Ā‖2 ·
‖r‖2) which should be zero for a true minimizer of ‖Āx− b‖2.

(3) The norm of the solution ‖x‖2: we are looking for almost-minimizers with small
norm. The TSVD solution has the smallest possible norm for true minimizers.

Figures 4.4.3, 4.4.4 and 4.4.5 contain the result of the analysis for the three matrices.
The tables show the results of each algorithm with respect to the various parameters. For
LANDMARK and LPI_GRAN we also plot the singular values of the matrix. Matrix
GRAPHICS was too big to allow us to compute the singular values.

The singular values of matrix LANDMARK drop quickly starting at around 10−5, so
setting τ = 106 is reasonable, although it is actually hard to determine the numerical
rank. The direct method fails completely. It �nds a factorization but the R factor is
rank de�cient, so it cannot be used to �nd a solution. LSQR does not converge in 1000

4.4. Experimental Results 98

Matrix #rows #cols NNZ(A) NNZ(ATA) NNZ(R)

pereyra/landmark 71,952 2704 1,146,848 120,203 1,543,996

LPnetlib/lpi_gran 2,658 2,525 20,111 60,459 57,636

sumner/graphics 29,493 11,822 117,954 82,642 124,909

Figure 4.4.2. Rank de�cient test matrices. NNZ(R) lists the number
of non-zeros in the R factor of A when the columns are ordered using
colamd (like our code) without supernodes. The number of non-zeros in
the perturbed factorization is always the same as the number of non-zeros
in the unperturbed factorization.

iterations, but it does make a nice progress. Given enough time it will eventually �nd a
solution, albeit very slowly. All other solvers (Pert-Direct, and the Pert-LSQR solvers)
�nd almost minimizers with small norm. Their norm is even smaller the TSVD solution,
probably because they are only almost-minimizers (thus their value of ‖r‖2 is larger then
TSVD's). Both Pert-Direct and Pert-LSQR (QR) �nd the same solution in about the
same time. Pert-LSQR (CHOL) solution is of lesser quality, although it is the fastest.

The matrix LPI_GRAN is structurally rank de�cient and ill conditioned (κ > 1015).
There is a big drop in singular values around 10−8, so we set the threshold to τ = 1010.
Again, the plain direct method and unpreconditioned LSQR failed. Perturbed direct was
the fastest, but its results are less reliable. The norm of r is larger then all other method
(which are close to the TSVD norm), but not too high. More importantly the residual is
not orthogonal to AT . Both version of Pert-LSQR �nd near-minimizers, but of di�erent
quality. The QR version �nds a solution with smaller residual. The Cholesky version �nd
a slightly higher residual, but the solution is more orthogonal to AT and the norm x is
smaller. The QR variant is a bit faster than the CHOL version.

The matrix GRAPHICS is too big for TSVD. It is also ill-conditioned, but not full
rank. matlab estimated the condition number to be κest ≈ 1.59×1010. We set the threshold
to τ = 106, although lack of singular value information prevents us from determining
whether this is a correct choice. In practice we are more interested in �nding near-
minimizers with small norm then �xing the regularization parameter correctly. Under
these settings the number of rows added with quite large (around 6000). The matrix
is not rank-de�cient, so the direct method did not fail on it. The direct method found
a solution that is very close to being a minimizer, as can be observed from the near
orthogonality of the residual to AT , yet the norm of the solution is large relative to the
solution found by other methods. Other methods found better solution, with norm around
10−6. LSQR failed to declare convergence, as its residual was not orthogonal to AT , but
it did �nd a solution that is better than Pert-Direct in terms of norm of the solution
and norm of the residual. The Pert-LSQR solvers computed the best results, but they
are slower than other methods. This is because many rows are added, so a lot of LSQR
iterations are done. The Cholesky version does more perturbations so it is slower.

4.4.4. Value of η. In previous experiments we used η = τ , where τ is the regular-
ization parameter and η is the bound on the preconditioner's condition number. We now
investigate the tradeo� of selecting lower values for η.

4.5. Conclusions 99

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

10
5

Non−zero singular values of LANDMARK

Number of zero singular values = 31

Time ‖r‖2 ‖AT r‖2
‖A‖2‖r‖2

‖x‖2

Direct 25.0s FAIL FAIL FAIL

Pert-Direct 26.4s 4.90× 10−1 6.12× 10−7 3.66× 100

LSQR 197s 4.90× 10−1 1.74× 10−4

FAIL
9.71× 10−1

Pert-LSQR,QR 25.7s 4.90× 10−1 6.12× 10−7 3.66× 100

Pert-LSQR, CHOL 1.79s 4.90× 10−1 4.92× 10−6 9.87× 10−1

TSVD N/A 4.90× 10−1 1.88× 10−9 4.27× 102

Figure 4.4.3. Detailed results for matrix LANDMARK with η = τ = 106.
The top graph shows the singular values of LANDMARK.

The value of η guides the factorization of A, so that the preconditioner will not be a
too accurate factorization of A. LSQR has inherent regularization capabilities, provided
that the iterates do not skip the desired solution. This is the reason an exact factoriza-
tion is worthless with LSQR: the �rst iterate skips over all intern solutions right to the
unregularized solution. The row additions are designed to slow the progress of LSQR so
that the correct solution is encountered, but not too much. The maximum value is always
τ , otherwise the �rst iterate will skip the desired solution. This is why we require η ≤ τ .

From the above discussion the tradeo� for lower values of η is clear. Lower values of
η will allow LSQR to progress more slowly, thereby �nding a better regularized solution.
The tradeo� is a slower solver: both more rows will be added (QR factorization will
take more time), and more LSQR iteration will be needed. This tradeo� is evident in
Figure 4.4.6: when we set η = τ × 10−2 we �nd a solution that is better regularized (‖x‖2

is lower while ‖r‖2 stays roughly the same), but more iterations are done. In one case
(matrix GRAPHICS with τ = 106 and η = 104) the solver failed to converge (did more
than 1000 LSQR iterations).

4.5. Conclusions

We have shown that a perturbed QR or Cholesky factorization can be an e�ective
part of a linear least-squares solver. Most of the required perturbations are discovered

4.5. Conclusions 100

0 500 1000 1500 2000
10

−15

10
−10

10
−5

10
0

10
5

Non−zero singular values of LPI_GRAN

Number of zero singular values = 571

Time ‖r‖2 ‖AT r‖2
‖A‖2‖r‖2

‖x‖2

Direct 0.34s FAIL FAIL FAIL

Pert-Direct 0.68s 4.59× 10−1 1.08× 10−2 1.86× 104

LSQR 3.95s 5.04× 10−1 1.45× 10−3

FAIL
7.05× 10−1

Pert-LSQR, QR 1.34s 4.48× 10−1 1.73× 10−4 4.12× 106

Pert-LSQR, CHOL 1.43s 4.50× 10−1 5.16× 10−8 5.63× 104

TSVD N/A 4.48× 10−1 1.77× 10−8 2.77× 104

Figure 4.4.4. Detailed results for matrix LPI_GRAN with η = τ = 1010.
The top graph shows the singular values of LPI_GRAN.

Time ‖r‖2 ‖AT r‖2
‖A‖2‖r‖2

‖x‖2

Direct 0.61s 3.85× 10−1 4.77× 10−12 2.00× 10−2

Pert-Direct 1.16s 8.59× 10−1 1.98× 10−5 1.68× 10−6

LSQR 2.17s 8.46× 10−1 3.52× 10−4

FAIL
1.60× 10−6

Pert-LSQR, QR 4.22s 7.95× 10−1 4.01× 10−6 7.36× 10−5

Pert-LSQR, CHOL 7.27s 7.95× 10−1 5.05× 10−6 7.16× 10−5

Figure 4.4.5. Detailed results for matrix GRAPHICS with η = τ = 106.

during the factorization, when they can be applied cheaply. The perturbations remove
the need to pivot, even when the matrix is rank de�cient. The lack of pivoting simpli�es
the sparse factorizations, makes them relatively easy to parallelize [146], and eliminates
a potential performance penalty. Using the R factor as a preconditioner for LSQR allows
us to use Cholesky factorization without sacri�cing numerical accuracy.

4.5. Conclusions 101

η = τ η = τ × 10−2

Matrix τ #iterations ‖x‖2 ‖r‖2 #iterations ‖x‖2 ‖r‖2
LANDMARK 1010 1 9.7× 10−3 4.90× 10−1 5 1.7× 10−3 4.90× 10−1

LPI_GRAN 108 6 8.3× 104 4.54× 10−1 66 2.8× 102 4.56× 10−1

GRAPHICS 106 45 7.36× 10−5 7.95× 10−1 did not converge 6.8× 10−6 8.3× 10−1

Figure 4.4.6. Comparison of two di�erent values for η for the same matrix
and τ combination.

CHAPTER 5

Application: `1-sparse Reconstruction of Sharp Point Set Surfaces

5.1. Introduction

This chapter1 shows a real-life computer-graphics application that uses a perturbed
QR factorization. The application requires a customized linear solver that uses perturbed
factorizations suggested in the previous chapters.

The speci�c application is denoising of point clouds obtained from 3D laser scanners.
Scanning devices have turned in the course of the last few years into commercial o�-the-
shelf tools. Current scanners are capable of producing large amounts of raw, dense point
sets. One of today's principal challenges is the development of robust point processing
and reconstruction techniques that deal with the inherent noise of the acquired data set.

Early point set surface methods [7, 168, 8, 139] assume the underlying surface is
smooth everywhere. Hence, robustly reconstructing sharp features in presence of noise is
more challenging. To account for sharp features and discontinuities, advanced methods
rely on explicit representations of these characteristics [2, 114], use anisotropic smoothing
[98, 134], robust statistics [97, 163] or feature aware methods [147]. These methods
are typically fast, but they employ their operators locally and do not seek an objective
function with a global optimum.

In this chapter, we introduce a technique based on a global approach that utilizes
sparsity. Our method is motivated by the emerging theories of sparse signal reconstruction
and compressive sampling [86, 55]. A key idea here is that in many situations signals
can be reconstructed from far fewer data measurements compared to the requirements
imposed by the Nyquist sampling theory. In sparse signal reconstruction, instead of
using an over-complete representation, the reconstruction contains the sparsest possible
representation of the object. This technique can become e�ective in the context of surface
reconstruction, since common objects can often be characterized in terms of a rather small
number of features, even if they are geometrically complex.

Our method is inspired by `1 minimization in sparse signal reconstruction and feature
selection. We use the `1-sparsity paradigm since it avoids one of the main pitfalls of
methodologies such as least squares, namely smoothed out error. Indeed, the `2 norm
tends to severely penalize outliers and propagate the residual in the objective function
uniformly. Hence, the solution is typically of a very poor degree of sparsity. Since least

1The results in this chapter also appear in a paper submitted to the ACM Transactions on Graphics, co-
authored by Andrei Sharf, Chen Greif, and Daniel Cohen-Or [21]. The paper has been accepted subject
to a minor revision.
The paper is a computer graphics paper, but there is a numerical solver involved. I was involved both in
the numerical aspects and in the computer graphics aspects of this project.

102

5.1. Introduction 103

Figure 5.1.1. A demonstration of the e�ectiveness of our `1 sparsity-based
approach on a scanned model. The Armadillo statue (left) is scanned gen-
erating a noisy point-cloud (middle). Using our method we are able to
reconstruct it and recover its sharp features (right). Close-up view of a
cross section of its head reveals the sharpness of the reconstructed surface.

squares methods by their nature handle smooth surfaces better than non-smooth ones,
common techniques that use them must rely on working in a locally smooth fashion.

The last observation is particularly important for objects with sharp features. An
`1 based method such as the one we introduce is not restricted by the above mentioned
locality limitations that `2 entails. Since outliers are not excessively penalized, most of the
�energy� of the residual in the objective function is expected to be concentrated near the
sharp features. Thus, by minimizing the objective function in the `1 sense we encourage
sparsity of non-smooth singularities in the solution. The `1 norm is not di�erentiable, and
formulations associated with it are harder to solve, compared to `2-based formulations.
Nevertheless, the objective function is convex and as long as convexity is preserved, it
is well understood how to solve the problem in hand, and e�cient solvers are available.
Theory and applications based on `1-sparsity have been enjoying a huge boost in the last
few years in the scienti�c community at large. Motivated by this success we seek to utilize
`1-sparsity in computer graphics. In this work we use `1-sparsity to build a novel method
for reconstructing point set surfaces with sharp features.

Our global reconstruction method incorporates also inequality constraints that ensure
that the points are su�ciently close to the original input. We �rst solve for the point
orientations, and then, based on the piecewise smooth normals, solve for the point posi-
tions. We show that we reconstruct point sets e�ectively, and compare our technique to
state-of-the-art methods by running on synthetic models as well as real scanned models.

This chapter o�ers two main contributions. First is the formulation of a global `1-
sparse optimization problem for 3D surfaces. We show that sparsity and `1-minimization
are highly e�ective in surface reconstruction of real scanned objects. Second, we show that
this problem can be solved e�ciently by convex optimization techniques. We demonstrate
that our method runs on large data sets within a reasonable time.

Most aspects of this project belong to the realm of computer graphics. Nevertheless,
the numerical aspect of solving the linear equations involved in the interior point method
was crucial and is highly relevant to this thesis. I was involved both in the numerical
aspect and in the computer-graphics aspect of the project. Section 1.5 focused on the
numerical aspects of the project. For completeness, this chapter follows the paper closely
and its main foci is the computer graphics aspects.

5.2. Related Work 104

Figure 5.1.2. A 2D demonstration of our `1 sparse reconstruction method
applied to a synthetic V-shaped model. Given a 2D noisy curve (left), the
point orientations are solved �rst, using an interior point solver (middle).
In the second step, the correctly computed orientations are used to recover
consistent positions. The rightmost �gure is the V-shape result of our al-
gorithm.

5.2. Related Work

In this section we provide a review of relevant work separated into two parts. First, we
focus on surface reconstruction methods in the context of sharp feature approximation.
Then, we review methods for sparse signal reconstruction and total variation.

5.2.1. 3D Surface Reconstruction. Since the early 1990s, there has been a sub-
stantial amount of work in the domain of surface reconstruction from range scanned data.

Moving Least Squares (MLS) [191] is a classical and popular method for functional
approximation. Levin [144] and Alexa et al. [7] have demonstrated its e�ectiveness and
promise for representing point set surfaces. A number of papers have followed, improving
and extending the MLS operator; see [6, 8, 9, 190, 83, 139]. At the core of these
methods is an iterative projection that involves a local optimization to �nd the (local)
reference plane and a bivariate polynomial �tting. Although state-of-the-art MLS based
methods handle non-uniform data and noise, these methods are limited by the locality of
the operator.

MLS-based techniques are ideally designed to reconstruct smooth surfaces. To re-
construct sharp features, various approaches have been proposed. Methods that rely
on an explicit representation of sharp features [176, 2, 114] classify the input samples
into piecewise linear components to model sharp features. A more challenging task is to
automatically detect and reconstruct features present in noisy point clouds in a global
framework.

Several feature aware �lters have been developed for 3D mesh denoising and smooth-
ing [98, 134]. Following image denoising approaches [212], they use an underlying Gauss-
ian smoothing kernel that accounts for position and normal similarity in a continuous
manner. Samples across a sharp feature can be seen as outliers, and robust statistics-
based methods are presented in [158] to locally deal with those outliers and reconstruct
sharp features. Similarly, Fleishman et al. [97] derive an iterative re�tting algorithm that
locally classi�es the samples across discontinuities by applying a robust statistics frame-
work. More recently, [70, 163, 147, 148] have presented robust methods for surface

5.2. Related Work 105

reconstruction from point clouds, which handle sharp features and noise. Common to
all these methods is their locality approach; both detection and reconstruction of sharp
features are performed within a local context. This leads to the possible detection of local
minima, where locally, high noise-to-signal ratio yields redundant features or in the other
extreme over-smoothing. This phenomena is demonstrated in Figure 5.4.1 (middle row),
which show the result of applying a bilateral �lter (local method) on a shallow V-shaped
noisy model. In contrast, we apply a global method that solves for the whole surface at
once, avoiding such e�ects and generating a global optimal solution that preserves the
sharp features (bottom row).

Note that some of the local methods discussed above, use some form of `1-norm mini-
mization. Nevertheless, their usage is fundamentally di�erent from our method. In their
methods `1 minimization is applied as a robust statistic, based on the observation that
data across discontinuity can be viewed as outliers. Thus, the `1 minimization is used to
make the local �lter more robust. Nevertheless, their local nature poses inherent limita-
tions. In contrast, our method is based on the `1-sparsity paradigm (discussed in section
5.3) which naturally leads to a global method.

Somewhat similar to us, [189] have recently used a lower-than-`1 minimization scheme
which they apply to dynamic surface reconstruction. The problem is formulated as an
implicit incompressible �ow volume minimization which accounts for volume boundaries
using a reweighted `0.8 norm. Both works have in common the observation that a metric
below `2 better accounts for sharp features.

5.2.2. Sparse Signal Reconstruction. Sparse signal processing has had over the
last few years a signi�cant impact on many �elds in applied science and engineering such
as statistics, information theory, computer vision, and others. From a general viewpoint,
sparsity and compressibility lead to dimensionality reduction and e�cient modeling.

The general idea of `1 regularization for the purpose of sparse signal reconstruction
or feature selection has been used in geophysics since the early 1970s; see, e.g., [67]. In
signal processing, the idea of `1 regularization comes up in several contexts, including
basis pursuit [65] and image decomposition [92, 204]. In these works it is shown that
while the `2 norm yields a minimum length solution, it lacks properties of sparsity and
the reconstructed signal error is spatially spread out. Although `0 is in fact the sparsest
solution, in [86] it is shown that under bounded noise conditions, the recovered sparse
representation using `1 is both correct and stable. Similar to us, [213] show that convex
optimization techniques are useful for sparse signal reconstruction.

The `1-sparsity paradigm has been applied successfully to image denoising and de-
blurring using total variation (TV) methods [182, 181, 59, 143]. The underlying model
for TV methods aims at exploiting the sparsity of the gradient of the image. The con-
tinuous variant yields a model of a nonlinear PDE, hence is less relevant in the context
of the current work. The discrete variant, on the other hand, yields the following convex
objective function:

TV (u) = Σij ‖Diju‖2 ,

where Dij is the discrete gradient operator at pixel (i, j) and u is a vector containing the
gray-level pixel values. TV methods �lter the image by minimizing TV (u) under a certain
constraint, for example one that keeps the output su�ciently close to the input:

‖u− u0‖2 ≤ ε.

5.3. `1 Sparsity Overview 106

TV is designed for images, and hence is not directly applicable to our problem. Our
method is close in spirit to TV. Similar to their sparse gradient minimization, we formulate
our piecewise smoothness reconstruction problem as a sparse minimization of orientation
di�erences and position projections.

The analog of TV for surface denoising is total curvature (TC), which corresponds
to minimizing the integral of the local curvature values [207, 208, 94]. TC methods
preserve edges and sharp features, but by their nature, being represented by a nonlinear
PDE, they require signi�cant computational resources and an underlying parametrization.
Given the nature of TC, it seems hard to develop a convex discrete variant for it.

Rather than working on curvatures, we examine the normal �eld of the surface. This
allows us to develop a convex `1-based formulation. It should be stressed that convexity is
of much importance, since it gives rise to a robust, e�cient and stable solution procedure,
in contrast to non-convex nonlinear problems such as the above mentioned ones.

5.3. `1 Sparsity Overview

Suppose we are given discrete samples of a continuous time signal u(t). Signal re-
construction deals with the problem of reconstructing u from those samples as a linear
combination of basis functions φi ∈ Rn, i = 1, ...,m, with m > n. The problem amounts
to �nding the coe�cients αi such that

u =
m∑
i=1

αiφi.

The Nyquist sampling theorem states that the number of samples needed to recon-
struct a signal without error is dictated by its bandwidth. Inside the bandwidth the signal
can be dense, containing information in all frequencies. Nevertheless, it has been shown
in a set of seminal papers [55, 86], that when the signal is sparse, i.e. only a small set of
frequencies are present, the signal can be reconstructed from a number of samples much
lower than required by Nyquist's theorem using `1 minimization.

Sparse signal reconstruction utilizes the fact that if the underlying signal indeed has a
sparse representation, then its coe�cients α can be cast as the solution of the optimization
problem:

min
α
‖α‖0 s.t. u(tj) =

m∑
i=1

αiφi(tj),

where the samples are given at times tj. The zero norm, ‖.‖0, represents the number of
nonzero elements in a vector. Unfortunately, formulating the problem in terms of this
norm requires a combinatorial solution time; the problem is highly non-convex. It is thus
common practice to replace `0 by (the convex) `1 norm. It has been shown [55, 86, 213]
that in some cases minimizing the `1 norm is equivalent to minimizing the `0 norm.

It is well established in the scienti�c community that in presence of discontinuities,
`2 minimization tends to produce solutions that are smooth. To overcome this problem,
the iterative reweighted `2 minimization (IRLS) method has been introduced [128] that
achieves lower-than-`2 sparsity using a predesigned reweighting scheme. The weights
essentially concentrate the error at discontinuities and enhance sparsity. Formulating an
`1 minimization scheme instead, achieves sparsity in a much more direct way. Although
theoretically `1 minimization can be approximated using IRLS, interior point methods

5.4. Reconstruction Model 107

Figure 5.3.1. A comparison of applying `2 (black), `1 (green) and
reweighted-`1 (red) to a set of noisy 2D orientations (blue). Sharpness in
the reconstruction �rst appears in the `1 norm and is enhanced by reweight-
ing.

(like the one we use) are usually faster and more reliable in terms of convergence and
stability.

Sparse reconstruction is a broad methodology with many �avors. In some application
areas, the basis functions are either known or prede�ned by the method. In these cases it
is often possible to establish formal guarantees on the reconstruction. The most notable is
compressive sampling which economically translates data into a compressed digital form
subject to `1 minimization; for a survey see [52]. Other sparse reconstruction methods
and most notably TV �lters, do not assume a prede�ned overcomplete dictionary. Instead,
these methods assume sparsity under some transformation, and set up an optimization
scheme that �lters the signal using the sparsity prior.

Our method is inspired by sparse `1 �ltering methods like TV. As already mentioned,
given that our scan data is sampled from a piecewise smooth shape, we seek to approx-
imate it by a sparse set of smooth pieces that connect at the edges. We approximate
smoothness in terms of pairwise orientation di�erences; next, positions are integrated
from orientations by assuming local planarity. We provide the exact details of our formu-
lation in the next section.

It is important to discuss the relationship between `1 minimization and sparse meth-
ods. Broadly speaking, there are two major research domains where `1 minimization has
been extensively applied: robust statistics (i.e. as an M -estimator) and sparse recovery.
Robust statistics use `1 due to its robustness to outliers. Sparse recovery methods use `1

as an approximation of `0. The problem is formulated such that the solution is a sparse
vector, and `1 is used to �nd a sparse-as-possible approximation. Our method belongs to
the latter class of methods.

5.4. Reconstruction Model

Since scanned information is generally noisy, we cannot assume that we have high
quality point orientations, and rely on that in our solution procedure. Hence, similarly
to [149], we decouple orientations and positions. We solve �rst for the orientations, and
then use them to compute consistent positions. We formulate both problems in a similar

5.4. Reconstruction Model 108

`1 nature, yielding a consistent solution. For a 2D demonstration of this process see
Figure 5.1.2.

Our goal is to formulate a global surface approximation that is piecewise smooth and
consists of a sparse set of singularities at sharp edges. We denote as P (X,N) a point
cloud de�ned by positions xi ∈ X ⊆ R3 and corresponding orientations ni ∈ N ⊆ R3.
Thus, a point is de�ned by the pair pi = (xi, ni).

Our orientation reconstruction model is based on the same key observation made by
[208]: smooth surfaces have smoothly varying normals, thus penalty functions should be
de�ned on the surface normals. However their method assumes a local parametrization
of the surface and involves solving second-order PDEs. These limitations have led us to
adopt a simpli�ed generic approach. Instead of using a quadratic form for curvature, we
use pairwise normal di�erences as an estimator for shape smoothness. If two points pi and
pj belong to the same smooth part, and the distance between them is small enough in local
feature size, then ni ≈ nj. Furthermore, we assume that there is a minimum crease angle
at singularities between smooth parts. Hence, at crease angles where pi and pj belong to
di�erent smooth parts, the distance between ni and nj is above a small threshold τ . This
leads to an observation that the reconstructed normals should be such that only a small
(i.e., sparse) number of local normal di�erences are large.

We use computed orientations to de�ne consistent positions by assuming that the
surface can be approximated well by local planes. Given a pair of neighbor points (pi, pj),
we examine nij · (xi − xj) (where nij is the average normal). Indeed, if both pi and pj
belong to a smooth part of the surface then nij · (xi − xj) ≈ 0. At sharp features we
expect |nij · (xi − xj)| > 0.

Note that this last assumption is not necessarily true and in some point con�gurations
nij · (xi − xj) ≈ 0 even at sharp features (e.g. pi and pj are equidistant from both sides
of a sharp perpendicular edge). Nevertheless, such speci�c con�gurations do not occur
much in practice and the use of large neighborhoods for each point compensates for this
discrepancy.

In the following subsections we distinguish between an arbitrary point cloud P (X,N),
the input point cloud P (X in, N in), output point cloud P (Xout, N out) and the intermediate
point cloud after reconstructing the orientations P (X in, N out).

Re-weighted `1. We use in this work a re-weighted `1 scheme in order is to achieve
lower-than-`1 sparsity. Such an aggressive sparsity is desired in cases where `1 is too
smooth. Our motivation for using re-weighting is drawn from the nature of our prob-
lem. For scanned models it is common to have a high correlation of noise in the normals.
This e�ect occurs since normals are commonly approximated using local PCA and it is
enhanced since scanners tend to sample more points near sharp edges. While `1 mini-
mization works well for uncorrelated random noise, it penalizes high values too strongly
to break correlation-induced smoothness in the normals.

A higher degree of sparsity can be accomplished by driving the minimization norm
below `1, using a norm `p , 0 < p < 1. Unfortunately, such penalty functions are
non-convex. Instead of applying them directly, we use `1 as the basic building block,
and achieve the e�ect of lower-than-`1 sparsity using re-weighting. Here we rely on the
theoretical observations made in [56], by which re-weighting within the `1 realm may
enhance the sparsity and signi�cantly improve the quality of the reconstruction. We can

5.4. Reconstruction Model 109

Figure 5.4.1. A comparison between `1 sparse reconstruction and bilateral
�ltering applied on a series of synthetic shallow 2D V-shaped models with
di�erent signal-to-noise ratios. Top, left-to-right are the noisy inputs with
angles 140◦, 150◦ and 160◦ and noise of 1.45%, 1.20% and 1.00% respectively.
Middle is the result of applying a local bilateral �lter. Bottom is our `1

sparse reconstruction.

see in Figure 5.3.1 that re-weighted `1 is sparser than `1 and hence achieves a better
approximation in this example.

5.4.1. Orientation Reconstruction. Our orientation minimization consists of two
terms: one is the global `1 minimization of orientation (normal) distances; the second
amounts to constraining the solution to be reasonably close to the initial orientations.
Following the discussion above, our minimization term is composed of the normal dif-
ferences between adjacent points pi and pj, formulated as a pairwise penalty function
cNij :

cNij (N) = ‖ni − nj‖2 .

For a piecewise smooth surface the set {cNij ≥ τ} is sparse for some small τ depending on
the smoothness of the surface, so it makes sense to de�ne a global weighted `1 penalty
function CN :

CN(N,W,E) =
∑

(pi,pj)∈E

wijc
N
ij (N)

where W = {wij} is a set of weights whose role is to achieve lower-than-`1 sparsity as
discussed above, and E is the adjacency set computed using k-nearest neighbors. We
perform two `1 iterations. The �rst iteration is unweighted. Using the results of the �rst
iteration, we compute weights and re-solve. The weights are set to

wij = e−(θij/σθ)4 ,

where θij is the angle between the initial normals of pi and pj and σθ is a parameter
(usually set to 10 degrees). We use an exponent of 4 instead of the usual 2 for a more
aggressive sparsity enhancement.

Notice that CN(N,W,E) is in fact the `1-norm of the |E|-element vector
[
· · · wijc

N
ij (N) · · ·

]
.

We compute the new orientations as a minimization of the penalty function:

N out = arg min
N

CN(N,W,E)

5.4. Reconstruction Model 110

Figure 5.4.2. Reconstruction of a scanned iron vise. Left to right: the
original vise photo; the noisy scan and a zoomed region with its correspond-
ing cross section (bottom); our `1 reconstructed model; Rightmost is the
zoomed result, demonstrating the sharp piecewise-smooth reconstruction
and its cross section (bottom).

To avoid the degenerate minimum of N out = 0 in our minimization we impose additional
constraints on the system. We require change in normal orientation to be within some
prescribed expected noise level (γn). This comes in the form of imposing a bounded
`∞-norm on the orientation change. We de�ne our global optimization problem by:

N out = arg min
N

∑
(pi,pj)∈E

wij ‖ni − nj‖2 s.t. ∀i
∥∥ni − nini ∥∥2

≤ γn

This is a convex optimization problem. Imposing the additional normalization constraints
‖nouti ‖2 = 1 will result in a non-convex optimization problem. Therefore we solve and
renormalize the solution afterward. Renormalization is usually mild since we constrain
orientations in the solution to be close to originals.

Initial orientations. Although our method reconstructs orientations based on their ini-
tial values, it does not require them as raw-inputs. Indeed, our implementation loosely
approximates orientations from point-positions by applying a local PCA with �xed size
neighborhoods. Although more advanced techniques exist for approximating point orien-
tations [84], our algorithm successfully handles coarse initial orientation approximations.
Therefore, using such a simple heuristic was su�cient in our case.

5.4.2. Positions Reconstruction. Given the reconstructed normal orientation ob-
tained from the previous step, we reconstruct point position by assuming a local pla-
narity criteria. For each pair of neighbor points (pi, pj) ∈ E we de�ne a penalty function
cXij (X,N); it measures the projection distance of the points from the local plane de�ned
by their average normal nij and average position xij:

cXij (X,N) = |nij · (xi − xj)| .

For a piecewise smooth surface the set {cXij ≥ τ} is sparse for some small τ depending
on the smoothness of the surface and sampling resolution, so it makes sense to de�ne a
global weighted `1 penalty function

CX(X,N,W,E) =
∑

(pi,pj)∈E

wijc
X
ij (X,N) .

5.5. An E�cient Convex Optimization Solver 111

The weights W = {wij} are designed to favor smooth parts over non-smooth parts, so we
use the same formula as the one used for orientations, but we recompute them using the
new orientation values.

We �nd the new positions as a minimization of the penalty function where N out is
already known and kept �xed:

Xout = arg min
X

CX(X,N out,W,E) .

To minimize the amount of degrees of freedom we restrict ourselves to movement along
normals. This fairly mild restriction has several bene�ts: it reduces the problem size and
avoids the known e�ect of point clustering. Moreover, in our early experiments, we have
noticed no signi�cant bene�t in using general movement. Thus, we de�ne reconstructed
positions as

xi = xini + tin
out
i ,

and our local penalty functions are

cXij (X,N
out) =

∣∣noutij · (xi − xj)
∣∣ =

∣∣(noutij)Tnouti ti − (noutij)Tnoutj tj + (noutij)T ·
(
xini − xinj

)∣∣ .
The goal penalty function becomes

CX(X,N out,W,E) = ‖At+ f‖1 ,

where A ∈ R|E|×|P | and f ∈ R|E| (|.| is the size). Each row of A corresponds to a single
(pi, pj) ∈ E, and is equal to[

· · · wij(n
out
ij)Tnouti · · · −wij(noutij)Tnoutj · · ·

]
.

Each index in f corresponds to a single pair (pi, pj) ∈ E and is equal to

fij = (noutij)T ·
(
xini − xinj

)
.

We regularize the problem by constraining the norm of the correction term

‖t‖2 ≤ γx,

where γx is a parameter proportional to the noise level. We use the following formula to
determine γx:

γx = 0.7 · ηx`(P)
√
|P |

where `(P) is the length of the largest diagonal of the bounding box of the points in P ,
and ηx is the assumed noise level (in percents of the object size). Our implementation
assumes ηx is a parameter provided by the user. Nevertheless, since ηx is directly related
to noise, it can be approximated from the local point covariance matrix in the spirit of
[169].

Overall, to �nd t we solve the following convex optimization problem:

arg min
t
‖At+ f‖1 s.t. ‖t‖2 ≤ γx .

5.5. An E�cient Convex Optimization Solver 112

Figure 5.5.1. Comparison between our `1 method and state-of-the-art
robust reconstruction methods: In (a) we show a noisy fandisk with noise
in positions of 1% of the bounding box. Output LOP (b), DDMLS (c),
RIMLS (d) and our `1 method (e). The bottom row contains, for each of
the above, the cross-section of a corner and a top orthographic view.

5.5. An E�cient Convex Optimization Solver

In the previous sections we formulated our method as a sequence of convex optimiza-
tion problems. These problems are nonlinear, but since they are convex they can be solved
e�ciently and reliably. Formulating the problem as an `1 minimization allows us to use
an interior point solver, which usually converges faster than IRLS. We show in section
5.6 that our solver is indeed fast and reliable.

The problems described in Section 5.4 are second-order cone problems (SOCP). That
is, problems of the form

min
x
pTx s.t. ‖Aix+ bi‖2 ≤ cTi x+ di.

We now describe a technique for solving the problem described in Section 5.4.2. A similar
technique can be used to solve the problem described in Section 5.4.1. Nevertheless, for
solving orientations we currently use the external package called CVX [110], which we
found su�cient for our needs.

We recast

arg min
t
‖At+ f‖1 s.t. ‖t‖2 ≤ γx .

as the second-order cone problem (SOCP) by �rst adding variables u ∈ RM . We set
x = (t, u) and set p = (0N×1 1M×1). Each row of A adds two inequality constraints

Ai,:t− u+ fi ≤ 0

and

−Ai,:t− u+ fi ≤ 0

5.5. An E�cient Convex Optimization Solver 113

where Ai,: is row i of A. We get the following equivalent SOCP:

min
t,u

M∑
i=1

ui s.t. At− u+ f ≤ 0

−At− u− f ≤ 0
1

2

(
‖t‖2

2 − γ
2
x

)
≤ 0.

where M = |E| (size of adjacency list) and N = |P | (number of points).
We implement a primal solver, using a log-barrier method [47, 53]. (See [150] for a

primal-dual formulation). The method involves solving a series of nonlinear minimization
problems of the form

(tk, uk) = arg min
t,u

M∑
i=1

ui +
1

τk

2M+1∑
i=1

− log (−gi (t, u)) ,

where τk > τk−1 and each gi corresponds to a constraint in the SOCP (each row of A
de�nes two constraints; the constraint on the size of t is the last constraint). The inequality
constraints {gi} have been incorporated into the functional via a penalty function which is
in�nite when constraints are violated and smooth elsewhere. As τk gets large the solution
tk approaches the optimal solution. The method stops when τk is large enough, based on
the duality gap (see [47, 53] for more details). Each nonlinear minimization problem is
solved iteratively using Newton's method, i.e. each Newton iteration involves solving a
linear system of equations.

Let us write g(1) = At − u + f , g(2) = −At − u − f and g(γ) = 1
2

(
‖t‖2

2 − γ2
x

)
. For a

vector v denote by D(v) the diagonal matrix with v on its diagonal, and v−1 the vector
with the values in v inverted. For our SOCP each Newton iteration involves solving a
series of normal equations of the form(

ATΣtA− g−1
(γ)IN×N + g−2

(γ)rr
T
)

∆t = w0,

where Σt = Σ1 − Σ2
2Σ−1

1 , Σ1 = D(g(1))
−2 + D(g(2))

−2, Σ2 = −D(g(1))
−2 + D(g(2))

−2 and
r = t ∈ RN is a dense vector. The solution of the linear system is the search direction of
the corresponding Newton iteration.

Each Newton step requires the numerical solution of a linear system of equations. It is
imperative to solve these equations e�ciently, and this requires dealing with sparsity and
conditioning issues. The matrix of the normal equations is symmetric positive de�nite,
but for large scale problems it tends to be ill-conditioned, which in turn may result in
an incorrect search direction. Furthermore, the vector r is dense, whereas the original
problem is sparse. Therefore, factoring the matrix using the Cholesky decomposition
may require a prohibitive amount of computational work and storage allocation. It is
thus preferred, both from a numerical stability point of view and from a sparsity point of
view, to adopt an iterative solution technique. We use the LSQR method [166], which is
especially suited for least-squares problems. We write

Ã =

 Σ
1/2
t A

(−g(γ))
−1/2IN×N

g−1
(γ)r

T

 ,

5.6. Results and Discussion 114

and the search direction can now be found by solving

min
∆t

∥∥∥Ã∆t− w
∥∥∥

2
,

where

w =

 Σ
−1/2
t (g−1

(1) − g
−1
(2) − Σ2Σ−1

1 (τk1N×1 + g−1
(1) + g−1

(2)))

0N×1

1


For brevity we omit the formula for w0, but state that w0 = ÃTw.

To deal with the dense row associated with the vector r, we form a preconditioner
using the strategy proposed in chapter 3 (and [20]). We remove the dense row from Ã;
let us call the resulting matrix Ã0. We then compute the Cholesky factorization of the
sparse matrix associated with Ã0:

RTR = ÃT0 Ã0,

using cholmod [79]. The R factor is used as a preconditioner for the augmented system
associated with Ã, and now we apply LSQR. The important point here is that removing r
amounts to a rank-1 change of the matrix that corresponds to the least squares operator.
Therefore, only two iterations are needed for convergence in exact arithmetic (see chapter 3
and [20]). The matrix ÃT0 Ã0 may become very ill-conditioned, which can sometimes
cause the Cholesky factorization to fail (by encountering a negative diagonal value due
to inaccurate arithmetic). In such cases we use SuiteSparseQR [75] to compute a QR
factorization instead and use R as a preconditioner.

Finally, we use one additional heuristic to speed up our solver. We have noticed that
in some of the iterations,

∣∣g(γ)

∣∣ tends to be considerably smaller than the maximum value

on the diagonal of Σt. In those cases, LSQR on Ã without a preconditioner tends to
converge very quickly, because the singular values of Ã are strongly clustered. We thus
work on Ã directly when conditioning allows for it (if ‖Σt‖2/

∣∣g(γ)

∣∣ ≥ 103), which saves
the cost of a preconditioner solve.

The iterative method stops when the backward error drops below a certain threshold.
This ensures backward stability relative to the desired level of accuracy. We use LSQR
so the relevant condition number is κ(Ã) (and not κ(ÃT Ã) as is the case for the normal
equations). This ensures that a good search directions is found, which is crucial for the
log-barrier method, even if low convergence threshold is used. The threshold we used in
our experiments is 10−8. As for accuracy of interior point method, its stopping criteria
is based on a threshold as well. Here we found that only a coarse level of accuracy was
su�cient and further adjustments had no visual signi�cance.

5.6. Results and Discussion

We present results that demonstrate the viability and e�ectiveness of our method.
For rendering purposes, our point set surfaces were meshed using the "Ball Pivoting"
algorithm [33] and rendered using a standard illumination model.

We show in Figure 5.1.2 a simple example where we apply our method on a noisy
2D curve to recover its sharp features. In fact, for this simple synthetic model we can
accomplish a perfect reconstruction, since it was sampled from a perfect piecewise linear
�V" curve. `1 minimization generates an exact piecewise linear result with one singular

5.6. Results and Discussion 115

Figure 5.5.2. Comparison between our `1 with state-of-the-art reconstruc-
tion methods applied to a noisy blade model that originally contains sharp
edges and smooth parts. We show the reconstruction results of LOP (a),
DDMLS (b), RIMLS (c) and our `1 method (d).

point at the apex. For natural, real-world objects, we cannot expect such precise recon-
struction. Nevertheless, using our global sparse method we obtain high quality results
even for fairly complex sharp objects with relative high noise level (see Figure 5.4.2).
The resulting models are piecewise smooth, and the error concentrates on edges, as can
be seen in the corresponding zoomed regions and cross sections.

In Figures 5.5.1 and 5.5.2 we provide a comparison with state-of-the-art feature-aware
reconstruction methods applied to the classical fandisk and blade models. In both models,
we insert noise in the point positions in the amount of 1% of the bounding box size. In
Figure 5.5.1, we show the results of LOP [148], DDMLS [147], RIMLS [163] and our
method. The superiority of `1 over the other methods is evident; sharp features are
recovered to a high level of accuracy, while smoothness is preserved in other regions.

Figure 5.5.2 shows a similar example where local feature-aware reconstruction methods
(DDMLS, RIMLS) are able to faithfully recover sharp features (blade edges), however at
the price of erroneously detecting local noise as redundant features (blade facets). Note
also the lack of sharpness of some of the corners for the �rst two methods. In contrast,
our global method does not have this �aw, and it correctly locates sparse singularities on
the edges in a much cleaner manner.

For all the comparisons, we followed the guidelines provided in the distributed code
by the authors and the parameters speci�ed in their publications. We explicitly provide
the parameters that we used:

• DDMLS: using cubic piecewise polynomials m = 3, local neighborhood size
h = 0.35% of bounding box.
• LOP: max in�uence radius size h = 0.3% of bounding box, repulsion parameter
µ = 0.3, 10 iterations.
• RIMLS: local weight radii h = [5 − 7] times local point spacing, degree of
sharpness σn = 0.75, 15 projection iterations.

Figures 5.4.2 and 5.7.1 further illustrate the e�ectiveness of the `1 approach in terms of
recovering the �ne features of the object, while leaving the other parts smooth.

We have also applied our method to objects with less evident sharpness in the features.
We observe that our method could handle such objects well (Figures 5.7.2 and 5.7.3). Note

5.6. Results and Discussion 116

Table 1. Running times of our algorithm

Model Size (points) Time (min) Model Size (points) Time (min)

fandisk 17,106 3.5 face 110,551 12
blade 24,998 4 Buddha 150,737 27
knot 25,455 7 funnel 201,655 21

armadillo 99,416 16 Escher 240,909 22

that the ability to reconstruct smooth surfaces with no evident sharp features is due to the
fact that our norm is `1 and not purely `0. In other words, we balance between sparsity
and local smoothness. In smooth parts with no evident singularities `1-minimizations acts
much like `2-minimization (much like the way median acts like mean when no outliers
are present). In the scanned human face, we compared our global `1-minimization with a
global `2-minimization. We note that even in this case, where sharpness is low, `1 provides
a result of higher visual quality than `2.

In Figures 5.7.2 and 5.7.4 we demonstrate the behavior of our method in cases where
the signal-to-noise ratio was low in the proximity of sharp features. In Figure 5.7.2, we
reconstruct a scanned funnel that shows a shallow edge across the model. Figure 5.7.4
shows a similar shallow feature along the hand of a scanned Buddha statue. In both
examples our method was able to recover sharpness to a large extent without smoothing
it.

In Figure 5.7.5 we show the result of running the method on a large (240K points)
scanned model of Escher's statue. It took our solver roughly 20 minutes to compute the
optimal global solution. Note that despite its large size, our method does not fall into
local minima. Our performance timings are reasonably good, considering the size of the
problems. They are in the range of minutes (see Table 1) and were measured on a 64-bit
Intel Core2 2.1 GHz using MATLAB.

Sensitivity and Parameters. Sensitivity to parameters is always a concern for methods
of our type. Penalty methods at large require the choice of parameters whose optimal
values are often either unknown or prohibitively expensive to compute (e.g. the smallest
singular value of a linear operator). This is an area of active research in which progress
is constantly being made, but much is still not understood.

Our algorithm is not particularly sensitive to parameters, especially in the positions
phase. Table 2 provides a detailed list of the parameters involved in our method, and the
actual range of values used in our experiments. The parameter range is narrow, and use of
default parameters along with adjustments of γn and ηx according to the perceived noise
level yields high quality results in a consistent fashion. Speci�cally, to obtain the results
in this chapter we start with the default parameters. Next, based on the amount of noise
and sharpness in the results we �ne tuned the parameters to gain further improvement
(see Figure 5.7.3 (c), (d) for a comparison between default and �ne tuned parameters).

We do observe that the parameter that a�ects the output the most is γn. Since γn
is a measure of noise level, we require a value large enough to obtain correct piecewise
smooth normals while avoiding a too high value that may cause oversmoothing. This is
a classical signal-to-noise ratio issue, which we explore in Figure 5.4.1, which shows three
excerpts of a series of shallow V-shaped models of di�erent angles and noise level. As
expected, our method can handle less noise as the angle becomes shallower (i.e. weaker

5.6. Results and Discussion 117

Table 2. Parameters

Parameter Range

Neighborhood size for initial (PCA) normal estimation (k) 10− 30
Neighborhood size in orientation phase (k) 3− 6

Max correction size of normals in �rst iteration (γn) 0.10− 0.15
Max correction size of normals in second iteration (γn) 0.03− 0.07

Angle for reweighting, normals phase (σθ) 5◦ − 20◦

Neighborhood size in positions phase (k) 8− 12
Assumed noise level in positions (ηx) 0.02− 0.03

Angle for reweighting, positions phase (σθ) 4◦ − 20◦

signal). The value of γn corresponds to noise level: 0.15 for 160◦, 0.18 for 150◦ and 0.30
for 140◦. Like many methods, our method tends to be more sensitive to parameters if the
signal-to-noise ratio approaches the method's limit.

Some of this sensitivity may be attributed to the simple approach we use to compute
initial orientations, using PCA with constant neighborhoods. In the presence of highly
non-uniform sampling densities and noise, using a more re�ned technique for initial nor-
mals approximation may be more adequate. Finally, global optimization methods tend
to be in general more sensitive to parameters than local methods.

On the other hand, our global approach has some clear advantages. Consider again the
shallow V-shaped models of Figure 5.4.1. With no global considerations, a local method
will keep many local sharp features or drop all of them. Using our global `1 method a
single feature that concentrates all the error at one point is a feasible solution even for
relatively low signal-to-noise ratios.

Limitations and Future Work. In some of our synthetic examples, our method has
di�culty in correctly projecting points lying exactly on edge singularities. This is because
orientations are essentially not de�ned there. Our method tends to concentrate errors on
those edge samples, leaving them as error spikes outside of the model. We observed this
phenomenon only in arti�cially noised synthetic models. This limitation can be overcome
in the postprocessing stage, by applying a simple low-pass �lter with a very small kernel
that removes those singular spikes. For fairness, in our comparisons on synthetic objects
we have applied the same �lter for any other result that was improved by it. We did not
apply the �lter to any reconstruction of the real scanned objects.

Another limitation of our method is its relatively high computational cost. Our convex
formulation incurs a high cost in the normals computation step, which has been addressed
only partially so far. We believe, however, that it is possible to design a very e�cient
solver. Our experiments show that it is su�cient to solve the nonlinear iterates to a crude
tolerance, and hence accelerate convergence, while keeping a high quality of the output.
Furthermore, the preconditioner, which is based on a rank-1 correction, preserves sparsity
of the underlying operator, and the overall iteration count for the optimization problem is
�xed. As part of our future work, we plan to fully optimize our presented convex solver,
and we believe that its performance can be improved considerably.

5.7. Conclusions 118

Figure 5.7.1. The `1 method applied to a sharp knot, with 1% noise added
to the positions of the synthetic knot model (top left). The recovered knot
appears on the top right. At the bottom, a zoom on a reconstructed sharp
edge: from left to right � the initial noisy edge, point cloud after `1, and
reconstruction.

5.7. Conclusions

We have introduced an `1-sparse approach for reconstruction of point set surfaces with
sharp features. Our method is based on solving separately for the orientations and the
positions and is formulated as a sequence of convex optimization problems. A key point
here is that convexity allows for �nding a global optimum and deriving e�cient solvers.
We incorporate a re-weighted technique to further enhance sparsity. A novel iterative
solver tailored to the problem and based on a preconditioned iterative solver has been
derived and implemented. As we demonstrate on several examples, the results are of high
quality.

This work �ts within a growing body of literature on methods whose principal goal is to
enhance sparsity. We believe that the approach we use and our solution methodology may
prove useful and e�ective for many problems in computer graphics. As part of our future
work, we plan to look at extensions and other problems, and optimize the performance of
our convex programming solver.

5.7. Conclusions 119

Figure 5.7.2. Result of applying our method to a scanned funnel (left).
The scan contains shallow sharp features that are noisy.

Figure 5.7.3. A comparison of minimization of `2-norm (b) vs. our `1

sparse minimization (c, d) on a scanned noisy human face (a). Although
there are no pure sharp features, the method works well also on general
models. In (c) we show the result of using our default parameters and (d)
is obtained after �ne tuning.

Figure 5.7.4. Result showing our method applied on a noisy scan of the
Buddha statue (left). In the zoomed in regions of the hand, a small sharp
feature is present in the original statue. Although hidden by the noise in the
scan, our method was capable to pick it using a sparse global representation
of the data.

5.7. Conclusions 120

Figure 5.7.5. Result of applying our method to a large 240K noisy point
cloud. Left is a highly complex physical model of an Escher statue, middle
is the piecewise smooth point cloud after `1 optimization. On the right we
show a zoomed cross-section comparison between the input (top) and our
sharp result.

CHAPTER 6

Experimental study of solving HPD systems using inde�nite

incomplete factorizations

6.1. Introduction

Preconditioners based on incomplete factorization methods have long been used with
Krylov subspace methods to solve large sparse systems of linear equations [30, 184].
While the Cholesky factorization LL∗ of a Hermitian positive de�nite matrix is guaranteed
to exist, there is no such guarantee of the existence of an incomplete factorization of this
form. The reason is that the errors introduced due to dropping entries from the factor
may result in zero or negative diagonal values.

The traditional approach to address this problem is to force positive de�niteness by
modifying the factorization process. Benzi's survey [30] of these methods notes that the
various techniques tend to fall into two categories: simple and inexpensive �xes that of-
ten result in low-quality preconditioners, or sophisticated strategies yielding high-quality
preconditioners that are expensive to compute. Some techniques to circumvent possi-
ble breakdown of incomplete Cholesky factorization involve using an LDL∗ factorization,
where D is diagonal; this can prevent breakdown in the construction of the preconditioner,
but the preconditioner might be inde�nite. One possibility, that has not been researched
yet, is to compute an incomplete LDL∗ factorization and force positive de�niteness by
perturbing tiny or negative entries in D after the factorization. A similar technique was
used in chapter 3 (and [20]) to solve least-squares problems using perturbed QR factoriza-
tions. Gupta and George [116] propose switching from LL∗ to LDL∗ factorization upon
encountering negative diagonals to complete the factorization without breakdown. Their
approach does not require the preconditioner to be positive de�nite. An inde�nite precon-
ditioner can be problematic, even when the original matrix is positive de�nite, because it
can result in a breakdown of the symmetric Krylov-subspace solvers like CG [124] and
MINRES [165] . In CG, the breakdown is caused by a division by zero if theM−1-norm of
the residual becomes zero; In MINRES, the breakdown is caused when trying to compute
the square root of a negative value, when the algorithm computes the M−1-norm of the
new basis vector. Furthermore, the correctness proof of both CG and MINRES rely on
the existence of a Cholesky factor of the preconditioner [184].

As a result, the conventional wisdom has been that alternate Krylov-subspace meth-
ods, such as symmetric QMR [101, 102], GMRES [185], or BiCGStab [217], etc. must
be used if the preconditioner is inde�nite. However, using GMRES is expensive due to
the long recurrence (expensive orthogonalization steps and a high memory requirement).
Algorithms like QMR or BiCGStab do not minimize a norm of the residual or a norm
of the error as GMRES, CG, and MINRES do. In general, it is not possible to get both
optimality and a short recurrence with a non-symmetric method [95].

121

6.2. The U-conjugate Arnoldi Iteration 122

Algorithm 1 U -Conjugate Arnoldi Iteration

b = arbitrary, q1 = b/‖b‖U
for n = 1, 2, 3, . . .

v = Aqn
for j = 1 to n

hjn = q∗jUv

v = v − hjnqj
end for

hn+1,n = ‖v‖U (the algorithm fails if hn+1,n = 0).

qn+1 = v/hn+1,n

Although not very well known, a there exists a variant of CG which allows an inde�nite
preconditioner[14]. We will refer to this variant as PCG-ODIR1. To the best of our
knowledge this variant has not been experimentally compared to GMRES or QMR when
an inde�nite matrix is used to precondition an HPD system (the only implementation of
PCG-ODIR that we are aware of is [121]). In this chapter2 we experimentally explore
this case and develop a new variant of PCG-ODIR that addresses the numerical problems
demonstrated in the experiments. We also propose a new Krylov-subspace variant of
MINRES that guarantee convergence and allow an inde�nite preconditioner to be used.

6.2. The U-conjugate Arnoldi Iteration

The main tool that we use is a generalization of the classical Arnoldi iteration. The
classical Arnoldi iteration forms, at step n, matrices Qn+1 and H̃n such that

AQn = Qn+1H̃n,

where H̃n is upper Hessenberg and Qn+1 is unitary. Instead of requiring Qn to be unitary
we require it to be unitary relative to the U -norm, where U is an Hermitian positive
de�nite matrix. That is, we replace the condition

Q∗nQn = In×n

with the condition

Q∗nUQn = In×n .

To do so, all we need to do is replace dot-products with U inner-products, and 2-norms
with U -norms. See Algorithm 1 for the pseudo-code. It is easy to see that the classical
Arnoldi iteration is the U -conjugate iteration with U = IN×N (where N is the number of
rows in A).

1To be more precise, this variant is called simply PCG in [14]. In many cases the name PCG is used
for the preconditioned version of the traditional CG, so we decided to use the name PCG-ODIR because
this variants uses ODIR (unlike the the traditional preconditioned CG which uses OMIN).
2An earlier version of the results in this chapter were also reported in an IBM Technical Report, co-
authored with Anshul Gupta and Sivan Toledo [17]. This chapter expands on the results of the technical
report.

6.2. The U-conjugate Arnoldi Iteration 123

Like the classical Arnoldi iteration the U -conjugate Arnoldi iteration vectors span the
the Krylov subspace. We omit the proof because it is identical to the proof that the
classical Arnoldi iteration vectors span the Krylov subspace.

Theorem 6.2.1. Let q1, . . . , qn be n vectors generated by a successful application of n
iterations of Algorithm 1 on matrix A with initial vector b. Then,

span {q1, q2, . . . , qn} = Kn(A, b) .

The following theorem summarizes a few useful properties of the values generated by
the U -conjugate Arnoldi iteration. Although the non-standard inner product Lanczos
process (i.e., U -Conjugate Lanczos process) is present in the literature, the following
theorem is new, to the best of our knowledge.

Theorem 6.2.2. Let {qi}and {hji} be the values generated by the successful application
of n iterations of Algorithm 1 on matrix A with initial vector b, where 1 ≤ i, j ≤ n. Let

Qn =
[
q1 q2 · · · qn

]
,

H̃n =


h11 · · · h1n

h21
...

. . .
...

hn+1

 ,
and

Hn =
(
H̃n

)
1:n,1:n

.

Then,

(1) AQn = Qn+1H̃n,
(2) Q∗nUQn = In×n,
(3) Q∗nUAQn = Hn.

Proof. The �rst two properties follow directly from the algorithm. Multiply the
equation in property 1 by Q∗nU to get

Q∗nUAQn = Q∗nUQn+1H̃n .

It is easy to see that

Q∗nUQn+1 =
[
In×n 0n×1

]
,

so we have Q∗nUAQn = Hn. �

The U -conjugate Arnoldi has a major disadvantage for a general A: the amount
of work required to perform the nth iteration and amount of memory space needed is
O(nN + nnz(A)), where N is the number of rows in A. The classical Arnoldi reduces to
a 3-term recurrence, and Hn is tridiagonal, if A is Hermitian. The U -conjugate Arnoldi
iteration reduces to a three term recurrence, and Hn is tridiagonal, if Hn = Q∗nUAQn

is Hermitian. This happens when UA is Hermitian. When this is the case, we call the
resulting iteration the U-Conjugate Lanczos Iteration and we write Tn instead of Hn.

6.3. PCG-ODIR 124

6.3. PCG-ODIR

At its core the Conjugate Gradients method generates at each iteration an A-conjugate
basis for the Krylov subspace. That is

span {q1, q2, . . . , qn} = Kn(A, b)

and

Q∗nAQn = Dn

where

Qn =
[
q1 q2 · · · qn

]
and Dn is a diagonal matrix. Once we have found an A-conjugate basis the Conjugate
Directions method can be used to produce an optimal A-norm approximation (see �7
in Shewchuk's tutorial [192]). The classical CG method couples the creation of the A-
conjugate basis with the application of the conjugate directions method in a clever way.
A preconditioner can be used, but it must be positive de�nite, otherwise the algorithm
may fail (because of possible division by zero if the M−1-norm of the residual becomes
zero), and in any case the the correctness proof of CG rely on the existence of a Cholesky
factor of the preconditioner [184].

It is well-known that the CG iteration can be formulated instead as a Lanczos pro-
cess [165]. Using the Lanczos iteration we �nd an orthonormal basis Un such that
U∗nAUn = Tn where Tn is tridiagonal and HPD. Let Tn = R∗nRn be a Cholesky fac-
torization of Tn and de�ne

Qn = UnR
−1
n .

The columns of Qn form an A-orthonormal basis. Unfortunately, we have not advanced
towards a inde�nitely-preconditioned version of CG: Tn must be positive de�nite, so the
preconditioner must still be positive de�nite.

What is less known is that there is another, more straight-forward and robust, formu-
lation of CG as a Lanczos process. It is based on the U -conjugate Lanczos process. If A
is a Hermitian positive de�nite matrix, then we can use the U -conjugate Lanczos iteration
to �nd an optimal A-norm approximate solution to Ax = b. We do so by applying the
iteration on A, selecting U = A. After iteration n we have an A-conjugate basis to the
Krylov subspace Kn(A, b). We can use the Conjugate Directions method to produce an
optimal A-norm approximation (see �7 in Shewchuk's tutorial [192]). This version of CG
appears in [14] under the name PCG-ODIR.

PCG-ODIR can be preconditioned quite easily. Suppose that we have formed an
Hermitian preconditioner M . We can apply the A-conjugate Lanczos iteration to M−1A
since AM−1A is Hermitian. Assuming we start our iteration with M−1b, after the nth
iteration we will �nd an n-dimensional A-conjugate basis to K(M−1A,M−1b). We can
use that basis to �nd an optimal A-norm approximate solution M−1Ax = M−1b. The
pseudo-code is listed in Algorithm 2.

If both M and A are Hermitian positive de�nite, then the classical CG algorithm
produces an approximate in Kn(M−1A,M−1b) that minimizes the A-norm of the error;
i.e., it �nds an xn ∈ Kn(M−1A,M−1b) such that ‖xn− x‖A is minimized. This minimizer
is unique. This implies that under exact arithmetic, if the preconditioner is de�nite, then
both classical CG and PCG-ODIR will produce the same vectors. Therefore, PCG-ODIR
is indeed a di�erent, and more robust, formulation of CG.

6.4. Inde�nitely Preconditioned CG 125

Algorithm 2 PCG-ODIR

Input: Hermitian positive de�nite A, a right hand side b and an Hermitian
preconditioner M

q1 = M−1b

l1 = Aq1

w =
√
q∗1l1

l1 = l1/w

q1 = q1/w

r(0) = b

x(0) = 0

for t = 1, 2, . . .

γt = q∗t r
(t−1)

x(t) = x(t−1) + γtqt
r(t) = r(t−1) − γtlt
check for convergence

vt+1 = M−1lt
Ht,t = l∗t vt+1

Ht−1,t = Ht,t−1(= l∗t−1vt+1)

qt+1 = vt+1 −Ht,tqt −Ht−1,tqt−1

lt+1 = Aqt+1

Ht+1,t =
√
q∗t+1lt+1

lt+1 = lt+1/Ht+1,t

qt+1 = qt+1/Ht+1,t

end for

PCG-ODIR's advantage over classical CG is its ability to use an inde�nite precondi-
tioner and still to maintain the minimization properties. This advantage does not come
without a price: while CG needs to store 5 vectors, and do 5 vector operations per itera-
tion, PCG-ODIR needs to store 7 vectors, and do 13 vector operations per iteration.

PCG-ODIR's advantage over GMRES is the fact that it uses a Lanczos iteration, so
it does not need to store all the bases. Its advantage over QMR and BiCGStab is that
it minimizes a real norm of the error. Another potential advantage of PCG-ODIR over
GMRES and QMR is the ability to base the stopping criteria on an estimate of the A-
norm of the error. Indeed, the Hestenes-Stiefel estimate in classical CG can be easily
incorporated in PCG-ODIR. More advanced methods have been proposed [13, 107], and
some of them may be usable in PCG-ODIR.

6.4. Inde�nitely Preconditioned CG

We have implemented PCG-ODIR and compared it to other algorithms (GMRES,
QMR, BiCGStab) that work with inde�nite preconditioners. The results of these com-
parisons appear in Section 6.6. Unfortunately, the performance is rather disappointing.

6.4. Inde�nitely Preconditioned CG 126

Table 1. Numerical stability: comparing full conjugation to local conjuga-
tion. In the OILPAN (NO PRECOND) instance, the convergence threshold
was set to 10−5.

Matrix Droptol Precond

De�nite?

PCG-ODIR ORTHODIR CG

CFD1 2× 10−3 NO 125 its 77 its N/A

CFD1 4.5× 10−4 YES 85 its 69 its 85 its

CFD1 2× 10−4 YES 48 its 47 its 48 its

OILPAN NO

PRECOND

N/A 783 its 747 its 783 its

OILPAN 8× 10−3 NO 441 its 142 its N/A

OILPAN 1.5× 10−3 NO 63 its 58 its N/A

OILPAN 8× 10−4 YES 39 its 42 its 39 its

PWTK 4× 10−3 NO 149 its 103 its N/A

PWTK 1× 10−3 NO 77 its 55 its N/A

PWTK 8× 10−4 YES 61 its 55 its 61 its

PCG-ODIR is considerably faster than BiCGStab, but it is only slightly faster than QMR.
It is faster than GMRES only when both use the same amount of memory, but not when
both use the same preconditioner (in which case GMRES uses more memory). Theoreti-
cally, PCG-ODIR and GMRES should converge in about the same number of iterations,
as both �nd approximate in the same Krylov-subspace. A natural suspect for the gap
between the theoretical behavior and the actual behavior is the Lanczos process, which
is known to lose orthogonality. Greenbaum [111] (�4) discusses the loss of orthogonality
in the Lanczos process and its e�ect on CG and MINRES in detail.

A simple experiment veri�es this hypothesis. Consider a version of PCG-ODIR where
we use a long recurrence (which is more stable numerically) instead of a short recurrence
(i.e., Arnoldi iteration instead of Lanczos iteration). Under exact arithmetic both the
short recurrence and the long recurrence version of PCG-ODIR are equivalent. But,
as Table 1 suggests, under inexact arithmetic this is not the case. We see that the
long recurrence version of PCG-ODIR (labeled �ORTHODIR� the name used in [14])
does considerably fewer iterations then the short-recurrence version. We also see that
CG sometimes performs many more iterations than ORTHODIR, but happens rarely.
In particular, whenever CG performs well so does PCG-ODIR. This suggest that the
numerical problems are due to short recurrence, and it is related to the quality of the
preconditioner.

The formulation of CG as a Lanczos process was already helpful for allowing an inde�-
nite preconditioner. We now use it to explain and deal with numerical stability issues. The
basis vectors q1, q2, . . . are supposed to be A-conjugate, but due to rounding errors they
lose conjugacy. As long as the loss of conjugacy is bounded, that is ‖In×n−Q∗nAQn‖2 ≤ δ
for some small δ, we will �nd iterates that are close to their ideal counterparts under exact
arithmetic. Loss of conjugacy is not too severe if a long recurrence is used, but using a
long recurrence is wasteful in memory and computation, and usually requires a restart at
some stage. It is preferable to �nd a more economical method.

6.4. Inde�nitely Preconditioned CG 127

We propose the use of selective orthogonalization [167]. Instead of orthogonalizing the
current iterate with respect to all previous basis vectors, we (incrementally) form a small
set of vectors, say 5 vectors, and orthogonalize with respect to them (and with respect to
the last two iterates, as in the short-recurrence form). This small set of vectors should be
carefully selected so that it will restore A-conjugacy to Qn as much as possible.

A celebrated result by Paige [164] shows how to �nd such vectors for the regular Lanc-
zos process. Let q1, q2, . . . be the vectors formed by the Lanczos process on a Hermitian
matrix A and let Tn be the tridiagonal matrix Tn = Q∗nAQn. Let wj (j = 1, . . . , n) be the
eigenvectors of Tn and let zj = Qnwj be the corresponding Ritz vectors. Paige showed
that under inexact arithmetic there are constants γj,n+1 of order of the rounding unit such
that

z∗j qn+1 =
γj,n+1

|βn+1eTj wj|
where ej is the jth identity vector and βn+1 is a scalar computed during the Lanczos
iteration. An iterate has a strong component in the direction of zj only if |βn+1e

T
j wj| is

small, which also means that the Ritz vector has converged or almost converged. Selective
orthogonalization consists of saving converged and nearly converged Ritz vectors and
orthogonalizing the Lanczos iterates against them.

We have formulated CG as a Lanczos process with a non-standard inner product,
which opens the door for the use of selective orthogonalization.

To apply selective orthogonalization to PCG-ODIR, de�ne yi = L∗qi and Yi = L∗Qi

where A = LL∗is the Cholesky decomposition of A. Notice now that under exact arith-
metic {yi} is the result of applying the regular Lanczos iteration on L∗M−1L and L

∗
M−1b.

Furthermore, Yi is unitary and Y ∗i (L∗M−1L)Yi = Ti for i = 1, . . . , t + 1. Assume that
the rounding analysis of the Lanczos iteration applies to {yi} when viewed as the result
of applying the Lanczos iteration on L∗M−1L (a non-trivial assumption, yet rounding
analysis of PCG-ODIR is beyond the scope of this chapter), and let wj (j = 1, . . . , t) be
the eigenvectors of Ht and zj = Ytwj be the corresponding Ritz vectors. There exists
constants γj,t+1 of order of the rounding unit such that

wjQ
n
tAqt+1 = wjQ

n
t LL

∗qt+1 = z∗j yt+1 =
γj,t+1

|Ht+1,teTj wj|
.

Therefore, qt+1 has strong components in the A-direction of the converged or almost
converged Ritz vectors (converged to the eigenvalues of L∗M−1L).

IP-CG (Inde�nitely Preconditioned CG), our variant of PCG-ODIR that uses selective
orthogonalization, saves converged and nearly converged Ritz vectors and orthogonalizing
the Lanczos iterates against them.

In practice, we found that in order to make the idea of selective orthogonalization
practical, additional heuristics and compromises must be made. The following lists the
set of heuristic and implementation details we used. This heuristics are based on careful
engineering of the solver, and not on �rm mathematical foundations.

(1) In order to limit the amount of memory used we do not keep more then a �xed
number of converged Ritz vectors. In our experiments we kept a maximum of 8
converged Ritz vectors.

(2) Checking for convergence of Ritz vectors is expensive, and the cost grows as the
iteration progresses. Therefore, we stop looking for additional Ritz vectors once

6.5. Inde�nitely Preconditioned MINRES 128

the iteration count is bigger then some parameter. In our experiments we do not
check for convergence of the Ritz vectors after iteration 60.

(3) Checking for convergence of an eigenvalue can be done using only matrix Ht

which is fairly small. Actually forming the converged Ritz vector requires all
previous iterates. Keeping all iterates in memory will result in memory usage
even larger than GMRES's. We noticed that convergence of a Ritz vector is not
a frequent event. Therefore, we keep the previous iterates in secondary storage,
and bring them into main memory only once convergence has occurred.

(4) It is not enough to keep only converged Ritz vectors. There can also be signi�cant
errors in the direction of almost converged Ritz vectors. Therefore, only mild
convergence is required to keep a Ritz vector. In our experiments we keep a Ritz
vector if |Ht+1,te

T
j wj| ≤ 10−2.

(5) Even after a Ritz vector is kept, the next iterates may continue to improve its
convergence. We therefore keep the most updated copy of every Ritz vector.

(6) Once the set of Ritz vectors has been updated it is important to correct the latest
iterate of qt, as well as the latest iterates of x

(t) and r(t).
(7) Testing for convergence of the Ritz vectors is expensive, and it is advisable to

avoid doing it in every iteration. We noticed that usually Ritz vectors con-
verge only when loss of A-conjugacy starts to be signi�cant. That occurs when
qTi Aqt+1 is large for some i = 1, . . . , t. Keeping all previous q iterates is memory
demanding. Instead we inspect the value |(

∑t
i=1 q

T
i)Aqt+1| instead. This value

is a good indicator of the magnitude of maxi |qTi Aqt+1|. We test for convergence
once |(

∑t
i=1 q

T
i)Aqt+1| is larger than some predetermined threshold. In our ex-

periments we used the value of 1.49× 10−8 ≈ √εmachine.

6.5. Inde�nitely Preconditioned MINRES

The MINRES algorithm can be used to solve Ax = b for any Hermitian matrix, and a
preconditioner can be used as long as it is Hermitian positive de�nite. In this section we
will show a variant of MINRES that requires the opposite: any Hermitian preconditioner
can be used as long as the matrix is positive de�nite.

Suppose that A is Hermitian positive de�nite, and that the preconditioner M is
Hermitian. Like the algorithm used in Section 6.3, we use the A-conjugate Lanczos
iteration on M−1A and M−1b. We have found a matrix Tn and a basis Qn to Kn =
Kn(M−1A,M−1b) with M−1AQn = Qn+1T̃n and Q∗nAQn = In×n. A is a Hermitian posi-
tive de�nite matrix, so there exists a lower triangular matrix L such that A = LL∗. We
do not need to compute L, we use it only for the derivation of the algorithm. We will
now show how Qn and T̃n can be used to solve the equation L∗M−1Ax = L∗M−1b, which
has exactly the same solution as Ax = b.

6.5. Inde�nitely Preconditioned MINRES 129

Algorithm 3 Inde�nitely Preconditioned CG (IP-CG)

Input: Hermitian positive de�nite A, a right hand side b and an Hermitian
preconditioner M

q1 = M−1b

l1 = Aq1

w =
√
q∗1l1

l1 = l1/w, ls = l1
q1 = q1/w

r(0) = b

x(0) = 0

for t = 1, 2, . . .

γt = q∗t r
(t−1)

x(t) = x(t−1) + γtqt
r(t) = r(t−1) − γtlt
check for convergence
if (still looking for converged Ritz)

save qt and lt to secondary storage

vt+1 = M−1lt
Ht,t = l∗t vt+1

Ht−1,t = Ht,t−1(= l∗t−1vt+1)

qt+1 = vt+1 −Ht,tqt −Ht−1,tqt−1

for each converged Ritz pair (g, h = Ag)

qt+1 ←− qt+1 − (h∗qt+1)g

lt+1 = Aqt+1

Ht+1,t =
√
q∗t+1lt+1

lt+1 = lt+1/Ht+1,t

qt+1 = qt+1/Ht+1,t

if (still looking for converged Ritz AND 1
t
l∗sqt+1 ≥ threshold)

�nd decomposition Ht = V DV T

for every column v of V such that |vt| ·Ht+1,t ≤ threshold

keep (Qtv, Ltv) as a Ritz pair (use qt and lt from secondary storage).

qt+1 ←− qt+1 − (v∗L∗t qt+1)Qtv

lt+1 ←− lt+1 − (v∗L∗t qt+1)Ltv

x(t) ←− x(t) + (v∗Q∗t r
(t))Qtv

r(t) ←− r(t) − (v∗Q∗t r
(t))Ltv

end for

end if

ls ←− ls + lt+1

end for

6.6. Numerical experiments and discussion 130

Let Q̂n = L∗Qn. Q
∗
nAQn then reduces to Q̂∗nQ̂n = In×n, so Q̂n is a unitary matrix.

Every x ∈ Kn can be written as x = Qny, so we have

min
x∈Kn

‖L∗M−1Ax− L∗M−1b‖2 = min
y
‖L∗M−1AQny − L∗M−1b‖2

= min
y
‖L∗Qn+1T̃ny − L∗M−1b‖2

= min
y
‖Q̂n+1T̃ny − L∗M−1b‖2

= min
y
‖T̃ny − Q̂∗n+1L

∗M−1b‖2

= min
y
‖T̃ny −Q∗n+1LL

∗M−1b‖2

= min
y
‖T̃ny −Q∗n+1AM

−1b‖2

= min
y
‖T̃ny − ‖M−1b‖Ae1‖2.

We can iteratively �nd solutions yn to miny ‖T̃ny − ‖M−1b‖Ae1‖2 and form xn = Qnyn in
the same way as it is done in MINRES. As we can see we do not have to actually use L.
We only rely on its existence. The pseudo-code is listed in Algorithm 4. We refer to this
algorithm as IP-MINRES from here on.

A di�erent and more technical way to derive IP-MINRES would be to write the equa-
tions for MINRES on L∗M−1Ly = L∗M−1b and multiply all vectors generated by the
iteration by L−∗. The matrix L will disappear from the equations and we will get Algo-
rithm 4. In order to streamline this chapter we do not give the details of this derivation.

IP-MINRES su�ers from the same numerical problems as PCG-ODIR. Selective or-
thogonalization can be applied to IP-MINRES to produce a more robust version of IP-
MINRES. In this study we restricted ourselves to study only the plain version of IP-
MINRES (i.e., without selective orthogonalization), as it is new.

6.6. Numerical experiments and discussion

We have implemented the PCG-ODIR, IP-CG and IP-MINRES compared them to
older algorithms (GMRES, QMR, BiCGStab, and CG). All the preconditioners (de�nite
or inde�nite) were built using wsmp [115]. We also used the implementation of GMRES,
QMR, BiCGStab, and CG in that library. We stop the iterative method and declare
convergence after the relative residual has dropped below 10−11. We impose a limit of
1000 iterations and declare failure if the relative residual does not drop below 10−11 in
1000 iterations. Running times were measured on a 2.13 GHz Intel Core 2 Duo computer
with 4 GB of main memory, running Linux 2.6. This computer has 2 processors, but our
solver uses only one. All experiments are done in 64-bit mode.

Table 2 lists the SPD matrices used to test the inde�nitely preconditioned solvers,
along with their kind and sizes in terms of both dimension and the number of nonzeros.
The matrices were obtained from the University of Florida sparse matrix collection [72].

6.6.1. Inde�nite preconditioner. In this section, we list and analyze the results
for instances where the preconditioner was inde�nite. We compare PCG-ODIR, IP-CG
and IP-MINRES to GMRES (without restarts and with restarts after 60 iterations), to
the symmetric variant of QMR, and to BiCGStab. The results appear in Table 3. The

6.6. Numerical experiments and discussion 131

Algorithm 4 Inde�nitely Preconditioned MINRES (IP-MINRES), without selective or-
thogonalization.

Input: Hermitian positive de�nite A, a right hand side b and an Hermitian
preconditioner M

q1 = M−1b

l1 = Aq1

w1 =
√
q∗1l1

l1 = l1/w1

q1 = q1/w1

r(0) = b− Ax
x(0) = 0

s−2 = 0,s−1 = 0

for t = 1, 2, . . . until convergence

vt+1 = M−1lt
Ht,t = l∗t vt+1

Ht−1,t = Ht,t−1(= l∗t−1vt+1)

qt+1 = vt+1 −Ht,tqt −Ht−1,tqt−1

lt+1 = Aqt+1

Ht+1,t =
√
q∗t+1lt+1

lt+1 = lt+1/Ht+1,t

qt+1 = qt+1/Ht+1,t

Ut−2,t = st−2Ht−1,t

if (t > 2) Ut−1,t = ct−2Ht−1,t else Ut−1,t = Ht−1,t

if (t > 1) Ut,t = −st−1Ut−1,t + ct−1Ht,t else Ut,t = Ht,t

Ut−1,t = ct−1Ut−1 + st−1Ht,t

compute Givens rotation factors ct and st on
[
Ut,t Ht+1,t

]T
Ut,t = ctUt,t + stHt+1,t

wt+1 = −stwt
wt = ctwt
mt = (Ut,t)

−1(qt − Ut−1,tmt−1 − Ut−2,tmt−2)

x(t) = x(t−1) + wtmt

end for

results show that PCG-ODIR and our new algorithm converge when the preconditioner is
inde�nite, and that PCG-ODIR (and IP-CG) is indeed a more robust version of CG. As
long as there are no restarts, in all but one instance, GMRES requires fewer iterations and
converges faster than PCG-ODIR. IP-CG usually converges faster than PCG-ODIR, but
not always (matrix LDOOR) and it sometimes fails (matrix ND24K). GMRES requires
fewer iterations and converges faster than IP-CG as well, but only by a small margin.
The comparison between IP-MINRES and GMRES is especially interesting: theoretically

6.6. Numerical experiments and discussion 132

Table 2. Test matrices

Matrix N NNZ Kind

ROTHBERG/CFD1 70,656 1,825,580 CFD problem

ROTHBERG/CFD2 123,440 3,085,406 CFD problem

GHS_PSDEF/VANBODY 47,072 2,329,056 Structural problem

BOEING/PWTK 217,918 11,524,432 Structural problem

INPRO/MSDOOR 415,863 19,173,163 Structural problem

ND/ND24K 72,000 28,715,634 2D/3D problem

DNVS/X104 108,384 8,713,602 Structural problem

SCHENK_AFE/AF_SHELL7 504,855 17,579,155 Structural problem

GHS_PSDEF/BMWCRA_1 148,770 10,641,602 Structural problem

GHS_PSDEF/LDOOR 952,203 42,493,817 Structural problem

GHS_PSDEF/OILPAN 73,752 2,148,558 Structural problem

WISSGOTT/PARABOLIC_FEM 525,825 3,674,625 CFD problem

DNSV/SHIPSEC5 179,860 4,598,604 Structural problem

DNVS/SHIP_003 121,728 3,777,036 Structural problem

both algorithms are equivalent, but GMRES performs fewer iterations. This, again, shows
that stability issues play a signi�cant part when using a short recurrence. Table 3 also
shows that running time is dominated by the cost of applying the preconditioner. PCG-
ODIR and IP-MINRES do less operations-per-iteration than GMRES (and IP-CG), but
GMRES is faster because it does less iterations.

PCG-ODIR and IP-MINRES are usually faster than QMR, but only marginally. IP-
MINRES is theoretically superior to QMR since it minimizes the 2-norm of the residual,
not a quasi-norm like QMR does. IP-CG is consistently faster than QMR, sometimes by a
large margin, except for LDOOR, for which IP-CG did less iterations but took more time.
It should also be noted that PCG-ODIR and IP-MINRES are more robust than QMR
since they cannot breakdown (division by zero), like QMR can. A robust implementation
of QMR needs to incorporate look ahead. The implementation of symmetric QMR that we
use does not use look ahead. Both algorithms are faster than BiCGStab in all instances.

Our previous discussion revolved around running time. When we take into consid-
eration memory consumption the picture is more complicated. PCG-ODIR, IP-CG and
IP-MINRES use less memory than GMRES, so for memory-stressed scenarios (for exam-
ple: solving a very large matrix, or solving several matrices concurrently) they allow a
denser preconditioner. PCG-ODIR and IP-MINRES use less memory than IP-CG. The
�Precond Density� column was added in order to explore the relation between running
time and memory usage of di�erent algorithms. The value in the density column is the
ratio between the number of non-zeros in the incomplete factor and the number of rows
in the matrix, that is the number of non-zeros required to store the incomplete factor is
density × #columns. For a restart value of k, GMRES needs to store and additional k
complete vectors, which is equivalent to an additional k×#columns non-zeros. IP-CG is
more economical, since it stores only a small number of additional vectors (the �selected�
vectors). For r converged Ritz vectors, IP-CG stores an additional 2r complete vectors,
which is equivalent to an additional 2k × #columns non-zeros. Recall that in our ex-
periments IP-CG stored 8 Ritz vectors. Therefore, if we wish to compare the amount of

6.6. Numerical experiments and discussion 133

Table 3. Running time and number of iterations for instances in Table 2 in
which the preconditioner is inde�nite. Preconditioner density is the average
number of non-zeros per column in the incomplete factor.

Matrix Droptol Precond

Density

IP-

MIN-

RES

PCG-ODIR IP-CG GMRES(60) GMRES QMR BiCGStab

CFD1 2× 10−3 197 127 its

23 sec

125 its

22 sec

83 its

20 sec

117 its

23 sec

77 its

19 sec

139 its

24 sec

165 its

43 sec

CFD2 2× 10−3 258 161 its

51 sec

160 its

51 sec

87 its

38 sec

87 its

37 sec

64 its

32 sec

174 its

53 sec

237 its

112 sec

VANBODY 2× 10−3 124 84 its

5.7 sec

85 its

5.8 sec

49 its

4.7 sec

48 its

5.5 sec

48 its

5.5 sec

87 its

5.8 sec

117 its

11.4 sec

PWTK 2× 10−3 177 97 its

38 sec

98 its

38 sec

73 its

35 sec

104 its

41 sec

71 its

34 sec

99 its

38 sec

94 its

57 sec

MSDOOR 8× 10−4 136 327 its

145 sec

336 its

146 sec

187 its

107 sec

358 its

179 sec

108 its

78 sec

338 its

146 sec

610 its

444 sec

MSDOOR 2× 10−4 139 36 its

41 sec

36 its

41 sec

28 its

42 sec

29 its

39 sec

29 its

39 sec

36 its

41 sec

40 its

55 sec

ND24K 4× 10−4 700 218 its

155 sec

217 its

154 sec

156 its

141 sec

179 its

145 sec

83 its

118 sec

270 its

169 sec

592 its

416 sec

X104 2× 10−2 168 67 its

22 sec

66 its

22 sec

44 its

22 sec

45 its

19 sec

45 its

19 sec

64 its

22 sec

90 its

38 sec

X104 2× 10−3 178 20 its

15 sec

20 its

15 sec

17 its

16 sec

18 its

15 sec

18 its

15 sec

20 its

15 sec

15 its

17 sec

LDOOR 2× 10−3 98 59 its

69 sec

62 its

69 sec

57 its

90 sec

59 its

75 sec

59 its

75 sec

66 its

71 sec

39 its

77 sec

memory used to store the preconditioner to the number of non-zeros to store the vectors
in GMRES (and is not needed in PCG-ODIR) we need to compare k and density, and if
we want to compare PCG-ODIR to IP-CG we need to compare 2r and density.

If we examine the results for the two instances of MSDOOR, we see that PCG-ODIR
with the denser preconditioner (droptol = 2× 10−4) uses less memory and is faster than
IP-CG and GMRES (with any reasonable restart value) with a sparser preconditioner
(droptol = 8 × 10−4). This is also true for the two instances of X104. IP-CG is with
the denser preconditioner uses less memory and his faster than GMRES with a sparser
preconditioner. IP-CG is more numerically accurate than PCG-ODIR, and GMRES is
more numerically accurate than IP-CG. Each improvement in numerical accuracy requires
additional memory, and this memory can instead be used to build a denser preconditioner.
Our experiments indicate that in some cases it is better to forgo numerical accuracy and
spend the additional memory to build a better preconditioner.

We explore this issue further in Table 4. In this set of experiments we have taken
the largest matrix in our suite, ND24K, and solve it using di�erent drop-tolerance values.
The results show that GMRES is faster than PCG-ODIR, but if we want to examine
what can happen on a memory-tight situation we should compare the �Precond Density�
column to the restart value. From Table 4, we see that the minimum amount storage

6.6. Numerical experiments and discussion 134

Table 4. Detailed results for matrix ND24K.

Droptol Precond

Density

PCG-ODIR ip-cg GMRES GMRES(120) GMRES(200)

8× 10−4 574 FAIL FAIL 439 its

188 sec

FAIL FAIL

7× 10−4 528 FAIL FAIL 338 its

146 sec

FAIL 2000 its

569 sec

6× 10−4 553 FAIL FAIL 396 its

181 sec

FAIL FAIL

5× 10−4 631 582 its

233 sec

320 its

169 sec

118 its

116 sec

118 its

116 sec

118 its

116 sec

4× 10−4 700 217 its

154 sec

156 its

140 sec

83 its

118 sec

83 its

118 sec

83 its

118 sec

3× 10−4 719 192 its

156 sec

124 its

142 sec

78 its

128 sec

78 its

128 sec

78 its

128 sec

2× 10−4 792 141 its

167 sec

78 its

150 sec

60 its

143 sec

60 its

143 sec

60 its

143 sec

1× 10−4 854 46 its

209 sec

35 its

211 sec

35 its

207 sec

35 its

207 sec

35 its

207 sec

by GMRES to solve the system in reasonable time is 749 × #columns (drop-tolerance
5× 10−4). The minimum amount of memory needed by PCG-ODIR is 631×#columns.
The di�erence 118×#columns can be the di�erence between being able to solve the matrix
on a given machine, or not. IP-CG is faster than PCG-ODIR, but in terms of memory
it falls between PCG-ODIR and GMRES. The minimum amount of memory needed by
PCG-ODIR is 649×#columns, more than PCG-ODIR but is faster (and still much less
than GMRES). One can argue that a scenario where PCG-ODIR and IP-CG are possible
but not GMRES is plausible.

6.6.2. Positive de�nite preconditioner. In this section, we list and analyze the
results for instances where the preconditioner was de�nite. We compare PCG-ODIR, IP-
CG and IP-MINRES to CG and to GMRES (without restart). Usually, when both the
matrix and the preconditioner are positive de�nite CG is used. Under exact arithmetic
PCG-ODIR is identical to CG. The goal of this set of experiments is to check whether
PCG-ODIR's performance is similar to CG's under �nite-accuracy arithmetic. We also
wish to check, using the comparison to GMRES, IP-MINRES's sensitivity to numerical
instabilities, and also investigate if selective orthogonalization help in this case too.

The results appear in Table 5. In all the instances listed in Table 5, the preconditioner
is de�nite. The results show that indeed PCG-ODIR acts very similar to CG and converges
at about the same number of iterations (with cases of slight advantage to both algorithms).
CG performs fewer operations per iteration, so it is a bit faster. Nevertheless, PCG-ODIR
is more robust, being able to handle an inde�nite preconditioner, so the user can trade a
few percents of performance for increased robustness.

The comparison of IP-MINRES and PCG-ODIR to GMRES show that the numerical
instabilities encountered when using an inde�nite preconditioner no longer appear when

6.6. Numerical experiments and discussion 135

Table 5. Running time and number of iterations for instances in Table 2
where the preconditioner is de�nite.

Matrix Droptol Precond

Density

IP MIN-
RES

PCG-ODIR ip-cg CG GMRES

AF_SHELL7 2× 10−3 97 128 its

59 sec

137 its

60 sec

137 its

62 sec

137 its

57 sec

131 its

81 sec

BMWCRA_1 2× 10−3 215 128 its

59 sec

137 its

60 sec

FAIL 137 its

57 sec

147 its

61 sec

LDOOR 2× 10−4 122 17 its

57 sec

16 its

56 sec

17 its

58 sec

17 its

56 sec

18 its

58 sec

OILPAN 8× 10−4 89 39 its

3.8 sec

39 its

3.7 sec

37 its

4.5 sec

39 its

3.5 sec

39 its

3.6 sec

PARABOLIC_FEM 2× 10−3 19 68 its

13.7 sec

73 its

13.6 sec

73 its

15.1 sec

73 its

11.6 sec

70 its

19.3 sec

SHIPSEC5 2× 10−3 95 45 its

11.4 sec

46 its

11.3 sec

46 its

12.4 sec

45 its

10.7 sec

47 its

12.3 sec

SHIP_003 2× 10−3 108 84 its

13.1 sec

85 its

13.0 sec

84 its

14.5 sec

89 its

12.7 sec

87 its

15.5 sec

the preconditioner is de�nite. In most cases, IP-MINRES requires fewer iterations than
GMRES and is faster. This explains why our experiments suggest that PCG-ODIR out-
performs IP-CG when the preconditioner is de�nite. If the preconditioner is good (as often
happens when it is de�nite) not much is gained from IP-CG complex orthogonalization
strategy, while running time per iteration increases.

6.6.3. Using an inde�nite preconditioner vs. forcing de�niteness. An alter-
native to using an inde�nite preconditioner is to somehow force the incomplete factoriza-
tion to produce a de�nite preconditioner. A detailed experimental study of which strategy
is better is beyond the scope of this chapter. The goal of this set of experiment is to show
that there are cases where it would be preferable to use an inde�nite preconditioner.

There are many methods by which de�niteness can be forced [30]. We have chosen
to test one of these methods. More speci�cally, we tried the method suggested by Man-
teu�el [154]. This method tries to �nd a value α such that the incomplete factorization

of Â = A + αdiag(A) is positive de�nite, and uses that factor as a preconditioner. The
value of α is found using a trial-and-error method that can be expensive. Obviously, the
quality of the preconditioner depends on the value of α that was used. For our compar-
ison we decided not to use trial-and-error method due to its cost. Instead, we chose to
try two values for α, a small value and a large value, for all three matrices in this set of
experiments.

The results appear in Table 6. As can be seen from this table, forcing positive de�-
niteness produced a better preconditioner in some cases, and a worse one in others. This
demonstrates the e�ectiveness of PCG-ODIR and IP-CG methods, in that they provided
reasonable results without a tuning parameter.

6.6. Numerical experiments and discussion 136

Table 6. Comparing strategies: using an inde�nite preconditioner or forc-
ing de�niteness.

Matrix Droptol PCG-ODIR ip-cg CG, run 1

α = 0.01

CG, run 2

α = 0.001

CFD1 2× 10−3 125 its

22 sec

83 its

20 sec

112 its

17 sec

99 its

18 sec

MSDOOR 8× 10−4 336 its

146 sec

187 its

107 sec

FAIL:
res =
1.1×10−10

after 1000

its

627 its

180 sec

X104 2× 10−3 20 its

15 sec

17 its

16 sec

FAIL:
res =
1.6×10−10

after 1000

its

FAIL:
res =
5.1×10−10

after 1000

its

Table 7. Numerical stability: comparing full conjugation to local conjuga-
tion. In the OILPAN (NO PRECOND) instance, the convergence threshold
was set to 10−5.

Matrix Droptol Precond

De�nite?

PCG-ODIR ORTHODIR ip-cg IP-

MINRES

GMRES CG

CFD1 2× 10−3 NO 125 its 77 its 83 its 127 its 77 its N/A

CFD1 4.5× 10−4 YES 85 its 69 its 69 its 84 its 69 its 85 its

CFD1 2× 10−4 YES 48 its 47 its 47 its 48 its 46 its 48 its

OILPAN NO

PRECOND

N/A 783 its 747 its 770 its 297 its 242 its 783 its

OILPAN 8× 10−3 NO 441 its 142 its 278 its 437 its 130 its N/A

OILPAN 1.5× 10−3 NO 63 its 58 its 52 its 64 its 51 its N/A

OILPAN 8× 10−4 YES 39 its 42 its 37 its 39 its 36 its 39 its

PWTK 4× 10−3 NO 149 its 103 its 104 its 149 its 103 its N/A

PWTK 1× 10−3 NO 77 its 55 its 55 its 77 its 55 its N/A

PWTK 8× 10−4 YES 61 its 55 its 54 its 61 its 54 its 61 its

6.6.4. Numerical stability: full conjugation vs. local conjugation. The re-
sults in Table 3 indicate that the new solvers often do not ful�ll their theoretical potential
when the preconditioner is inde�nite and they tend to require more iterations than GM-
RES. We already explored this issue in section 6.4. We now explore it further, by adding
IP-CG, IP-MINRES and GMRES to the comparison. The results appear in table 7.

From the results, we see that often a long recurrence needs considerably fewer iter-
ations. Other times, the short recurrence works equally as well as the long recurrence.
Adding selective orthogonalization helps, but there are still cases where ORTHODIR
does less iterations. The experiments also show that numerical problems are not directly
connected to the use of an inde�nite preconditioner: we have cases where the problem

6.7. Conclusions and Open Questions 137

manifests for a de�nite preconditioner (CFD1-4.5× 10−4, OILPAN-NO PRECOND) and
cases where manifests very weakly for an inde�nite preconditioner (OILPAN-1.5× 10−3).
There are cases where CG converges slower than it should even though the preconditioner
is de�nite, so apparently both PCG-ODIR and CG su�er from the same numerical in-
stability. In those cases IP-CG does less iterations than CG, reinforcing our conclusion
that CG su�ers from numerical instabilities too. There seems to be a connection between
the quality of the preconditioner and numerical instability encountered. Inde�nite in-
complete factorization tend to be lower quality preconditioners because the inde�niteness
in the incomplete factors indicates that incomplete factorization dropped non-zeros too
aggressively.

6.7. Conclusions and Open Questions

We experimentally evaluated the performance of PCG-ODIR, a less well-known vari-
ant of CG. We also presented two new versions of CG and MINRES. Unlike classical CG
and MINRES, both PCG-ODIR and the new algorithms accept a Hermitian inde�nite
preconditioner. The motivation for using these algorithms is the possible failure of in-
complete factorization to produce a positive de�nite preconditioners inexpensively. We
have conducted extensive numerical experiments and have compared the new solvers with
CG, GMRES, symmetric QMR, and BiCGStab. We have demonstrated the robustness
and the utility of this approach in many cases. Theoretically, GMRES is the optimal
algorithm since it �nds the minimum residual solution, but it does not use a short recur-
rence. Symmetric QMR and BiCGStab are sub-optimal (for example, QMR minimizes a
quasi-norm and not the real norm), but they use a short recurrence. The algorithms we
analyzed bridge the gap: they are theoretically optimal and they use a short recurrence.

The experiments show that PCG-ODIR (and IP-MINRES) does not always ful�ll their
full theoretical potential and GMRES usually converges in fewer iterations. Our analysis
suggests that the problem is caused by numerical instabilities in the Lanczos process,
and that CG too su�ers from the same problem. We explored the strategy of selective
orthogonalization to handle the numerical issues, and suggest the variant IP-CG based
on this strategy. This variant does fewer iterations and is faster than PCG-ODIR. It uses
more memory than PCG-ODIR, but less memory then GMRES.

Although GMRES usually converges faster than PCG-ODIR for the same precon-
ditioner, PCG-ODIR often outperform GMRES by using a denser and more accurate
incomplete factorization to compensate for the extra memory that GMRES requires. The
same is true for IP-CG and IP-MINRES. A more detailed experimental study is required
to compare the combination of a denser preconditioner and short recurrence solvers with
that of a sparser preconditioner and GMRES. Another interesting question that arises
from this chapter is whether it is better to use the incomplete factorization process as-is,
even if the preconditioner turns out to be inde�nite, or to use incomplete factorization
methods that guarantee a positive de�nite preconditioner? A comprehensive experimental
study would be required to answer this question, since there are many di�erent methods
to enforce positive de�niteness [30]. Finally, we note that it is worth investigating whether
the new methods have any advantages over their conventional counterparts in formulating
communication avoiding Krylov-subspace methods (see [127] for details).

CHAPTER 7

Randomized algorithms for estimating the trace of an implicit

symmetric positive semi-de�nite matrix

7.1. Introduction

Finding the trace of an explicit matrix is a simple operation. But there are application
areas where one needs to compute the trace of an implicit matrix, that is, a matrix repre-
sented as a function. For example, in lattice Quantum Chromodynamics, one often needs
to compute the trace of a function of a large matrix, trace(f(A)). Explicitly computing
f(A) for large matrices is not practical, but computing the bilinear form xTf(A)x for
an arbitrary x is feasible [25, 26]. Other examples include the regularized solution of
least-squares problems using the Generalized Cross-Validation approach (see [130]) and
computing the number of triangles in a graph [214, 15].

The standard approach for computing the trace of an implicit function is Monte-
Carlo simulation, where the trace is estimated by 1

M

∑M
i=1 z

T
i Azi, where the zi are random

vectors. The original method is due to Hutchinson [130]. Although this method has been
improved over the years ([29, 131, 224]), no paper to date has presented a theoretical
bound on the number of samples required to achieve an ε-approximation of the trace; only
the variance of estimators has been analyzed.

This chapter1 makes four signi�cant contributions to this area:

(1) We provide rigorous bounds on the number of Monte-Carlo samples required
to achieve a maximum error ε with probability at least 1 − δ in several trace
estimators. The bounds are surprising: the method with the best bound is not
the method with the smallest variance.

(2) We provide specialized bounds for the case of projection matrices, which are
important in certain applications.

(3) We propose a new trace estimator in which the zis are random columns of a
unitary matrix with entries that are small in magnitude. This estimator converges
slower than known ones, but it also uses fewer random bits.

(4) We experimentally evaluate the convergence of the three methods on a few in-
teresting matrices.

7.2. Hutchinson's Method and Related Work

The standard Monte-Carlo method for estimating the trace of an implicit method is
due to Hutchinson [130], who proved the following Lemma.

1The results of this chapter are also reported in a recently submitted paper, co-authored with Sivan
Toledo [24].

138

7.3. Three and an Half Estimators 139

Lemma 7.2.1. Let A be an n×n symmetric matrix with trace(A) 6= 0. Let z be a random
vector whose entries are i.i.d Rademacher random variables (Pr(zi = ±1) = 1/2). zTAz
is an unbiased estimator of trace(A) i.e.,

E(zTAz) = trace(A)

and

Var(zTAz) = 2

(
‖A‖2

F −
n∑
i=1

A2
ii

)
.

If we examine the variance term we see that intuitively it measures how much of the
matrix's �energy� (i.e., the Frobenius norm) is on the diagonal. It is easy to see that
for a general matrix Hutchinson's method can be ine�ective because the variance can be
arbitrarily large. Even for a symmetric positive de�nite the variance can be large: the
variance for the matrix of all 1's, which is symmetric semi-de�nite, is 2(n2 − n), whereas
the trace is only n. This matrix can be perturbed to de�niteness without a signi�cant
impact on the trace or variance. Such a large variance precludes the use of Chebyshev's
inequality to bound the number of iterations required to obtain a given relative error in
the trace. For such a bound to hold, the variance must be o(trace(A)2).

Lemma 7.2.1 does not give a rigorous bound on the number of samples/matrix mul-
tiplications. This di�culty carries over to applications of this method, such as [25, 26].
Hutchinson's method has been improved over the years, but the improvements do not
appear to have addressed this issue. Wong et al. [224] suggest using test vectors z that
are derived from columns of an Hadamard matrix. Iitaka and Ebisuzaki [131] general-
ized Hutchinson's estimator by using complex i.i.d's with unit magnitude; they showed
that the resulting estimator has lower variance than Hutchison's (but the computation
cost is also higher). Silver and Röder [196] use Gaussian i.i.d variables, but without any
analysis. Bekas et al. [29] focus on approximating the actual diagonal values, also using
vectors derived from an Hadamard matrix.

In Section 7.7 below we show that it is possible to bound the number of samples
required for Hutchinson's method. However, by the bound that we obtain is not as tight
as the bound we obtain when the entries of z are i.i.d normal variables.

7.3. Three and an Half Estimators

In this section we describe the trace estimators that we analyze. We describe three
estimators and a variant of one of them. All estimators follow the same basic pattern:
a random vector z is drawn from some �xed distribution, and zTAz is used to estimate
the trace. This procedure is repeated M times using i.i.d samples and the estimates are
averaged.

The �rst estimator uses vectors whose entries are standard Gaussian (normal) vari-
ables.

De�nition 7.3.1. A Gaussian trace estimator for a symmetric positive-de�nite matrix
A ∈ Rn×n is

GM =
1

M

M∑
i=1

zTi Azi ,

7.3. Three and an Half Estimators 140

where the zi's are M independent random vectors whose entries are i.i.d standard normal
variables.

The Gaussian estimator does not constrain the 2-norm of the zi's; it can be arbitrarily
small or large. All the other estimators that we analyze normalize the quadratic forms by
constraining zT z to be equal to n. This property alone allows us to prove below a general
convergence bound.

De�nition 7.3.2. A normalized Rayleigh-quotient trace estimator for a symmetric posi-
tive semi-de�nite matrix A ∈ Rn×n is

RM =
1

M

M∑
i=1

zTi Azi ,

where the zi's are M independent random vectors such that zTi zi = n and E(zTi Azi) =
trace(A).

The second estimator we analyze is Hutchinson's.

De�nition 7.3.3. An Hutchinson trace estimator for a symmetric positive-de�nite matrix
A ∈ Rn×n is

HM =
1

M

M∑
i=1

zTi Azi ,

where the zi's are M independent random vectors whose entries are i.i.d Rademacher
random variables.

The �rst two estimators use a very large sample spaces. The Gaussian estimator
uses continuous random variables, and the Hutchinson estimator draws z from a set of
2n vectors. Thus, the amount of random bits required to form a sample is Ω(n). Our
third estimator samples from a set of n vectors, so it only needs O(log n) random bits
per sample. We discuss the issue of randomness and it implications further in the next
section. The third estimator samples from a smaller family by estimating the trace in a
more direct way: it samples the diagonal itself. The average value of a diagonal element
of A is trace(A)/n. So we can estimate the trace by sampling a diagonal element and
multiplying the result by n. This corresponds to sampling a unit vector from the standard
basis and computing the Rayleigh quotient.

De�nition 7.3.4. A unit vector estimator for a symmetric positive-de�nite matrix A ∈
Rn×n is

UM =
n

M

M∑
i=1

zTi Azi ,

where the zi's are M independent uniform random samples from {e1, . . . , en}.

In contrast to previous methods, the quadratic forms in the unit-vector estimator do
not depend in any way on the o�-diagonal elements of A, only on the diagonal elements.
Therefore, the convergence of UM is independent of the o�-diagonal elements. The distri-
bution of diagonal elements does in�uence, of course, the convergence to trace(A)/n. For
some matrices, this method must sample all the diagonal elements for UM to be close to
trace(A). For example, if A has one huge diagonal element, the average is useless until

7.4. Comparing the Quality of Estimators 141

we sample this particular element. On the other hand, if all the diagonal elements are
the same, the average converges to the exact solution after one sample.

Our last estimator is a variant of the unit vector estimator that uses randomization
to address this di�culty. Instead of computing the trace of A, it computes the trace of
FAFT where F is a unitary matrix. Since the mixing matrix F is a unitary, trace(A) =
trace(FAFT). We construct F using a randomized algorithm that guarantees with high
probability a relatively �at distribution of the diagonal elements of FAFT . More precisely,
we construct F in a way that attempts to �atten the distribution of all the elements of
FAFT , not just its diagonal elements. We use this strategy because we do not know
how to �atten the diagonal elements alone. Our constructions are based on the random
mixing matrices suggested in [4].

De�nition 7.3.5. A random mixing matrix is a unitary F = FD, where F and D are
n-by-n unitary matrices. The matrix F is a �xed unitary matrix called the seed matrix.
The matrixD is a unitary random diagonal matrix with diagonal entries that are i.i.d
Rademacher random variables: Pr(Dii = ±1) = 1/2.

De�nition 7.3.6. A mixed unit vector estimator for a symmetric positive semi-de�nite
matrix A ∈ Rn×n is

TM =
n

M

M∑
i=1

zTi FAFT zi ,

where the zi's are M independent uniform random samples from {e1, . . . , en}, and F is a
random mixing matrix.

The mixing e�ectiveness of F depends on the quantity η = max |Fij|2 [4]. A small η
guarantees e�ective mixing. We discuss this further in section 7.8.

We choose the �xed seed matrix F so as to minimize η = max |Fij|2. The minimal
value of η for a unitary F is 1/n. A normalized DFT matrix achieves the minimum, but
applying it requires complex arithmetic. A normalized Hadamard matrix also achieves
the minimum and its entries are real. However, Hadamard matrices do not exist for all
dimensions, so they are more di�cult to use (they require padding). The Discrete Cosine
Transform (DCT) and the Discrete Hartley Transform (DHT), which are real, exist for
any dimension, and can be applied quickly, but their η value is 2/n, twice as large as that
of the DFT and the Hadamard. All are valid choices. The decision should be based on
the implementation cost of computing columns of F and applying DADT to them versus
the value of η.

7.4. Comparing the Quality of Estimators

The easiest way to analyze the quality of trace estimators is to analyze their variance.
For any Monte-Carlo estimator RM we have Var(RM) = Var(R1)/M so we only need to
analyze the variance of a single sample. This type of analysis usually does not reveal
much about the estimator, because the variance is usually too large to apply Chebyshev's
inequality e�ectively.

A better way to analyze an estimator is to bound the number of samples required to
guarantee that the probability of the relative error exceeding ε is at most δ.

7.4. Comparing the Quality of Estimators 142

Estimator Variance of

one sample

Bound on # samples

for an (ε, δ)-approx

Random bits

per sample

Gaussian 2‖A‖F 20ε−2 ln(2/δ) in�nite;

Θ(n) in �oating

point

Normalized Rayleigh-quotient - 1
2ε

−2n−2 rank2(A) ln(2/δ)κ2f (A) -

Hutchinson's 2
(
‖A‖2F −

∑n
i=1A

2
ii

)
6ε−2 ln(2 rank(A)/δ) Θ(n)

Unit Vector n
∑n

i=1A
2
ii − trace2(A) 1

2ε
−2 ln(2/δ)r2D(A)

rD(A) = n·maxi Aii

trace(A)

Θ(log n)

Mixed Unit Vector - 8ε−2 ln
(
4n2/δ

)
ln(4/δ) Θ(log n)

Table 1. Summary of results: quality of the estimators under di�erent
metrics. The proofs appear in sections 7.5-7.8.

De�nition 7.4.1. Let A be a symmetric positive semi-de�nite matrix. A randomized
trace estimator T is an (ε, δ)-approximator of trace(A) if

Pr (|T − trace(A)| ≤ ε trace(A)) ≥ 1− δ .

The third metric that we analyze is the number of random bits used by the algorithm,
i.e. the randomness of the algorithm. The trace estimators are highly parallel; each
Rayleigh quotient can be computed by a separate processor. If the number of random
bits is small, they can be precomputed by a sequential random number generator. If the
number is large (e.g., O(n) per Rayleigh quotient), the implementation will need to use a
parallel random-number generator. This concern is common to all Monte-Carlo methods.

Table 1 summarizes the results of our analyses. The proofs are in sections 7.5-7.8.
The smallest variance is achieved by Hutchinson's estimator, but the Gaussian estimator
has a better (ε, δ) bound. Unit vector estimators use the fewest random bits, but have an
(ε, δ) bound that is worse than that of Gaussian and Hutchinson's estimators.

The (ε, δ) bounds are not necessarily tight. Our numerical experiments did not show
a considerable di�erence in practice between the Gaussian, Hutchinson and mixed unit
vector estimators. See section 7.9.

From a theoretical point of view, the (ε, δ) bound for the Gaussian estimator seems
good; for �xed ε and δ, only O(1) samples are needed. However, the ε−2 factor in the
bound implies that the number of samples may need to scale exponentially with the
number of bits of accuracy (the number of samples in the bound scales exponentially
with log10 ε

−1). Therefore, in applications that require only a modest ε, say ε = 0.1, the
Gaussian estimator is good. But in applications that require a small ε, even ε = 10−3, the
number of samples required may be too high.

Are these bounds tight? If they are not, the algorithms themselves may be useful even
for small ε.

Although we do not have a formal lower-bound, we conjecture that our bound on GM

is almost asymptotically tight. Consider the order n all-ones matrix A. This matrix has
a single non-zero eigenvalue n and n − 1 zero eigenvalues. We see that 1

n
zTAz ∼ χ2(1).

Therefor MGM/n ∼ χ2(M). This means that GM has mean n and variance 2n2/M .
The χ2 distribution is the sum of independent random variables, so by the central limit
theorem it converges to a normal distribution for largeM . This convergence to normality

7.5. Analysis of the Gaussian Estimator 143

is rather fast, and M ≥ 50 degrees of freedom is usually considered su�cient for the χ2

distribution to be �approximately normal� [46]. We �nd that

Pr(GM − n ≥ εn) ≈ erfc(ε
√
M/2)

≥ 2√
π
· exp(−ε2M/2)

ε
√
M/2 +

√
ε2M/2 + 2

,

Let Cδ be the solution to

Cδ

(√
ln(Cδ/

√
πδ) +

√
ln(Cδ/

√
πδ) + 2

)
= 2 .

If M < 2ε−2 ln(Cδ/πδ) where we �nd that

Pr(GM − n ≥ εn) ≥ 2√
π
· exp(ln(

√
πδ/Cδ))√

ln(Cδ/
√
πδ) +

√
ln(Cδ/

√
πδ) + 2

,

=
2

Cδ

(√
ln(Cδ/

√
πδ) +

√
ln(Cδ/

√
πδ) + 2

) · δ
= δ .

The bound is Ω(ε−2) for a �xed δ, but it is not Ω(ε−2 ln(1/δ)) as Cδ → 0 if δ → 0.
Nevertheless, this decay is slow and it appears that our bound is almost asymptotically
tight.

The main di�culty in turning this argument into a formal proof is the approximation
phase Pr(GM − n ≥ εn) ≈ erfc(ε

√
M/2). While it is true that the χ2 distribution

converges to the normal distribution, convergence can be very slow. Indeed, the Berry-
Esseen Theorem [96, � 16.5] guarantees a convergence rate that is proportional only to
M−1/2. So for a �xed δ there exists an ε that is small enough such that the sample size will
be so large that the tail bound on normal approximation kicks in. Indeed every Monte-
Carlo i.i.d estimator with non-zero �nite variance converges to a normal distribution, but
the general wisdom on the χ2 distribution is that it converges very quickly to the normal
distribution.

A more direct way to prove a lower bound will be to use some lower bound on the
tail of the chi-squared cumulative distribution function. Unfortunately, current bounds
([220, 132]) are too complex to provide a useful lower bound, and deriving a simple lower
bound is outside the scope of this chapter.

In the next section we present experiments that show that convergence rate (in terms
of digits of accuracy) on the all-ones matrix is indeed slow, supporting our conjecture that
our bound is almost tight.

7.5. Analysis of the Gaussian Estimator

In this section we analyze the Gaussian estimator. We begin with the variance.

Lemma 7.5.1. Let A be an n × n symmetric matrix. The single sample Gaussian
estimator G1 of A is an unbiased estimator of trace(A) i.e., E(G1) = trace(A) and
Var(G1) = 2 ‖A‖2

F .

7.5. Analysis of the Gaussian Estimator 144

Proof. A is symmetric so it can be diagonalized. Let Λ = UAUT be the unitary
diagonalization of A (its eigendecomposition), and de�ne y = Uz, where G1 = zTAz. We
can write G1 =

∑n
i=1 λiy

2
i where yi is the ith entry of yi. Since U is unitary, the entries

of y are i.i.d Gaussian variables, like the entries of z, so E(y2
i) = 1 and Var(y2

i) = 2. We
�nd that

E(G1) =
n∑
i=1

λi E(y2
i) =

n∑
i=1

λi = trace(A) ,

Var(G1) =
n∑
i=1

λ2
i Var(y2

i) = 2
n∑
i=1

λ2
i = 2 ‖A‖2

F .

�

Next, we prove an (ε, δ) bound for the Gaussian estimator.

Theorem 7.5.2. Let A be an n× n symmetric semide�nite matrix. The Gaussian esti-
mator GM is an (ε, δ)-approximator of trace(A) for M ≥ 20ε−2 ln(2/δ).

Proof. A is symmetric so it can be diagonalized. Let Λ = UAUT be the unitary
diagonalization of A (its eigendecomposition), and de�ne yi = Uzi. Since U is unitary,

the entries of yi are i.i.d Gaussian variables. Notice that GM = 1
M

∑M
i=1

∑n
j=1 λjy

2
ij =

1
M

∑n
j=1 λj

∑M
i=1 y

2
ij where yij is the jth entry of yi.

We prove the bound using a Cherno�-style argument. yij is a standard normal random

variable so
∑M

i=1 y
2
ij is χ

2 with M degrees of freedom. Therefore, the moment generating
function of Z = MGM is

mZ(t) = E(exp(tZ))

=
n∏
i=1

(1− 2λit)
−M/2

= (1− 2τt+ h(t))−M/2(7.5.1)

where

τ = trace(A)

and

h(t) =
n∑
s=2

(−2)sts
∑
S ⊆ Λ
|S| = s

∏
x∈S

x

as long as |λit| ≤ 1
2
for all i (Λ is the set of A's eigenvalues).

It is easy to see if {x1, . . . , xn} is a set of non-negative real numbers, then for all
i = 1, . . . , n we have ∑

S ⊆ [n]
|S| = i

∏
j∈S

xj ≤

(
n∑
i=1

xi

)i

,

where [n] = {1, . . . , n}. Therefore, we can bound

7.5. Analysis of the Gaussian Estimator 145

|h(t)| ≤
n∑
j=2

(2τt)j .

Set t0 = ε/(4τ(1 + ε/2)). For all i we have λit0 ≤ 1
2
, so (7.5.1) is the correct formula for

mZ(t0). We now have

|h(t0)| ≤
n∑
j=2

(
ε

2(1 + ε/2)

)j
≤ ε2

4(1 + ε/2)2
· 1

1− ε
2(1+ε/2)

.

=
ε2

4(1 + ε/2)

Markov's inequality asserts that

Pr (GM ≥ τ(1 + ε)) = Pr (Z ≥ τM(1 + ε)) .

≤ mZ(t0) exp(−τM(1 + ε)t0)

≤
(
1− ε/2 (1 + ε/2)− ε2/4(1 + ε/2)

)−M/2 · exp(−M
2
· ε

2
· 1 + ε

1 + ε/2
)

= exp(−M
2

(ln(1− ε/2(1 + ε/2)− ε2/4(1 + ε/2)) +
ε

2
· 1 + ε

1 + ε/2
))

= exp(−M
2

(ln(1− ε/2) +
ε

2
· 1 + ε

1 + ε/2
))

= exp

(
−M

2

(
ε

2
· 1 + ε

1 + ε/2
−
∞∑
i=1

(ε/2)i

i
)

))

= exp

(
−M

2

(
ε

2

(
1 + ε

1 + ε/2
− 1

)
− ε2

8
− ε2

4

∞∑
i=1

(ε/2)i

(i+ 2)
)

))

≤ exp

(
−M

2

(
ε2

4
· 1

1 + ε/2
− ε2

8
+
ε2

4
ln(1− ε/2)

))
= exp

(
−Mε2

8

(
1

1 + ε/2
− 1

2
+ ln(1− ε/2)

))
≤ exp(−Mε2/20)

for ε ≤ 0.1. We �nd that if M ≥ 20ε−2 ln(2/δ) then Pr (GM ≤ τ(1 + ε)) ≤ δ/2. Using the
same technique a lower bound can be shown, and combined with a union-bound we �nd
that Pr (|GM − τ | ≤ τ(1 + ε)) ≤ δ. �

In some cases it is possible to prove better bounds, or even the exact trace. For exam-
ple, we show that using a Gaussian trace estimator we can compute the rank of a projection
matrix (i.e., a matrix with only 0 and 1 eigenvalues) using only O(rank(A) log(2/δ)) sam-
ples (where δ is a probability of failure; there is no dependence on ε). Finding the rank
of a projection matrix is useful for computing charge densities (in electronic structures
calculations) without diagonalization [29].

7.6. General Bound for Normalized Rayleigh quotient Estimators 146

Lemma 7.5.3. Let A ∈ Rn×n be a projection matrix, and let δ > 0 be a failure probability.
For M ≥ 24 rank(A) ln(2/δ), the Gaussian trace estimator GM of A satis�es

Pr(round(GM) 6= rank(A)) ≤ δ .

Proof. A projection matrix has only 0 and 1 eigenvalue, so the eigenvalue decompo-
sition of A is of the form

A = UT



1
. . .

1
0

. . .
0


U .

If we write y = Uz then zTAz =
∑rank(A)

i=1 y2
i . Since U is unitary the entries of yi are i.i.d

Gaussian variables, so zTAz is χ2 with rank(A) degrees of freedom. The χ2 distribution
is additive, so MGM is also χ2 but with M rank(A) degrees of freedom. We now use a
known tail-bounds on the χ2 distribution [145]: if X ∼ χ2(k) then

Pr(|X − k| ≤ εk) ≤ 2 exp(−kε2/6) .

By applying this result to MGM we �nd that

Pr(|GM − rank(A)| ≥ rank(A)ε) = Pr(|MGM −M rank(A)| ≥M rank(A)ε)

≤ 2 exp(−M rank(A)ε2/6) .

If we set

(7.5.2) M ≥ 6 rank(A)−1ε−2 ln(2/δ)

we �nd that

Pr(|GM − rank(A)| ≥ rank(A)ε) ≤ δ .

If A is a projection matrix, then trace(A) = rank(A) is an integer, so if the error is below
1
2
, then round(GM) = rank(A). We set ε = 1/(2 rank(A)) and obtain

Pr(round(GM) 6= rank(A)) = Pr(|GM − rank(A)| ≥ rank(A)ε) ≤ δ .

If we plug ε into (7.5.2) we �nd that we require M ≥ 24 rank(A) ln(2/δ). �

7.6. General Bound for Normalized Rayleigh quotient Estimators

The sample vectors z in the Gaussian estimator are not normalized, and this can lead
to a large zTAz (but only with a small probability). Normalized estimators are somewhat
easier to analyze because each sample is bounded. When A is well conditioned, we get a
useful and very general bound.

Theorem 7.6.1. A normalized Rayleigh estimator RM is an (ε, δ)-approximator of trace(A)
for M ≥ 1

2
ε−2n−2 rank2(A) ln(2/δ)κ2

f (A), where κf (A) is the ratio between the largest and
smallest nonzero eigenvalue of A.

7.7. Analysis of Hutchinson's Estimator 147

Proof. Let 0 = λ1 = · · · = λk ≤ · · · ≤ λn be the eigenvalues of A where k =
n− rank(A) + 1, so κf (A) = λn/λk. It is easy to see that

trace(A) · κf (A) =
n∑
i=1

λi · κf (A)

=
n∑
i=k

λi
λk
λn

≥ (n− k + 1)λn

= rank(A)λn

therefore for all i

0 ≤ zTi Azi ≤ λnz
T
i zi = nλn ≤

n

rank(A)
trace(A) · κf (A) .

According to Hoe�ding's inequality for any t > 0,

Pr(|RM − trace(A)| ≥ t) ≤ 2 exp

(
− 2M2 rank2(A)t2

M · n2 trace2(A)κ2
f (A)

)
.

If we set t = ε trace(A) we �nd that

Pr(|RM − trace(A)| ≥ ε trace(A)) ≤ 2 exp

(
−2M rank2(A)ε2

n2κ2
f (A)

)
.

We now set M so that the bound is smaller than δ:

2M rank2(A)ε2

n2κ2
f (A)

≥ ln

(
2

δ

)
or

M ≥
ln(2/δ) · n2κ2

f (A)

2 rank2(A)ε2
.

�

7.7. Analysis of Hutchinson's Estimator

When A is ill conditioned, the (ε, δ) bound in Section 7.6 is weak. We can sharpen
it for a speci�c normalized estimator, that of Hutchinson. However, the bound is still
weaker than that of the Gaussian estimator. The bound here is of interest because (1)
Hutchinson's estimator is widely used, (2) it uses fewer random bits than the Gaussian
estimator, and (3) it requires only additions and subtractions, not multiplications. It is
also possible that there is an even stronger bound for Hutchinson's method.

Theorem 7.7.1. The Hutchinson estimator HM is an (ε, δ)-approximator of trace(A) for
M ≥ 6ε−2 ln(2 rank(A)/δ).

To prove this theorem we use the following Lemma from [1, Lemma 5]:

7.7. Analysis of Hutchinson's Estimator 148

Lemma 7.7.2. Let α ∈ Rn be an arbitrary unit vector. De�ne Q = (αT z)2 where z is
a random vector whose entries are i.i.d Rademacher random variables (Pr(zi = ±1) =
1/2). Let Q1, . . . , QM be M i.i.d copies of Q (di�erent zs but the same α), and de�ne

S = 1
M

∑M
i=1 Qi. Then, for any ε > 0,

Pr(|S − 1| ≥ ε) ≤ 2 exp

(
−M

2

(
ε2

2
− ε3

3

))
.

Proof. (of Theorem 7.7.1). A is symmetric and semide�nite so it can be diag-
onalized. Let λ1, . . . , λn be the eigenvalues of A and assume without loss of gener-
ality that the non-zero eigenvalues are λ1, . . . , λrank(A). Let Λ = UAUT be the uni-
tary diagonalization of A (its eigendecomposition), and de�ne yi = UT zi. Notice that

HM = 1
M

∑M
i=1

∑n
j=1 λjy

2
ij =

∑n
j=1 λj

1
M

∑M
i=1 y

2
ij where yij is the jth entry of yi. The rows

UT
i of UT are unit vectors so S = 1

M

∑M
i=1

(
UT
j zi
)2

satis�es the conditions of Lemma 7.7.2.

But we also have S = 1
M

∑M
i=1 y

2
ij, so

Pr

(∣∣∣∣∣ 1

M

M∑
i=1

y2
ij − 1

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−M

2

(
ε2

2
− ε3

3

))
.

If M ≥ 6ε−2 ln(2 rank(A)/δ) this implies that

Pr

(∣∣∣∣∣ 1

M

M∑
i=1

y2
ij − 1

∣∣∣∣∣ ≥ ε

)
≤ δ

rank(A)
.

This bound holds for each speci�c j. Using the union-bound, we conclude that the
probability that the error is larger than ε for some j = 1, . . . , rank(A) is at most δ.
Hence, the probability that the error is smaller than ε for all j = 1, . . . , rank(A) is at least
1− δ. So with probability 1− δ we also have

|HM − trace(A)| =

∣∣∣∣∣
n∑
j=1

λj
1

M

M∑
i=1

y2
ij −

n∑
i=1

λi

∣∣∣∣∣
=

∣∣∣∣∣∣
rank(A)∑
j=1

λj

(
1

M

M∑
i=1

y2
ij − 1

)∣∣∣∣∣∣
≤

rank(A)∑
j=1

λj

∣∣∣∣∣ 1

M

M∑
i=1

y2
ij − 1

∣∣∣∣∣
≤ ε

rank(A)∑
j=1

λj

= ε trace(A) .

�

The bound is larger than the bound for the Gaussian estimator by a ln(rank(A))
factor. The main di�culty here is that, unlike the Gaussian estimator, the Hutchinson's
estimator cannot be written as a weighted sum of i.i.d random variables. This forces us
to use a union bound instead of using a global analysis. Nevertheless, given the better

7.8. Reducing Randomness: Analyzing Unit Vector Estimators 149

variance term of Hutchinson's estimator we conjecture that this ln(rank(A)) factor is
redundant. In fact, there are some matrix classes for which Hutchinson's estimator is
clearly better than the Gaussian estimator. For example, on diagonal or nearly diagonal
matrices the Hutchinson's estimator will converge very fast, which is not true for the
Gaussian estimator. Another interesting example is the all-ones matrix for which the
bound for the Hutchinson estimator is the same as the bound for the Gaussian estimator
(it is possible to show that for the all-ones matrix the Gaussian estimator is an (ε, δ)-
approximator for M ≥ 6ε−2 ln(2/δ)).

7.8. Reducing Randomness: Analyzing Unit Vector Estimators

This section analyzes two unit vector estimators: the unit vector estimator and the
mixed unit vector estimator. These estimators' main advantage is in restricting the sample
space to n vectors. Thus, only dlog2 ne random bits are required per sample. This allows
the samples to be generated in advance. We begin by analyzing the variance.

Lemma 7.8.1. Let A be an n × n symmetric matrix. The single sample unit vector
estimator U1 of A is an unbiased estimator of trace(A) i.e., E(U1) = trace(A) and
Var(U1) = n

∑n
i=1 A

2
ii − trace2(A) ..

Proof. Let U1 = nzTAz. Because z is an identity vector zTAz just samples values
from the diagonal. Every diagonal value is sampled with equal probability, so E(zTAz) =
trace(A)/n, from which E(nzTAz) = trace(A) follows immediately.

As for variance the following equality holds

Var(nzTAz) = E((nzTAz)2)− (E(nzTAz))2

= n2
E((zTAz)2)− trace2(A)

The random variable (zTAz)2 samples the square of the diagonal values ofA so E((zTAz)2) =∑n
i=1A

2
ii/n and the equality follows. �

We now turn to the more interesting analysis of the number of samples that guarantee
an (ε, δ)-approximator. This quantity depends on the ratio between the largest possible
estimate (when estimating the maximal diagonal value) and the trace.

Theorem 7.8.2. The unit vector estimator UM is an (ε, δ)-approximator of trace(A) for
M ≥ 1

2
ε−2 ln(2/δ)r2

D(A) where rD(A) = n·maxi Aii
trace(A)

.

Proof. The unit vector estimator samples values from the diagonal and multiplies
them by n, so a single samples takes values in the range [0, n · maxiAii]. According to
Hoe�ding's inequality

Pr(|UM − trace(A)| ≥ t) ≤ 2 exp

(
− 2M2t2

Mn2 · (maxiAii)2

)
.

If we set t = ε trace(A) we �nd that

Pr(|UM − trace(A)| ≥ ε trace(A)) ≤ 2 exp

(
− 2Mε2

r2
D(A)

)
.

We now set M so that the bound is smaller than δ:

2Mε2

r2
D(A)

≥ ln

(
2

δ

)

7.8. Reducing Randomness: Analyzing Unit Vector Estimators 150

or

M ≥ ln(2/δ) · r2
D(A)

2ε2
.

�

We now analyze the mixed unit vector estimator. The unit vector estimator relies
on the the mixing matrix F . The analysis is based on the following lemma. The proof
follows the beginning of the proof of Lemma 2.1 in [4] very closely, and we include it here
mainly for completeness.

Lemma 7.8.3. Let U be an n ×m matrix with orthonormal columns, and let F = FD
be a random mixing matrix. With probability of at least 1 − δ (δ > 0) we have for all i
and j ∣∣∣(FU)ij

∣∣∣ ≤√2η ln

(
2mn

δ

)
,

where η = max |Fij|2.

Proof. We shall �rst bound |(FU)ij| by bounding ‖Fx‖∞ for any vector x such that

‖x‖2 = 1. Denote u = Fx and let u =
[
u1 u2 · · ·

]T
. We can write

u1 =
m∑
i=1

bifixi

where bi = ±1 with equal probability, and 0 ≤ fi ≤
√
η. Then,

E(etη
−1u1) =

m∏
i=1

E(etη
−1bifixi) =

m∏
i=1

cosh(tη−1fixi) ≤
m∏
i=1

cosh(tη−1/2xi) ≤ et
2η−1‖x‖2

so by Markov's inequality (Cherno� type argument)

Pr(|u1| ≥ s) = Pr(u1 ≥ s) + Pr(u1 ≤ −s)
= Pr(esη

−1u1 ≥ es
2η−1

) + Pr(e−sη
−1u1 ≥ es

2η−1

)

≤ 2 E(esη
−1u1)/es

2η−1

≤ 2es
2η−1‖x‖2/2−s2η−1

= 2e−s
2η−1/2

If we set s =
√

2η ln
(

2mn
δ

)
then Pr(|u1| ≥ s) ≤ δ/nm. If we put in x the columns of

U we see that we found a bound over all coordinates of FU . By union bound of all nm

coordinates we see that |(FU)ij| ≤
√

2η ln
(

2mn
δ

)
. �

The mixing matrix prevents entries from an orthonormal matrix to be too large.
When applied from both sides to a symmetric positive semide�nite matrix it prevents the
diagonal elements from being too big, i.e. rD(FAFT) is not too big.

Theorem 7.8.4. The mixed unit vector estimator TM is an (ε, δ)-approximator of trace(A)
for M ≥ 2n2η2ε−2 ln(4/δ) ln2(4n2/δ).

7.9. Experiments 151

Proof. A is symmetric so it can be diagonalized. Let Λ = UTAU be the unitary
diagonalization of A (its eigendecomposition), and let V = FU . It is easy to see that(

FAFT
)
jj

=
n∑
k=1

λkV
2
jk .

According to Lemma 7.8.3, with probability 1− δ/2 we have

(7.8.1) V 2
jk =

∣∣∣(FU)jk

∣∣∣2 ≤ 2η ln

(
2n2

δ/2

)
= 2η ln

(
4n2

δ

)
.

The eigenvalues λi are non-negative, so we conclude that with probability 1− δ/2 for all
j,

0 ≤
(
FAFT

)
jj
≤ 2η ln

(
4n2

δ

) n∑
j=1

λj

= 2η ln

(
4n2

δ

)
trace(A) .

We �nd that

rD(FAFT) ≤ 2nη ln

(
4n2

δ

)
.

Therefore, according to Theorem 7.8.2for M ≥ 2n2η2ε−2 ln(4/δ) ln2(4n2/δ) we have
Pr (|TM − trace(A)| > ε trace(A)) ≤ 1− δ/2.

There can be failures of two kinds: with probability at most δ/2 the bound on the
diagonal elements of the mixed matrix may fail to hold, and even if it holds, with prob-
ability δ/2 the ε bound on the estimation error may fail to hold. We conclude that with
probability 1− δ the error bound does hold. �

Remark 7.8.5. For Fourier-type matrices, such as DFT and DCT, η = Θ(1/n), so the
lower bound on M becomes simpler,

M ≥ C
ln2 (4n2/δ) ln(4/δ)

ε2
,

for some small C (8 for the case of DCT, 2 for DFT).

7.9. Experiments

We present the results of several computational experiments that compare the di�erent
estimators, and clarify the actual convergence rate.

Figure 7.9.1 shows the convergence of the various estimators on a matrix of order
n = 100, 000 whose elements are all 1. We have used this matrix as an example of the
matrix with the largest variance possible for Hutchinson's and Gaussian estimator. The
graphs show that all methods converge quite slowly. There is no signi�cant di�erence in
the convergence behavior of all three methods, although we presented di�erent bounds.
The graph also supports our conjecture that our bounds are almost tight, and that the
cost is exponential in the number of required accuracy digits.

Figure 7.9.2 clari�es the convergence behavior of the estimators. The graph on the
left shows the convergence all the way up to n iterations, with two variants of the mixed

7.9. Experiments 152

0 500 1000 1500 2000 2500
10

−2

10
−1

10
0

10
1

Number of samples

R
el

at
iv

e
er

ro
r

Maximum error

Gaussian
Hutchinson
Mixed

0 500 1000 1500 2000 2500
10

−2

10
−1

10
0

10
1

Number of samples

R
el

at
iv

e
er

ro
r

Median error

Gaussian
Hutchinson
Mixed

Figure 7.9.1. Convergence of the estimators on a matrix of order 100, 000
whose elements are all 1. The graph on the left shows the maximum error
during 100 runs of the algorithm, and the graph on the right the median of
the 100 runs.

0 2 4 6 8 10

x 10
4

10
−15

10
−10

10
−5

10
0

Maximum error

Number of samples

R
el

at
iv

e
er

ro
r

Gaussian
Hutchinson
Mixed (with repetitions)
Mixed (no repetitions)

0 5 10 15 20 25
0

1

10

100

1000

10000

100000

Diagonal value

N
um

be
r

of
 e

nt
rie

s

Figure 7.9.2. Details to clarify the behavior of the methods. The exper-
iment is similar to the one in Figure 7.9.1. The graph on the left shows
convergence all the way to n iterations, and the histogram on the right
shows the distribution of diagonal values (relevant for the estimator pre-
sented in section 7.8).

estimator: with and without repetitions. Convergence stagnates and the error nears
machine ε only very close to iteration n and only when sampling without repetitions. If
we sample without repetitions, after we sample all the sample space we are guaranteed
to have the exact trace (this is not possible for the Gaussian estimator and Hutchinson's
estimator, but also not practical in our method). The histogram on the right show that
in spite of the mixing that F performs, the diagonal elements of the mixed matrix FAFT
are still highly skewed. In other words, there are some diagonal values that are important
to sample; until they are sampled, the error remains large.

7.10. Conclusions 153

0 50 100 150 200
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of samples

R
el

at
iv

e
er

ro
r

2000−by−2000 random dense matrix − max error (100 runs)

Gaussian
Hutchinson
Mixed

0 50 100 150 200 250 300 350 400 450
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of Samples

R
el

at
iv

e
er

ro
r

Rothberg/cfd1 − max error (100 runs)

Gaussian
Hutchinson
Mixed

Figure 7.9.3. Convergence on two more matrices: a random matrix of
order 2000 (left) and a sparse matrix of order 70, 656.

Figure 7.9.3 shows that on other classes of matrices, the methods reach a smaller error
before they stagnate. On a random dense matrix, the methods converge quickly to an error
smaller than 10−2, but then stagnate. On a sparse matrix from the University of Florida
matrix collection, the methods reach an error of about 10−3 and then stagnate. There
is again little di�erence between the convergence rates of the three methods, although it
seems that Gaussian estimator is a little less accurate then the other two estimators.

7.10. Conclusions

In terms of the (ε, δ) bounds, the Gaussian estimator requires the smallest number of
samples. The convergence bound for Hutchinson's estimator is the runner up: it requires
more iterations than the Gaussian, but fewer than the mixed unit vector estimator.

In terms of the number of random bits that these estimators require, the ranking is the
exact opposite: the Gaussian estimator requires the most bits, followed by Hutchinson's
estimator, and the mixed unit vector estimator requires the least.

Convergence to a small error is slow, both in practice and in terms of the bounds. The
ε−2 factor in all the bounds imply that the number of samples required to get close to,
say, machine epsilon, is huge. The estimators quickly give a crude estimate of the trace
(correct to within 0.1 or 0.01, say), but they require a huge number of samples to obtain
a very accurate estimate.

The ε−2 factor in the bound is common to many Monte-Carlo algorithms in numerical
linear algebra. When the Monte-Carlo method is used as an inexact solver within the con-
text of an iterative solver, the overall algorithm can be both fast and accurate (chapter 8
and [18]). We are not aware of a suitable iterative algorithm for trace computations.

CHAPTER 8

Engineering a Random-Sampling Numerical Linear Algebra

Algorithm

8.1. Introduction

Randomization is arguably the most exciting and innovative idea to have hit linear
algebra in a long time. Several such algorithms have been proposed and explored in the
past decade (see, e.g, [186, 89, 80, 179, 162, 88, 178, 71, 45] and the references
therein). Some forms of randomization have been used for decades in linear algebra.
For example, the starting vectors in Lanczos algorithms are always random. But recent
research led to new uses of randomization: random mixing and random sampling, which
can be combined to form random projections. These ideas have been explored theoretically
and have found use in some specialized applications (e.g., data mining [153, 45]), but
they have had little in�uence so far on mainstream numerical linear algebra.

This chapter1 answers a simple question: can these new techniques beat state-of-the-
art numerical linear algebra libraries in practice?

Through careful engineering of a new least-squares solver, which we call Blendenpik,
and through extensive analysis and experimentation, we have been able to answer this
question: yes.

Blendenpik beats lapack's direct dense least-squares solver by a large margin on
essentially any dense tall matrix. Blendenpik is slower than lapack on tiny matrices,
nearly square ones, and on some sparse matrices. But on a huge range of matrices of
reasonable sizes, the answer is an unquali�ed yes. Figure 8.1.1 shows a preview of our
experimental results. On large matrices, Blendenpik is about four times faster than
lapack. We believe that these results show the potential of random-sampling algorithms,
and suggest that random-projection algorithms should be considered for incorporation into
future versions of lapack.

8.2. Overview of the algorithm

Let xopt = arg minx ‖Ax− b‖2 be a large highly overdetermined system, with A ∈
Rm×n and b ∈ Rm. Can we sample a small set of rows, R, and use only those rows to �nd
an approximate solution? That is, is the solution xR = arg minx ‖AR,∗x− bR‖2 a good
approximation of xopt? The following simple experiment in matlab [156] illustrates that
for random matrices xR is indeed a good approximation in some sense as long as R is big
enough:

1The results in this chapter also appear in a paper co-authored with Petar Maymounkov and Sivan Toledo
which was published in the SIAM Journal on Scienti�c Computing [18]. This chapter also contains several
proofs that were omitted from the paper, as long with a numerical experiment that was omitted from the
paper (rightmost graph of Figure 8.5.8).

154

8.2. Overview of the algorithm 155

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
LA

P
A

C
K

 ti
m

e
/ B

le
nd

en
pi

k
tim

e

m / 1000

m−by−(m / 40) well−conditioned matrices

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

3.5

LA
P

A
C

K
 ti

m
e

/ B
le

nd
en

pi
k

tim
e

m / 1000

m−by−(2 * m0.5) well−conditioned matrices

Figure 8.1.1. Comparison between LAPACK and the new solver for in-
creasingly larger matrices. Graphs show the ratio of lapack's running time
to Blendenpik's running time on random matrices with two kinds of aspect
ratios.

>�> rand('state', 2378)
>�> randn('state', 23984)
>�> m = 20000; n = 100;
>�> A = rand(m, n); b = rand(m, 1);
>�> [U, S, V] = svd(A, 0);
>�> S = diag(linspace(1, 10^6, 100));
>�> A = U * S * V';
>�> sampled_rows = find(rand(m, 1) < 10 * n * log(n) / m);
>�> A1 = A(sampled_rows, :); b1 = b(sampled_rows);
>�> x = A \ b;
>�> x1 = A1 \ b1;
>�> norm(A * x1 - b) / norm(A * x - b)
ans =

1.0084

The norm of residual is within 1.01 of the optimal residual. In general, under certain
conditions on A, a sample of Ω(n log(m) log(n log(m))) rows guarantee a residual that is
within a factor of 1 + ε of the optimal [89].

There are two problems with this approach. First, the analysis in [89] bounds the
relative error in residual norm, that is

‖AxR − b‖2/‖Axopt − b‖2 ≤ 1 + ε

where xopt is the true solution, and xR is the computed solution. Drineas et al. show that
this implies a bound on the forward error,

‖xopt − xR‖2

‖xopt‖2

≤ tan(θ)κ(A)
√
ε

where θ = cos−1(‖Axopt‖2/‖b‖2). While such an analysis might be useful in some �elds,
it is di�cult to relate it to standard stability analyses in numerical linear algebra. The
standard stability analysis of least-squares algorithms is done in terms of backward error :

8.2. Overview of the algorithm 156

an approximate solution x̃ is shown to be the exact solution of a perturbed system

x̃ = arg min
x
‖(A+ δA)x− b‖2

where ‖δA‖ ≤ ε̃‖A‖. This implies a bound on the forward error

‖xopt − x̃‖2

‖xopt‖2

≤
(
κ(A) +

κ(A)2 tan θ

η

)
ε̃

where η = ‖A‖2‖x‖2/‖Ax‖2. The two forward error bounds are not comparable in an
obvious way. Moreover, the

√
ε appears to make it di�cult to prove small forward error

bounds in well conditioned cases.
Second, running time depends on ε−1. The backward stability requirements (e.g.,

value of ε) of linear-algebra software may be a constant, but it is a tiny constant. So to
achieve the required ε the constants in the asymptotic bounds in [89] might be too large.

Rokhlin and Tygert [179] use a di�erent approach. They use the R factor of the
sampled rows as a preconditioner in a Krylov-subspace method like LSQR [166]:

>�> [Q, R] = qr(A1, 0);
>�> x1 = lsqr(A, b, eps, 100, R);
lsqr converged at iteration 17 to a solution with relative residual 0.5

A uniformly sample of the rows is not always a good strategy. If A has a column j that is
zero except for Aij 6= 0, any subset of rows that excludes row i is rank de�cient. If m� n,
the algorithm needs to sample close to m rows in order to guarantee a high probability
that row i is in the subset. If the row sample is too small, the preconditioner is rank
de�cient and LSQR fails.

>�> A(1:end-1, end) = 0;
>�> A1 = A(sampled_rows, :);
>�> [Q, R] = qr(A1, 0);
>�> x1 = lsqr(A, b, eps, 100, R);
Warning: Matrix is singular to working precision.
> In sparfun\private\iterapp at 33

In lsqr at 217 In overview at 35
lsqr stopped at iteration 0 without converging to the desired
tolerance 2.2e-016
because the system involving the preconditioner was ill conditioned.
The iterate returned (number 0) has relative residual 1

Uniform random sampling works well only when the coherence of the matrix is small,
which is equal to maximum norm of a row in Q, where Q forms an orthonormal basis
for the column space of A (e.g., the leftmost factor in a reduced QR or singular-value
decomposition; a formal de�nition of coherence appears in Section 8.3). The coherence of
the matrix is between n/m and 1. The lower it is the better uniform sampling works.

>�> [Q, R] = qr(A, 0);
>�> coherence = max(sum(Q .^ 2, 2))
coherence =

1.0000

The coherence of our matrix, after the insertion of zeros into column 1, is the worst
possible.

8.3. Theory 157

The coherence of matrices with random independent uniform entries tends to be small,
but as we have seen, other matrices have high coherence. We can use a randomized row-
mixing preprocessing phase to reduce the coherence [89, 179].

>�> D = spdiags(sign(randn(m, 1)), 0, m, m);
>�> B = dct(D * A); B(1, :) = B(1, :) / sqrt(2);
>�> [Q, R] = qr(B, 0);
>�> coherence = max(sum(Q .^ 2, 2))
coherence =

0.0083

First, we randomly multiply each row by +1 or −1, and then apply a discrete cosine
transform (DCT) to each column. The �rst row is divided by

√
2 to make the transfor-

mation orthogonal. With high probability the coherence of B is small. In the example
above, it is less than twice the minimal coherence (0.005). There are many ways to mix
rows to reduce the coherence. We discuss other methods in Section 8.3.2.

With high probability, a uniform sample B1 of the rows of the row-mixed matrix B
makes a good preconditioner. In the code below, we use the R factor of the sample, to
allow LSQR to apply the preconditioner e�ciently.

>�> B1 = B(sampled_rows, :);
>�> [Q, R] = qr(B1, 0);
>�> x1 = lsqr(A, b, eps, 100, R);
lsqr converged at iteration 15 to a solution with relative residual 1

8.3. Theory

This section explains the theory behind the algorithms that this chapter investigates.
The ideas themselves are not new; they have been proposed in several recent papers [89,
179, 162]. We do present some simple generalizations and improvements to existing
results.

8.3.1. Uniform sampling preconditioners. The quality of uniform sampling pre-
conditioners depend on how much the solution depends on speci�c rows. For example, if
the sample is rank de�cient unless row i is in it, then the size of a uniform sample must be
too large to be e�ective. Coherence [54] is the key concept for measuring the dependence
of the solution on speci�c rows.

De�nition 8.3.1. Let A be an m × n full rank matrix and let U be an m × n matrix
whose columns form an orthonormal basis for the column space of A. The coherence of
A is de�ned as

µ(A) = max ‖Ui,∗‖2
2 .

The coherence of a matrix is always smaller than 1 and bigger than n/m. If a row
contains the only non-zero in one of the columns of A then the coherence of the matrix is
1. Coherence does not relate in any way to the condition number of A.

Uniform random sampling yields a good preconditioner on incoherent matrices (ma-
trices with small coherence). For example, if µ(A) = n/m, then a sample of Θ(n log n)
rows is su�cient to obtain a good preconditioner. The following theorem describes a
relationship between the coherence, the sample size, and the condition number of the
preconditioned system.

8.3. Theory 158

Theorem 8.3.2. Let A be an m × n full-rank matrix, and let S be a random sampling
operator that samples r ≥ n rows from A uniformly, such that SA is full rank. Let
τ = C

√
mµ(A) log(r)/r where C is some constant de�ned in the proof. Assume that

δ−1τ < 1. With probability of at least 1 − δ the sampled matrix SA is full rank, and if
SA = UR is a reduced QR factorization of SA, we have

κ(AR−1) ≤
√

1 + δ−1τ

1− δ−1τ
.

To prove Theorem 8.3.2 we need the following simpli�ed version of Lemma 4 in [89].

Lemma 8.3.3. Let U be an m× n matrix whose columns are orthonormal, and let S be
a random sampling operator that samples r ≤ m rows from U uniformly. Then

E
(∥∥In×n − (m/r)UTSTSU

∥∥) ≤ C
√
mµ(U) log(r)/r

for some constant C.

Proof. (of Theorem 8.3.2) First notice that if SU is full-rank then so is SA and
κ(SU) = κ(AR−1). Indeed,

κ(AR−1) =

√
κ(ATA, (SA)T (SA))

=

√
κ((SA)T (SA), ATA)

= κ((SA)R−1)

= κ(SU)

where κ(X, Y) is the ratio between the largest and smallest determined generalized eigen-
values of SPD matrices X and Y .

According to Lemma 8.3.3

E
(∥∥In×n − (m/r)UTSTSU

∥∥) ≤ τ ,

therefore according to Markov's inequality

Pr
(∥∥In×n − (m/r)UTSTSU

∥∥ ≥ δ−1τ
)
≤ δ .

With probability 1− δ we have
∥∥In×n − (m/r)UTSTSU

∥∥ < δ−1τ < 1, so SU is full rank.
Every eigenvalue λ of (m/r)UTSTSU is the Rayleigh quotient of some vector x 6= 0 so

λ =
(m/r)xTx

xTx

=
xTx+ xT ((m/r)UTSTSU − In×n)x

xTx
= 1 + η

where η is a Rayleigh quotient of In×n − (m/r)UTSTSU . This matrix is symmetric
its singular values are the absolute eigenvalues. This implies that |η| < δ−1τ . So, all
eigenvalues of (m/r)UTSTSU must be between 1− δ−1τ and 1 + δ−1τ , and we have

κ(SU) ≤
√

1 + δ−1τ

1− δ−1τ
.

�

8.3. Theory 159

Remark 8.3.4. Notice that the condition number of the original matrix A does not a�ect
the bound on the condition number of the preconditioned matrix.

Remark 8.3.5. Theorem 8.3.2 describes a relationship between sample size (r), proba-
bility of failure (δ) and the condition number of the preconditioned system. With a small
sample, the probability of obtaining a high condition number is high. A high condition
number may lead to a large number of iterations in LSQR, but the number of iterations
may also be small: the convergence of LSQR depends on the distribution of the singular
values of AR−1, not just on the extreme singular values. In fact, chapter 3 use the fact
that a few very large or very small singular values do not e�ect convergence much.

If the coherence is high, uniform sampling produces poor preconditioners. One alter-
native is to use non-uniform sampling. Let A = UR be a reduced QR factorization of A.
Drineas et al. [87] suggest sampling row i with probability pi = ‖Ui‖2

2/m, where Ui is row
i of U . Computing these probabilities requires too much work (a QR factorization of A),
so to make this approach practical probabilities should be, somehow, approximated; to
the best of our knowledge no e�cient approximation algorithm has been developed yet.
Therefore, in the next subsection we turn to a simpler approach, the one used by our
solver, which is based on mixing rows.

8.3.2. Row mixing. Theorem 8.3.2 implies that even if there are important rows,
that is even if coherence is high, if we sample enough rows then with high probability
the preconditioner is a good preconditioner. The higher µ(A) is the more rows should be
sampled. This poses two problems. First, �nding µ(A) is computationally hard. Second,
if µ(A) is high too, then many rows need to be sampled. Indeed, if µ(A) = 1 (the worst)
then as many as O(m logm) rows need to be sampled in order to get a bound on the
condition number using Theorem 8.3.2. When µ(A) = 1, there is a row in the matrix
that must be included in the sample for R to be full rank. We do not know which row
it is, so no row can be excluded from the sample; this is not useful. If µ(A) = n/m
(minimal coherence), on the other hand, then only Θ(n log n) rows need to be sampled to
get κ = O(1) with high probability.

In general, we cannot guarantee a bound on µ(A) in advance. The solution is to
perform a preprocessing step in which rows are mixed so that their importance is nearly
equal. The crucial observation is that a unitary transformation preserves condition num-
ber, but changes coherence. If F is a unitary transformation and R is a preconditioner
FA, then R is an equally good preconditioner for A because the singular values of AR−1

and FAR−1 are the same. But µ(A) and µ(FA) are not necessarily the same; if we select
F so that µ(FA) is small, then we can construct a good preconditioner by uniformly
random sampling the rows of FA.

Any �xed unitary transformation F leads to a high µ(FA) on some A's, so we use a
random unitary transformation. We use the random mixing matrices which we introduced
in chapter 7. Recall that a random mixing matrix F from a product of a �xed seed unitary
transformation F and a random diagonal matrixD with±1 diagonal entries. The diagonal
entries of D are random, unbiased, independent random variables. The following lemma
shows that with high probability, the coherence of FA is small, as long as the maximum
value in F is not too large.

8.3. Theory 160

Lemma 8.3.6. Let A be an m × n full rank matrix where m ≥ n. Let F be an m ×m
unitary matrix, let D be a diagonal matrix whose diagonal entries are i.i.d Rademacher
random variables (Pr(Dii = ±1) = 1/2), and let F = FD. With probability of at least
0.95 we have

µ(FA) ≤ Cnη logm ,

where η = max |Fij|2 and some constant C.

Remark 8.3.7. A must be full rank for the µ to be well de�ned. The theorem can be
generalized to success guarantees other than 0.95. A higher probability leads to a higher
constant C.

Proof. Let A = UR be a reduced QR factorization of A. We have FA = (FU)R
which is a reduced QR factorization of FA, so

µ(FA) = max ‖(FU)i,∗‖2
2 .

According to lemma 7.8.3 (from chapter 7) with probability of at least 1 − δ (δ > 0) we
have for all i and j ∣∣∣(FU)ij

∣∣∣ ≤√2η ln

(
2mn

δ

)
.

In particular for δ = 0.05 and since m ≥ n there exist a constant C such that |(FU)ij| ≤
Cη1/2

√
logm for all i and j with probability of at least 0.95. The bound on µ can now be

achieved by summing the maximum value over the coordinates of a row. �

A seed matrix F is e�ective if it is easy to apply to A and if η = max |Fij|2 is small.
The minimal value of η is 1/m. If η is 1/m, then all the entries of F must have squared
absolute values of 1/m. A normalized DFT matrix has this property, and it it can be
applied quickly, but it involves complex numbers. A normalized Hadamard matrix has
entries that are all ±1/

√
m, and in particular are all real. Hadamard matrices do not

exist for all dimensions, but they do exist for powers of two, and they can be applied
quickly at powers of two. The Walsh-Hadamard series

Hl =
1√
2

(
1 1
1 −1

)
, Hl+1 =

1√
2

(
Hl Hl

Hl −Hl

)
,

enables the Walsh-Hadamard Transform (WHT). Two other options for F are the Discrete
Cosine Transform (DCT) and Discrete Hartley Transform (DHT), which are real, exist
for every size, and can be applied quickly. Their η value is 2/m, twice as large as that of
the WHT.

If we use one of the transformation described above, we need a sample of Θ(n log(m) log(n log(m)))
rows to obtain κ = O(1) with high probability. In practice, smaller samples are su�cient.
In Section 8.4 discuss implementation issues and considerations for selecting the seed
unitary transformation.

A possible alternative mixing strategy is a Kac random walk [136]. We de�ne

F = GT (m,n)GT (m,n)−1 · · ·G3G2G1,

where each Gt is a random Givens rotation. To construct Gt, we select two random indices
it and jt and a random angle θt, and apply the corresponding Givens rotation. The number
of rotations is chosen to make the coherence of FA su�ciently small with high probability.

8.4. Algorithm and Implementation 161

How small can we make T (m,n)? Ailon et al. [4] conjecture that T (m,n) = O(m logm)
will su�ce, but they do not have a proof, so we do not currently use this approach. We
propose an even simpler random walk where instead of using a random angle θt we �x
θt = π/4. We conjecture that still T (m,n) = O(m logm) will su�ce and we have veri�ed
this conjecture experimentally.

8.3.3. High coherence due to a few rows. The coherence is the maximal row
norm of U , an orthonormal basis for the column space of A. If all the rows of U have low
coherence, a uniform random sample of the rows of A leads to a good preconditioner. We
now show that even if a few rows in U have a large norm, a uniform random sample still
leads to an e�ective preconditioner. The fundamental reason for this behavior is that a
few rows with a large norm may allow a few singular values of the preconditioned system
AR−1 to be very large, but the number of large singular values is bounded by the number
of large rows. A few large singular vectors cause the condition number of AR−1 to become
large, but they do not a�ect much the convergence of LSQR (see chapter 3).

Lemma 8.3.8. Let A be an m × n full rank matrix where m ≥ n, and suppose we can
write A =

[
A1
A2

]
where A2 has l ≤ min(m−n, n) rows. Let S ∈ Rk×(m−l) be a matrix such

that SA1 is full rank. Let SA1 = QR be the QR factorization of SA1. Then at least n− l
singular values of AR−1 are between the smallest singular value of A1R

−1 and the largest
singular value of A1R

−1.

Proof. (of Lemma 8.3.8) The singular values of A1R
−1 are the square root of the

generalized eigenvalues of (AT1A1, (SA1)T (SA1)). The singular values of AR−1 are the
square root of the generalized eigenvalues of (AT1A1 + AT2A2, (SA1)T (SA1)). The matrix
ATA = AT1A1 + AT2A2 is a l-rank perturbation of AT1A1 so according to Theorem 3.4.3
at least n − l generalized eigenvalues of (AT1A1 + AT2A2, (SA1)T (SA1)) are between the
smallest and largest generalized eigenvalues of (AT1A1, (SA1)T (SA1)). �

Suppose that A1 is incoherent but A is coherent. In this case, coherency can be
attributed to only a small number of rows (l rows). If A1 is incoherent and full rank than
random sampling will produce a good preconditioner without row mixing. Lemma 8.3.8
implies that the same preconditioner will be a good preconditioner for A as long l is small.
In practice, we do not know the partition of A to A1 and A2. We simply sample from all
the rows of A. But if m is large and the sample is small, the probability of missing any
speci�c row is large; in particular, if l is small then rows from A2 are likely to be missed.
The lemma shows that R is still a good preconditioner. If rows from A2 are in the sample,
the preconditioner is even better.

The lemma assumes that the row sample is full rank. In fact, almost the same result
applies even if the sample is rank de�cient, as long as we perturb R to make it full rank;
see Chapter 3 for details.

8.4. Algorithm and Implementation

In this section we summarize the three major steps of the algorithm: row mixing (pre-
processing), row sampling and QR factorization, and iterative solution. We also discuss
how we handle random-sampling failures. The overall solver is presented in Algorithm 5.

8.4. Algorithm and Implementation 162

Implementation. Our solver currently runs under matlab 7.7 [156], but it is im-
plemented almost entirely in C. The C code is called from matlab using matlab's cmex
interface.

Row mixing. In 8.3.2 we suggest �ve row mixing strategies: DFT, DCT, DHT, WHT
and Kac. We chose not to implement DFT and Kac. The DFT of a vector is a complex
vector even if the vector is real. Thus, using DFT entails operation-count and memory
penalties on subsequent phases when applied on real matrices. Therefore, it is unlikely
that an FFT-based algorithm would outperform one based on DCT or DHT. Kac's random
walk appears to su�er from poor cache locality due to random index selection.

WHT is theoretically optimal, in the sense that its η value is 1/m, but it can be applied
only if the number of rows is a power of two. By padding the matrix with zeros we can
apply WHT to smaller matrices. This causes discontinuous increases in the running time
and memory usage as m grows.. We use spiral wht [133] to apply WHT. To get good
performance it is essential to use the package's self-optimization feature, which incurs a
small one time overhead.

Instead of using WHT, any Hadamard matrix can be used. IfH1 andH2 are Hadamard
matrices then so is H1⊗H2, so using kernels of small Hadamard transforms e�cient large
Hadamard transforms can be implemented. But to the best of our knowledge, there is
currently no e�cient implementation of this idea.

DCT and DHT are near optimal alternative (their η value is 2/m). Their advantages
over WHT is that they exist for all vector size and that in principle, they can be always
applied in O(m logm) operations. However, in practice these transforms are quite slow
for some sizes. The performance of fast transforms (DCT and DHT) depends on how the
input size m can be factored into integers. The performance is not monotone in m. Also,
the fast-transform library that we use (fftw [103]) requires tuning for each input size;
the tuning step also takes time. To address these issues, we used the following strategy.
During the installation of our solver, we generate tuned DCT and DHT solvers for sizes
of the form m = 1000k where k is an integer. The information used by fftw to generate
the tuned solvers (called �wisdom� in fftw) is kept in a �le. Before the solver uses fftw
to compute DHT or DCT, this information is loaded into fftw, so no additional tuning
is done at solve time. Before applying DCT or DHT to a matrix, we pad the matrix to the
next multiple of 1000, or to a slightly higher multiple if the tuning step suggested that the
higher multiple would result in higher performance. One can imagine more sophisticated
strategies, based on knowing what kernel sizes fftw has fast building blocks, and using
sizes that are multiple of those building block. The method that we used is not optimal,
but it does deliver good performance while keeping tuning time reasonable.

We tune fftw using aggressive settings, so tuning takes a long time (hours). We also
experimented with milder tuning setting. If fftw's weakest tuning is used, the tuning
time of DHT reduces to about 11 minutes, but the time spent in computing DHTs is
sometimes doubled. As we shall see in Section 8.5.6, this slows our solver, relative to
aggressive setting, by at most 15% (usually less).

Sampling rows and QR factorization. We sample rows by generating a size m̃ vec-
tor with random uniform entries in [0, 1], where m̃ is the number of rows after padding.
We use matlab's rand function to generate the vector. A row is sampled if the corre-
sponding entry in the vector is smaller than γn/m̃, where γ is a parameter. The expected

8.4. Algorithm and Implementation 163

number of rows that are sampled is γn, but the actual value can be higher or smaller.
This is the same strategy that was suggested in [89]. Once the rows are sampled we
compute their QR factorization using lapack's dgeqrf function.

Row sampling can be combined with row mixing to improve the asymptotic running
time. Any k indices of the FFT of a m element vector can be computed using only
O(m log k) operations [197]. This is also true for WHT [5]. If we select the sampled rows
before the row-mixing we can compute only the mixed rows that are in the sample. We
do not use this strategy because the libraries that we used do not have this option.

Iterative solution. We use LSQR to �nd the solution. Given an iterate xj with a
corresponding residual rj = b− Axj, stopping the algorithm when

(8.4.1)
‖AT rj‖2

‖A‖F‖rj‖2

≤ ρ .

guarantees that xj is an exact solution of

xj = arg min
x
‖(A+ δA)x− b‖2

where ‖δA‖F ≤ ρ‖A‖F . That is, the solution is backward stable [61]. The value of ρ is
a parameter that controls the stability of the algorithm. To use this stopping criterion,
we need to compute rj and A

T rj in every iteration. It is therefore standard practice in
LSQR codes to estimate ‖rj‖2 and ‖AT rj‖2 instead of actually computing them. The
estimate formulas used are accurate in exact arithmetic, and in practice they are remark-
ably reliable [166]. If a preconditioner R is used, as in our algorithm, ‖AT rj‖2 cannot be

estimated but ‖ (AR−1)
T
rj‖2 can be. Preconditioned LSQR codes estimate ‖AR−1‖F as

well, and use the stopping criterion

‖ (AR−1)
T
rj‖2

‖AR−1‖F‖rj‖2

≤ ρ .

that guarantees a backward stable solution to

yj = arg min
x

∥∥AR−1y − b
∥∥

2
,

and return xj = R−1yj. We use the same strategy in our solver. We set ρ = 10−14, which
is close to εmachine, but not close enough to risk stagnation of LSQR . This setting results
in a solver that is about as stable as a QR-based solver.

Handling failures. The bounds in Section 8.3 hold with some probability bounded
from below. With some probability, the algorithm can fail to produce an e�ective pre-
conditioner, in one of two ways: (1) the preconditioner can be rank de�cient or highly
ill conditioned, or (2) the condition number κ(AR−1) can be high. When the condition
number is high, LSQR converges slowly, but the overall algorithm does not fail. But a
rank de�cient preconditioner cannot be used with LSQR. To address this issue, we esti-
mate the condition number of the preconditioner R using lapack's dtrcon function. If
the condition number is too high (larger than ε−1

machine/5) we perform another row mixing
phase and re-sample. If we repeat this three times and still do not get a full rank pre-
conditioner we give up, assume that the matrix itself is rank de�cient, and use lapack.
This never happened in our experiments on full-rank matrices, but on some matrices we
had to mix and sample more than once.

8.5. Numerical experiments 164

Algorithm 5 Blendenpik's algorithm

x=blendenpik(A ∈ Rm×n,b ∈ Rn)

. m ≥ n, A is non-singular

. parameters: γ and transform type

m̃←−

2dlog2me , WHT

dm/1000e × 1000 , DCT or DHT

M ←−

[
A

0

]
∈ Rm̃×n

while not returned

M ←− Fm̃(DM)

. D is a diagonal matrix with ±1 on its diagonal with equal probability

. Fm̃ is the seed unitary transform (WHT/DCT/DHT), Θ(mn logm) operations

Let S ∈ Rm̃×m̃ be a random diagonal matrix:

Sii =

1 , with probability γn/m̃

0 , with probability 1− γn/m̃

Factorize: SM = QR, reduced QR factorization (R ∈ Rn×n)

κ̃←− κestimate(R), condition number estimation (lapack's dtrcon)

if κ̃−1 > 5εmachine

x←− LSQR(A, b,R, 10−14)

return

else

if #iterations > 3

failure: solve using lapack and return

end if

end if

end while

8.5. Numerical experiments

We experimented with the new algorithm extensively in order to explore its behaviors
and to understand its performance. This section reports the results of these experiments
(Figure 8.1.1 above shows additional results).

8.5. Numerical experiments 165

8.5.1. Experimental Setup. We compare the new solver, which we call Blendenpik,
to a high-performance dense QR solver and to LSQR with no preconditioning. The dense
QR solver is lapack's dgels: a high performance, high quality, portable code. We
call lapack from matlab using a special cmex interface that measures only lapack's
running time. No Matlab-related overheads are included; Matlab is used here only as
a scripting tool.

Running times were measured on a machine with two AMD Opteron 242 processors
(we only used one) running at 1.6 GHz with 8 GB of memory. We use goto blas 1.30
and lapack 3.2.1 for basic matrix operations and fftw 3.2.1 for the DCT and DHT.

The measured running times are wall-clock times that were measured using the ftime
Linux system call.

We evaluated our solver on several classes of random matrices. Random matrices
were generated using matlab's rand function (random independent uniform numbers).
Ill-conditioned matrices are obtained by generating their SVD decomposition: two ran-
dom orthonormal matrices and an equally spaced diagonal matrix with the appropriate
condition number.

Our solver relies on automatic tuning of the fast-transform libraries that it uses (fftw
and spiral). This is an installation time overhead that is not included in our running-
time measurements. Automatic tuning is a technique of growing importance in various
numerical libraries, such as the atlas [223] implementation of the blas.

Theoretical bounds relate to the coherence, which is the maximum row norm in the
orthogonal factor of the matrix. Our experiments suggest that in practice running time
is related to the number of rows that have a large norm in the orthogonal factor. There-
fore, we experimented with three types of matrices: incoherent matrices, semi-coherent
matrices and coherent matrices. Incoherent matrices Xm×n, either well conditioned or ill
conditioned, are generated using the rand function with no restriction on the structure.
Semi-coherent matrices are of the form

Ym×n =

[
B̃

In/2

]
+ 10−8

 1 · · · 1
...

...
1 · · · 1


where B̃ is a (m− n/2)× n/2 rectangular random matrix and In/2 is a square identity of
dimension n/2. Bm×n is, in fact, coherent (µ(Bm×n) = 1), but only n/2 rows have a large
norm in the orthogonal factor. Our coherent matrices have the form

Zm×n =

[
Dn×n

0(m−n)×n

]
+ 10−8

 1 · · · 1
...

...
1 · · · 1


where Dn×n is a random diagonal matrix. The orthogonal factors of these matrices have
n rows with a large norm. In both semi-coherent and coherent matrices, the constant
10−8 matrix is added to make the matrices dense. Some solvers, including lapack's (in
version 3.2.1), exploit sparsity. Our solver does not. We added the constant matrix
to avoid this source of variance; we acknowledge the fact that for some sparse matrices
lapack's dense solver is faster than our solver.

8.5. Numerical experiments 166

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

T
im

e
(s

ec
)

m / 1000

Unitary transformation time, m−by−(m / 40) well−conditioned incoherent matrices

WHT
DCT
DHT

Figure 8.5.1. Time spent on the fast unitary transformation (row mixing)
for increasingly larger matrices. We tested all three implemented trans-
forms: WHT, DCT and DHT.

8.5.2. Tuning experiments. The behavior of our solver depends on the seed unitary
transformation that mixes the rows, on the number of row-mixing steps, and on the
sample size. These parameters interact in complex ways, which is not fully captured by
asymptotic analyses. We begin with experiments that are designed to help us choose
these parameters in the algorithm.

8.5.2.1. Unitary transformation type. The row mixing phase uses a �xed seed unitary
matrix that only depends on the row dimension of the problem. In 8.3.2 we suggested �ve
di�erent seed unitary matrices. As explained in Section 8.4, we implemented only three
of them, all using external libraries: the Walsh-Hadamard transform (WHT), the discrete
cosine transform (DCT) and the discrete Hartley transform (DHT). Figures 8.5.1 shows
the running time of each transformation time on increasingly larger matrices. WHT is
the fastest, but DHT and DCT comes close.

Di�erent unitary transforms improve coherence in di�erent ways. Figure 8.5.2 ex-
amines the overall running time of the solver on incoherent, semi-coherent and coherent
matrices. For incoherent and semi-coherent matrices there does not seem to be a sig-
ni�cant di�erence between the di�erent mixing methods. WHT's overall time is smaller
because it is faster than other methods. On coherent matrices, WHT exhibits poor and
erratic performance. In some cases two WHT phases were necessary to obtain a full-rank
preconditioner. DHT and DCT continue work well on coherent matrices; the two meth-
ods behave the same. It is interesting to note that from a theoretical standpoint WHT is
superior, but in practice DHT and DCT work better.

Clearly, WHT's advantage (fast application and a low η) are o�seted by it's disad-
vantages (reduced robustness and a large memory footprint). We therefore decided to
use DHT (which is faster than DCT) for all subsequent experiments except for the right
graph in Figure 8.1.1, where we used WHT for experimental reasons.

8.5.2.2. Sample size and number of row mixing steps. The theoretical analysis shows
that sampling Ω(n log(m) log(n log(m))) rows is su�cient with high probability, but we
do not know the constants in the asymptotic notation. The analysis may give bounds in
the probability of failure, but even if there is failure (e.g., the condition number is bigger

8.5. Numerical experiments 167

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

T
im

e
(s

ec
)

m / 1000

Total time, m−by−(m / 40) well−conditioned incoherent matrices

WHT
DCT
DHT

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

T
im

e
(s

ec
)

m / 1000

Total time, m−by−(m / 40) well−conditioned semi−coherent matrices

WHT
DCT
DHT

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

T
im

e
(s

ec
)

m / 1000

Total time, m−by−(m / 40) well−conditioned coherent matrices

WHT
DCT
DHT

Figure 8.5.2. Overall running time of the algorithm with di�erent fast
unitary transforms (row mixing) on increasingly larger matrices. We tested
on incoherent matrices (left graph), semi-coherent matrices (middle graph)
and coherent matrices (right graph).

than the bound) running time might still be good. Convergence behavior is governed by
the distribution of singular values, and it is not fully captured by condition number. The
contributions of each phase to the running time interact in a complex way that is not
fully predictable by worst case asymptotic analysis. Therefore, we performed experiments
whose goal is to determine a reasonable sampling size.

We also need to decide on the number of row-mixing steps. Row-mixing steps reduce
the coherence and improve the outcome of random sampling. Theoretical bounds state
that after a single row mixing step, the coherence is within a O(logm) factor of the optimal
with high probability. Therefore, after the �rst row mixing step there is still room for
improvement. Although there is no theoretical results that states so, it reasonable to
assume that additional row mixing steps will reduce coherence further, which will cause
LSQR to converge faster, perhaps o�setting the cost of the extra mixing steps.

Figure 8.5.3 present the results of these experiments. We ran experiments with two
matrix sizes, 30, 000 × 750 (top graphs) and 40, 000 × 2, 000 (bottom graphs), and all
matrix types, incoherent (left graphs), semi-coherent (middle graphs) and coherent (right
graphs). All the matrices were ill-conditioned.

We used sample size γn, where γ ranges from 1.5 to 10. Although the theoretical bound
is superlinear, it is not necessarily tight. As the results show, for the range of matrices
tested in our experiments the best sample size displays a sublinear (in n) behavior (which
might change for larger matrices).

For 30, 000×750 matrices the best sample size is around γ = 6. For 40, 000×2, 000 it is
γ = 3. Apparently, for larger matrices a smaller sample is needed (relative to n), contrary
to the theoretical analysis. A sample size withγ = 4 is close to optimal for all matrices.
For incoherent and semi-coherent matrices there is a (small) advantage for using only one
preprocessing phase. For coherent matrices the best results are achieved when using two
preprocessing phases. In fact, using only one preprocessing phase can be disastrous when
combined with a sample size that is too small. But with sample size γ = 4 near optimal
results can be achieved with only one preprocessing phase.

Following these experiments we decided to �x γ = 4 and to use one preprocessing
phase. We used these setting for the rest of the experiments These parameters are not
optimal in all cases, but they seem to be nearly optimal for most cases. The rest of the
experiments in this chapter use these values.

8.5. Numerical experiments 168

0 2 4 6 8 10
0

5

10

15

20

γ

T
im

e
(s

ec
)

30000−by−750 incoherent ill conditioned (κ = 106) matrix

#preprocess = 1
#preprocess = 2
#preprocess = 3

0 2 4 6 8 10
0

5

10

15

20

25

30

γ

T
im

e
(s

ec
)

30000−by−750 semi−coherent ill conditioned (κ = 106) matrix

#preprocess = 1
#preprocess = 2
#preprocess = 3

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

γ

T
im

e
(s

ec
)

30000−by−750 coherent ill conditioned (κ = 106) matrix

#preprocess = 1
#preprocess = 2
#preprocess = 3

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

110

γ

T
im

e
(s

ec
)

40000−by−2000 incoherent ill conditioned (κ = 106) matrix

#preprocess = 1
#preprocess = 2
#preprocess = 3

0 2 4 6 8 10
0

20

40

60

80

100

120

γ

T
im

e
(s

ec
)

40000−by−2000 semi−coherent ill conditioned (κ = 106) matrix

#preprocess = 1
#preprocess = 2
#preprocess = 3

0 2 4 6 8 10
0

100

200

300

400

500

600

γ

T
im

e
(s

ec
)

40000−by−2000 coherent ill conditioned (κ = 106) matrix

#preprocess = 1
#preprocess = 2
#preprocess = 3

Figure 8.5.3. Running time as a function of sample size and number of row
mixing steps for 30, 000×7, 500 matrices (top graphs) and a 40, 000×2, 000
matrices (bottom graphs). We run the same experiment on incoherent
matrices (left graphs), semi-coherent matrices (middle graph) and coherent
matrices (right graphs).

0 1 2 3 4 5
0

50

100

150

200

250

300

log
10

(condition number)

T
im

e
(s

ec
)

20000−by−1000 incoherent matrix

Blendenpik
LSQR without preconditioning

0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

log
10

(condition number)

T
im

e
(s

ec
)

20000−by−1000 semi−coherent matrix

Blendenpik
LSQR without preconditioning

0 1 2 3 4 5
0

50

100

150

200

250

log
10

(condition number)

T
im

e
(s

ec
)

20000−by−1000 coherent matrix

Blendenpik
LSQR without preconditioning

Figure 8.5.4. Running time on increasingly ill conditioned matrices.

8.5.3. Ill conditioned matrices. Figure 8.5.4 shows that the condition number of
A does not a�ect our new solver at all, but it does a�ect unpreconditioned LSQR. On
very well conditioned matrices, unpreconditioned LSQR is faster, but its performance
deteriorates quickly as the condition number grows.

8.5.4. Easy and hard cases. Figure 8.5.5 compares the performance of our solver
and of lapack on incoherent, semi-coherent and coherent matrices of four di�erent aspect
ratios. The number of elements in all matrices is the same. (lapack's running time
depends only on the matrix's dimensions, not on its coherence, so the graph shows only one
lapack running time for each size.) Our solver is slower on matrices with high coherence
than on matrices with low coherence, but not by much. Even when the coherence is high,

8.5. Numerical experiments 169

120000x750 90000x1000 60000x1500 40000x2250 30000x3000
0

50

100

150

200

250

T
im

e
(s

ec
)

Incoherent
Semi−coherent
Coherent
LAPACK

Figure 8.5.5. Running time on di�erent coherence pro�les.

our solver is considerably faster than lapack. Hard cases (high coherence) run slower
because LSQR converges slower, so more LSQR iterations are performed (the other phases
of the algorithm are oblivious to coherence). It appears that a single row mixing phase
does not remove the coherence completely.

8.5.5. Convergence rate. In the experiments whose results are shown in the left
graph in Figure 8.5.6, we examine the LSQR convergence rate on a single matrix. The
graph shows the norm of the residual after each iteration. Except for the �nal itera-
tions, where the solver stagnates near convergence, the convergence rate is stable and
predictable. This is a useful property that allows us to predict when the solver will con-
verge and to predict how the convergence threshold a�ects the running time. The rate
itself is slower on coherent matrices than on incoherent and semi-coherent ones This is
the same issue we saw in Figure 8.5.5.

The graph on the right examines the number of iterations required for LSQR to con-
verge as a function of problem size. On incoherent and semi-coherent matrices the number
of iterations grows very slowly. On coherent matrices the number of iterations grows faster.

8.5.6. The cost of the di�erent phases. Figure 8.5.7 shows a breakdown of the
running time of our solver for incoherent matrices (left graph) and coherent matrices
(right graph) of increasingly larger size. The row mixing preprocessing phase is not a
bottleneck of the algorithm. Most of the time is spent on factoring the preconditioner
and on LSQR iterations. The most expensive phase is the LSQR phase. The asymptotic
running time of the row mixing phase is Θ(mn logm), and for the QR phase it is Θ(n3).
Each LSQR iteration takes Θ(mn) time and the number of iterations grows slowly. In
both graphs n = m/40, so the QR phase is asymptotically the most expensive.

The dominance of the LSQR phase implies that considerable speedup can be achieved
by relaxing the convergence threshold. In our experiments the convergence threshold
was set to 10−14. If a convergence threshold of 10−6 is acceptable, for example, we can
roughly halve the number of iterations of the LSQR phase, thereby accelerating our solver
considerably.

The row mixing phase takes about 15% of overall solver time. Even if we double row
mixing time, our solver will still be faster than lapack on nearly all of the matrices used
in our experiments.

8.5. Numerical experiments 170

0 10 20 30 40 50 60 70 80
10

−15

10
−10

10
−5

10
0

100000−by−2500, condition number = 106

Iteration

||A
T
r|

| 2/||
A

|| F
||r

|| 2

Incoherent
Semi−coherent
Coherent

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

#i
te

ra
tio

ns

m / 1000

m−by−(m / 40) matrices, condition number = 106

Incoherent
Semi−coherent
Coherent

Figure 8.5.6. Convergence rate experiments. The left graph shows
‖AT r(i)‖2/‖A‖F‖r(i)‖2, where r

(i) is the residual after the ith iteration of
LSQR, on three 100, 000 × 2, 500 matrices of di�erent coherence pro�les.
The right graph shows the number of LSQR iterations needed for conver-
gence on increasingly larger matrices.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

T
im

e
(s

ec
)

m / 1000

m−by−(m / 40) well−conditioned incoherent matrices

Row mixing
Sample+QR
LSQR

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

T
im

e
(s

ec
)

m / 1000

m−by−(m / 40) well−conditioned coherent matrices

Row mixing
Sample+QR
LSQR

Figure 8.5.7. Breakdown of running time on increasingly larger matrices.
The plotted series shows the running time of each phase. The left graph
shows the breakdown for incoherent matrices, while the right graph shows
the breakdown for coherent matrices.

8.5.7. No row mixing. If a matrix is completely incoherent to begin with, we do
not need to mix its rows. On such matrices, row mixing takes time but does not reduce
the running time of subsequent phases. The left graph in Figure 8.5.8 shows that this
is essentially true on random matrices, which have low (but not minimal) coherence; the
algorithm runs faster without mixing at all.

The middle graph in Figure 8.3.6 examines performance on coherent matrices whose
coherence can be attributed to a small number c of rows. The matrices are of the form

S(m+c)×(n+c) =

[
S0 S1

0 103 × Ic

]

8.6. Discussion and related work 171

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

T
im

e
(s

ec
)

m / 1000

m−by−(m / 40) well−conditioned matrices

With row mixing
No row mixing

1 2 3 4 5 6 7 8
8

9

10

11

12

13

14

c (dimension of indentity block)

T
im

e
(s

ec
)

30000−by−750 matrix

Row mixing
No row mixing

1 2 3 4 5 6 7 8
8

8.5

9

9.5

10

10.5

11

11.5

12

c (dimension of indentity block)

T
im

e
(s

ec
)

30000−by−750 matrix

Row mixing
No row mixing

Figure 8.5.8. Experiments examining strategies with no row mixing vs.
the regular strategy. The left graph compares the solver without a row
mixing phase to the solver with a row mixing phase on incoherent matrices.
The middle graph compares the same two solvers on matrices with a few
important rows. The right graph repeats the experiment of the middle
graph, but with an LSQR with full orthogonalization for the solver without
row mixing.

where S0 ∈ Rm×(n−c)and S1 ∈ Rm×c are random rectangular matrix, and Ic is a c-by-
c identity. When c is tiny (1 and 2), row mixing does not improve the running time
substantially. But for c > 2, with row mixing the running time remains constantly low,
while a performance of random sampling without mixing deteriorates as the size of the
103 × Ic block grows.

The reason for the deterioration is numerical inaccuracies, and not poor precondition-
ning. The basis vectors generated by LSQR loses orthogonality because a short recurrence
(Lanczos recurrence) is used. A celebrated result of Paige [164] shows that loss of or-
thogonality is large only in the directions of converged or nearly converged Ritz vectors.
As long as no Ritz has converged a satisfactory level of orthogonality is maintained. This
result explains why isolated singular values in the preconditioned matrix cause numeri-
cal problems: the algorithm tends to converge fast for the isolated eigenvalues. Possible
solution for this problem are full orthogonalization (expensive), selective orthogonaliza-
tion [167] and others (see �5.3 in [205]). We have veri�ed this observation by running
LSQR with full orthogonalization (the rightmost graph).

8.6. Discussion and related work

Experiments show that our solver is faster than lapack and faster than LSQR with no
preconditioning. The algorithm is robust and predictable. The algorithm is competitive
in the usual metric of numerical linear algebra, and it demonstrates that randomized
algorithms can be e�ective in numerical linear algebra software. We have not encountered
cases of large dense matrices where the solver fails to beat lapack, even in hard test cases,
and we have not encountered large variance in running time of the algorithm on a given
matrix. Even the convergence rate in the iterative phase is stable and predictable (unlike
many algorithms that use an iterative method).

Although, the numerical experiment demonstrate the validity of the worst-case the-
oretical analysis, they also demonstrate that actual performance is not fully described

8.6. Discussion and related work 172

by it. In some issues actual performance acts di�erently than suggested by theoretical
bounds, or the observed behavior is not explained by the analysis:

• The theoretical analysis suggest that WHT is better in reducing coherence. In
practice DHT and DCT work better, even though it takes longer to compute
them. In fact, on highly coherent matrices, WHT sometimes fails to mix rows
well enough (so we need to apply it again), while this never happened for DHT
and DCT.
• The algorithm may fail with some small probability. It may fail to produce an
incoherent matrix after row sampling, and important rows may be left out of
the random sample (thereby producing a poor preconditioner). Some failures
may slow down the solver considerably (for example, when the preconditioner is
rank de�cient and another row mixing phase is necessary), but it is practically
impossible for the algorithm not to �nish in �nite time on full rank matrices.
Current theory does not guarantee that the probability of slowdown is negligible.
When using WHT for row mixing, the solver did slow down sometimes due to
such failures. When the DHT is used for row mixing, we have not encountered
such failures, running time was always good, with a small variance. Apparently
the actual probability of failure is much smaller than the theoretical bounds.
• Theoretical bounds require a superlinear sample size. In practice, a linear sample
works better. It is unclear whether the reason is that the bounds are not tight,
or whether constants come into play.
• The theory relates performance to the coherence of the matrix. Coherence uses
the maximum function, which from our experiment, is too crude for analyzing
random sampling. Actual performance depends on the distribution of row norms
in the orthogonal factor, not just the maximum values. In a sense, the role co-
herence is similar to the role of condition number in Krylov methods: it provides
bounds using extreme values (easy to handle) while actual performance depends
on intern values (hard to handle).

The algorithm used by our solver is new, but its building blocks are not. We chose
building blocks that are geared toward an e�cient implementation. Using WHT for row
mixing (and padding the matrix by zeros) was suggested by Drineas et al. [89]. Their
complete method is not suitable for a general-purpose solver because sample size depends
on the required accuracy. Using DCT or DHT for row mixing in low-rank matrix approx-
imations was suggested by Nguyen et al. [162]. Their observation carries to least-squares
solution. DHT has a smaller memory footprint than WHT, and it works better than
WHT and DCT, so we decided to use it. Using the sampled matrix as a preconditioner
for an iterative Krylov-subspace method was suggested by Rohklin et al. [179]. They use
CGLS; we decided to use LSQR because it often works better. The row mixing method
in [179] uses FFT, which forces the solver to work on complex numbers. Furthermore,
their analysis require two FFT applications.

Our observation that the solver can work well even if the post-mixing coherence is
high, as long as the number of high-norm rows in U is small, is new.

Unlike previous work in this area, we compared our solver to a state-of-the-art direct
solver (lapack), showed that it is faster, and explored its behavior on a wide range of
matrices. Drineas et al. [89] do not implement their algorithm. Rokhlin et al. [179] im-
plemented their algorithm, but they compared it to a direct solver that they implemented,

8.6. Discussion and related work 173

which is probably slower than lapack's. They they also experimented only with a small
range of matrices (incoherent matrices whose number of rows is a power of two).

A possible future work is to compare Blendenpik to the new communication avoiding
least-squares solver of Demmel et al. [81], and perhaps devise a communication avoiding
variant of Blendenpik. Communication avoiding QR is currently not incoporated into
LAPACK, but from private communications we understood that a prototype demonos-
trates speedups similar to the ones demonstrated by Blendenpik. It is worth noting that
Blendenpik uses LAPACK's QR routine so it too might bene�t from the new communi-
cation avoiding routine.

Bibliography

[1] Achlioptas, D. Database-friendly random projections. In PODS '01: Proceedings of the twentieth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database systems (New York, NY,
USA, 2001), ACM, pp. 274�281.

[2] Adamson, A., and Alexa, M. Point-sampled cell complexes. ACM Trans. Graph. 25, 3 (2006),
671�680.

[3] Adlers, M. Computing sparse orthogonal factor in matlab. Tech. Rep. LiTH-MAT-R-98-19.
[4] Ailon, N., and Chazelle, B. Approximate nearest neighbors and the fast Johnson-Lindenstrauss

transform. In STOC '06: Proceedings of the thirty-eighth annual ACM Symposium on Theory of
Computing (New York, NY, USA, 2006), ACM, pp. 557�563.

[5] Ailon, N., and Liberty, E. Fast dimension reduction using rademacher series on dual BCH codes.
In SODA '08: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms
(Philadelphia, PA, USA, 2008), Society for Industrial and Applied Mathematics, pp. 1�9.

[6] Alexa, M., and Adamson, A. On normals and projection operators for surfaces de�ned by point
sets. In Eurographics Symp. on Point-Based Graphics (2004), pp. 149�155.

[7] Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. Computing
and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics 9, 1
(January 2003), 3�15.

[8] Amenta, N. De�ning point-set surfaces. In ACM Transactions on Graphics (SIGGRAPH) '04
(2004), pp. 264�270.

[9] Amenta, N., and Kil, Y. J. The domain of a point set surfaces. Eurographics Symposium on
Point-based Graphics 1, 1 (2004), 139�147.

[10] Amestoy, P., Duff, I., and L'Excellent, J.-Y. MUMPS: a MUltifrontal Massively Parallel
sparse direct Solver. http://mumps.enseeiht.fr/.

[11] Amestoy, P. R., Duff, I. S., and Puglisi, C.MultifrontalQR factorization in a multiprocessor
environment. Numerical Linear Algebra with Applications 3, 4 (1998).

[12] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz,
J. D., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. LAPACK User's
Guide, 3rd ed. SIAM, Philadelphia, PA, 1999. Also available online from http://www.netlib.org.

[13] Arioli, M. A stopping criterion for the conjugate gradient algorithm in a element method frame-
work. Tech. rep., Numerische Mathematik, 2000.

[14] Ashby, S. F., Manteuffel, T. A., and Saylor, P. E. A taxonomy for conjugate gradient
methods. SIAM J. Numer. Anal. 27, 6 (1990), 1542�1568.

[15] Avron, H. Counting triangles in large graphs using randomized matrix trace estimation. In Pro-
ceedings of KDD-LDMTA'10 (2010).

[16] Avron, H., Chen, D., Shklarski, G., and Toledo, S. Combinatorial preconditioners for scalar
elliptic �nite-element problems. SIAM Journal on Matrix Analysis and Applications 31, 2 (2009),
694�720.

[17] Avron, H., Gupta, A., and Toledo, S. New Krylov-Subspace solvers for hermitian positive
de�nite matrices with inde�nite preconditioners. Tech. Rep. RC 24698 (W0812-001), IBM T. J.
Watson Research Center, Yorktown Heights, NY, December 1, 2008.

[18] Avron, H., Maymounkov, P., and Toledo, S. Blendenpik: Supercharging LAPACK's least-
squares solver. SIAM Journal on Scienti�c Computing 32, 3 (2010), 1217�1236.

[19] Avron, H., Ng, E., and Toledo, S. A generalized Courant-Fischer minimax theorem. Tech.
rep., Tel-Aviv University, Israel, Aug. 2008.

174

Bibiliography 175

[20] Avron, H., Ng, E., and Toledo, S. Using perturbed QR factorizations to solve linear least-
squares problems. SIAM Journal on Matrix Analysis and Applications 31, 2 (2009), 674�693.

[21] Avron, H., Sharf, A., Greif, C., and Cohen-Or, D. `1-sparse reconstruction of sharp point
set surfaces. ACM Trans. Graph. 29 (November 2010), 135:1�135:12.

[22] Avron, H., Shklarski, G., and Toledo, S. On element SDD approximability. Tech. rep.,
Tel-Aviv University, Israel, Apr. 2008.

[23] Avron, H., Shklarski, G., and Toledo, S. Parallel unsymmetric-pattern multifrontal sparse
lu with column preordering. ACM Trans. Math. Softw. 34, 2 (2008), 1�31.

[24] Avron, H., and Toledo, S. Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-de�nite matrix. Journal of the ACM 59, 2 (2011).

[25] Bai, Z., Fahey, M., and Golub, G. Some large scale matrix computation problems. J. Comput.
Appl. Math 74 (1996), 71�89.

[26] Bai, Z., Fahey, M., Golub, G., Menon, M., and Richter, E. Computing partial eigenvalue
sum in electronic structure calculations. Tech. Rep. SCCM-98-03, Stanford University, Jan 1998.

[27] Barlow, J. L., and Vemulapati, U. B. Rank detection methods for sparse matrices. SIAM
Journal on Matrix Analysis and Applications 13, 4 (1992), 1279�1297.

[28] Bauer, F. L. Optimally scaled matrices. Numerische Mathematik 5 (1963), 73�87.
[29] Bekas, C., Kokiopoulou, E., and Saad, Y. An estimator for the diagonal of a matrix. Appl.

Numer. Math. 57, 11-12 (2007), 1214�1229.
[30] Benzi, M. Preconditioning techniques for large linear systems: A survey. Journal of Computational

Physics 182, 2 (2002), 418�477.
[31] Benzi, M., and T·ma, M. A comparative study of sparse approximate inverse preconditioners.

Appl. Numer. Math. 30 (June 1999), 305�340.
[32] Bern, M., Gilbert, J. R., Hendrickson, B., Nguyen, N., and Toledo, S. Support-graph

preconditioners. SIAM Journal on Matrix Analysis and Applications 27 (2006), 930�951.
[33] Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G. The ball-pivoting

algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics
5, 4 (1999), 349�359.

[34] Bernstein, D. S. Matrix Mathematics: Theory, Facts, and Formulas with Applications to Linear
Systems Theory. Princeton University Press, 2005.

[35] Bischof, C., and Tang, P. LAPACKWorking Note 33: Robust incremental condition estimation.
Tech. rep., University of Tennessee, Knoxville, TN, USA, 1991.

[36] Bischof, C. H. Incremental condition estimation. SIAM Journal on Matrix Analysis and Appli-
cations 11, 2 (1990), 312�322.

[37] Bischof, C. H., and Hansen, P. C. Structure-preserving and rank-revealing QR-factorizations.
SIAM Journal on Scienti�c and Statistical Computing 12, 6 (1991), 1332�1350.

[38] Bischof, C. H., Lewis, J. G., and Pierce, D. J. Incremental condition estimation for sparse
matrices. SIAM Journal on Matrix Analysis and Applications 11, 4 (1990), 644�659.

[39] Bjorck, A. A general updating algorithm for constrained linear least squares problems. SIAM
Journal on Scienti�c and Statistical Computing 5, 2 (1984), 394�402.

[40] Björck, Å. Numerical Methods for Least Squares Problems. SIAM, 1996.
[41] Boman, E. G., Chen, D., Hendrickson, B., and Toledo, S. Maximum-weight-basis precon-

ditioners. Numerical Linear Algebra with Applications 11 (2004), 695�721.
[42] Boman, E. G., and Hendrickson, B. On spanning tree preconditioners. Unpublished manu-

script, Sandia National Laboratories, 2001.
[43] Boman, E. G., and Hendrickson, B. Support theory for preconditioning. SIAM Journal on

Matrix Analysis and Applications 25, 3 (2004), 694�717.
[44] Boman, E. G., Hendrickson, B., and Vavasis, S. Solving elliptic �nite element systems in

near-linear time with support preconditioners. SIAM Journal on Numerical Analysis 46, 6 (2008),
3264�3284.

[45] Boutsidis, C., and Drineas, P. Random projections for the nonnegative least-squares problem.
Linear Algebra and its Applications 431, 5-7 (2009), 760 � 771.

Bibiliography 176

[46] Box, G. E. P., Hunter, W. G., and Hunter, J. S. Statistics for Experimenters: An Introduc-
tion to Design, Data Analysis, and Model Building. John Wiley & Sons, June 1978.

[47] Boyd, S., and Vandenberghe, L. Convex Optimization. Cambridge University Press, 2004.
[48] Braatz, R. D. Response to Chen and Toledo on �minimizing the Euclidean condition number�.

Private communication, Sept. 2005.
[49] Braatz, R. D., and Morari, M. Minimizing the Euclidean condition number. SIAM Journal

on Control and Optimization 32 (1994), 1763�1768.
[50] Brainman, I., and Toledo, S. Nested-dissection orderings for sparse LU with partial pivoting. In

Proceedings of the 10th SIAM Conference on Parallel Processing for Scienti�c Computing (Norfolk,
Virginia, Mar. 2001). 10 pages on CDROM.

[51] Brezina, M., Cleary, A. J., Falgout, R. D., Henson, V. E., Jones, J. E., Manteuffel,
T. A., McCormick, S. F., and Ruge, J. W. Algebraic multigrid based on element interpolation
(amge). SIAM Journal on Scienti�c Computing 22, 5 (2000), 1570�1592.

[52] Candeès, E. J., and Wakin, M. B. An introduction to compressive sampling [a sensing/sampling
paradigm that goes against the common knowledge in data acquisition]. Signal Processing Magazine,
IEEE 25, 2 (2008), 21�30.

[53] Candès, E., and Romberg, J. l1-Magic : Recovery of sparse signals via convex programming.
In http://www.acm.caltech.edu/l1magic/ (October 2005).

[54] Candès, E. J., and Recht, B. Exact matrix completion via convex optimization. CoRR
abs/0805.4471 (2008).

[55] Candès, E. J., Romberg, J., and Tao, T. Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information. Information Theory, IEEE Transactions
on 52, 2 (2006), 489�509.

[56] Candès, E. J., Wakin, M. B., and Boyd, S. P. Enhancing sparsity by reweighted `1 minimiza-
tion. Journal of Fourier Analysis and Applications 14 (2008), 877�905.

[57] Chan, T. F. Rank revealing QR factorizations. Linear Algebra Appl. 88/89 (1987), 67�82.
[58] Chan, T. F., and Hansen, P. C. Some applications of the rank revealing QR factorization.

SIAM Journal on Scienti�c and Statistical Computing 13, 3 (1992), 727�741.
[59] Chan, T. F., Osher, S., and Shen, J. The digital TV �lter and nonlinear denoising. IEEE

Trans. Image Process 10 (2001), 231�241.
[60] Chandrasekaran, S., and Ipsen, I. C. F. On rank-revealing factorisations. SIAM Journal on

Matrix Analysis and Applications 15, 2 (1994), 592�622.
[61] Chang, X.-W., Paige, C. C., and Titley-Peloquin, D. Stopping criteria for the iterative

solution of linear least squares problems. SIAM Journal on Matrix Analysis and Applications 31, 2
(2009), 831�852.

[62] Chartier, T., Falgout, R. D., Henson, V. E., Jones, J., Manteuffel, T., McCormick,
S., Ruge, J., and Vassilevski, P. S. Spectral AMGe (ρAMGe). SIAM Journal on Scienti�c
Computing 25, 1 (Jan. 2003), 1�26.

[63] Chen, D., and Toledo, S. Vaidya's preconditioners: Implementation and experimental study.
Electronic Transactions on Numerical Analysis 16 (2003), 30�49.

[64] Chen, D., and Toledo, S. Combinatorial characterization of the null spaces of symmetric H-
matrices. Linear Algebra and its Applications 392 (2004), 71�90.

[65] Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic decomposition by basis pursuit.
SIAM Rev. 43, 1 (2001), 129�159.

[66] Chen, Y., Davisa, T. A., Hager, W. W., and Rajamanickam, S. Algorithm 8xx: Cholmod,
supernodal sparse cholesky factorization and update/downdate. Tech. Rep. TR-2006-005. Submit-
ted to ACM Trans. Math. Software.

[67] Claerbout, J., and Muir, F. Robust modeling of erratic data. Geophysics 38, 5 (1973), 826�844.
[68] Concus, P., Golub, G. H., and O'Leary, D. P. A generalized conjugate gradient method

for the numerical solution of elliptic partial di�erential equations. In Sparse Matrix Computations,
J. R. Bunch and D. J. Rose, Eds. Academic Press, New York, 1976, pp. 309�332.

[69] Daitch, S. I., and Spielman, D. A. Support-graph preconditioners for 2-dimensional trusses.
CoRR abs/cs/0703119 (2007). informal publication.

Bibiliography 177

[70] Daniels, J. I., Ha, L. K., Ochotta, T., and Silva, C. T. Robust smooth feature extraction
from point clouds. In SMI '07: Proceedings of the IEEE International Conference on Shape Modeling
and Applications 2007 (2007), pp. 123�136.

[71] Dasgupta, A., Drineas, P., Harb, B., Kumar, R., and Mahoney, M. W. Sampling algo-
rithms and coresets for `p regression. SIAM Journal on Computing 38, 5 (2009), 2060�2078.

[72] Davis, T. The University of Florida Sparse Matrix Collection.
http://www.cise.u�.edu/research/sparse/matrices.

[73] Davis, T. A. SuiteSparse: a Suite of Sparse matrix packages.
http://www.cise.u�.edu/research/sparse/SuiteSparse/.

[74] Davis, T. A. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, 2006.
[75] Davis, T. A.Multifrontal multithreaded rank-revealing sparse qr factorization. Submitted to ACM

Transactions on Mathematical Software, 22 pages, 2008.
[76] Davis, T. A., Gilbert, J. R., Larimore, S. I., and Ng, E. G. A column approximate mini-

mum degree ordering algorithm. Tech. Rep. TR-00-005, Department of Computer and Information
Science and Engineering, University of Florida, 2000.

[77] Davis, T. A., and Hager, W. W. Dynamic supernodes in sparse cholesky update/downdate and
triangular solves. Tech. Rep. TR-2006-004. Submitted to ACM Trans. Math. Software.

[78] Davis, T. A., and Hager, W. W. Modifying a sparse cholesky factorization. SIAM Journal on
Matrix Analysis and Applications 20, 3 (1999), 606�627.

[79] Davis, T. A., and Hager, W. W. Row modi�cations of a sparse cholesky factorization. SIAM
J. Matrix Anal. Appl. 26, 3 (2005), 621�639.

[80] Demmel, J., Dumitriu, I., and Holtz, O. Fast linear algebra is stable. Numerische Mathematik
108, 1 (2007), 59�91.

[81] Demmel, J., Grigori, L. amd Hoemmen, M., and Langou, J. Communication-optimal parallel
and sequential qr and lu factorizations. Tech. Rep. UCB/EECS-2008-89, University of California,
Berkeley, 2008.

[82] Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H. A supernodal
approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications 20 (1999),
720�755.

[83] Dey, T. K., and Sun, J. An adaptive mls surface for reconstruction with guarantees. In SGP
'05: Proceedings of the third Eurographics symposium on Geometry processing (2005), p. 43.

[84] Dey, T. K., and Sun, J. Normal and feature approximations from noisy point clouds. In FST &
TCS 2006, LNCS 4337 (2006), pp. 21 � 32.

[85] Dongarra, J. J., Cruz, J. D., Hammarling, S., and Duff, I. A set of level 3 basic linear
algebra subprograms. ACM Transactions on Mathematical Software 16, 1 (1990), 1�17.

[86] Donoho, D. L., Elad, M., Temlyakov, V. N., and A. Stable recovery of sparse overcomplete
representations in the presence of noise. IEEE Trans. Inform. Theory 52 (2006), 6�18.

[87] Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Sampling algorithms for `2 regression
and applications. In SODA '06: Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm (New York, NY, USA, 2006), ACM, pp. 1127�1136.

[88] Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Relative-error cur matrix decompo-
sitions. SIAM Journal on Matrix Analysis and Applications 30, 2 (2008), 844�881.

[89] Drineas, P., Mahoney, M. W., Muthukrishnan, S., and Sarlós, T. Faster least squares
approximation. CoRR abs/0710.1435 (2007).

[90] Duff, I., and Scott, J. The HSL mathematical software library.
http://www.hsl.rl.ac.uk/contact.html.

[91] Duff, I. S., and Vømel, C. Incremental norm estimation for dense and sparse matrices. BIT
Numerical Mathematics 42, 2 (2002), 300�322.

[92] Elad, M., Starck, J., Querre, P., and Donoho, D. Simultaneous cartoon and texture image
inpainting using morphological component analysis (mca). Applied and Computational Harmonic
Analysis 19, 3 (November 2005), 340�358.

Bibiliography 178

[93] Elkin, M., Emek, Y., Spielman, D. A., and Teng, S.-H. Lower-stretch spanning trees. In
Proceedings of the 37th annual ACM Symposium on Theory of Computing (STOC) (Baltimore,
MD, 2005), ACM Press, pp. 494�503.

[94] Elsey, M., and Esedoglu, S. Analogue of the total variation denoising model in the context of
geometry processing. Multiscale Modeling & Simulation 7, 4 (2009), 1549�1573.

[95] Faber, V., and Manteuffel, T. Necessary and su�cient conditions for the existence of a
conjugate gradient method. SIAM J. Numer. Anal. 21, 2 (1984), 352�362.

[96] Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 2, 3rd. ed. Wiley,
January 1971.

[97] Fleishman, S., Cohen-Or, D., and Silva, C. T. Robust moving least-squares �tting with sharp
features. ACM Trans. Graph. 24, 3 (2005), 544�552.

[98] Fleishman, S., Drori, I., and Cohen-Or, D. Bilateral mesh denoising. ACM Trans. Graph.
22, 3 (2003), 950�953.

[99] Foster, L. V. The probability of large diagonal elements in the QR factorization. SIAM Journal
on Scienti�c and Statistical Computing 11, 3 (1990), 531�544.

[100] Frangioni, A., and Gentile, C. New preconditioners for KKT systems of network �ow problems.
SIAM Journal on Optimization 14 (2004), 894�913.

[101] Freund, R. W., and Nachtigal, N. M. QMR: a quasi-minimal residual method for non-
Hermitian linear systems. Numerische Mathematik 60, 1 (Dec 1991), 315�339.

[102] Freund, R. W., and Nachtigal, N. M. An implementation of the QMR method based on
coupled two-term recurrences. SIAM J. Sci. Comput. 15, 2 (1994), 313�337.

[103] Frigo, M., and Johnson, S. G. FFTW: An adaptive software architecture for the FFT. In 1998
ICASSP Conference Proceedings (1998), vol. 3, p. 1381.

[104] George, A., and Heath, M. T. Solution of sparse linear least squares problems using Givens
rotations. Linear Algebra Appl. 34 (1980), 69�83.

[105] Gill, P. E., Murray, W., Saunders, M. A., Tomlin, J. A., and Wright, M. H. On
projected Newton barrier methods for linear programming and an equivalence to Karmarkar's
projective method. Math. Program. 36, 2 (1986), 183�209.

[106] Golub, G. H. Numerical methods for solving linear least squares problems. Numer. Math. 7
(1965), 206�216.

[107] Golub, G. H. Matrices, moments and quadrature II; how to compute the norm of the error in
iterative methods. BIT 37 (1997), 687�705.

[108] Golub, G. H., and Kahan, W. Calculating the singular values and pseudo-inverse of a matrix.
Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis 2
(1965), 205�224.

[109] Golub, G. H., and Loan, C. F. V. Matrix Computations (3rd ed.). Johns Hopkins University
Press, Baltimore, MD, USA, 1996.

[110] Grant, M., and Boyd, S. CVX: Matlab software for disciplined convex programming (web page
and software). http://stanford.edu/ boyd/cvx, 2009.

[111] Greenbaum, A. Iterative Methods for Solving Linear Systems. SIAM, 1997.
[112] Gremban, K., Miller, G., and Zagha, M. Performance evaluation of a parallel preconditioner.

In 9th International Parallel Processing Symposium (Santa Barbara, April 1995), IEEE, pp. 65�69.
[113] Gremban, K. D. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant

Linear Systems. PhD thesis, School of Computer Science, Carnegie Mellon University, Oct. 1996.
Technical Report CMU-CS-96-123.

[114] Guennebaud, G., and Gross, M. Algebraic point set surfaces. In ACM Transactions on Graphics
(SIGGRAPH) '07 (2007).

[115] Gupta, A. WSMP: Watson sparse matrix package (Part-III: iterative solution of sparse systems).
Tech. Rep. RC-24398, IBM T.J. Watson Research Center, Yorktown Heights, NY, Nov. 2007.

[116] Gupta, A., and George, T. Adaptive techniques for improving the performance of incomplete
factorization preconditioning. Tech. Rep. RC 24598 (W0807-036), IBM T. J. Watson Research
Center, Yorktown Heights, NY, July 7, 2008. To appear in SIAM Journal on Scienti�c Computing.

Bibiliography 179

[117] Gupta, R. Support graph preconditioners for linear systems. Master's thesis, Texas A&M Univer-
sity, December 2004.

[118] Haase, G., Langer, U., Reitzinger, S., and Schicho, J. Algebraic multigrid methods based
on element preconditioning. International Journal of Computer Mathematics 78, 4 (2001), 575�598.

[119] Hansen, P. C. Rank-De�cient and Discrete Ill-Posed Problems: Numerical Aspects of Linear
Inversion. SIAM, Philadelphia, 1998.

[120] Heath, M. T. Some extensions of an algorithm for sparse linear least squares problems. SIAM
Journal on Scienti�c and Statistical Computing 3, 2 (1982), 223�237.

[121] Hegland, M., and Saylor, P. E. Block Jacobi preconditioning of the conjugate gradient method
on a vector processor. International Journal of Computer Mathematics, 1 (1992).

[122] Hénon, P., Ramet, P., and Roman, J. PaStiX: A high-performance parallel direct solver for
sparse symmetric de�nite systems. Parallel Computing 28, 2 (2002), 301�321.

[123] Henson, V. E., and Yang, U. M. BoomerAMG: a parallel algebraic multigrid solver and pre-
conditioner. Applied Numerical Mathematics 41 (2002), 155�177.

[124] Hestenes, M., and Stiefel, E. Methods of conjugate gradients for solving linear systems. Na-
tional Bureau of Standards Jounal of Research 49 (1952), 409�436.

[125] Higham, N. J. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.
[126] Higham, N. J. Accuracy and Stability of Numerical Algorithms, 2nd ed. SIAM, 2002.
[127] Hoemmen, M. Communication-Avoiding Krylov Subspace Methods. PhD thesis, University of Cal-

ifornia, Berkeley. Spring 2010.
[128] Holland, P., and Welsch, R. Robust regression using iteratively reweighted least-squares.

Communications in Statistics - Theory and Methods 6, 9 (1977), 813 � 827.
[129] Hughes, T. J. R., Levit, I., and Winget, J. An element�by�element solution algorithm for

problems of structural and solid mechanics. Comp. Meth. Appl. Mech. Engng. 36 (1983), 241�254.
[130] Hutchinson, M. F. A stochastic estimator of the trace of the in�uence matrix for Laplacian

smoothing splines. Communications in Statistics, Simulation and Computation, 18 (1989), 1059�
1076.

[131] Iitaka, T., and Ebisuzaki, T. Random phase vector for calculating the trace of a large matrix.
Physical Review E 69 (2004), 057701�1�057701�4.

[132] Janssen, A. J. E. M., van Leeuwaarden, J. S. H., and Zwart, B. Gaussian expansions
and bounds for the Poisson distribution applied to the Erlang B formula. Advances in Applied
Probability 40, 1 (2008), 122�143.

[133] Johnson, J., and Puschel, M. In search of the optimal Walsh-Hadamard transform. In ICASSP
'00: Proceedings of the Acoustics, Speech, and Signal Processing, 2000. on IEEE International
Conference (Washington, DC, USA, 2000), IEEE Computer Society, pp. 3347�3350.

[134] Jones, T. R., Durand, F., and Desbrun, M. Non-iterative, feature-preserving mesh smoothing.
In SIGGRAPH '03: ACM SIGGRAPH 2003 Papers (2003), pp. 943�949.

[135] Júdice, J. J., Patricio, J., Portugal, L. F., Resende, M. G. C., and Veiga, G. A study of
preconditioners for network interior point methods. Computational Optimization and Applications
24 (2003), 5�35.

[136] Kac, M. Probability and related topics in physical science. Wiley Interscience.
[137] Kambadur, P., Gupta, A., Ghoting, A., Avron, H., and Lumsdaine, A. PFunc: Modern

task parallelism for modern high performance computing. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing (SC) (Portland, Oregon, November 2009).

[138] Karypis, G., and Kumar, V. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scienti�c Computing 20 (1998), 359�392.

[139] Kolluri, R. Provably good moving least squares. In SODA '05: Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms (2005), pp. 1008�1017.

[140] Koutis, I., and Miller, G. L. A linear work, O(n1/6) time, parallel algorithm for solving pla-
nar Laplacians. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007 (2007), N. Bansal, K. Pruhs,
and C. Stein, Eds., SIAM, pp. 1002�1011.

Bibiliography 180

[141] Koutis, I., Miller, G. L., and Peng, R. Approaching optimality for solving sdd systems. CoRR
abs/1003.2958 (2010).

[142] Langer, U., Reitzinger, S., and Schicho, J. Symbolic methods for the element preconditioning
technique. Tech. rep., Johannes Kepler Universität (JKU) Linz, Jan. 2002.

[143] Levin, A., Fergus, R., Durand, F., and Freeman, W. T. Image and depth from a conven-
tional camera with a coded aperture. In SIGGRAPH '07: ACM SIGGRAPH 2007 papers (2007),
ACM.

[144] Levin, D. Mesh-independent surface interpolation. In Geometric Modeling for Scienti�c Visual-
ization (2003), pp. 37�49.

[145] Li, P., Hastie, T., and Church, K. Nonlinear estimators and tail bounds for dimension reduc-
tion in l1 using Cauchy random projections. In Learning Theory, N. H. Bshouty and C. Gentile,
Eds., vol. 4539 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2007, ch. 37, pp. 514�529.

[146] Li, X. S., and Demmel, J. W. SuperLU_DIST: A scalable distributed memory sparse direct
solver for unsymmetric linear systems. ACM Transactions on Mathematical Software 29 (2003),
110�140.

[147] Lipman, Y., Cohen-Or, D., and Levin, D. Data-dependent mls for faithful surface approxima-
tion. In SGP '07: Proceedings of the �fth Eurographics symposium on Geometry processing (2007),
pp. 59�67.

[148] Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H. Parameterization-free projection
for geometry reconstruction. ACM Trans. Graph. 26, 3 (2007), 22.

[149] Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. Linear rotation-invariant coordinates
for meshes. In Proceedings of ACM SIGGRAPH 2005 (2005), pp. 479�487.

[150] Lobo, M. S., Vandenbergheb, L., Boyd, S., and Lebret, H. Applications of second-order
cone programming. Linear Algebra and its Applications 284 (1998), 193�228.

[151] Lu, S.-M., and Barlow, J. L. Multifrontal computation with the orthogonal factors of sparse
matrices. SIAM Journal on Matrix Analysis and Applications 17, 3 (1996), 658�679.

[152] Maggs, B. M., Miller, G. L., Parekh, O., Ravi, R., and Woo, S. L. M. Finding e�ective
support-tree preconditioners. In SPAA '05: Proceedings of the seventeenth annual ACM symposium
on Parallelism in algorithms and architectures (2005), ACM Pres, pp. 176�185.

[153] Mahoney, M. W., and Drineas, P. cur matrix decompositions for improved data analysis.
Proceedings of the National Academy of Sciences 106, 3 (2009), 697�702.

[154] Manteuffel, T. An incomplete factorization technique for positive de�nite linear systems. Math-
ematics of Computation 34 (1980), 473�497.

[155] MathWorks, T. Matlab version 7.2. software package, Jan. 2006.
[156] MathWorks, T. MATLAB version 7.7. software package, 2008.
[157] Matstoms, P. Sparse qr factorization in matlab. ACM Trans. Math. Softw. 20, 1 (1994), 136�159.
[158] Mederos, B., Velho, L., and De Figueiredo, L. H. Robust smoothing of noisy point clouds.

In Proc. of the SIAM Conf. on Geometric Design and Computing (2003).
[159] Meijerink, J. A., and van der Vorst, H. A. An iterative solution method for linear systems

of which the coe�cient matrix is a symmetric M-matrix. Mathematics of Computation 31 (1977),
148�162.

[160] Ng, E. A scheme for handling rank-de�ciency in the solution of sparse linear least squares problems.
SIAM J. Sci. Stat. Comput. 12, 5 (1991), 1173�1183.

[161] Ng, M. K. Iterative Methods for Toeplitz Systems (Numerical Mathematics and Scienti�c Compu-
tation). Oxford University Press, Inc., New York, NY, USA, 2004.

[162] Nguyen, N. H., Do, T. T., and Tran, T. D. A fast and e�cient algorithm for low-rank
approximation of a matrix. In 41st ACM Symposium on Theory of Computing (STOC 2009) (2009).

[163] Oztireli, C., Guennebaud, G., and Gross, M. Feature preserving point set surfaces based on
non-linear kernel regression. Computer Graphics Forum 28, 2 (2009), 493�501.

[164] Paige, C. C. The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices.
PhD thesis, University of London, 1971.

Bibiliography 181

[165] Paige, C. C., and Saunders, M. A. Solution of sparse inde�nite systems of linear equations.
SIAM Journal on Numerical Analysis 12 (1975), 617�629.

[166] Paige, C. C., and Saunders, M. A. LSQR: An algorithm for sparse linear equations and sparse
least squares. ACM Trans. Math. Softw. 8, 1 (1982), 43�71.

[167] Parlett, B. N., and Scott, D. S. The Lanczos algorithm with selective orthogonalization.
Mathematics of Computation 33, 145 (Jan 1979), 217�238.

[168] Pauly, M., Keiser, R., and Gross, M. H. Multi-scale feature extraction on point-sampled
surfaces. Computer Graphics Forum 22, 3 (2003), 281�290.

[169] Pauly, M., Mitra, N., and Guibas, L. Uncertainty and variability in point cloud surface data.
In SGP '04: Symposium on Geometry processing (2004).

[170] Persson, P.-O., and Strang, G. A simple mesh generator in MATLAB. SIAM Review 46
(2004), 329�345.

[171] Pierce, D. J., and Lewis, J. G. Sparse multifrontal rank revealing QR factorization. SIAM
Journal on Matrix Analysis and Applications 18, 1 (1997), 159�180.

[172] Portugal, L., Bastos, F., Júdice, J., Paixao, J., and Terlaky, T. An investigation of
interior-point algorithms for the linear transportation problem. SIAM Journal on Scienti�c Com-
puting 17 (1996), 1202�1223.

[173] Portugal, L. F., Resende, M. G. C., Veiga, G., and Júdice, J. J. A truncated primal-
infeasible dual-feasible interior point network �ow method. Networks 35 (2000), 91�108.

[174] Reitzinger, S. Algebraic multigrid and element preconditioning I. Tech. rep., Johannes Kepler
Universität (JKU) Linz, Dec. 1998.

[175] Resense, M., and Veiga, G. An e�cient implementation of the network interior-point method.
In Network Flows and Matching: the First DIMACS Implementation Challenge, D. Johnson and
C. McGeoch, Eds., vol. 12 of DIMACS Series in Discrete Mathematics and Computer Science.
AMS, 1993.

[176] Reuter, P., Joyot, P., Trunzler, J., Boubekeur, T., and Schlick, C. Point set surfaces
with sharp features. Tech. rep., LaBRI, 2005.

[177] Robert, Y. Regular incomplete factorizations of real positive de�nite matrices. Linear Algebra
and its Applications 48 (1982), 105�117.

[178] Rokhlin, V., Szlam, A., and Tygert, M. A randomized algorithm for principal component
analysis. To appear in SIAM Journal on Matrix Analysis and Applications, 2009.

[179] Rokhlin, V., and Tygert, M. A fast randomized algorithm for overdetermined linear least-
squares regression. Proceedings of the National Academy of Sciences 105, 36 (2008), 13212�13217.

[180] Rudelson, M., and Vershynin, R. Sampling from large matrices: An approach through geo-
metric functional analysis. Journal of the ACM 54 (July 2007).

[181] Rudin, L., Osher, S., and Fatemi, E. Nonlinear total variation based noise removal algorithms.
Physica D 60 (1992), 259�268.

[182] Rudin, L. I. Images, numerical analysis of singularities and shock �lters. Tech. rep., 1987.
[183] Ruge, J. W., and Stüben, K. Algebraic multigrid (AMG). In Multigrid Methods, S. F. Mc-

Cormick, Ed., vol. 3 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 1987, pp. 73�
130.

[184] Saad, Y. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 2003.

[185] Saad, Y., and Schultz, M. H. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scienti�c and Statistical Computing 7, 3 (1986),
856�869.

[186] Sarlos, T. Improved approximation algorithms for large matrices via random projections. In
FOCS '06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(Washington, DC, USA, 2006), IEEE Computer Society, pp. 143�152.

[187] Schenk, O., and Gartner, K. PARDISO solver project. http://www.pardiso-project.org/.
[188] Shapiro, A. Upper bounds for nearly optimal diagonal scaling of matrices. Linear and Multilinear

Algebra 29 (1991), 145�147.

Bibiliography 182

[189] Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A., Amenta, N., and
Cohen-Or, D. Space-time surface reconstruction using incompressible �ow. In SIGGRAPH '08:
ACM SIGGRAPH Asia 2008 papers (2008), vol. 27, ACM, pp. 1�10.

[190] Shen, C., O'brien, J. F., and Shewchuk, J. R. Interpolating and approximating implicit
surfaces from polygon soup. In ACM Transactions on Graphics (SIGGRAPH) '04 (2004), pp. 896�
904.

[191] Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings
of the 1968 23rd ACM national conference (1968), pp. 517�524.

[192] Shewchuk, J. An introduction to the conjugate gradient method without the agonizing pain. Tech.
Rep. CMU-CS-94-125, School of Computer Science, Carnegie Mellon University, 1994.

[193] Shklarski, G. Combinatorial Preconditioners for Finite Element Problems and Other Contribu-
tions to Numerical Linear Algebra. PhD thesis, Tel-Aviv University. August 2008.

[194] Shklarski, G., and Toledo, S. Rigidity in �nite-element matrices: Su�cient conditions for the
rigidity of structures and substructures. SIAM Journal on Matrix Analysis and Applications 30, 1
(2008), 7�40.

[195] Si, H. TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangula-
tor: Users's Manual for Version 1.4, Jan. 2006. available online from http://tetgen.berlios.de.

[196] Silver, R. N., and Röder, H. Calculation of densities of states and spectral functions by cheby-
chev recursion and maximum entropy. Physical Review E 56 (1997), 4822�4829.

[197] Sorensen, H. V., and Burrus, C. S. E�cient computation of the DFT with only a subset of
input or output points. IEEE Trans. Signal Processing 41, 3 (1993), 1184�1200.

[198] Sorkine, O., Cohen-Or, D., Irony, D., and Toledo, S. Geometry-aware bases for shape
approximation. IEEE Transactions on Visualization and Computer Graphics 11, 2 (2005), 171�
180.

[199] Spielman, D. A., and Srivastava, N. Graph sparsi�cation by e�ective resistances. In Proceedings
of the 40th annual ACM Symposium on Theory of Computing (New York, NY, USA, 2008), STOC
'08, ACM, pp. 563�568.

[200] Spielman, D. A., and Teng, S.-H. Solving sparse, symmetric, diagonally-dominant linear sys-
tems in time 0(m1.31). In Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science (Oct. 2003), pp. 416�427.

[201] Spielman, D. A., and Teng, S.-H. Nearly-linear time algorithms for graph partitioning, graph
sparsi�cation, and solving linear systems. In STOC '04: Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing (New York, NY, USA, 2004), ACM Press, pp. 81�90.

[202] Spielman, D. A., and Teng, S.-H. Nearly-linear time algorithms for preconditioning and solv-
ing symmetric, diagonally dominant linear systems. Unpublished manuscript available online at
http://arxiv.org/abs/cs/0607105, 2006.

[203] Spielman, D. A., and Teng, S.-H. Nearly-linear time algorithms for preconditioning and solving
symmetric, diagonally dominant linear systems. CoRR abs/cs/0607105 (2009).

[204] Starck, J.-L., Elad, M., and Donoho, D. L. Image decomposition via the combination of
sparse representations and a variational approach. IEEE Transactions on Image Processing 14, 10
(2005), 1570�1582.

[205] Stewart, G. W.Matrix algorithms. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2001.

[206] Strassen, V. Gaussian elimination is not optimal. Numerische Mathematik 14, 3 (1969), 354�356.
[207] Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. Geometric surface smoothing

via anisotropic di�usion of normals. In VIS '02: Proceedings of the conference on Visualization '02
(Washington, DC, USA, 2002), IEEE Computer Society, pp. 125�132.

[208] Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. Geometric surface processing via
normal maps. ACM Trans. Graph. 22, 4 (2003), 1012�1033.

[209] The MathWorks, Inc. Matlab Reference Guide. Natick, MA, Aug. 1992.
[210] Toledo, S., and Avron, H. Combinatorial preconditioners. In Combinatorial Scienti�c Com-

puting, U. Naumann and O. Schenk, Eds. Computational Science series, Chapman & Hall / CRC
Press, 2010.

Bibiliography 183

[211] Toledo, S., Chen, D., and Rotkin, V. TAUCS: A library of sparse linear solvers.
http://www.tau.ac.il/ stoledo/taucs/.

[212] Tomasi, C., and Manduchi, R. Bilateral �ltering for gray and color images. In ICCV '98:
Proceedings of the Sixth International Conference on Computer Vision (1998), p. 839.

[213] Tropp, J. A. Just relax: convex programming methods for identifying sparse signals in noise.
IEEE Transactions on Information Theory 52, 3 (2006), 1030�1051.

[214] Tsourakakis, C. E. Fast counting of triangles in large real networks without counting: Algorithms
and laws. IEEE Computer Society, pp. 608�617.

[215] Vaidya, P. M. Solving linear equations with symmetric diagonally dominant matrices by construct-
ing good preconditioners. Unpublished manuscript. A talk based on this manuscript was presented
at the IMA Workshop on Graph Theory and Sparse Matrix Computations, Minneapolis, October
1991.

[216] van der Sluis, A. Condition numbers and equilibration of matrices. Numerische Mathematik 14
(1969), 14�23.

[217] van der Vorst, H. A. BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the
solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 2 (1992), 631�644.

[218] Varga, R. S., B., S. E., and Mehrmann, V. Incomplete factorizations of matrices and connec-
tions with H-matrices. SIAM Journal on Numerical Analysis 17 (1980), 787�793.

[219] Vavasis, S. Private communication, 2007.
[220] Wallace, D. L. Bounds on normal approximations to student's and the chi-square distributions.

The Annals of Mathematical Statistics 30, 4 (1959), 1121�1130.
[221] Wang, M., and Sarin, V. Constructing m-matrix preconditioners for �nite element problems.

Submitted to SIAM Journal on Scienti�c Computing, 2008.
[222] Wedin, P. Perturbation theory for pseudo-inverses. BIT Numerical Mathematics 13 (1973), 217�

232.
[223] Whaley, R. C., and Petitet, A. Minimizing development and maintenance costs in supporting

persistently optimized BLAS. Software: Practice and Experience 35, 2 (February 2005), 101�121.
http://www.cs.utsa.edu/~whaley/papers/spercw04.ps.

[224] Wong, M. N., Hickernell, F. J., and Liu, K. I. Computing the trace of a function of a sparse
matrix via Hadamard-like sampling. 2004.

	Acknowledgments
	Abstract
	Chapter 1. Introduction
	1.1. A brief background: solving linear equations
	1.2. Combinatorial preconditioners for scalar elliptic finite-element models
	1.3. Using perturbed QR factorizations to solve linear least-squares problems
	1.4. A solver for rank-deficient overdetermined least-squares problems
	1.5. Application: 1-sparse reconstruction of sharp point set surfaces
	1.6. Experimental study of solving HPD systems using indefinite incomplete factorizations
	1.7. Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix
	1.8. Engineering a random-sampling numerical linear algebra algorithm

	Chapter 2. Combinatorial Preconditioners for Scalar Elliptic Finite-Element Problems
	2.1. Introduction
	2.2. Nearly-Optimal Element-by-Element Approximations
	2.3. Scaling and Assembling Element Approximations
	2.4. Sparsification of the Assembled SDD Approximation
	2.5. Dealing with Inapproximable Elements
	2.6. Asymptotic Complexity Issues
	2.7. Experimental Results
	2.8. Open Problems

	Chapter 3. Using Perturbed QR Factorizations to Solve Linear Least-Squares Problems
	3.1. Introduction
	3.2. Background
	3.3. Preliminaries
	3.4. Spectral Theory
	3.5. Applications To Least-Square Solvers
	3.6. An Algorithm for Perturbing to Improve the Conditioning
	3.7. Numerical Examples
	3.8. Conclusions

	Chapter 4. A Solver for Rank-deficient Overdetermined Least-squares Problems
	4.1. Introduction
	4.2. Algorithms
	4.3. Implementation
	4.4. Experimental Results
	4.5. Conclusions

	Chapter 5. Application: 1-sparse Reconstruction of Sharp Point Set Surfaces
	5.1. Introduction
	5.2. Related Work
	5.3. 1 Sparsity Overview
	5.4. Reconstruction Model
	5.5. An Efficient Convex Optimization Solver
	5.6. Results and Discussion
	5.7. Conclusions

	Chapter 6. Experimental study of solving HPD systems using indefinite incomplete factorizations
	6.1. Introduction
	6.2. The U-conjugate Arnoldi Iteration
	6.3. PCG-ODIR
	6.4. Indefinitely Preconditioned CG
	6.5. Indefinitely Preconditioned MINRES
	6.6. Numerical experiments and discussion
	6.7. Conclusions and Open Questions

	Chapter 7. Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix
	7.1. Introduction
	7.2. Hutchinson's Method and Related Work
	7.3. Three and an Half Estimators
	7.4. Comparing the Quality of Estimators
	7.5. Analysis of the Gaussian Estimator
	7.6. General Bound for Normalized Rayleigh quotient Estimators
	7.7. Analysis of Hutchinson's Estimator
	7.8. Reducing Randomness: Analyzing Unit Vector Estimators
	7.9. Experiments
	7.10. Conclusions

	Chapter 8. Engineering a Random-Sampling Numerical Linear Algebra Algorithm
	8.1. Introduction
	8.2. Overview of the algorithm
	8.3. Theory
	8.4. Algorithm and Implementation
	8.5. Numerical experiments
	8.6. Discussion and related work

	Bibliography

