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Abstract

Random Fourier features is one of the most pop-
ular techniques for scaling up kernel methods,
such as kernel ridge regression. However, de-
spite impressive empirical results, the statistical
properties of random Fourier features are still not
well understood. In this paper we take steps to-
ward filling this gap. Specifically, we approach
random Fourier features from a spectral matrix
approximation point of view, give tight bounds
on the number of Fourier features required to
achieve a spectral approximation, and show how
spectral matrix approximation bounds imply sta-
tistical guarantees for kernel ridge regression.

1. Introduction
Kernel methods constitute a powerful paradigm for devis-
ing non-parametric modeling techniques for a wide range
of problems in machine learning. One of the most elemen-
tary is Kernel Ridge Regression (KRR). Given training data
(x1, y1), . . . , (xn, yn) ∈ X ×Y , where X ⊆ Rd is an input
domain and Y ⊆ R is an output domain, a positive definite
kernel function k : X × X → R, and a regularization pa-
rameter λ > 0, the response for a given input x is estimated
as:

f̄(x) ≡
n∑
j=1

k(xj ,x)αj

where α = (α1 · · ·αn)T is the solution of the equation

(K + λIn)α = y. (1)
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In the above, K ∈ Rn×n is the kernel matrix or Gram
matrix defined by Kij ≡ k(xi,xj) and y ≡ [y1 · · · yn]T is
the vector of responses. The KRR estimator can be derived
by minimizing a regularized square loss objective function
over a hypothesis space defined by the reproducing kernel
Hilbert space associated with k(·, ·); however, the details
are not important for this paper.

While simple, KRR is a powerful technique that is well
understood statistically and capable of achieving impres-
sive empirical results. Nevertheless, the method has a
key weakness: computing the KRR estimator can be pro-
hibitively expensive for large datasets. Solving (1) gener-
ally requires Θ(n3) time and Θ(n2) memory. Thus, the de-
sign of scalable methods for KRR (and other kernel based
methods) has been the focus of intensive research in recent
years (Zhang et al., 2015; Alaoui & Mahoney, 2015; Musco
& Musco, 2016; Avron et al., 2016).

One of the most popular approaches to scaling up kernel
based methods is random Fourier features sampling, orig-
inally proposed by Rahimi & Recht (2007). For shift-
invariant kernels (e.g. the Gaussian kernel), Rahimi &
Recht (2007) presented a distribution D on functions from
X to Cs (s is a parameter) such that for every x, z ∈ Rd

k(x, z) = Eϕ∼D [ϕ(x)∗ϕ(z)] .

The idea is to sample ϕ from D and use k̃(x, z) ≡
ϕ(x)∗ϕ(y) as a surrogate kernel. The resulting approxi-
mate KRR estimator can be computed in O(ns2) time and
O(ns) memory (see §2.2 for details), giving substantial
computational savings if s� n.

This approach naturally raises the question: how large
should s be to ensure a high quality estimator? Or, using
the exact KRR estimator as a natural baseline: how large
should s be for the random Fourier features estimator to be
almost as good as the exact KRR estimator? Answering
this question can help us determine when random Fourier
features can be useful, whether the method needs to be im-
proved, and how to go about improving it.

The original random Fourier features analysis (Rahimi
& Recht, 2007) bounds the point-wise distance between
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k(·, ·) and k̃(·, ·) (for other approaches for analyzing ran-
dom Fourier features, see §2.3). However, the bounds do
not naturally lead to an answer to the aforementioned ques-
tion. In contrast, spectral approximation bounds on the en-
tire kernel matrix, i.e. of the form

(1−∆)(K+λIn) � K̃+λIn � (1+∆)(K+λIn) , (2)

naturally have statistical and algorithmic implications. In-
deed, in §3 we show that when (2) holds we can bound the
excess risk introduced by the random Fourier features esti-
mator when compared to the KRR estimator. We also show
that K̃ +λIn can be used as an effective preconditioner for
the solution of (1). This motivates the study of how large s
should be as a function of ∆ for (2) to hold.

In this paper we rigorously analyze the relation between
the number of random Fourier features and the spectral ap-
proximation bound (2). Our main results are the following:

◦ We give an upper bound on the number of random fea-
tures needed to achieve (2) (Theorem 7). This bound, in
conjunction with the results in §3, positively shows that
random Fourier features can give guarantees for KRR
under reasonable assumptions.

◦ We give a lower bound showing that our upper bound is
tight for the Gaussian kernel (Theorem 8).

◦ We show that the upper bound can be improved dra-
matically by modifying the sampling distribution used
in classical random Fourier features (§4). Our sampling
distribution is based on an appropriately defined lever-
age function of the kernel, closely related to so-called
leverage scores frequently encountered in the analysis of
sampling based methods for linear regression. Unfortu-
nately, it is unclear how to efficiently sample using the
leverage function.

◦ To address the lack of an efficient way to sample us-
ing the leverage function, we propose a novel, easy-to-
sample distribution for the Gaussian kernel which ap-
proximates the true leverage function distribution and al-
lows random Fourier features to achieve a significantly
improved upper bound (Theorem 10). The bound has an
exponential dependence on the data dimension, so it is
only applicable to low dimensional datasets. Neverthe-
less, it demonstrate that classic random Fourier features
can be improved for spectral approximation and moti-
vates further study. As an application, our improved
understanding of the leverage function yields a novel
asymptotic bound on the statistical dimension of Gaus-
sian kernel matrices over bounded datasets, which may
be of independent interest (Corollary 15).

2. Preliminaries
2.1. Setup and Notation

The complex conjugate of x ∈ C is denoted by x∗. For a
vector x or a matrix A, x∗ or A∗ denotes the Hermitian
transpose. The l × l identity matrix is denoted Il. We use
the convention that vectors are column-vectors.

A Hermitian matrix A is positive semidefinite (PSD) if
x∗Ax ≥ 0 for every vector x. It is positive definite (PD) if
x∗Ax > 0 for every vector x 6= 0. For any two Hermitian
matrices A and B of the same size, A � B means that
B−A is PSD.

We use L2(dρ) = L2(Rd, dρ) to denote the space of
complex-valued square-integrable functions with respect to
some measure ρ(·). L2(dρ) is a Hilbert space equipped
with the inner product

〈f, g〉L2(dρ) =

∫
Rd
f(η)g(η)∗dρ(η)

=

∫
Rd
f(η)g(η)∗pρ(η)dη .

In the above, pρ(·) is the density associated with ρ(·).

We denote the training set by (x1, y1), . . . , (xn, yn) ∈
X × Y ⊆ Rd × R. Note that n denotes the number of
training examples, and d their dimension. We denote the
kernel, which is a function from X × X to R, by k. We
denote the kernel matrix by K, with Kij ≡ k(xi,xj).
The associated reproducing kernel Hilbert space (RKHS)
is denoted by Hk, and the associated inner product by
(·, ·)Hk . Some results are stated for the Gaussian kernel
k(x, z) = exp(−‖x − z‖22/2σ2) for some bandwidth pa-
rameter σ.

We use λ = λn to denote the ridge regularization pa-
rameter. While for brevity we omit the n subscript, the
choice of regularization parameter generally depends on n.
Typically, λn = ω(1) and λn = o(n). See Caponnetto
& De Vito (2007) and Bach (2013) for discussion on the
asymptotic behavior of λn, noting that in our notation, λ is
scaled by an n factor as compared to those works. As the
ratio between n and λ will be an important quantity in our
bounds, we denote it as nλ ≡ n/λ.

The statistical dimension or effective degrees of freedom is
denoted by sλ(K) ≡ Tr

(
(K + λIn)−1K

)
.

2.2. Random Fourier Features

2.2.1. CLASSICAL RANDOM FOURIER FEATURES

Random Fourier features (Rahimi & Recht, 2007) is an
approach to scaling up kernel methods for shift-invariant
kernels. A shift-invariant kernel is a kernel of the form
k(x, z) = k(x − z) where k(·) is a positive definite func-
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tion (we abuse notation by using k to denote both the kernel
and the defining positive definite function).

The underlying observation behind random Fourier fea-
tures is a simple consequence of Bochner’s Theorem: for
every shift-invariant kernel for which k(0) = 1 there is a
probability measure µk(·) and a corresponding probability
density function pk(·), both on Rd, such that

k(x, z) =

∫
Rd
e−2πiηT(x−z)dµk(η)

=

∫
Rd
e−2πiηT(x−z)pk(η)dη . (3)

In other words, the inverse Fourier transform of the kernel
k(·) is a probability density function, pk(·). For simplicity
we typically drop the k subscript, writing µ(·) = µk(·) and
p(·) = pk(·), with the associated kernel function clear from
context.

If η1, . . . ,ηs are drawn according to p(·), and we define

ϕ(x) ≡ 1√
s

(
e−2πiηT1 x, · · · , e−2πiηTs x

)∗
, then it is not

hard to see that

k(x, z) = Eϕ [ϕ(x)∗ϕ(z)] .

The idea of the Random Fourier features method is then to
define

k̃(x, z) ≡ ϕ(x)∗ϕ(z) =
1

s

s∑
l=1

e−2πiηT
l (x−z) (4)

as a substitute kernel.

Now suppose that Z ∈ Cn×s is the matrix whose jth row
is ϕ(xj)

∗, and let K̃ = ZZ∗. K̃ is the kernel matrix corre-
sponding to k̃(·, ·). The resulting random Fourier features
KRR estimator is f̃(x) ≡

∑n
j=1 k̃(xj ,x)α̃j where α̃ is the

solution of (K̃ + λIn)α̃ = y. Typically, s < n and we can
represent f̃(·) more efficiently as:

f̃(x) = ϕ(x)∗w

where
w = (Z∗Z + λIs)

−1Z∗y

We can compute w in O(ns2) time, making random
Fourier features computationally attractive if s < n.

2.2.2. MODIFIED RANDOM FOURIER FEATURES

While it seems to be a natural choice, there is no fundamen-
tal reason that we must sample the frequencies η1, . . . ,ηs
using the Fourier transform density function p(·). In fact,
our results show that it is advantageous to use a different
sampling distribution based on the kernel leverage function
(defined later).

Let q(·) be any probability density function whose support
includes that of p(·). If we sample η1, . . . ,ηs using q(·),
and define

ϕ(x) ≡ 1√
s

(√
p(η1)

q(η1)
e−2πiηT1 x, · · · ,

√
p(ηs)

q(ηs)
e−2πiηTs x

)∗

we still have k(x, z) = Eϕ [ϕ(x)∗ϕ(z)]. We refer to this
method as modified random Fourier features and remark
that it can be viewed as a form of importance sampling.

2.2.3. ADDITIONAL NOTATIONS AND IDENTITIES

Now that we have defined (modified) random Fourier fea-
tures, we can introduce some additional notation and iden-
tities that shall prove useful in the rest of the paper.

The (j, l) entry of Z is given by

Zjl =
1√
s
e−2πixT

jηl
√
p(ηl)/q(ηl). (5)

Let z : Rd → Cn be defined by

z(η)j = e−2πixT
jη .

Note that column l of Z from the previous section is exactly
z(ηl)

√
p(ηl)/[s · q(ηl)]. So we have:

ZZ∗ =
1

s

s∑
l=1

p(ηl)

q(ηl)
z(ηl)z(ηl)

∗.

Finally, by (3) we have E [ZZ∗] = K since

K =

∫
Rd

z(η)z(η)∗dµ(η) =

∫
Rd

z(η)z(η)∗p(η)dη .

2.3. Related Work

Rahimi & Recht (2007)’s original analysis of random
Fourier features bounded the point-wise distance between
k(·, ·) and k̃(·, ·) . In follow-up work, they give learning
rate bounds for a broad class of estimators using random
Fourier features. However, their results do not apply to
classic KRR (Rahimi & Recht, 2008). Their main bound
becomes relevant only when the number of sampled fea-
tures is on order of the training set size.

Rudi et al. (2016) prove generalization properties for KRR
with random features, under somewhat difficult to verify
technical assumptions, some of which can be seen as con-
straining the leverage function distribution that we study.
They leave open improving their bounds via a more re-
fined sampling approach. Bach (2017) analyzes random
Fourier features from a function approximation point of
view. He defines a similar leverage function distribution
to the one that we consider, but leaves open establishing
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bounds on and effectively sampling from this distribution,
both of which we address in this work. Finally, Tropp
(2015) analyzes the distance between the kernel matrix and
its approximation in terms of the spectral norm, ‖K−K̃‖2,
which can be a significantly weaker error metric than (2).

Outside of work on random Fourier features, risk infla-
tion bounds for approximate KRR and leverage score sam-
pling have been used to analyze and improve the Nyström
method for kernel approximation (Bach, 2013; Alaoui &
Mahoney, 2015; Rudi et al., 2015; Musco & Musco, 2016).
We apply a number of techniques from this line of work.

Spectral approximation bounds, such as (2), are quite pop-
ular in the sketching literature; see Woodruff (2014). Most
closely related to our work is analysis of spectral approxi-
mation bounds without regularization (i.e. λ = 0) for the
polynomial kernel (Avron et al., 2014). Improved bounds
with regularization (still for the polynomial kernel) were
recently proved by Avron et al. (2016).

3. Spectral Bounds and Statistical Guarantees
Given a feature transformation, like random Fourier fea-
tures, how do we analyze it and relate its use to non-
approximate methods? A common approach, taken for
example in the original paper on random Fourier fea-
tures (Rahimi & Recht, 2007), is to bound the difference
between the true kernel k(·, ·) and the approximate kernel
k̃(·, ·). However, it is unclear how such bounds translate
to downstream guarantees on statistical learning methods,
such as KRR. In this paper we advocate and focus on spec-
tral approximation bounds on the regularized kernel matrix,
specifically, bounds of the form

(1−∆)(K+λIn) � ZZ∗+λIn � (1+∆)(K+λIn) (6)

for some ∆ < 1.
Definition 1. We say that a matrix A is a ∆-spectral ap-
proximation of another matrix B, if (1 − ∆)B � A �
(1 + ∆)B.
Remark 1. When λ = 0, bounds of the form of (6)
can be viewed as a low-distortion subspace embedding
bounds. Indeed, when λ = 0 it follows from (6) that
Sp (k(x1, ·), . . . , k(xn, ·)) ⊆ Hk can be embedded with
∆-distortion in Sp (ϕ(x1), . . . , ϕ(xn)) ⊆ Rs.

The main mathematical question we seek to address in this
paper is: when using random Fourier features, how large
should s be in order to guarantee that ZZ∗ + λIn is a ∆-
spectral approximation of K+λIn? To motivate this ques-
tion, in the following two subsections we show that such
bounds can be used to derive risk inflation bounds for ap-
proximate kernel ridge regression. We also show that such
bounds can be used to analyze the use of ZZ∗ + λIn as a
preconditioner for K + λIn.

While this paper focuses on KRR for conciseness, we re-
mark that in the sketching literature, spectral approxima-
tion bounds also form the basis for analyzing sketching
based methods for tasks like low-rank approximation, k-
means and more. In the kernel setting, such bounds where
analyzed, without regularization, for the polynomial ker-
nel (Avron et al., 2014). Cohen et al. (2017) recently
showed that (6) along with a trace condition on ZZ∗ (which
holds for all sampling approaches we consider) yields a so
called “projection-cost preservation” condition for the ker-
nel approximation. With λ chosen appropriately, this con-
dition ensures that ZZ∗ can be used in place of K for ap-
proximately solving kernel k-means clustering and for cer-
tain versions of kernel PCA and kernel CCA. See Musco &
Musco (2016) for details, where this analysis is carried out
for the Nyström method.

3.1. Risk Bounds

One way to analyze estimators is via risk bounds; sev-
eral recent papers on approximate KRR employ such an
analysis (Bach, 2013; Alaoui & Mahoney, 2015; Musco &
Musco, 2016). In particular, these papers consider the fixed
design setting and seek to bound the expected in-sample
predication error of the KRR estimator f̄ , viewing it as an
empirical estimate of the statistical risk. More specifically,
the underlying assumption is that yi satisfies

yi = f?(xi) + νi (7)

for some f? : X → R. The {νi}’s are i.i.d noise terms,
distributed as normal variables with variance σ2

ν . The em-
pirical risk of an estimator f , which can be viewed as a
measure of the quality of the estimator, is

R(f) ≡ E{νi}

 1

n

n∑
j=1

(f(xi)− f?(xi))2


(note that f itself might be a function of {νi}).

Let f ∈ Rn be the vector whose jth entry is f?(xj). It is
quite straightforward to show that for the KRR estimator f̄
we have (Bach, 2013; Alaoui & Mahoney, 2015):

R(f̄) = n−1λ2f T(K + λIn)−2f

+ n−1σ2
νTr

(
K2(K + λIn)−2

)
.

Since λ2f T(K + λIn)−2f ≤ λf T(K + λIn)−1f and
Tr
(
K2(K + λIn)−2

)
≤ Tr

(
K(K + λIn)−1

)
= sλ(K),

we define

R̂K(f) ≡ n−1λf T(K + λIn)−1f + n−1σ2
νsλ(K)

and note that R(f̄) ≤ R̂K(f). The first term in the above
expressions for R(f̄) and R̂K(f) is frequently referred to
as the bias term, while the second is the variance term.



Random Fourier Features for Kernel Ridge Regression

Lemma 2. Suppose that (7) holds, and let f ∈ Rn be the
vector whose jth entry is f?(xj). Let f̄ be the KRR es-
timator, and let f̃ be KRR estimator obtained using some
other kernel k̃(·, ·) whose kernel matrix is K̃. Suppose that
K̃ + λIn is a ∆-spectral approximation to K + λIn for
some ∆ < 1, and that ‖K‖2 ≥ 1. The following bound
holds:

R(f̃) ≤ (1−∆)−1R̂K(f) +
∆

(1 + ∆)
· rank(K̃)

n
· σ2

ν

(8)

The proof appears in the supplementary material (Ap-
pendix B).

In short, Lemma 2 bounds the risk of the approximate
KRR estimator as a function of both the risk upper bound
R̂K(f) (8) and an additive term which is small if the rank of
rank(K̃) and/or ∆ is small. In particular, it is instructive
to compare the additive term (∆/(1+∆))n−1σ2

ν ·rank(K̃)
to the variance term n−1σ2

ν · sλ(K). Since approximation
K̃ is only useful computationally if rank(K̃) � n we
should expect the additive term in (8) to also approach 0 an
generally be small when n is large.

Remark 2. An approximation K̃ is only useful computa-
tionally if rank(K̃) � n so K̃ gives a significantly com-
pressed approximation to the original kernel matrix. Ide-
ally we should have rank(K̃)/n → 0 as n → ∞ and so
the additive term in (8) will also approach 0 and generally
be small when n is large.

3.2. Random Features Preconditioning

Suppose we choose to solve (K + λIn)α = y using
an iterative method (e.g. CG). In this case, we can ap-
ply ZZ∗ + λIn as a preconditioner. Using standard anal-
ysis of Krylov-subspace iterative methods it is immedi-
ate that if ZZ∗ + λIn is a ∆-spectral approximation of
K + λIn then the number of iterations until convergence
is O(

√
(1 + ∆)/(1−∆))). Thus, if ZZ∗ + λIn is, say, a

1/2-spectral approximation of K+λIn, then the number of
iterations is bounded by a constant. The preconditioner can
be efficiently applied (after preprocessing) via the Wood-
bury formula, giving cost per iteration (if s ≤ n) of O(n2).
The overall cost of computing the KRR estimator is there-
fore O(ns2 +n2). Thus, as long as s = o(n) this approach
gives an advantage over direct methods which cost O(n3).
For small s it also beats non-preconditioned iterative meth-
ods cost O(n2

√
κ(K)). We reach again the question that

was poised earlier: how big should s be so that ZZ∗ + λIn
is a 1/2-spectral approximation of K + λIn?

See Cutajar et al. (2016) and Avron et al. (2016) for more
details and discussion on random features preconditioning.

4. Ridge Leverage Function Sampling and
Random Fourier Features

In this section we present upper bounds on the num-
ber of random Fourier features needed to guarantee that
ZZ∗+λIn is a ∆-spectral approximation to K+λIn. Our
bounds are applicable to any shift-invariant kernel, and a
wide range of feature sampling distributions (and, in par-
ticular, for classical random Fourier features).

Our analysis is based on relating the sampling density to an
appropriately defined ridge leverage function. This func-
tion is a continuous generalization of the popular lever-
age scores (Mahoney & Drineas, 2009) and ridge leverage
scores (Alaoui & Mahoney, 2015; Cohen et al., 2017) used
in the analysis of linear methods. Bach (2017) defined the
leverage function of the integral operator given by the ker-
nel function and the data distribution. For our purposes, a
more appropriate definition is with respect to a fixed input
dataset:

Definition 3. For given x1, . . . ,xn and shift-invariant ker-
nel k(·, ·), define the ridge leverage function as

τλ(η) ≡ p(η)z(η)∗(K + λI)−1z(η) .

In the above, K is the kernel matrix and p(·) is the distri-
bution associated with k(·, ·).

Proposition 4.

p(η)n/(n+ λ) ≤ τλ(η) ≤ p(η)n/λ∫
Rd
τλ(η)dη = sλ(K)

The (simple) proof of the proposition is given in the sup-
plementary material (Appendix C).

Recall that we denote the ratio n/λ, which appears fre-
quently in our analysis, by nλ = n/λ. As discussed, theo-
retical bounds generally set λ = ω(1) (as a function of n)
so nλ = o(n). However we remark that in practice, it may
frequently be the case that λ is very small and nλ � n.

Corollary 5. For any K, sλ(K) ≤ nλ.

For any shift-invariant kernel with k(x,x) = 1 and
k(x, z) → 0 as ‖x − z‖2 → ∞ (e.g., the Gaussian ker-
nel) if we allow points to be arbitrarily spread out, the ker-
nel matrix converges to the identity matrix, and sλ(In) =
n/(1+λ) = Ω(nλ) if λ = Ω(1) so the above bound is tight.
However, this requires datasets of increasingly large diam-
eter (as n grows). In contrast, the usual assumption in sta-
tistical learning is that the data is sampled from a bounded
domain X . In §7.2 we show via a leverage function upper
bound that for the important Gaussian kernel, for bounded
datasets we have sλ(K) = o(nλ).



Random Fourier Features for Kernel Ridge Regression

In the matrix sketching literature it is well known that spec-
tral approximation bounds similar to (6) can be constructed
by sampling columns relative to upper bounds on the lever-
age scores. In the following, we generalize this for the case
of sampling Fourier features from a continuous domain.

Lemma 6. Let τ̃ : Rd → R be a measurable function such
that τ̃(η) ≥ τλ(η) for all η ∈ Rd, and furthermore assume
that

sτ̃ ≡
∫
Rd
τ̃(η)dη

is finite. Denote pτ̃ (η) = τ̃(η)/sτ̃ . Let ∆ ≤ 1/2 and
ρ ∈ (0, 1). Assume that ‖K‖2 ≥ λ. Suppose we take
s ≥ 8

3∆−2sτ̃ ln(16sλ(K)/ρ) samples η1, . . . ,ηs from the
distribution associated with the density pτ̃ (·) and the con-
struct the matrix Z according to (5) with q = pτ̃ . Then
ZZ∗ + λIn is ∆-spectral approximation of K + λIn with
probability of at least 1− ρ.

The proof is based on matrix concentration inequalities,
and appears in the supplementary material (Appendix D).

Lemma 6 shows that if we could sample using the ridge
leverage function, then O(sλ(K) log(sλ(K))) samples
suffice for spectral approximation of K (for a fixed ∆ and
failure probability). While there is no straightforward way
to perform this sampling, we can consider how well the
classic random Fourier features sampling distribution ap-
proximates the leverage function, obtaining a bound on its
performance (the proof is in Appendix D as well):

Theorem 7. Let ∆ ≤ 1/2 and δ ∈ (0, 1). Assume that
‖K‖2 ≥ λ. If we use s ≥ 8

3∆−2nλ ln(16sλ(K)/ρ) ran-
dom Fourier features (i.e., sampled according to p(·)), then
ZZ∗ + λIn is ∆-spectral approximation of K + λIn with
probability of at least 1− ρ.

Theorem 7 establishes that if λ = ω(log(n)) and ∆ is fixed,
o(n) random Fourier features suffice for spectral approxi-
mation, and so the method can provably speed up KRR.
Nevertheless, the bound depends on nλ instead of sλ(K),
as is possible with true leverage function sampling (see
Lemma 6). This gap arises from our use of the simple,
often loose, ridge leverage function upper bound given by
Proposition 4.

Unfortunately, as the next section shows, the bound in
Theorem 7 cannot be improved since the classic random
Fourier features sampling distribution can be far enough
from the ridge leverage distribution that Ω(nλ) features
may be needed even when sλ(K) = o(nλ).

5. Lower Bound
Our lower bound shows that the upper bound of Theorem
7 on the number of samples required by classic random
Fourier features to obtain a spectral approximation to K +

λIn is essentially best possible. The full proof is given in
the supplementary material (Appendix I).

Theorem 8. Consider the Gaussian kernel with σ =
(2π)−1 (so p(η) = 1√

2π
e−η

2/2). Suppose n ≥ 17 is
an odd integer, λ satisfies 10

n < λ ≤ n
2 , and R satisfies

3000 log1.5 (nλ) ≤ R ≤ n

500
√

log(nλ)
. Then, there exists a

dataset of n points {xj}nj=1 ⊆ [−R,R] such that if s ran-
dom Fourier features (i.e., sampled according to p(·)) are
used for some s ≤ nλ

400 , then with probability at least 1/2,
there exists a vector α ∈ Rn such that

αT(K + λIn)α <
2

3
αT(ZZ∗ + λIn)α. (9)

Furthermore, for the said dataset we have sλ(K) = O(R ·
poly (log nλ)).

Thus, the number of samples s required for ZZ∗ + λIn to
be a 1/2-spectral approximation to K + λIn for a bounded
dataset of points must either depend exponentially on the
radius of the point set, or at least linearly on nλ, and there is
an asymptotic gap between what is achieved with classical
random Fourier features and what is achieved by modified
random Fourier features using leverage function sampling.

We note that the above lower bound is proven for a one-
dimensional point set, which makes it only stronger: even
at low dimensions, and for the common Gaussian kernel,
there is a large gap between the performance of classic ran-
dom Fourier features and leverage function sampling.

The bound applies for datasets bounded on the range
[−R,R] for R = Ω

(
log1.5 nλ

)
. As we will see in §7,

the key idea behind the proof is to show that for such a
dataset, the ridge leverage function is large on a range of
low frequencies. In contrast, the classic random Fourier
features distribution is very small at the edges of this fre-
quency range, and so significantly undersamples some fre-
quencies and does not achieve spectral approximation.

We remark that it would be preferable if Theorem 8 ap-
plied to bounded datasets (i.e. with R fixed), as the usual
assumption in statistical learning theory is that data is sam-
pled from a bounded domain. However, our current tech-
niques are unable to address this scenario. Nevertheless,
our analysis allows R to grow very slowly with n and we
conjecture that the upper bound is tight even for bounded
domains.

6. Improved Sampling (Gaussian Kernel)
Contrasting with the lower bound of Theorem 8, we now
give a modified Fourier feature sampling distribution that
does perform well for the Gaussian kernel on bounded in-
put sets. Furthermore, unlike the true ridge leverage func-
tion, this distribution is simple and efficient to sample from.
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To reduce clutter, we state the result for a fixed bandwidth
σ = (2π)−1. This is without loss of generality since we
can rescale the points and adjust the bounding interval.

Our modified distribution essentially corrects the classic
distribution by “capping” the probability of sampling low
frequencies near the origin. This allows it to allocate more
samples to higher frequencies, which are undersampled by
classical random Fourier features. For simplicity, we fo-
cus on the one-dimensional setting. Our results extend to
higher dimensions, albeit with an exponential in the dimen-
sion loss.

Definition 9 (Improved Fourier Feature Distribution for the
Gaussian Kernel). Define the function

τ̄R(η) ≡
{

25 max(R, 3000 log1.5 nλ) |η| ≤ 10
√

log(nλ)
p(η)nλ o.w.

Let sτ̄R =
∫
R τ̄R(η)dη and define the probability density

function p̄R(η) = τ̄R(η)/sτ̄R .

Note that p̄R(η) is just the uniform distribution for low
frequencies with |η| ≤ 10

√
log(nλ), and the classic

Fourier features distribution, appropriately scaled, outside
this range. As we show in §7, τ̄R(η) upper bounds the true
ridge leverage function τλ(η) for all η. Hence, simply ap-
plying Lemma 6:

Theorem 10. For any integer n and parameter 0 < λ ≤ n
2 ,

consider the one dimensional Gaussian kernel with σ =
(2π)−1 (so p(η) = 1√

2π
e−η

2/2) and any dataset of n points
{xj}nj=1 ⊆ [−R,R] with any radius R > 0. If we sample
s ≥ 8

3∆−2sτ̄R ln(16sτ̄R/ρ) random Fourier features ac-
cording to p̄R(·) and construct Z according to (5), then
with probability at least 1 − ρ, ZZ∗ + λIn is ∆-spectral
approximation of K+λIn for any ∆ ≤ 1/2 and ρ ∈ (0, 1).
Furthermore, sτ̄R = O(R

√
log(nλ) + log2 nλ) and p̄R(·)

can be sampled from in O(1) time.

Theorem 10 represents a possibly exponential improve-
ment over the bound obtainable by classic random Fourier
features. For R ≥ log1.5(nλ) our modified distribution re-
quires O(R

√
log(nλ)) samples, as compared to the lower

bound of nλ
400 given by Theorem 8.

7. Bounding the Ridge Leverage Function
We conclude by discussing our approach to bounding the
ridge leverage function of the Gaussian kernel, which leads
to Theorems 8 and 10. The key idea is to reformulate the
leverage function as the solution of two dual optimization
problems. By exhibiting suitable test functions for these
optimization problems, we are able to give both upper and
lower bounds on the ridge leverage function, and corre-
spondingly on the sampling performance of classic and
modified Fourier feature sampling.

7.1. Primal-Dual Characterization

In this section we prove two alternative characterizations of
the ridge leverage function: one as a minimization, and the
other as a maximization. These characterization are useful
for bounding the leverage function, as we exhibit in the next
subsection for the Gaussian kernel.

Define the operator Φ : L2(dµ)→ Cn by

Φy ≡
∫
Rd

z(ξ)y(ξ)dµ(ξ). (10)

The following two lemmas constitute the main result of this
subsection. The proofs can be found in the supplementary
material (Appendix E).

Lemma 11. The ridge leverage function can alternatively
be defined as follows:

τλ(η) = min
y∈L2(dµ)

λ−1‖Φy −
√
p(η)z(η)‖22 + ‖y‖2L2(dµ)

(11)

Lemma 12. The ridge leverage function can alternatively
be defined as follows:

τλ(η) = max
α∈Cn

p(η) · |α∗z(η)|2

‖Φ∗α‖2L2(dµ) + λ‖α‖22
(12)

Similar results are well known for the finite dimensional
case. Here we extend these results to an infinite dimen-
sional case. Lemma 11 allows us to upper bound the lever-
age function at any point η ∈ Rd by exhibiting a care-
fully constructed function y(·) and upper bounding the ra-
tio in (11), while Lemma 12 allows us to lower bound it in
a similar fashion.

7.2. Leverage Function: the Gaussian Case

In this section we prove nearly matching bounds on the
leverage score function for the one-dimensional Gaussian
kernel on bounded datasets. For simplicity of presentation
we focus on the one-dimensional setting. Our results ex-
tend to higher dimensions, albeit with an exponential in the
dimension loss in the gap between upper and lower bounds.

Our bounds are parameterized by the width of the point
set, which we denote by R. To reduce clutter, we present
all results for fixed σ = (2π)−1. This is without loss of
generality since we can rescale the points. All the proofs
appear in the supplementary material (Appendices F–H).

Theorem 13. Consider the one dimensional Gaussian ker-
nel with σ = (2π)−1. For any integer n and parameter
0 < λ ≤ n

2 , and any radiusR > 0, if x1, ..., xn ∈ [−R,R],
for every |η| ≤ 10

√
log nλ:

τλ(η) ≤ 25 max(R, 3000 log1.5 nλ) .
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Theorem 14. Consider the one dimensional Gaussian ker-
nel with σ = (2π)−1. For any integer n ≥ 17, any param-
eter 10

n ≤ λ ≤
n
16 , and every radius 1000 log1.5 nλ ≤ R ≤

n

500
√

log(nλ)
, there exist x1, ..., xn ∈ [−R,R] such that for

every η ∈ [−100
√

log nλ,+100
√

log nλ] we have:

τλ(η) ≥ R

150

(
p(η)

p(η) + 2Rn−1
λ

)
.

The last two theorems lead to a tight bound on the statistical
dimension matrices corresponding to bounded points sets:

Corollary 15. Consider the Gaussian kernel with σ =
(2π)−1. For any integer n and parameter 0 < λ ≤ n

2 ,
and any R > 0, if x1, ..., xn ∈ [−R,R] then we have:

sλ(K) ≤ 500 ·max(R, 3000 log1.5 nλ)
√

log nλ + 1

= O(R
√

log nλ + log2 nλ)

Furthermore, if 1000 log1.5 nλ ≤ R ≤ n

500
√

log(nλ)
there

exists a set of points x1, . . . , xn ⊆ [−R,R] such that:

sλ(K) = Ω
(
R
√

log(nλ/R)
)
.

The bounds above match up to constant factors if
1000 log1.5 nλ ≤ R ≤ n0.99

λ . For any 1000 log1.5 nλ ≤
R ≤ n

500
√

log(nλ)
they match up to a

√
log nλ factor.

7.3. Theorems 13 and 14: Proof Outline

Lemma 11 allows us to bound τλ(η) simply by exhibit-
ing any y(·) which makes the cost function small. One
simple attempt might be y(s)

η (ξ) = δ(η − ξ) where δ(·)
is the Dirac delta function. This choice zeros out the first
term. However the delta function is not square integrable,
y

(s)
η 6∈ L2(dµ), so the lemma cannot be used. Another

trivial attempt is y(0)(ξ) = 0, which zeros out the second
term and recovers the trivial bound τλ(η) ≤ p(η)nλ. Nev-
ertheless, a smarter test functions y(·) can yield improved
bounds, yielding results on the leverage score function that
are parameterized by the diameter of the point set.

At a high level, our approach is to replace the spike func-
tion at η with a ‘soft spike’ whose Fourier transform still
looks approximately like a cosine wave on [−R,R], yet is
still square integrable. The smaller R is, the more spread
out this function will be able to be, and hence the smaller
its `2 norm, and the better the leverage score bound. A
natural candidate for a ‘soft spike’ is a Gaussian of appro-
priate variance, but this choice does not suffice to obtain
tight bounds, due to two difficulties. First, for the upper
bound a simple Gaussian does not result in a function that
is close enough to a pure frequency in time domain (first

η
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Figure 1. ‘Soft spike’ function y and its Fourier transform Φy,
which is approximately a pure cosine wave on [−R,R].

term of the objective function in Lemma 11) unless we set-
tle for an upper bound of O(R · poly (nλ)) as opposed
to the tight O(R) on the leverage score density function.
Second, the lower bound on the leverage score function
resulting from using a Gaussian pulse would only be of
the form Ω(R/

√
log nλ), leading to a weak lower bound

on the statistical dimension, namely Ω(R) as opposed to
Ω(R ·

√
log nλ), thereby missing entirely the effect of the

regularization parameter λ on the statistical dimension!

The remedy to the issues above turns out to be the convo-
lution of a (modulated) Gaussian with a rectangular pulse
in time domain (product of a shifted Gaussian with the sinc
function in frequency domain). Specifically, our bounds
are based on variants of a flattened Gaussian spike function

yη,b,v(ξ) ≡ e−(ξ−η)2b2/4 · v · sinc (v(ξ − η)) . (13)

for some b > 0, v > 0 and η ∈ R.

It turns out that with a proper setting of parameters (where
one should think of b as large, i.e. the spike y is rather
narrow) the function Φyη,b,v satisfies

(Φyη,b,v)(x) ≈ p(η) · exp(2πiηx)
∫ x+ v

2

x− v2
1√
2πb

e−t
2/2b2dt.

An illustration of this function in y is given in Fig. 1, (left)
and the function Φy in Fig. 1, (right). Note that if the pa-
rameter v is chosen to be large, then for x not too large we
have

∫ x+ v
2

x− v2
1√
2πb

e−t
2/2b2dt ≈

∫ +∞
−∞

1√
2πb

e−t
2/2b2dt, i.e.

the second multiplier is essentially constant, i.e. flat as a
function of x (hence the term ‘flattened Gaussian spike’).
This means that Φyη,b,v is essentially the kernel density
evaluated at η times a pure harmonic term exp(2πiηx),
which is exactly what one needs to minimize the first term
on the rhs of (11) in Lemma 11, up to a factor of

√
p(η) –

see Appendix F. One can also see that setting v to be not too
large results in a good function to use in the maximization
problem in (12) in Lemma 12 – see Appendix G. Obtain-
ing tight bounds and in particular achieving the right de-
pendence on

√
log nλ requires several modifications to the

function y above, but the intuition we just described works!
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Random Fourier Features for Kernel Ridge Regression:
Approximation Bounds and Statistical Guarantees

Appendix: Proofs

A. Preliminaries
Our upper and lower bound analysis relies predominantly on Fourier analysis, so we now introduce some additional nota-
tion and state some useful facts about these.

A.1. Properties of Fourier Transforms

Definition 16 (Fourier Transform). The Fourier transform of a continuous function f : Rd → C in L1(Rn) is defined to
be the function Ff : Rd → C as follows:

(Ff)(ξ) =

∫
Rd
f(t)e−2πitT ξ dt.

We also sometimes use the notation f̂ for the Fourier transform of f . We often informally refer to f as representing the
function in time domain and f̂ as representing the function in frequency domain.

The original function f can also be obtained from f̂ by the inverse Fourier transform:

f(t) =

∫
Rd
f̂(ξ)e2πiξT t dξ

Definition 17 (Convolution). The convolution of two functions f : Rd → C and g : Rd → C is defined to be the function
(f ∗ g) : Rd → C given by

(f ∗ g)(η) =

∫
Rd
f(t)g(η − t) dt.

The convolution theorem shows that the Fourier transform of the convolution of two functions is simply the product of the
individual Fourier transforms:

Claim 18 (Convolution Theorem). Given functions f : Rd → C and g : Rd → C whose convolution is h = f ∗ g, we have

ĥ(ξ) = f̂(ξ) · ĝ(ξ)

for all ξ ∈ Rd.

Now, suppose d = 1, i.e., the functions we consider take inputs in R. We define the rectangle function and normalized sinc
function, which we use extensively in our analysis.

Definition 19 (Rectangle Function). We define the rectangle function recta : R→ C as

recta(x) =


0 if |x| > a/2
1
2 if |x| = a/2

1 if |x| < a/2

.

If a = 1, then we often omit the subscript and simply write rect.

Definition 20 (Normalized Sinc Function). We define the normalized sinc function sinc : R→ C as

sinc(x) =
sin(πx)

πx
.
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It is well known that the Fourier transform of the rectangle function (with a = 1) is the normalized sinc function:

F(rect) = sinc

We use δ to denote the Dirac delta function. Recall that the Dirac delta function satisfies the following useful property for
any function f : ∫ ∞

−∞
f(x)δ(x− a) dx = f(a),

i.e. the integral of a function multiplied by a shifted Dirac delta functions picks out the value of the function at a particular
point. Thus, it is not hard to see that the Fourier transform of a δ is the constant function which is 1 everywhere:

(Fδ)(ξ) =

∫ ∞
−∞

e−2πitξ · δ(t) dt = e−2πi·0·ξ = 1

for all ξ. Similarly, the Fourier transform of a shifted delta function is as follows:

(Fδ(· − a))(ξ) =

∫ ∞
−∞

e−2πitξ · δ(t− a) dt = e−2πiaξ.

Moreover, it is not hard to see that convolving a function by a shifted delta funciton results in a shift of the original function:

(f ∗ δ(· − a))(x) = f(x− a).

Thus, by the convolution theorem, we obtain the following identity:

Claim 21. Given a function f : R→ C, we have

(Ff(· − a))(ξ) = (F(f ∗ δ(· − a)))(ξ) = f̂(ξ) · e−2πiaξ.

Similarly,

Claim 22. Given a function f : R→ C, we have

(F(f(x) · e2πiax))(ξ) = f̂(ξ − a).

Finally, we introduce a useful function known as the Dirac comb function:

Definition 23. The Dirac comb function with period T is defined as f satisfying

f(x) =

∞∑
j=−∞

δ(x− jT ).

It is a standard fact that the Fourier transform of a Dirac comb function is another Dirac comb function which is scaled and
has the inverse period:

Claim 24. Let

f(x) =

∞∑
j=−∞

δ(x− jT )

be the Dirac comb function with period T . Then,

(Ff)(ξ) =
1

T

∞∑
j=−∞

δ

(
ξ − j

T

)
.

We use the Dirac comb function in our lower bound constructions.
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A.2. Properties of Gaussian Distributions

We also need several useful facts about Gaussian distributions. The following is a standard fact about the cumulative
distribution function of the standard Gaussian distribution:

Claim 25 ((Feller, 1968)). For any x > 0, we have

1√
2π

∫ ∞
x

e−t
2/2 dt ≤ e−x

2/2

x
√

2π
.

Moreover, as a direct consequence, for any σ, x > 0, we have that

1√
2πσ

∫ ∞
x

e−t
2/2σ2

dt ≤ σe−x
2/2σ2

x
√

2π
.

Also, if x ≥ 1, then (
1

x
− 1

x3

)
· 1√

2π
e−x

2/2 ≤ 1√
2π

∫ ∞
x

e−t
2

dt.

We also need the following property about Gaussian samples.

Claim 26. Let t ≥ 10, and a1, a2, . . . , at be sampled according to the Gaussian distribution given by probability density
function 1√

2π
e−x

2/2. Also, let a∗ = max1≤j≤t |aj |. Then,

Pr

[
1√
2π
e−a

∗2/2 ≤ 8
√

log t

t

]
≥ 1

2
.

Proof. Choose q1 such that ∫ ∞
q1

1√
2π
e−x

2/2 dx =
1

t
. (14)

Note that by Claim 25, we have ∫ ∞
2
√

log t

1√
2π
e−x

2/2 dx ≤ 1

2
√

2πt2
√

log t
≤ 1

t
.

Thus, q1 ≤ 2
√

log t.

Also, since 1
t ≤

1
4 , we have that q1 ≥ 6

5 . Thus, by another application of Claim 25,

1

t
=

∫ ∞
q1

1√
2π
e−x

2/2 dx ≥
(

1

q1
− 1

q3
1

)
1√
2π
e−q

2
1/2 ≥ 1

4q1
· 1√

2π
e−q

2
1/2,

and so,
1√
2π
e−q

2
1/2 ≤ 4q1

t
≤ 8
√

log t

t
.

Therefore,

Pr

[
1√
2π
e−a

∗2/2 ≤ 8
√

log t

t

]
≥ Pr[a∗ ≥ q1]

= 1−
(

1− 1

t

)t
≥ 1− 1

e

≥ 1

2
,

as desired.
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B. Proof of Lemma 2
Note that A � B implies that B−1 � A−1 so for the bias term we have:

f T(K̃ + λIn)−1f ≤ (1−∆)−1f T(K + λIn)−1f . (15)

We now consider the variance term. Denote s = rank(K̃), and let λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) denote the
eigenvalues of a matrix A. We have:

sλ(K̃) = Tr
(

(K̃ + λIn)−1K̃
)

=

s∑
i=1

λi(K̃)

λi(K̃) + λ

= s−
s∑
i=1

λ

λi(K̃) + λ

≤ s− (1 + ∆)−1
s∑
i=1

λ

λi(K) + λ

= s−
s∑
i=1

λ

λi(K) + λ
+

∆

1 + ∆

s∑
i=1

λ

λi(K) + λ

≤ n−
n∑
i=1

λ

λi(K) + λ
+

∆ · s
1 + ∆

= sλ(K) +
∆ · s
1 + ∆

≤ (1−∆)−1sλ(K) +
∆ · s
1 + ∆

where we use the fact that A � B implies that λi(A) ≤ λi(B) (this is a simple consequence of the Courant-Fischer
minimax theorem).

Combining the above variance bound with the bias bound in (15) yields:

R̂K̃(f) ≤ (1−∆)−1R̂K(f) +
∆

(1 + ∆)
· rank(K̃)

n
· σ2

ν

and the boundR(f̃) ≤ R̂K̃(f) completes the proof.

C. Proof of Proposition 4
Since k is positive definite and k(0) = 1, |k(x, z)| ≤ 1 for all x and z. This implies that the maximum eigenvalue of
K is bounded by n, and the lower bound follows immediately. The upper bound on τλ(η) follows from the fact that
‖z(η)‖22 = n and all eigenvalues of K + λIn are bounded from below by λ. The bound also establishes that the integral
converges. We now have, ∫

Rd
τλ(η)dη =

∫
Rd
p(η)z(η)∗(K + λIn)−1z(η)dη

=

∫
Rd

Tr
(
p(η)(K + λIn)−1z(η)z(η)∗

)
dη

= Tr

(∫
Rd
p(η)(K + λIn)−1z(η)z(η)∗dη

)
= Tr

(
(K + λIn)−1

∫
Rd
p(η)z(η)z(η)∗dη

)
= Tr

(
(K + λIn)−1K

)
= sλ(K) .

The second equality is due to the fact that z(η) is a rank one matrix, and third equality is due to linearity of the trace
operation and the fact that all diagonal entries are positive.
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D. Proof of Lemma 6 and Theorem 7
To prove Lemma 6 we need the following lemma which is essentially a restatement of Corollary 7.3.3 from (Tropp, 2015).
However, the minimum t in the following statement is much lower than the bound that appears in (Tropp, 2015) which is
unnecessarily loose (possibly, a typo in (Tropp, 2015)). For completeness, we include a proof.

Lemma 27. Let B be a fixed d1 × d2 matrix. Construct a d1 × d2 random matrix R that satisfies

E [R] = B and ‖R‖2 ≤ L.

Let M1 and M2 be semidefinite upper bounds for the expected squares:

E [RR∗] �M1 and E [R∗R] �M2.

Define the quantities
m = max(‖M1‖2, ‖M2‖2) and d = (Tr (M1) + Tr (M2))/m.

Form the matrix sampling estimator

R̄n =
1

n

n∑
k=1

Rk

where each Rk is an independent copy of R. Then, for all t ≥
√
m/n+ 2L/3n,

Pr(‖R̄n −B‖2 ≥ t) ≤ 4d exp

(
−nt2/2

m+ 2Lt/3

)
. (16)

Proof. The proof mirrors the proof of Corollary 6.2.1 in (Tropp, 2015), using Theorem 7.3.1 instead of Theorem 6.1.1
(both from (Tropp, 2015)).

Since E [R] = B, we can write

Z ≡ R̄n −B =
1

n

n∑
k=1

(Rk − E [R]) =

n∑
k=1

Sk,

where we have define Sk ≡ n−1(Rk − E [R]). These random matrices are i.i.d and each has zero mean.

Now, we can bound each of the summands:

‖Sk‖2 ≤
1

n
(‖Rk‖2 + ‖E [R] ‖2) ≤ 1

n
(‖Rk‖2 + E [‖R‖2]) ≤ 2L

n
,

where the first inequality is the triangle inequality and the second is Jensen’s inequality.

To find semidefinite upper bounds V1 and V2 on the matrix-valued variances we note that

E [S1S
∗
1] = n−2E [(R− E [R])(R− E [R])∗]

= n−2
(
E [RR∗]− E [R]E [R]

∗)
� n−2E [RR∗] .

Likewise, E [S∗1S1] � n−2E [R∗R]. Since the summands are i.i.d, if we define V1 ≡ n−1M1 and V2 ≡ n−1M2, we
have E [ZZ∗] � V1 and E [Z∗Z] � V2.

We now calculate,
ν ≡ max(‖V1‖2, ‖V2‖2) =

m

n

and
Tr (V1) + Tr (V2)

max(‖V1‖2, ‖V2‖2)
= d .

Noticing, that the condition t ≥
√
m/n + 2L/3n meets the required lower bound in Theorem 7.3.1 in (Tropp, 2015) we

can now apply this theorem, which along with the above calculations translates to (16).
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We can now prove Lemma 6.

Proof of Lemma 6. Let K+λIn = VTΣ2V be an eigendecomposition of K+λIn. Note that the ∆-spectral approximation
guarantee (2) is equivalent to

K−∆(K + λIn) � ZZ∗ � K + ∆(K + λIn) ,

so by multiplying by Σ−1V on the left and VTΣ−1 on the right we find that it suffices to show that

‖Σ−1VZZ∗VTΣ−1 −Σ−1VKVTΣ−1‖2 ≤ ∆ (17)

holds with probability of at least 1− ρ. Let

Yl =
p(ηl)

pτ̃ (ηl)
Σ−1Vz(ηl)z(ηl)

∗VTΣ−1 .

Note that E [Yl] = Σ−1VKVTΣ−1 and 1
s

∑s
l=1 Yl = Σ−1VZZ∗VTΣ−1. Thus, we can use the matrix concentration

result above to prove (17).

To apply this bound we need to bound the norm of Yl and the stable rank E
[
Y2
l

]
. Since Yl is always a rank one matrix

we have

‖Yl‖2 =
p(ηl)

pτ̃ (ηl)
Tr
(
Σ−1Vz(ηl)z(ηl)

∗VTΣ−1
)

=
p(ηl)

pτ̃ (ηl)
z(ηl)

∗VTΣ−1Σ−1Vz(ηl)

=
p(ηl)

pτ̃ (ηl)
z(ηl)

∗(K + λIn)−1z(ηl)

=
sτ̃ · τ(ηl)

τ̃(ηl)
≤ sτ̃

since τ̃(ηl) ≥ τ(ηl). We also have

Y2
l =

p(ηl)
2

pτ̃ (ηl)
2
Σ−1Vz(ηl)z(ηl)

∗VTΣ−1Σ−1Vz(ηl)z(ηl)
∗VTΣ−1

=
p(ηl)

2

pτ̃ (ηl)
2
Σ−1Vz(ηl)z(ηl)

∗(K + λIn)−1z(η)z(ηl)
∗VTΣ−1

=
p(ηl)τ(ηl)

pτ̃ (ηl)
2

Σ−1Vz(ηl)z(ηl)
∗VTΣ−1

=
τ(ηl)

pτ̃ (ηl)
Yl

=
sτ̃τ(ηl)

τ̃(ηl)
Yl � sτ̃Yl

Let λ1 ≥ · · · ≥ λn be the eigenvalues of K. We have

E [sτ̃Yl] = sτ̃Σ
−1VKVTΣ−1

= sτ̃
(
In − λΣ−2

)
= sτ̃ · diag (λ1/(λ1 + λ), . . . , λn/(λn + λ)) := D .
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So,

Pr

(∥∥∥∥∥1

s

s∑
l=1

Yl −Σ−1VKVTΣ−1

∥∥∥∥∥
2

≥ ∆

)
≤ 8Tr (D)

‖D‖2
exp

(
−s∆2/2

‖D‖2 + 2sτ̃∆/3

)
≤ 8

sτ̃ · sλ(K)

sτ̃ · λ1/(λ1 + λ)
exp

(
−s∆2

2sτ̃ (1 + 2∆/3)

)
≤ 16sλ(K) exp

(
−s∆2

2sτ̃ (1 + 2∆/3)

)
≤ 16sλ(K) exp

(
−3s∆2

8sτ̃

)
≤ ρ

where the third inequality is due to the assumption that λ1 = ‖K‖2 ≥ λ and the last inequality is due to the bound on
s.

Proof of Theorem 7. Define τ̃(η) = p(η) · nλ and note that τ̃(η) ≥ τλ(η) by Proposition 4 and that sτ̃ = nλ. Finally,
note that pτ̃ (η) = p(η), the classic Fourier features sampling probability.

E. Proof of Lemmas 11 and 12
Let R(Φ) ⊆ Cn denote the range of Φ. Here we first prove that the operator Φ is defined on all L2(dµ) and is a bounded
linear operator. Indeed, for y ∈ L2(dµ) we have:

‖Φy‖22 =

∥∥∥∥∫
Rd

z(ξ)y(ξ)dµ(ξ)

∥∥∥∥2

2

(by Jensen’s inequality)

≤
∫
Rd
‖z(ξ)y(ξ)‖22dµ(ξ)

=

∫
Rd
‖y(ξ)‖22 · ‖z(ξ)‖22dµ(ξ)

= n · ‖y‖2L2(dµ) .

Thus, R(Φ) is a linear subspace of Cn. Therefore, there is a unique adjoint operator Φ∗ : R(Φ) → L2(dµ), such that
〈Φy,x〉Cn = 〈y,Φ∗x〉L2(dµ) for every y ∈ L2(dµ) and x ∈ R(Φ). It is easy to verify that (Φ∗x)(η) = z(η)∗x . We now
have the following:

Proposition 28.
ΦΦ∗ = K

Proof. We have that for every x ∈ Cn,

ΦΦ∗x =

∫
Rd

z(ξ)(Φ∗x)(ξ)dµ(ξ)

=

∫
Rd

z(ξ)z(ξ)∗xdµ(ξ)

=

(∫
Rd

z(ξ)z(ξ)∗dµ(ξ)

)
x = Kx

so ΦΦ∗ = K.

We are now ready to prove the two lemmas.
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Proof of Lemma 11. The minimizer of the right-hand side of (11) can be obtained from the usual normal equations, and
simplified using the matrix inversion lemma for operators (Ogawa, 1988):

y? =
√
p(η)(Φ∗Φ + λIL2(dµ))

−1Φ∗z(η)

=
√
p(η)Φ∗(ΦΦ∗ + λIn)−1z(η)

=
√
p(η)Φ∗(K + λIn)−1z(η) .

So, y?(ξ) =
√
p(η)z(ξ)∗(K + λIn)−1z(η). We now have

‖y?‖2L2(dµ) = p(η)

∫
Rd
|z(ξ)∗(K + λIn)−1z(η)|2dµ(ξ)

= p(η)

∫
Rd

z(η)∗(K + λIn)−1z(ξ)z(ξ)∗(K + λIn)−1z(η)dµ(ξ)

= p(η)z(η)∗(K + λIn)−1

(∫
Rd

z(ξ)z(ξ)∗dµ(ξ)

)
(K + λIn)−1z(η)

= p(η)z(η)∗(K + λIn)−1K(K + λIn)−1z(η)

= p(η)z(η)∗(K + λIn)−1(K + λIn − λIn)(K + λIn)−1z(η)

= p(η)z(η)∗(K + λIn)−1z(η)− λp(η)z(η)∗(K + λIn)−2z(η)

and

‖Φy? −
√
p(η)z(η)‖22 = p(η)‖ΦΦ∗(K + λIn)−1z(η)− z(η)‖22

= p(η)‖(K(K + λIn)−1 − In)z(η)‖22
= p(η)‖

(
(K + λIn − λIn)(K + λIn)−1 − In

)
z(η)‖22

= p(η)‖
(
λ(K + λIn)−1

)
z(η)‖22

= λ2p(η)z(η)∗(K + λIn)−2z(η) .

Now plugging these into (11) gives:

‖y?‖2L2(dµ) + λ−1‖Φy? −
√
p(η)z(η)‖22

= p(η)z(η)∗(K + λIn)−1z(η)− λp(η)z(η)∗(K + λIn)−2z(η)

+ λp(η)z(η)∗(K + λIn)−2z(η)

= p(η)z(η)∗(K + λIn)−1z(η)

= τλ(η)

Proof of Lemma 12. The optimization problem (11) can equivalently be reformulated as the following problem:

τ(η) = minimum ‖y‖2L2(dµ) + ‖u‖22
y ∈ L2(dµ); u ∈ Cn

subject to: Φy +
√
λu =

√
p(η)z(η)

First we show that for any α ∈ Cn, the argument of the minimization problem in (12) is no bigger than τλ(η). That is
because for the optimal solution to above optimization, namely ū and ȳ, we have:

Φȳ +
√
λū =

√
p(η)z(η)
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hence,

|
√
p(η)α∗z(η)| = |α∗(Φȳ +

√
λū)|

= |α∗Φȳ + α∗
√
λū|

≤ |α∗Φȳ|+ |α∗
√
λū|

= |〈α,Φȳ〉Cn |+ |α∗
√
λū|

= |〈Φ∗α, ȳ〉L2(dµ)|+ |α∗
√
λū|

≤ ‖Φ∗α‖L2(dµ) · ‖ȳ‖L2(dµ) +
√
λ‖α∗‖2 · ‖ū‖2

where the last inequality follows from Cauchy-Schwarz inequality (|α∗Φȳ| = |(α∗Φȳ)∗| = |(Φȳ)∗α| =
|〈ȳ,Φ∗α〉L2(dµ)| ≤ ‖Φ∗α‖L2(dµ) · ‖ȳ‖L2(dµ)). By another use of Cauchy-Schwarz we have:

p(η)|α∗z(η)|2 ≤
(
‖Φ∗α‖L2(dµ)‖ȳ‖L2(dµ) +

√
λ‖α∗‖2 · ‖ū‖2

)2

≤
(
‖Φ∗α‖2L2(dµ) + λ‖α∗‖22

)
·
(
‖ȳ‖2L2(dµ) + ‖ū‖22

)
therefore, for every α ∈ Cn,

p(η)|α∗z(η)|2

‖Φ∗α‖2L2(dµ) + λ‖α‖22
≤ ‖ȳ‖2L2(dµ) + ‖ū‖22 = τλ(η) (18)

Now it is enough to show that at the optimal α the dual problem gives the leverage scores. We show that ᾱ =
√
p(η)(K+

λIn)−1z(η) matches the leverage scores. First note that for any α ∈ Cn we have

‖Φ∗α‖2L2(dµ) + λ‖α‖22 = 〈Φ∗α,Φ∗α〉L2(dµ) + λα∗α

= 〈ΦΦ∗α,α〉Cn + λα∗α

= 〈Kα,α〉Cn + λα∗α

= α∗(K + λIn)α

Now by substituting ᾱ =
√
p(η)(K + λIn)−1z(η) we have:

p(η)|ᾱ∗z(η)|2

‖Φ∗ᾱ‖2L2(dµ) + λ‖ᾱ‖22
=

p(η)2|z(η)∗(K + λIn)−1z(η)|2

p(η)z(η)∗(K + λIn)−1(K + λIn)(K + λIn)−1z(η)

= p(η)|z(η)∗(K + λIn)−1z(η)|
= τλ(η) (19)

F. Proof of Theorem 13
Recall from Lemma 11 that

τλ(η) = min
y∈L2(dµ)

λ−1‖Φy −
√
p(η)z(η)‖22 + ‖y‖2L2(dµ) (20)

To upper bound τλ(η) for any η, we will exhibit some test function, yη(·), and compute the quantity under the minimum.
yη(·) will be a ‘softened spike function’ given by:

Definition 29 (Softened spike function). For any η, and any u define:

yη,u(t) =

√
p(η)

p(t)
· e−(t−η)2u2/4 · v · sinc (v(t− η)) (21)

where v = 2(R+ u
√

2 log nλ).
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The reweighted function gη,u(t) = p(t) · yη,u(t) is just a Gaussian with standard deviation Θ(1/u) multiplied by a sinc
function with width Õ(1/(u+R)), both centered at η. Taking the Fourier transform of this function yields a Gaussian with
standard deviation Θ(u) convolved with a box of width Õ(u) + R. This width is wide enough such that when centered
between [−R,R] the box covers nearly all the mass of the Gaussian, and so the Fourier transform is nearly identically 1
on the range [−R,R]. Shifting by η, means that it is very close to a pure cosine wave with frequency η on this range, and
hence makes the first term of (20) small. We make this argument formal below.

F.1. Bounding λ−1‖Φyη,u −
√
p(η)z(η)‖22

Lemma 30 (Test Function Fourier Transform Bound). For any integer n, every parameter 0 < λ ≤ n and every η, u, and
any kernel density function p(η) if xj ∈ [−R,+R] for all j ∈ [n] for any radius R > 0, then:

λ−1‖Φy −
√
p(η)z(η)‖22 =

1

λ

n∑
j=1

∣∣∣ĝη,u(xj)−
√
p(η) · z(η)j

∣∣∣2 ≤ p(η). (22)

where gη,u(t) ≡ p(t)yη,u(t).

Proof. We have gη,u(t) = p(t)yη,u(t) = p(η)e−(t−η)2u2/4 · v · sinc (v(t− η)) and ĝη,u(xj) = (Φy)j . We thus have:

ĝη,u(xj) =
√
p(η)

∫
R
e−2πitxje−(t−η)2u2/4 · v · sinc (v(t− η)) dt

=
√
p(η)e−2πixjη

∫
R
e−2πitxje−t

2u2/4 · v · sinc (vt) dt

=
√
p(η) · z(η)j · h(xj) (23)

where h(x) = 2
√
π
u e−4π2x2/u2 ∗rectv(x) by the fact that multiplication in time domain becomes convolution in the Fourier

domain (Claim 18), F(e−t
2u2/4) = 2

√
π
u e−4π2x2/u2

, and F(v · sinc (vt)) = rectv(x).

For any x, we have h(x) ≤
∫
R

2
√
π
u e−4π2x2/u2

= 1. Additionally, for any x ∈ [−R,R] we have by Claim 25 and the fact
that v = 2R+ 2u

√
2 log nλ:

h(x) =

∫ x+ v
2

x− v2

2
√
π

u
e−4π2x2/u2

dx

≥ 1− 2

∫ ∞
v/2−R

2
√
π

u
e−4π2x2/u2

dx

≥ 1− 1

4
√
π
· u

v/2−R
e−4π2(v/2−R)2/u2

(by second part of Claim 25)

≥ 1− 1

4
√
π
√

2 log nλ
· 1
√
nλ

(since v = 2R+ 2u
√

2 log nλ)

≥ 1− 1
√
nλ

(by assumption nλ ≥ 2).

Plugging into (23) gives ∣∣∣ĝη,u(xj)−
√
p(η) · z(η)j

∣∣∣2 = p(η) |h(xj)− 1|2

≤ p(η)

nλ
,

and so,

1

λ

n∑
j=1

[
ĝ(xj)−

√
p(η) · z(η)j

]2
≤ nλ · p(η) · λ

n
< p(η)

proving the claim.
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F.2. Bounding ‖yη,u‖2L2(dµ)

Having established Lemma 30, we note that showing that the weighted Fourier transform of yη,u is close to
√
p(η)z(η)

reduces to bounding the norm of the test function. To that effect, we show the following:

Lemma 31 (Test Function `2 Norm Bound). For any integer n, any parameter 0 < λ ≤ n
2 , every |η| ≤ 10

√
log nλ, and

every 2000 log nλ ≤ u ≤ 500 log1.5 nλ, if yη,u(t) is defined as in (20), as per Definition 29, then we have

‖y‖2L2(dµ) ≤ 12
(
R+ u

√
2 log nλ

)
(24)

Before proving Lemma 31, we first prove a claim:

Claim 32. Suppose |η| ≤ 100
√

log nλ, and

η − c
√

log nλ
b

≤ t ≤ η +
c
√

log nλ
b

for some absolute constant c > 0. If b ≥ 100c · log nλ then,

e−
t2

2 + η2

2 ≤ 3.

Proof. Let ∆ = t− η. Then, note that |∆| ≤ c
√

log nλ/b, and so,

e−
t2

2 + η2

2 = e−
(∆+η)2

2 + η2

2

= e−∆η−∆2

2

≤ e|∆η|−∆2

2

≤ e|∆|·|η|

≤ e(c
√

lognλ/b)(100
√

lognλ)

≤ e ≤ 3,

since b ≥ 100c · log nλ.

Now, we are ready to prove Lemma 31:

Proof of Lemma 31. Recall that for the Gaussian kernel, we have p(η) = 1√
2π
e−η

2/2. We calculate:∫
R
|yη,u(t)|2dµ(t) = p(η)

∫
R

√
2πet

2/2 · e−(t−η)2u2/2 · v2 (sinc (v(t− η)))
2
dt

=
√

2πp(η) · v2

∫ η+
20
√

lognλ
u

η− 20
√

lognλ
u

et
2/2 · e−(t−η)2u2/2 (sinc (v(t− η)))

2
dt

+
√

2πp(η) · v2

∫
|t−η|≥ 20

√
lognλ
u

et
2/2 · e−(t−η)2u2/2 (sinc (v(t− η)))

2
dt (25)

For the integral over |t− η| ≥ 20
√

lognλ
u we have:∫

|t−η|≥20

√
lognλ
u

et
2/2 · e−(t−η)2u2/2 (sinc (v(t− η)))

2
dt ≤ 1(

v · 20
√

lognλ
u

)2 ∫
|t−η|≥20

√
lognλ
u

et
2/2 · e−(t−η)2u2/2dt

≤ 1

v

∫
|t−η|≥20

√
lognλ
u

et
2/2 · e−(t−η)2u2/2dt (26)
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The first inequality above is because by definition of sinc (·) we have the following for all |t− η| ≥ 20
√

lognλ
u :

|sinc (v(t− η)) |2 =
sin2(πv(t− η))

(πv(t− η))2
≤ 1

(v(t− η))2
≤ 1(

v · 20
√

lognλ
u

)2
The last inequality in (26) is because of the following reason:

1(
v · 20

√
lognλ
u

)2 =
1

v
· 1

v ·
(

20
√

lognλ
u

)2
≤ 1

v
· 1

800
(

log1.5 nλ
u

) (since v = 2(R+ u
√

2 log nλ) ≥ 2u
√

2 log nλ, see Definition 29)

≤ 1

v
(since u ≤ 500 log1.5 nλ)

Now note that t2 ≤ 2(t− η)2 + 2η2. We have the following for all |t− η| ≥ 20
√

lognλ
u :

t2 ≤ 2(t− η)2 + 2η2

≤ 2(t− η)2 + 200 log nλ (by the assumption |η| ≤ 10
√

log nλ)

≤ 2(t− η)2 + (t− η)2u2/2 (by the assumption |t− η| ≥ 20
√

log nλ
u

)

≤ 2

3
(t− η)2u2

where the last inequality follows from u ≥ 2000log nλ ≥ 600 (because nλ ≥ 1/2). Hence,

1

v

∫
|t−η|≥20

√
lognλ
u

et
2/2 · e−(t−η)2u2/2dt ≤ 1

v

∫
|t−η|≥20

√
lognλ
u

e−(t−η)2u2/3dt

≤ 1

v
· n100

λ (27)

Now, the first integral in (25):

∫ η+20

√
lognλ
u

η−20

√
lognλ
u

et
2/2 · e−(t−η)2u2/2 (sinc (v(t− η)))

2
dt ≤ 3e

η2

2

∫
R

(sinc (v(t− η)))
2
dt

=
3e

η2

2

v
. (28)

where the inequality follows from Claim 32 with c = 20 and b = u, since, by assumption, u ≥ 2000 log nλ and |t| ≤
|η|+ |t− η| ≤ 10

√
log nλ + 20

u

√
log nλ ≤ 100

√
log nλ whenever t ∈

[
η − 20 lognλ

u , η + 20 lognλ
u

]
.

By incorporating (27) and (28) into (25) we have:∫
R
|yη,u(t)|2dt ≤

√
2πp(η) · v2

(1

v
· n−100

λ +
3e

η2

2

v

)
≤ 6v (29)

where the last inequality uses that
√

2πp(η) =
√

2π√
2π
e−η

2/2 ≤ 1.
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Proof of Theorem 13. By the assumptions of the theorem n is an integer, parameter 0 < λ ≤ n/2, and R > 0, and all

x1, ..., xn ∈ [−R,R] and p(η) = 1√
2π
e−

η2

2 , therefore all the preconditions of Lemmas 31, and 30 are satisfied and hence
the lemmas go through and the upper bounds in (22) and (24) hold true. The theorem follows by setting u = 2000log nλ
and then plugging upper bounds (22) and (24) into (20).

G. Proof of Theorem 14
With the choice of the Gaussian kernel with σ = (2π)−1 we have p(η) = (2π)−1/2 exp(−η2/2). Recall from Lemma 12
that

τλ(η) = max
α∈Cn

p(η) · |α∗z(η)|2

‖Φ∗α‖2L2(dµ) + λ‖α‖22
. (30)

In particular, this gives us a method of bounding the leverage scores from below, namely, by exhibiting some α and
computing the quantity under the maximum.

The rest of this section is organized as follows. In Section G.1, we construct our candidate set of data points x1, x2, . . . , xn
along with the vector α. In particular, α will be chosen to be a vector of samples of a function f∆,b,v at each of the data
points. Section G.2 then describes basic Fourier properties of the function f∆,b,v and α that we will require later. The
remaining sections then bound each of the relevant quantities that appear in (30) for our specific choice of x1, x2, . . . , xn
and α. In particular, Section G.3 shows a lower bound for α∗z(η), while Section G.4 shows an upper bound for ‖α‖22 and
Section G.5 shows an upper bound for ‖Φ∗α‖2L2(dµ).

G.1. Construction of Data Point Set and the Vector of Coefficients α

Definition 33. For parameters ∆, b > 0 and v > 0, let the function f∆,b,v be defined as follows:

f∆,b,v(x) = 2 cos(2π∆x)

(
1√
2πb

e−(.)2/2b2 ∗ rectv

)
(x)

= 2 cos(2π∆x)

∫ x+ v
2

x− v2

1√
2πb

e−t
2/2b2 dt

Lemma 34. For any ∆ > 0, v > 0, and b > 0, if we define the function f∆,b,v as in Definition 33, then

F (f∆,b,v) (z) = e−2π2b2(z−∆)2

(v · sinc (v(z −∆)) + e−2π2b2(z+∆)2

(v · sinc (v(z + ∆))).

Proof. Note that

F
(

1√
2πb

e−(·)2/2b2
)

(z) = e−2π2b2z2

.

Thus, by the convolution theorem (see Claim 18),

F
(

1√
2πb

e−(·)2/2b2 ∗ rectv

)
(z) = e−2π2b2z2

· v · sinc (v(z)) .

Now by the duality of phase shift in time domain and frequency shift in the Fourier domain,

F(f∆,b,v)(z) = F
(

(e2πi∆(·) + e−2πi∆(·)) ·
(

1√
2πb

e−(·)2/2b2 ∗ rectv

))
(z)

= F
(

1√
2πb

e−(·)2/2b2 ∗ rectv

)
(z −∆) + F

(
1√
2πb

e−(·)2/2b2 ∗ rectv

)
(z + ∆)

= e−2π2b2(z−∆)2

· v · sinc (v(z −∆)) + e−2π2b2(z+∆)2

· v · sinc (v(z + ∆)) .
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Intuition for Theorem 14 If, instead of a discrete set of data points, we had a continuum of points, α would be a
function (or, alternatively, an infinite-dimensional vector coresponding to the evaluation of the function on the continuum
of points). The intuition is that in this case, we would essentially like to choose α to be the function f∆,b,v for some
suitable choice of parameters ∆, b, v. In this case, the computation of bounds for the various quantities appearing in (30)
would be relatively simple and involve bounding integrals. However, since our data points are actually discrete and α is
finite-dimensional, we must instead choose α to be the vector of samples of f∆,b,v on the data points, and the bounds we
deduce require computing Fourier transforms of f∆,b,v multiplied by suitable Dirac combs (see Lemma 36). Computation
of the necessary bounds is further complicated by the fact that the data points are bounded in [−R,R], which requires us
to truncate the aforementioned Dirac combs and have appropriate Fourier tail bounds (see Lemma 37).

Let us provide some intuition about the quantities |α∗z(η)|2, ‖Φ∗α‖2L2(dµ) and ‖α‖22 that arise in (30) along these lines.
If we have ≈ 2R equally spaced data points between −R and R, then note that the points are separated by distance ≈ 1.
This approximately corresponds to dealing with the continuous case in which α is a function f∆,b,v and, therefore, sums in
the discrete case can be approximated by corresponding integrals over continuous functions. Suppose ∆ = η and v = R.

Note that the quantity α∗z(ξ) corresponds to

α∗z(ξ) ≈
∫ ∞
−∞

fη,b,R(x)e−2πiξx dx

≈ F(fη,b,R)(ξ)

= e−2π2b2(ξ−η)2

·R · sinc (R(ξ − η)) + e−2π2b2(ξ+η)2

·R · sinc (R(ξ + η)) . (31)

Thus, α∗z(ξ) (which we bound rigorously in Section G.3) can be approximated as follows:

α∗z(ξ) ≈ R(1 + e−8π2b2η2

sinc (2Rη)) ≈ Ω(R), (32)

where the last transition uses the fact that sinc (·) ≥ −1/4. Next, note that the quantity ‖α‖22 (which we bound rigorously
in Section G.4) is roughly

‖α‖22 ≈
∫ ∞
−∞

fη,b,R(x)2 dx =

∫ ∞
−∞

4 cos2(2πηx)

(∫ x+R
2

x−R2

1√
2πb

e−t
2/2b2 dt

)2

dx

≈ 4

∫ 3R
2

− 3R
2

(∫ ∞
−∞

1√
2πb

e−t
2/2b2 dt

)2

dx

≈ O(R). (33)

Finally, note that ‖Φ∗α‖2L2(dµ) (which we bound rigorously in Section G.5) is roughly

‖Φ∗α‖2L2(dµ) ≈
∫ ∞
−∞
|α∗z(ξ)|2 · 1√

2π
e−ξ

2/2 dξ

≈
∫ ∞
−∞

(
e−2π2b2(ξ−η)2

·R · sinc (R(ξ − η)) + e−2π2b2(ξ+η)2

·R · sinc (R(ξ + η))
)2

· 1√
2π
e−ξ

2/2 dξ

≈ 1√
2π
e−η

2/2R2

∫ ∞
−∞

sinc (R(ξ − η))
2
dξ

≈ O(p(η)R), (34)

using (31).

Now, going back to the discrete case, consider what happens if we scale up the number of points from 2R to n, keeping the
points evenly spaced in the interval [−R,R]. In this case, the spacing between points decreases by a factor of γ ≈ n/2R.
Thus, this corresponds to the measure of integration over R scaling up by a factor of γ. Hence, |α∗z(η)| and ‖α‖22 can be
expected to scale up by a factor of γ, while ‖Φ∗α‖2L2(dµ) would scale up by a factor of γ2. Thus, along with (32), (33),
and (34), we get that

p(η) · |α∗z(η)|2

‖Φ∗α‖2L2(dµ) + λ‖α‖22
≈ (γR)2p(η)

γ2p(η)R+ λγR
≈ R · p(η)

p(η) + λ/γ
≈ R · p(η)

p(η) + 2Rn−1
λ

,
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which is within a constant factor of the expression in Theorem 14.

Definition 35 (Construction of data points and α). We first define the set of data points xj for j = 1, 2, . . . , n for odd n as
follows:

xj =

(
j − n+ 1

2

)
· 2R

n

Thus, the data points are on a grid of width 2R
n extending from −R to R.

The vector α is chosen to be the tuple of evaluations of fη,b,v at the individual xj , for some parameters b, v, and η. More
specifically, for 1 ≤ j ≤ n, we define

αj = fη,b,v(xj)

= 2 cos(2πηxj)

∫ xj+
v
2

xj− v2

1√
2πb

e−t
2/2b2dt. (35)

G.2. Basic Properties of f∆,b,v and α

By the Nyquist-Shannon sampling theorem, we have the following lemma.

Lemma 36. For any parameters ∆ > 0, v > 0, and b > 0, if we define the function f∆,b,v as in Definition 33, then for
any w > 0,

F

f∆,b,v(·) ·
∞∑

j=−∞
δ(· − jw)

 (z) = w−1v

∞∑
j=−∞

e−2π2b2(z−jw−1−∆)2

· sinc
(
v(z − jw−1 −∆)

)
+ w−1v

∞∑
j=−∞

e−2π2b2(z−jw−1+∆)2

· sinc
(
v(z − jw−1 + ∆)

)
.

Proof. By the Nyquist-Shannon sampling theorem, we have

F

f∆,b,v(·)
∞∑

j=−∞
δ(· − jw)

 (z) =

w−1
∞∑

j=−∞
δ(· − jw−1) ∗ F(f∆,b,v)(·)

 (z)

=

∞∑
j=−∞

w−1F(f∆,b,v)(z − jw−1). (36)

Thus, by Lemma 34, we find that (36) can be written as

∞∑
j=−∞

w−1F(f∆,b,v)(z − jw−1) = w−1
∞∑

j=−∞
e−2π2b2(z−jw−1−∆)2

· v · sinc
(
v(z − jw−1 −∆)

)
+ w−1

∞∑
j=−∞

e−2π2b2(z−jw−1+∆)2

· v · sinc
(
v(z − jw−1 + ∆)

)
,

which completes the proof.

Lemma 37. For every odd integer n ≥ 3 and parameters 0 < λ ≤ n
2 , η > 0, v ≤ R, and b ≤ R

4
√

lognλ
, if we define the

function f∆,b,v as in Definition 33, then∣∣∣∣∣∣F
 ∑
|j|>n

2

fη,b,v

(
j · 2R

n

)
· δ
(
· − j · 2R

n

) (z)

∣∣∣∣∣∣ ≤ √λn
for all z.
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Proof. By definition of fη,b,v , we have the following for all x:

|fη,b,v(x)| ≤
∫ x+ v

2

x− v2

2√
2πb

e−t
2/2b2 dt.

Therefore, if |j| > n
2 , then

∣∣∣∣fη,b,v (j · 2R

n

)∣∣∣∣ ≤ 2√
2πb

∫ ∞
j· 2Rn −

v
2

e−t
2/2b2 dt

≤ 2√
2πb

∫ ∞
jR
n

e−t
2/2b2 dt

≤ 2√
2π
· nb
jR
· e−

1
2 ·(

jR
nb )

2

≤ 2b

R
· e−

1
2 ·(

jR
nb )

2

, (37)

where we have used the fact that j · 2R
n −

v
2 ≥ j ·

2R
n −

R
2 ≥ j ·

R
n , along with Claim 25. Therefore, again using Claim 25,

we have ∣∣∣∣∣∣F
 ∑
|j|>n

2

fη,b,v

(
j · 2R

n

)
· δ
(
· − j · 2R

n

) (z)

∣∣∣∣∣∣ ≤
∑
|j|>n

2

∣∣∣∣fη,b,v (j · 2R

n

)∣∣∣∣
≤
∑
|j|>n

2

2b

R
· e−

1
2 ·(

jR
nb )

2

≤ 2b

R
·

(
nb

R

∫ ∞
(n−1)R

2nb

e−t
2/2 dt

)

≤ n

4 log nλ
·
∫ ∞
√

lognλ

e−t
2/2 dt

≤ n

4 log nλ
· 1√

log nλ
· e−

1
2 ·(
√

lognλ)
2

≤ 1

4 log3/2 (nλ)
·
√
λn

≤
√
λn,

since n ≥ 3, R ≥ 4b
√

log nλ, and λ ≤ n/2.

Lemma 38. For every odd integer n ≥ 3, any parameter 0 < λ ≤ n
2 , every frequency η and ξ, and any parameter v ≤ R

and b ≤ R
4
√

lognλ
, if α is defined as in (35) of Definition 35, then we have,

∣∣∣∣∣∣α∗z(ξ)− nv

2R

∞∑
j=−∞

(
e−2π2b2(ξ− jn

2R−η)2

sinc

(
v(ξ − jn

2R
− η)

)
+ e−2π2b2(ξ− jn

2R+η)2

sinc

(
v(ξ − jn

2R
+ η)

))∣∣∣∣∣∣
≤
√
λn. (38)
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Proof. Note that

α∗z(ξ) =

n∑
j=1

αje
−2πixjξ

=
∑
|j|≤n2

fη,b,v(2Rj/n) · e−2πi( 2Rj
n )ξ

= F

 ∑
|j|≤n2

fη,b,v(2Rj/n) · δ
(
· − 2Rj

n

) (ξ)

= F

 ∞∑
j=−∞

fη,b,v(·) · δ
(
· − 2Rj

n

) (ξ)−F

 ∑
|j|>n

2

fη,b,v

(
2Rj

n

)
· δ
(
· − 2Rj

n

) (ξ). (39)

By Lemma 36 (applied with w = 2R/n), we have the following expression for the first term in (39):

F

 ∞∑
j=−∞

fη,b,v(·) · δ
(
· − 2Rj

n

) (ξ) =
nv

2R

∞∑
j=−∞

e−2π2b2(ξ− jn
2R−η)2

· sinc

(
v

(
ξ − jn

2R
− η
))

+
nv

2R

∞∑
j=−∞

e−2π2b2(ξ− jn
2R+η)2

· sinc

(
v

(
ξ − jn

2R
+ η

))
. (40)

Now, by the assumption that R ≥ 4b
√

log nλ and v ≤ R, it follows from Lemma 37 that the second term in (39) can be
bounded as ∣∣∣∣∣∣F

 ∑
|j|>n

2

fη,b,v(2Rj/n) · δ
(
· − 2Rj

n

) (ξ)

∣∣∣∣∣∣ ≤ √λn. (41)

Thus, the desired result follows by combining (39), (40), and (41).

G.3. Bounding α∗z(η)

Lemma 39. For every odd integer n ≥ 17, any parameter 0 < λ ≤ ( vR )2 · n/16, every frequency |η| ≤ n
10R , and any

parameter v ≤ R and R
2
√
n
≤ b ≤ R

4
√

log(nλ)
, if α is defined as in (35) of Definition 35, then we have

|α∗z(η)| ≥ nv

5R
.

Proof. Since v ≤ R and b ≤ R

4
√

log(nλ)
and λ ≤ n/2, Lemma 38 implies that

∣∣∣∣∣∣α∗z(η)− nv

2R

∞∑
j=−∞

(
e−2π2b2(− jn

2R )2

sinc (v(−jn/2R)) + e−2π2b2(2η− jn
2R )2

sinc (v(2η − jn/2R))
)∣∣∣∣∣∣

≤
√
λn. (42)



Random Fourier Features for Kernel Ridge Regression

Hence,

|α∗z(η)| ≥ nv

2R

∣∣∣∣∣∣
∞∑

j=−∞

(
e−2π2b2(− jn

2R )2

sinc (v(−jn/2R))

+ e−2π2b2(2η− jn
2R )2

sinc (v(2η − jn/2R))
)∣∣∣−√λn

≥ nv

2R
e−2π2b2(0)2

sinc (v(0)) +
nv

2R
e−2π2b2(2η)2

sinc (v(2η))

− nv

2R

∑
|j|≥1

(
e−2π2b2(− jn

2R )2

+ e−2π2b2(2η− jn
2R )2

)
−
√
λn

≥ 3

4

( nv
2R

)
− nv

2R

∑
|j|≥1

(
e−2π2b2(− jn

2R )2

+ e−2π2b2(2η− jn
2R )2

)
−
√
λn, (43)

since |sinc (·) | ≤ 1 and sinc (·) ≥ − 1
4 .

Now we show that
∑
|j|≥1

(
e−2π2b2(− jn

2R )2

+e−2π2b2(2η− jn
2R )2)

is small. Note that by the assumption of b ≥ R
2
√
n

, we have

e−2π2b2(− jn
2R )2 ≤ e−jn for all |j| ≥ 1. Also recall that |η| ≤ n

10R , and so, (2η − jn
2R )2 ≥ ( jn4R )2 for all |j| ≥ 1. Hence, we

have

∑
|j|≥1

(
e−2π2b2(− jn

2R )2

+ e−2π2b2(2η− jn
2R )2)

≤
∑
|j|≥1

(
e−|j|n + e−

|j|n
4

)
≤ 5e−

n
4 (44)

by assumption n ≥ 17. The lemma follows by combining (43) and (44).

G.4. Bounding ‖α‖22
Lemma 40. For every odd integer n and parameters b, η, v > 0, if α is defined as in (35) of Definition 35, then we have

‖α‖22 ≤ 4n.

Now we are ready for the proof of Lemma 40.

Proof of Lemma 40. Let w = 2R/n. Then, we observe that

‖α‖22 =

n∑
j=1

α2
j

≤
∑
|j|≤n−1

2

(
2√
2πb

cos(2πjwη)

∫ jw+ v
2

jw− v2
e−x

2/2b2

)2

≤
∑
|j|≤n−1

2

(
2√
2πb

cos(2πjwη)

∫ ∞
−∞

e−x
2/2b2

)2

≤
∑
|j|≤n−1

2

(
2√
2πb

∫ ∞
−∞

e−x
2/2b2

)2

because | cos(·)| ≤ 1. Hence,

‖α‖22 ≤
∑
|j|≤n−1

2

4

= 4n (45)

as desired.
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G.5. Bounding ‖Φ∗α‖2L2(dµ)

Note that all the results so far hold for any kernel p(η) and are independent of the kernel function. Now, we upper bound
‖Φ∗α‖L2(dµ). This quantity depends on the particular choice of kernel, which is assumed to be Gaussian.

Lemma 41. For every odd integer n ≥ 17, any parameter 10
n < λ ≤ n

2 , every |η| ≤ 100
√

log nλ, and any
1000 log1.5 nλ ≤ R ≤ n

500
√

lognλ
, and R

2
√
n
≤ b ≤ R

4
√

lognλ
, if α is defined as in (35) of Definition 35 with parame-

ter v = R, then for the Gaussian kernel with p(ξ) = 1√
2π
e−ξ

2/2, we have:

‖Φ∗α‖2L2(dµ) ≤ 6
n2

R
· p(η) + 3λn. (46)

Proof. Recall from Lemma 38 that:

|α∗z(ξ)|2 ≤

∣∣∣∣∣∣ nv2R

∞∑
j=−∞

(
e−2π2b2(ξ− jn

2R−η)2

sinc

(
v(ξ − jn

2R
− η)

)

+ e−2π2b2(ξ− jn
2R+η)2

sinc

(
v(ξ − jn

2R
+ η)

)
+
√
λn

)∣∣∣∣∣
2

≤ n2

2

∣∣∣∣∣∣
∞∑

j=−∞

(
e−2π2b2(ξ− jn

2R−η)2

sinc

(
v(ξ − jn

2R
− η)

)

+ e−2π2b2(ξ− jn
2R+η)2

sinc

(
v(ξ − jn

2R
+ η)

))∣∣∣∣∣
2

+ 2
(√

λn
)2

.

Now, by the definition of the L2(dµ) norm, ‖Φ∗α‖2L2(dµ) =
∫∞
−∞ |α

∗z(ξ)|2p(ξ) dξ, and so, we have

‖Φ∗α‖2L2(dµ) ≤
∫ +∞

−∞

n2

2

 ∞∑
j=−∞

e−2π2b2(ξ− jn
2R−η)2

sinc

(
v(ξ − jn

2R
− η)

)

+ e−2π2b2(ξ− jn
2R+η)2

sinc

(
v(ξ − jn

2R
+ η)

))2

p(ξ) dξ +

∫ ∞
−∞

2
(√

λn
)2

p(ξ) dξ

≤
∫ +∞

−∞
n2

 ∞∑
j=−∞

e−2π2b2(ξ− jn
2R−η)2

sinc

(
v(ξ − jn

2R
− η)

)2

p(ξ) dξ

+

∫ +∞

−∞
n2

 ∞∑
j=−∞

e−2π2b2(ξ− jn
2R+η)2

sinc

(
v(ξ − jn

2R
+ η)

)2

p(ξ) dξ + 2λn

= 2n2

∫ ∞
−∞

 ∞∑
j=−∞

e−2π2b2(ξ− jn
2R−η)2

sinc

(
v(ξ − jn

2R
− η)

)2

p(ξ) dξ + 2λn, (47)

where we have used the inequality (a1 + a2)2 ≤ 2a2
1 + 2a2

2 in the second step, and the last equality occurs because the
kernel probability distribution function p(ξ) is symmetric in our case, along with the fact that the underlying sum is over
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all j. Now, the integral in (47) can be split into two integrals as follows:

∫ ∞
−∞

p(ξ)

 ∞∑
j=−∞

e−2π2(ξ− jn
2R−η)2b2 · sinc

(
v(ξ − jn

2R
− η)

)2

dξ

=

∫ 10
√

lognλ

−10
√

lognλ

p(ξ)

 ∞∑
j=−∞

e−2π2(ξ− jn
2R−η)2b2 · sinc

(
v(ξ − jn

2R
− η)

)2

dξ

+

∫
|ξ|≥10

√
lognλ

p(ξ)

 ∞∑
j=−∞

e−2π2(ξ− jn
2R−η)2b2 · sinc

(
v(ξ − jn

2R
− η)

)2

dξ. (48)

First, we consider the case in which |ξ| ≤ 10
√

log nλ. By the assumption of the lemma, |η| ≤ 100
√

log nλ, and hence,
|ξ − η| ≤ 110

√
log nλ. This implies that |ξ − η| ≤ 1

2 ( n
2R ), since we are assuming that R ≤ n

500
√

log(n/λ)
. Therefore, for

any integer j 6= 0,

e−2π2(ξ− jn
2R−η)2b2 ≤ e−( jnR )2b2 .

Hence, we have

∑
|j|≥1

e−2π2(ξ− jn
2R−η)2b2 ≤

∑
|j|≥1

e−( jnR )2b2

≤
∑
|j|≥1

e−j(
n
R )2b2

≤ 3e−n/4, (49)

where we used assumptions b ≥ R
2
√
n

and n ≥ 17.

Now, using (49), we see that the first integral in (48) can be bounded as follows:

∫ 10
√

lognλ

−10
√

lognλ

p(ξ)

 ∞∑
j=−∞

e−2π2(ξ− jn
2R−η)2b2 · sinc

(
v(ξ − jn

2R
− η)

)2

dξ

≤ 2

∫ 10
√

lognλ

−10
√

lognλ

p(ξ)
(
e−2π2b2(ξ−η)2

sinc (v(ξ − η))
2
)2

dξ

+ 2

∫ 10
√

lognλ

−10
√

lognλ

p(ξ)

∑
|j|≥1

e−2π2(ξ− jn
2R−η)2b2sinc

(
v(ξ − jn

2R
− η)

)2

dξ

≤ 2

∫ 10
√

lognλ

−10
√

lognλ

1√
2π
e−ξ

2/2
(
e−2π2b2(ξ−η)2

sinc (v(ξ − η))
2

+ 9e−n/2
)
dξ

= 2

∫ ∞
−∞

1√
2π
e−ξ

2/2e−b
2(ξ−η)2

· sinc (v(ξ − η))
2
dξ + 18

∫ ∞
−∞

1√
2π
e−ξ

2/2e−n/2 dξ

≤
∫ ∞
−∞

1√
2π
e−ξ

2/2e−b
2(ξ−η)2

· sinc (v(ξ − η))
2
dξ + 18e−n/2. (50)

Next, by Claim 32, we have e−ξ
2/2 ≤ 3e−η

2/2 for |ξ − η| ≤ 10
√

lognλ
b . Hence,
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∫ η+
10
√

lognλ
b

η− 10
√

lognλ
b

1√
2π
e−ξ

2/2e−b
2(ξ−η)2

· sinc (v(ξ − η))
2
dξ

≤ 3 · 1√
2π
e−η

2/2

∫ +∞

−∞
e−b

2(ξ−η)2

· sinc (v(ξ − η))
2
dξ

≤ 3 · 1√
2π
e−η

2/2

∫ +∞

−∞
sinc (v(ξ − η))

2
dξ

=
3p(η)

v
(51)

Note that the last line follows from the fact that v ·sinc (vη) is the Fourier transform of rectv(x), and so, by the convolution
theorem, ∫ ∞

−∞
(v · sinc (vx))2 dx = (rectv(x) ∗ rectv(x)) (0)

= v.

Moreover, ∫
|ξ−η|≥ 10

√
lognλ
b

1√
2π
e−ξ

2/2e−b
2(ξ−η)2

· sinc (v(ξ − η))
2
dξ ≤

(
λ

n

)50 ∫ ∞
−∞

1√
2π
e−ξ

2/2 dξ

=

(
λ

n

)50

, (52)

since the sinc (·) function is bounded by 1 in absolute value. Thus, (50), (51), and (52) imply that∫ 10
√

lognλ

−10
√

lognλ

p(ξ)
( ∞∑
j=−∞

e−2π2(ξ− jn
2R−η)2b2 · sinc

(
v(ξ − jn

2R
− η)

))2

dξ ≤ 3p(η)

v
+

(
λ

n

)50

+ 18e−n/2. (53)

Next, we bound the second integral in (48). Consider ξ satisfying |ξ| ≥ 10
√

log nλ. Note that the following upper bound
holds for any ξ and η:

∞∑
j=−∞

e−2π2(ξ− jn
2R−η)2b2 · sinc

(
v(ξ − jn

2R
− η)

)
≤

∞∑
j=−∞

e−2π2(ξ− jn
2R−η)2b2

= 1 +
∑
|j|≥1

e−2π2(ξ− jn
2R−η)2b2

≤ 1 +
2R

n

∫ ∞
−∞

e−2π2(ξ−x−η)2b2 dx

≤ 2, (54)

where we have used the fact that b
R ≤

1
4
√

lognλ
≤ 1/

√
2. Thus,

∫
|ξ|≥10

√
lognλ

p(ξ)

 ∞∑
j=−∞

e−2π2(ξ− jn
2R−η)2b2sinc

(
v(ξ − jn

2R
− η)

)2

dξ

≤ 2

∫
|ξ|≥10

√
lognλ

p(ξ) dξ

≤
(
λ

n

)50

, (55)

by Claim 25. Combining (47), (48), (53), and (55) now yields the desired result.
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Proof of Theorem 14. Note that we can choose data points x1, x2, . . . , xn and the vector α according to the construction
in Definition 35 with v = R and b = R

4
√

lognλ
. Thus, Lemmas 39, 40, and 41, as well as (30), imply that

τλ(η) ≥ p(η) · |α∗z(η)|2

‖Φ∗α‖2L2(dµ) + λ‖α‖22

≥
p(η) ·

(
n
5

)2(
6n

2

R · p(η) + 3λn
)

+ λ(4n)

≥ R

150

(
p(η)

p(η) + 2Rn−1
λ

)
,

as desired.

H. Proof of Corollary 15
First claim of the corollary (upper bound on statistical dimension): Let t = 10

√
log nλ. We have:

sλ(K) =

∫
R
τ(η)dη =

∫
[−t,t]

τ(η)dη +

∫
[−∞,−t]∪[t,∞]

τ(η)dη

By the naive bound in Proposition 4 and Claim 25 we have:∫
[−∞,−t]∪[t,∞]

τ(η)dη ≤ nλ
∫

[−∞,−t]∪[t,∞]

e−η
2/2

√
2π

dη

≤ nλ ·

(
e−t

2/2

t

)
≤ 1 (56)

Further, by the more refined bound of Theorem 13, for any η ≤ 10
√

log nλ = t we have∫
[−t,t]

τ(η)dη ≤
∫

[−t,t]
25(R+ 3000 log1.5 nλ) dη

≤ 50t · (R+ 3000 log1.5 nλ)

= O
(√

log nλ ·R+ log2 nλ

)
. (57)

Combining (56) and (57) gives the lemma.

Second claim of the corollary: Note that for all |η| ≤
√

2 log nλ
R we have p(η) ≥ R√

2πnλ
, hence we have:

p(η) + 2R/nλ ≤ 7p(η)

hence, by Theorem 14, we have:

τ(η) ≥ R

150

(
1

7

)
And for |η| >

√
2 log nλ

R we have:
p(η) + 2R/nλ ≤ 3R/nλ

therefore,

sλ(K) =

∫ ∞
−∞

τ(η)dη

≥
∫ √2 log

nλ
R

−
√

2 log
nλ
R

R

1050
dη +

∫
|η|>
√

2 log
nλ
R

R

150

(
p(η)

3R/nλ

)
dη

= Ω(R

√
log

nλ
R

) (58)
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I. Proof of Theorem 8 and 10
Proof of Theorem 8. We show a lower bound on the number of samples required under the random feature map of Rahimi
and Recht by exhibiting a set of data points for which the appropriate number of samples does not suffice.

Our goal is to show that if we take s samples η1, η2, . . . , ηs from the distribution defined by p, for s too small, then there is
an α = (α1, α2, . . . , αn) ∈ Rn such that with at least constant probability,

αT(K + λIn)α <
2

3
αT(ZZ∗ + λIn)α. (59)

By (3), we have

αTKα =
∑
j,k

αjαk · k(xj , xk)

=
∑
j,k

∫ ∞
−∞

e−2πiη(xj−xk)αjαkp(η) dη

=

∫ ∞
−∞

 n∑
j=1

αje
−2πiηxj

( n∑
k=1

αke
2πiηxk

)
p(η) dη

=

∫ ∞
−∞

p(η)

∣∣∣∣∣∣
n∑
j=1

αje
2πiηxj

∣∣∣∣∣∣
2

dη.

Also, by the definition of Z and ϕ (see Section 2.2), we have

αTZZ∗α =

∥∥∥∥∥∥
n∑
j=1

αjϕ(xj)

∥∥∥∥∥∥
2

2

=

s∑
k=1

∣∣∣∣∣∣
n∑
j=1

αj ·
1√
s
e2πiηkxj

∣∣∣∣∣∣
2

=
1

s

s∑
k=1

∣∣∣∣∣∣
n∑
j=1

αje
2πiηkxj

∣∣∣∣∣∣
2

,

where η1, η2, . . . , ηs are the s samples from the distribution given by p. Hence, (59) is equivalent to

∫ ∞
−∞

p(η)

∣∣∣∣∣∣
n∑
j=1

αje
2πiηxj

∣∣∣∣∣∣
2

dη +
1

3
λ‖α‖22 <

2

3
· 1

s

s∑
k=1

∣∣∣∣∣∣
n∑
j=1

αje
2πiηkxj

∣∣∣∣∣∣
2

. (60)

We again use the same construction of n data points x1, x2, . . . , xn ∈ R, according to the construction in Definition 33.
Moreover, we define η∗ to be

η∗ = max
1≤j≤s

|ηj |

and let α = (α1, α2, . . . , αn) be given by

αj = fη∗,b,v(xj),

where b = R/4
√

log nλ and v = δ. We will show that this choice of data points and α satisfy (60).

First, we upper bound the first term on the left side of (60). Note that by Claim 26, with probability at least 1/2 over the



Random Fourier Features for Kernel Ridge Regression

samples z1, z2, . . . , zs, we have

∫ ∞
−∞

p(η)

∣∣∣∣∣∣
n∑
j=1

αje
2πiηxj

∣∣∣∣∣∣
2

dη =

∫ ∞
−∞

1√
2π
e−η

2/2

∣∣∣∣∣∣
m∑

j=−m
αje

2πiηxj

∣∣∣∣∣∣
2

dη

= ‖Φ∗α‖2L2(dµ)

≤ 6n2

R
· p(η∗) + 3λn

≤ 48n2

R
·
√

log s

s
+ 3λn. (61)

where we have let η = η∗ and applied Lemma 41.

Next, we bound the right side of (60) from below. Note that

1

s

s∑
k=1

∣∣∣∣∣∣
n∑
j=1

αje
2πiηkxj

∣∣∣∣∣∣
2

≥ 1

s

∣∣∣∣∣∣
n∑
j=1

αje
2πiη∗xj

∣∣∣∣∣∣
2

=
1

s
(α∗z(η∗))2

≥ 1

s

(n
5

)2

=
n2

25s
, (62)

by Lemma 39 applied with η = η∗.

We also require the following estimate of ‖α‖22, which is provided by Lemma 40:

‖α‖22 ≤ 4n. (63)

Note that by combining (61), (62), and (63), we have that with probability at least 1/2,

∫ ∞
−∞

p(η)

∣∣∣∣∣∣
n∑
j=1

αje
2πiηxj

∣∣∣∣∣∣
2

dη +
1

3
λ‖α‖22 ≤

48n2

R
·
√

log s

s
+ 3λn+

4

3
λn

≤ 2n2

75s

≤ 2

3
· 1

s

s∑
k=1

∣∣∣∣∣∣
n∑
j=1

αje
2πiηkxj

∣∣∣∣∣∣
2

,

since s ≤ nλ/400 and also because R ≥ 3000 log1.5 (nλ). This completes the proof.

Proof of Theorem 10. By the assumptions of the theorem n is an integer, parameter 0 < λ ≤ n/2, and R > 0, and all

x1, ..., xn ∈ [−R,R] and p(η) = 1√
2π
e−

η2

2 , therefore all the preconditions of Proposition 4, and Theorem 13 are satisfied
and hence the theorem and proposition go through and for every η we have:

τλ(η) ≤ τ̄R(η)

Hence applying Lemma 6 with τ̃(η) = τ̄R(η) gives the desired spectral approximation with 8
3∆−2sτ̄R ln(16sτ̄R/ρ) sam-

ples where sτ̄R =
∫
R τ̄R(η)dη. Now we show that sτ̄R = O(R

√
log(nλ) + log2 nλ).

Let t = 10
√

log nλ. We have:

sτ̄R =

∫
R
τ̄R(η)dη =

∫
[−t,t]

τ̄R(η)dη +

∫
[−∞,−t]∪[t,∞]

τ̄R(η)dη



Random Fourier Features for Kernel Ridge Regression

By Definition 9 and Claim 25 we have:∫
[−∞,−t]∪[t,∞]

τ̄R(η)dη = nλ

∫
[−∞,−t]∪[t,∞]

e−η
2/2

√
2π

dη

≤ nλ ·

(
2
e−t

2/2

√
2πt

)

≤ nλ ·

(
e−t

2/2

t

)
≤ 1

Furthermore, for any η ≤ 10
√

log nλ = t we have∫
[−t,t]

τ(η)dη ≤
∫

[−t,t]
25(R+ 3000 log1.5 nλ) dη

≤ 50t · (R+ 3000 log1.5 nλ)

= O
(√

log nλ ·R+ log2 nλ

)
.

Combining the bounds above gives the result.

Sampling from p̄R(·): Sampling from p̄R(·) amounts to sampling from a mixture of the uniform distribution on
[−10

√
log(nλ),+10

√
log(nλ)] and from the tail of the Gaussian distribution: with probability 25 max(R,3000 log1.5 nλ)

sτ̄R
·

20
√

log(nλ) sample from the uniform distribution and with remaining probability sample from the tail of the Gaussian.
Sampling from the tail of the Gaussian can be easily accomplished via rejection sampling at unit expected cost. Indeed, we
only need to generate a sample from the tail with probability proportional to the mass of the tail. On the other hand, once
we do, the expected cost of obtaining a sample via rejection sampling is inversely proportional to the amount of mass in
the tail, leading to unit cost in expectation.


