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1. Introduction

A persistent data structure is one in which a change to the structure can be made
without destroying the old version, so that all versions of the structure persist and
can at least be accessed (the structure is said to be partially persistent) or even
modified (the structure is said to be fully persistent). In the functional program-
ming literature, fully persistent structures are often called immutable. Purely
functional1 programming, without side effects, has the property that every
structure created is automatically fully-persistent. Persistent data structures arise
not only in functional programming but also in text, program, and file editing and
maintenance; computational geometry; and other algorithmic application areas.2

A number of papers have discussed ways of making specific data structures,
such as search trees, persistent. A smaller number have proposed methods for
adding persistence to general data structures without incurring the huge time and
space costs of the obvious method, which is to copy the entire structure whenever
a change is made. In particular, Driscoll et al. [1989] described how to make
pointer-based structures persistent using a technique called node-splitting, which
is related to fractional cascading [Chazelle and Guibas 1986] in a way that is not
yet fully understood. Dietz [1995] described a method for making array-based
structures persistent. Additional references on persistence can be found in
Driscoll et al. [1989] and Dietz [1995].

These general techniques fail to work on data structures that can be combined
with each other rather than just be changed locally. Driscoll et al. [1994] coined
the term “confluently persistent” to refer to a persistent structure in which some
update operations can combine two different versions. Perhaps the simplest and
probably the most important example of combining data structures is catenation
(appending) of lists. Confluently persistent lists with catenation are surprisingly
powerful. For example, by using self-catenation, one can build a list of exponen-
tial size in linear time.

This paper deals with the problem of making persistent list catenation
efficient. We consider the following operations for manipulating lists:

makelist( x): return a new list consisting of the singleton element x.
push( x, L): return the list that is formed by adding element x to the front of list

L.
pop(L): return the pair consisting of the first element of list L and the list

consisting of the second through last elements of L.
inject( x, L): return the list that is formed by adding element x to the back of list

L.

1 For the purposes of this paper, a “purely functional” data structure is one built using only the LISP
functions car, cons, cdr. Though we do not state our constructions explicitly in terms of these
functions, it is routine to verify that our structures are purely functional. Our definition of purely
functional is extremely strict; we do not, for example, allow techniques such as memoization. This
contrasts our work with, for example, that of Okasaki [1995a; 1995b; 1997; 1998]. For more discussion
of this issue, see Sections 2 and 7.
2 See, for example, Chazelle [1985], Cole [1986], Dietz [1995], Dobkin and Munro [1985], Driscoll et
al. [1989; 1994], Felleisen [1988], Felleisen et al. [1988], Johnson and Duggan [1988], Overmars
[1981a; 1981b], Sarnak [1986], Sarnak and Tarjan [1986], and Sitaram and Felleisen [1990].
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eject(L): return the pair consisting of the last element on list L and the list
consisting of the first through next-to-last elements of L.

catenate(K, L): return the list formed by catenating K and L, with K first.

Observe that push and inject are special cases of catenate. It will be convenient
for us to treat them as separate operations, however. In accordance with
convention, we call a list subject only to push and pop (or inject and eject) a stack
and a list subject only to inject and pop (or push and eject) a queue. Adopting the
terminology of Knuth [1973], we call a list subject to all four operations push,
pop, inject, and eject a double-ended queue, abbreviated deque (pronounced
“deck”). In a departure from existing terminology, we call a list subject only to
push, pop, and inject a stack-ended queue, or steque (pronounced “steck”). Knuth
called steques output-restricted deques, but “stack-ended queue” is both easy to
shorten and evokes the idea that a steque combines the functionalities of a stack
and a queue. Steques with catenation are the same as stacks with catenation,
since catenation makes inject (and push, for that matter) redundant. We call a
data structure with constant worst-case time bounds for all operations a real-time
structure.

Our main result is a real-time, purely functional (and hence confluently
persistent) implementation of deques with catenation. Our data structure is both
more efficient and simpler than previously proposed structures [Buchsbaum and
Tarjan 1995; Driscoll et al. 1994]. In addition to being an interesting problem in
its own right, our data structure provides a way to add fast catenation to
list-based programming languages such as scheme, and to implement sophisti-
cated programming constructs based on continuations in functional programming
languages (see Felleisen [1988], Felleisen et al. [1988].) A key ingredient in our
result is an algorithmic technique related to the redundant digital representa-
tions devised to avoid carry propagation in binary counting.

The remainder of this paper consists of six sections. Section 2 surveys previous
work dealing with problems related to that of making lists persistent and adding
catenation as an efficient list operation. Section 3 motivates our approach.
Section 4 describes how to make deques without catenation purely functional,
thereby illustrating our ideas in a simple setting. Section 5 describes how to make
stacks (or steques) with catenation purely functional, illustrating the additional
ideas needed to handle catenation in the comparatively simple setting of stacks.
Section 6 presents our most general result, an implementation of deques with
catenation. This result uses an additional idea needed to handle an underlying
tree-like recursive structure in place of a linear structure. Section 7 mentions
additional related results and open problems.

2. Previous Work

Work related to ours can be found in three branches of computer science: data
structures; functional programming; and, perhaps surprisingly, Turing machine
complexity. We shall describe this work approximately in chronological order and
in some detail, in an attempt to sort out a somewhat tangled history.

Let us put aside catenation for the moment and consider the problem of
making noncatenable lists fully persistent. It is easy to make stacks persistent: we
represent a stack by a pointer to a singly-linked list of its elements, the top
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element on the stack being the first element on the list. To push an element onto
a stack, we create a new node containing the new element and a pointer to the
node containing the previously first element on the stack. To pop a stack, we
retrieve the first element and a pointer to the node containing the previously
second element. This is just the standard LISP representation of a list.

A collection of persistent stacks represented in this way consists of a collection
of trees, with a pointer from each child to its parent. Two stacks with common
suffixes can share one list representing the common suffix. (Having common
suffixes does not guarantee this sharing, however, since two stacks identical in
content can be built by two separate sequences of push and pop operations.
Maximum sharing of suffixes can be achieved by using a “hashed consing”
technique in which a new node is created only if it corresponds to a distinct new
stack. See Allen [1978] and Spitzer et al. [1978].)

Making a queue, steque, or deque persistent is not so simple. One approach,
which has the advantage of giving a purely functional solution, is to represent
such a data structure by a fixed number of stacks so that each operation becomes
a fixed number of stack operations. That is, we seek a real-time simulation of a
queue, steque, or deque by a fixed number of stacks. The problem of giving a
real-time simulation of a deque by a fixed number of stacks is closely related to
an old problem in Turing machine complexity, that of giving a real-time
simulation of a (one-dimensional) multihead tape unit by a fixed number of
(one-dimensional) one-head tape units. The two problems can be reduced to one
another by noting that a deque can be simulated by a two-head tape unit, and a
one-head tape unit can be simulated by two stacks; thus, the deque problem can
be reduced to the tape problem. Conversely, a k-head tape unit can be simulated
by k 2 1 deques and two stacks, and a stack can be simulated by a one-head
tape; thus, the tape problem can be reduced to the deque problem. There are
two gaps in these reductions. The first is that a deque element can potentially be
chosen from an infinite universe, whereas the universe of tape symbols is always
finite. This allows the possibility of solving the tape problem using some clever
symbol encoding that might not be applicable to the deque problem. But none of
the known solutions to the tape problem exploits this possibility; they all give
solutions to the deque problem by the reduction above. The second gap is that
the reductions do not necessarily minimize the numbers of stacks or one-head
tapes in the simulation; if this is the goal, the deque or tape problem must be
addressed directly.

The first step toward solving the tape simulation problem was taken by Stoss
[1970], who produced a linear-time simulation of a multihead tape by a fixed
number of one-head tapes. Shortly thereafter, Fisher et al. [1972] gave a
real-time simulation of a multihead tape by a fixed number of one-head tapes.
The latter simulation uses a tape-folding technique not directly related to the
method of Stoss. Later, Leong and Seiferas [1981] gave a real-time, multihead-
tape simulation using fewer tapes by cleverly augmenting Stoss’s idea. Their
approach also works for multidimensional tapes, which is apparently not true of
the tape-folding idea.

Because of the reduction described above, the deque simulation problem had
already been solved (by two different methods!) by the time work on the problem
began appearing in the data structure and functional programming literature.
Nevertheless, the latter work is important because it deals with the deque
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simulation problem directly, which leads to a more efficient and conceptually
simpler solution. Although there are several works3 dealing with the deque
simulation problem, they all describe essentially the same solution. This solution
is based on two key ideas, which mimic the ideas of Stoss and Leong and
Seiferas.

The first idea is that a deque can be represented by a pair of stacks, one
representing the front part of the deque and the other representing the rear part.
When one stack becomes empty because of too many pop or eject operations, the
deque, now all on one stack, is copied into two stacks each containing half of the
deque elements. This fifty-fifty split guarantees that such copying, even though
expensive, happens infrequently. A simple amortization argument using a poten-
tial function equal to the absolute value of the difference in stack sizes shows
that this gives a linear-time simulation of a deque by a constant number of stacks:
k deque operations starting from an empty deque are simulated by O(k) stack
operations. (See Tarjan [1985] for a discussion of amortization and potential
functions.) This simple idea is the essence of Stoss’s tape simulation. The idea of
representing a queue by two stacks in this way appears in Burton [1982], Gries
[1981], and Hood and Melville [1981]; this representation of a deque appears in
Gajewska and Tarjan [1986], Hood [1982], Hoogerwood [1992], and Sarnak
[1986].

The second idea is to use incremental copying to convert this linear-time
simulation into a real-time simulation: as soon as the two stacks become
sufficiently unbalanced, recopying to create two balanced stacks begins. Because
the recopying must proceed concurrently with deque operations, which among
other things causes the size of the deque to be a moving target, the details of this
simulation are a little complicated. Hood and Melville [1981] first spelled out the
details of this method for the case of a queue; Hood’s thesis [Hood 1982]
describes the simulation for a deque. See also Gajewska and Tarjan [1986] and
Sarnak [1986]. Chuang and Goldberg [1993] give a particularly nice description
of the deque simulation. Okasaki [1995] gives a variation of this simulation that
uses “memoization” to avoid some of the explicit stack-to-stack copying; his
solution gives persistence but is not purely functional since memoization is a side
effect.

A completely different way to make a deque persistent is to apply the general
mechanism of Driscoll et al. [1989], but this solution, too, is not purely
functional, and the constant time bound per deque operation is amortized, not
worst-case.

Once catenation is added as an operation, the problem of making stacks or
deques persistent becomes much harder; all the methods mentioned above fail.
Kosaraju has obtained a couple of intriguing results that deserve mention,
although they do not solve the problem we consider here. First, Kosaraju [1979]
gave a real-time simulation of catenable deques by noncatenable deques. Unfor-
tunately, this solution does not support confluent persistence; in particular,
Kosaraju explicitly disallows self-catenation. His solution is also real-time only
for a fixed number of deques; the time per deque operation increases at least

3 See, for example, Burton [1982], Chuang and Goldberg [1993], Gajewska and Tarjan [1986], Gries
[1981], Hood [1982], Hood and Melville [1981], Hoogerwood [1992], Okasaki [1995], and Sarnak
[1986].
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linearly with the number of deques. Second, Kosaraju [1994], gave a real-time,
random-access implementation of catenable deques with the “find minimum”
operation, a problem discussed in Section 7. This solution is real-time for a
variable number of deques, but it does not support confluent persistence. Indeed,
Kosaraju [1994] states, “These ideas might be helpful in making mindeques
confluently persistent.”

There are, however, some previous solutions to the problem of making
catenable deques fully persistent. A straightforward use of balanced trees gives a
representation of persistent catenable deques in which an operation on a deque
or deques of total size n takes O(log n) time. Driscoll et al. [1994] combined a
tree representation with several additional ideas to obtain an implementation of
persistent catenable stacks in which the kth operation takes O(log log k) time.
Buchsbaum and Tarjan [1995] used a recursive decomposition of trees to obtain
two implementations of persistent catenable deques. The first has a time bound
of 2O(log* k) and the second a time bound of O(log* k) for the kth operation,
where log* k is the iterated logarithm, defined by log(1) k 5 log2 k, log(i) k 5 log
log(i21) k for i . 1, and log* k 5 min{i ulog(i) k a2 1}. This work motivated
ours.

3. Recursive Slow-Down

In this section, we describe the key insight that led to our result. Although this
insight is not explicit in our ultimate construction and is not needed to
understand it, the idea may be helpful in making progress on other problems,
and for that reason we offer it here.

The spark for our work was an observation concerning the recurrence that
gives the time bounds for the Buchsbaum–Tarjan data structures. This recur-
rence has the following form:

T~n! 5 O~1! 1 cT~log n! ,

where c is a constant. An operation on a structure of size n takes a constant
amount of time plus a fixed number of operations on recursive substructures of
size log n. In the first version of the Buchsbaum–Tarjan structure, c is a fixed
constant greater than one, and the recurrence gives the time bound T(n) 5
2O(log* n). In the second version of the structure, c equals one, and the
recurrence gives the time bound T(n) 5 O(log* n).

But suppose that we could design a structure in which the constant c were less
than one. Then the recurrence would give the bound T(n) 5 O(1). Indeed, the
recurrence T(n) 5 O(1) 1 cT(n 2 1) gives the bound T(n) 5 O(1) for any
constant c , 1, such as c 5 1/ 2. (Frederickson [1993] used a similar observation
to improve the time bound for selection in a min-heap from O(k2log* k) to
O(k).) Thus, we can obtain an O(1) time bound for operations on a data
structure if each operation requires O(1) time plus half an operation on a
smaller recursive substructure. We can achieve the same effect if our data
structure requires only one operation on a recursive substructure for every two
operations on the top-level structure. We call this idea recursive slow-down.

The main new feature in our data structure is the mechanism for implementing
recursive slow-down. Stated abstractly, the basic problem is to allocate work
cycles to the levels of a linear recursion so that the top level gets half the cycles,
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the second level gets one quarter of the cycles, the third level gets one eighth of
the cycles, and so on. This is exactly what happens in binary counting. Specifically,
if we begin with zero and repeatedly add one in binary, each addition of one
causes a unique bit position to change from zero to one. In every second
addition, this position is the one’s bit, in every fourth addition it is the two’s bit,
in every eighth addition it is the four’s bit, and so on.

Of course, in binary counting, each addition of one can change many bits to
zero. To obtain real-time performance, this additional work must be avoided.
One can do this by using a redundant digital representation, in which numbers
have more than one representation and a single-digit change is all that is needed
to add one. Clancy and Knuth [1997] used this idea in an implementation of
finger search trees. Descriptions of such redundant representations as well as
other applications can be found in Brodal [1996], Clancy and Knuth [1997], and
Kaplan and Tarjan [1996]. The Clancy–Knuth method represents numbers in
base two but using three digits, 0, 1, and 2. A redundant binary representation
(RBR) of a nonnegative number x is a sequence of digits dn, dn21, . . . , d0 with
di [ {0, 1, 2} and x 5 ( i50

n di2
i. Such a representation is in general not

unique. We call an RBR regular if for every j such that dj 5 2 there exists an i ,
j such that di 5 0 and dk 5 1 for i , k , j. In other words, while scanning the
digits from most significant to least significant, after finding a 2 we must find a 0
before finding another 2 or running out of digits. This implies in particular that
d0 Þ 2.

To add 1 to a number x represented by a regular RBR, we first add 1 to d0.
The result is an RBR for x 1 1, but which may not be regular. We restore
regularity by finding the least significant digit di which is not 1, and if di 5 2
setting di 5 0 and di11 5 di11 1 1. (If di 5 0, we do nothing; the RBR is
already regular.)

It is straightforward to show that this method correctly adds 1, and it does so
while changing only a constant number of digits, thus avoiding explicit carry
propagation.

Our work allocation mechanism for lists uses a three-state system, correspond-
ing to the three digits (0, 1, 2) of the Clancy–Knuth number representation.
Instead of digits, we use colors. Each level of the recursive data structure is
green, yellow, or red, with the color based on the state of the structure at that
level. A red structure is bad but can be converted to a green structure at the cost
of degrading the structure one level deeper, from green to yellow or from yellow
to red. We maintain the invariant on the levels that any two red levels are
separated by at least one green level, ignoring intervening yellow levels. The
green-yellow-red mechanism applied to an underlying linear structure suffices to
add constant-time catenation to stacks. To handle deques, we must extend the
mechanism to apply to an underlying tree structure. This involves adding another
color, orange. Whereas the green-yellow-red system is a very close analogue of
the Clancy–Knuth number representation, the extended system is more distantly
related. We postpone a discussion of this extension to Section 6, where it is used.

4. Deques without Catenation

In this section, we present a real-time, purely functional implementation of
deques without catenation. This example illustrates our ideas in a simple setting,
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and provides an alternative to the implementation based on a pair of incremen-
tally copied stacks, which was described in Section 2. In Section 5, we modify the
structure to support stacks with catenation. (We add catenate as an operation but
remove eject.) Finally, in Section 6, we modify the structure to support all the
catenable deque operations. This last step involves extending the work allocation
mechanism as mentioned at the end of Section 3. Recall that the operations
possible on a deque d are push( x, d), pop(d), inject( x, d), and eject(d). Here
and in subsequent sections we say that a data structure is over a set A if it stores
elements from A.

4.1. REPRESENTATION. We represent a deque by a recursive structure that is
built from bounded-size deques called buffers. Each buffer can hold up to five
elements. Buffers are of two kinds: prefixes and suffixes. A nonempty deque d
over a set A is represented by an ordered triple consisting of a prefix prefix(d) of
elements of A, a child deque child(d) whose elements are ordered pairs of
elements of A, and a suffix suffix(d) of elements of A. The order of elements
within d is the one consistent with the orders of all of its component parts. The
child deque child(d), if non-empty, is represented in the same way. Thus
the structure is recursive and unwinds linearly. We define the descendants
{childi(d)} of deque d in the standard way, namely child0(d) 5 d and
childi11(d) 5 child(childi(d)) for i $ 0 if childi(d) is nonempty.

Observe that the elements of d are just elements of A, the elements of child(d)
are pairs of elements of A, the elements of child(child(d)) are pairs of pairs of
elements of A, and so on. One can think of each element of childi(d) as being a
complete binary tree of depth4 i, with elements of A at its 2 i leaves. One can also
think of the entire structure representing d as a stack (of d and its descendants),
each element of which is prefix-suffix pair. All the elements of d are stored in the
prefixes and suffixes at the various levels of this structure, grouped into binary
trees of the appropriate depths: level i contains the prefix and suffix of childi(d).
See Figure 1.

4 The depth of a complete binary tree is the number of edges on a root-to-leaf path.

FIG. 1. Representation of a deque. Square brackets denote the deque and its descendant deques;
parentheses denote buffers. Curly brackets denote expansion of a deque into its component parts.
Numbers denote levels of deques. Triangles at level three denote pairs of pairs of pairs (equivalently,
complete binary trees of depth three).
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Because of the pairing, we can bring two elements up to level i by doing one
pop or eject at level i 1 1. Similarly, we can move two elements down from level
i by doing one push or inject at level i 1 1. This two-for-one payoff gives the
recursive slow-down that leads to real-time performance.

To obtain this real-time performance, we must guarantee that each top-level
deque operation requires changes to only a constant number of levels in the
recursive structure. For this reason we impose a regularity constraint on the
structure. We assign each buffer, and each deque, a color, either green, yellow, or
red. A buffer is green if it has two or three elements, yellow if one or four, and red
if zero or five. Observe that we can add one element to or delete one element
from a green or yellow buffer without violating its size constraint: a green buffer
stays green or becomes yellow, a yellow buffer becomes green or red.

We order the colors red , yellow , green; red is bad, green is good. A
“higher” buffer color indicates that more insertions or deletions on the buffer are
possible before its size is outside the allowed range. We define the color of a
nonempty deque to be the minimum of the colors of its prefix and suffix, unless
its child and one of its buffers are empty, in which case the color of the deque is
the color of its nonempty buffer.

Our regularity constraint on a deque d is a constraint on the colors of the
sequence of descendant deques d, child(d), child2(d), . . . We call d semiregular
if between any two red deques in this sequence there is a green deque, ignoring
intervening yellows. More formally, d is semiregular if, for any two red deques
childi(d) and childj(d) with i , j, there is a k such that i , k , j and childk(d)
is green. We call d regular if d is semiregular and if, in addition, the first
non-yellow deque (if any) in the sequence is green. Observe that if d is regular or
semi-regular, then child(d), and indeed childi(d) for i . 0, is semiregular.
Furthermore, if d is semiregular and red, then child(d) is regular.

Our strategy for obtaining real-time performance is to maintain the constraint
that any top-level deque is regular, except possibly in the middle of a deque
operation, when the deque can temporarily become semiregular. A regular deque
has a top level that is green or yellow, which means that any deque operation can
be performed by operating on the appropriate top-level buffer. This may change
the top level from green to yellow or from yellow to red. In either of these cases,
the deque may no longer be regular but only semiregular; it will be semiregular if
the topmost non-yellow descendant deque is now red. We restore regularity by
changing such a red deque to green, in the process possibly changing its own
child deque from green to yellow or from yellow to red or green. Observe that
such color changes, if we can effect them, restore regularity. This process
corresponds to addition of 1 in the redundant binary numbering system discussed
in Section 3.

In the process of changing a red deque to green, we will not change the
elements it contains or their order; we merely move elements between its buffers
and the buffers of its child. Thus, after making such a change, we can obtain a
top-level regular deque merely by restoring the levels on top of the changed
deque.

The topmost red deque may be arbitrarily deep in the recursive structure, since
it can be separated from the top level by many yellow deques. To achieve
real-time performance, we need constant-time access to the topmost red deque.
For this reason, we do not represent a deque in the obvious way, as a stack of
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prefix–suffix pairs. Instead, we break this stack up into substacks. There is one
substack for the top-level deque and one for each non-yellow descendant deque
not at the top level. Each substack consists of a top-level or non-yellow deque
and all consecutive yellow proper descendant deques. We represent the entire
deque by a stack of substacks of prefix–suffix pairs using this partition into
substacks. An equivalent pointer-based representation is to use a node with four
pointers for each nonempty descendant deque d. Two of the pointers are to the
prefix and suffix at the corresponding level. One pointer is to the node for the
child deque if this deque is nonempty and yellow. One pointer is to the node for
the nearest non-yellow proper descendant deque, if such a deque exists and d
itself is non-yellow or top-level. See Figure 2.

A single deque operation will require access to at most the top three substacks,
and to at most the top two elements in any such substack. The color changes
caused by a deque operation produce only minor changes to the stack partition
into substacks, changes that can be made in constant time. In particular,
changing the color of the top-level deque does not affect the partition into
substacks. Changing the topmost red deque to green and its child from yellow to
non-yellow splits one substack into its first element, now a new substack, and the
rest. This is just a substack pop operation. Changing the topmost red deque to
green and its child from green to yellow merges a singleton substack with the
substack under it. This is just a substack push operation.

4.2. DEQUE OPERATIONS. All that remains is to describe the details of the
buffer manipulations and verify that they produce the claimed color changes. To

FIG. 2. Pointer representation of stack of substacks structure. Horizontal lines denote buffers.
Letters indicate deque colors. Left pointers link elements within substacks; right pointers link tops of
substacks. Null pointers are denoted by À.
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perform a push or pop, we push or pop the appropriate element onto or off the
top-level prefix, unless this prefix and the child deque are empty, in which case
we do the same to the top-level suffix. Inject and eject are symmetric. Because
the original deque is regular, the top level is originally green or yellow, and any
such operation can be performed without overflowing or underflowing the buffer
(unless we try to pop or eject from an already empty deque). The top level may
change from green to yellow, or from yellow to red, which may make the new
deque semiregular.

We restore a semiregular deque (that is not regular) to regular as follows: Let
i be the topmost red level; let Pi, Pi11, Si11, Si be the ith and i 1 1st-level
prefixes and the i 1 1st and ith level suffixes, respectively. Viewing elements
from the perspective of level i, we call the elements of Pi11 and Si11 pairs, since
each is a pair of level-i elements. Note that if either Pi11 or Si11 is empty, then
so is the deque at level i 1 2, since level i 1 1 cannot be red. Apply the
appropriate one of the following three cases:

Two-Buffer Case: uPi11u 1 uSi11u $ 2. If Pi11 is empty, pop a pair from Si11
and inject it into Pi11. If Si11 is empty, eject a pair from Pi11 and push it onto
Si11. If uPiu $ 4, eject two elements from Pi, pair them, and push the pair onto
Pi11. If uSiu $ 4, pop two elements from Si, pair them, and inject the pair into
Si11. If uPiu # 1, pop a pair from Pi11 and inject its two elements individually
into Pi. If uSiu # 1, eject a pair from Si11 and push its two elements onto Si. If
level i 1 1 is the bottommost level and Pi11 and Si11 are both now empty,
eliminate level i 1 1.

One-Buffer Case: uPi11u 1 uSi11u # 1, and uPiu $ 2 or uSiu $ 2. If level i is the
bottommost level, create a new, empty level i 1 1. If uSi11u 5 1, pop the pair
from Si11 and inject it into Pi11. If uPiu $ 4, eject two elements from Pi, pair
them, and push the pair onto Pi11. If uSiu $ 4, pop two elements from Si, pair
them, and inject the pair into Pi11. If uPiu # 1, pop a pair from Pi11 and inject
its two elements into Pi. If uSiu # 1, eject a pair from Pi11 and push its two
elements onto Si. If Pi11 is now empty, eliminate level i 1 1.

No-Buffer Case: uPi11u 1 uSi11u # 1, uPiu # 1, and uSiu # 1. Among them, Pi,
Pi11, Si11, and Si contain 2 or 3 level-i elements, two of which are paired in
Pi11 or Si11. Move all these elements to Pi. Eliminate level i 1 1 if it exists.

NOTE: Even though each deque operation is only on one end of the deque, the
regularization procedure operates on both ends of the descendant deques
concurrently.

THEOREM 4.1. Given a regular deque, the method described above will perform
a push, pop, inject, or eject operation in O(1) time, resulting in a regular deque.

PROOF. The only nontrivial part of the proof is to verify that the regulariza-
tion procedure is correct; it is then straightforward to verify that each deque
operation is performed correctly and that the time bound is O(1), given the
stack-of-substacks representation.

If the two-buffer case occurs, both Pi11 and Si11 are nonempty and level i 1
1 is green or yellow after the first two steps. (Level i 1 1 starts green or yellow
by semiregularity, and making both Pi11 and Si11 nonempty cannot make level
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i 1 1 red.) The remaining steps make level i green and change the sizes of Pi11
and Si11 by at most one each. The only situation in which level i 1 1 can begin
green and end red is when uPi11u 5 2 and uSi11u 5 0 or vice-versa initially and
uPi11u 5 uSi11u 5 0 finally. But, in this case, level i 1 1 must be the bottommost
level, and it is eliminated at the end of the case. Thus, this case makes the color
changes needed to restore regularity.

If the one-buffer case occurs, then since level i 1 1 cannot initially be red, it
or level i must be the bottommost level. This case makes level i green and makes
level i 1 1 green, yellow, or empty, in which case it is eliminated. Thus, this case,
also, makes the color changes needed to restore regularity.

If the no-buffer case occurs, Pi11 or Si11 must contain a pair, because
otherwise level i 1 1 will be empty, hence nonexistent, and level i will be yellow
if nonempty, which contradicts the fact that level i is the topmost red level. Also
at most one of Pi and Si can contain an element. It follows that this case, too,
restores regularity. e

The data structure described above can be simplified if only a subset of the
four operations push, pop, inject, eject is allowed. For example, if push is not
allowed, then prefixes can be restricted to be of size 0 to 3, with 0 being red, 1
yellow, and 2 or 3 green. Similarly, if eject is not allowed, then suffixes can be
restricted to be of size 0 to 3, with 0 or 1 being green, 2 yellow, and 3 red. Thus,
we can represent a queue (inject and pop only) with all buffers of size at most 3.
Alternatively, we can represent a steque by a pair consisting of a stack and a
queue. All pushes are onto the stack and all injects into the queue. A pop is from
the stack unless the stack is empty, in which case it is from the queue.

5. Real-Time Catenation

Our next goal is a deque structure that supports fast catenation. Since catenable
steques (deques without eject) are easier to implement than catenable deques,
we discuss catenable steques here, and delay our discussion of a structure that
supports the full set of operations to Section 6. Throughout the rest of the paper,
we refer to a catenable steque simply as a steque.

5.1. REPRESENTATION. Our representation of steques is like the structure of
Section 4, with two major differences in the component parts. As in Section 4, we
use buffers of two different kinds, prefixes and suffixes. Unlike Section 4, each
buffer is a noncatenable steque with no upper bound on its size. Such a steque
can be implemented using either the method of Section 4 or the stack-reversing
method sketched in Section 2. As a possible efficiency enhancement, we can
store with each buffer its size, although this is not in fact necessary to obtain
constant-time operations. We require each prefix to contain at least two elements.
There is no lower bound on the size of a suffix, and indeed a suffix can be empty.

The second difference is in the components of the pairs stored in the child
steque. We define a pair over a set A recursively as follows: a pair over A consists
of a prefix of elements of A and a possibly empty steque of pairs over A. We
represent a nonempty steque s over A either as a suffix suffix(s) of elements of
A, or as a triple consisting of a prefix prefix(s) of elements A, a child steque
child(s) of pairs over A, and a suffix suffix(s) of elements of A. The child steque,
if nonempty, is represented in the same way, as is each nonempty steque in one
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of the pairs in child(s). The order of elements within a steque is the one
consistent with the order in each of the component paths. See Figure 3.

This structure is doubly recursive; each steque in the structure is either a
top-level steque, the child of another steque, or the second component of a pair
that is stored in another steque. We define the level of a steque in this structure
as follows: A top-level steque has level 0. A steque has level i 1 1 if it is the
child of a level-i steque or it is in a pair that is stored in a level-(i 1 1) steque.
Observe that every level-i steque has the same type of elements. Namely, the
elements of level-0 steques are elements of A, the elements of level-1 steques are
pairs over A, the elements of level-2 steques are pairs over pairs over A, and so
on. Steques to be catenated need to have the same level; otherwise, their
elements have different types.

Because of the extra kind of recursion as compared to the structure of Section
4, there is not just one sequence of descendent steques, but many: the top-level
steque, and each steque stored in a pair in the structure, begins such a sequence,
consisting of a steque s, its child, its grandchild, and so on. Among these
descendants, the only one that can be represented by a suffix only (instead of a
prefix, child, suffix triple) is the last one.

We may order the steque operations in terms of their implementation com-
plexity as follows: push or inject is simplest, catenate next-simplest, and pop
most-complicated. Each push or inject is a simple operation on a single buffer,
because buffers can grow arbitrarily large, which means that overflow is not a
problem. We can perform a catenate operation as just a few push or inject
operations, because of the extra kind of recursion. A pop is the most complicated
operation. It can require a catenate, and it may also threaten buffer underflow,
which we prevent by a mechanism like that used in Section 4.

Each prefix has a color, red if the prefix contains two elements, yellow if three,
and green if four or more. Each nonempty steque in the structure also has a
color, which is the color of its prefix if it has one, and otherwise green. We call a

FIG. 3. Partial expansion of the representation of a steque. Square brackets denote catenable
steques; horizontal lines denote buffers. Curly brackets denote expansion of a steque into its
component parts. Arrows denote membership. Circles denote elements of the base set. Numbers
denote levels of steques.
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steque s semiregular if, between any pair of red steques in a descendent sequence
within s, there is a green steque, ignoring intervening yellows. We call a steque s
regular if it is semiregular and if, in addition, the first non-yellow steque in the
sequence s, child1(s), child2(s), . . . , if any, is green. As in Section 4, we
maintain the invariant that any top-level steque is regular, except possibly in the
middle of a steque operation, when it may be temporarily semiregular. Observe
that if s is regular, then child(s) is semiregular, and that if s is semiregular, a
steque having a green prefix and s as its child steque is regular.

Our representation of steques corresponds to that in Section 4. Namely, we
represent each descendent sequence as a stack of substacks by breaking the
descendent sequence into subsequences, each beginning with the first steque or a
non-yellow steque and containing all consecutively following yellow steques.
Each element of a substack is a pair consisting of the prefix and suffix of the
corresponding steque (with a null indicator for a nonexistent prefix). Each
element of a prefix or suffix is an element of the base set if the prefix or suffix is
at level 0, or a pair of the appropriate type if the prefix or suffix is deeper in the
structure. See Figure 4.

5.2. STEQUE OPERATIONS. As noted above, push and inject operations are the
simplest steque operations to implement: each changes only a single buffer,
increasing it in size by one. Specifically, to inject an element x into a steque s, we
inject x into suffix(s). To push an element x onto a steque s, we push x onto
prefix(s) unless s has no prefix, in which case we push x onto suffix(s). A push
may change the color of the top-level steque from red to yellow or from yellow to
green, but this only helps the regularity constraint and it does not change the
substack decomposition.

FIG. 4. Pointer representation of the substack decomposition of part of the partially expanded
steque in Figure 3. The sequences of descendants are shown. Letters denote steque colors. Left
pointers link the elements within substacks; right pointers link the tops of substacks. Null pointers are
denoted by À.
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A catenate operation is somewhat more complicated but consists of only a few
push and inject operations. Specifically, to form the catenation s3 of two steques
s1 and s2, we apply the appropriate one of the following three cases:

Case 1. s1 is a triple. If suffix(s1) contains at least two elements, inject the
pair (suffix(s1), À) into child(s1). (This converts suffix(s1) into a prefix.)
Otherwise, if suffix(s1) contains one element, push this element onto s2. If s2 is a
triple, inject the pair (prefix(s2), child(s2)) into child(s1). Let s3 be the triple
(prefix(s1), child(s1), suffix(s2)).

Case 2. s1 is a suffix only and s2 is a triple. If usuffix(s1) u $ 4, push the pair
(prefix(s2), À) onto child(s2) and let the result s3 be the triple (suffix(s1),
child(s2), suffix(s2)). (This makes suffix(s1) into a green prefix.) Otherwise, pop
the at most three elements on suffix(s1), push them in the opposite order onto
prefix(s2), and let s3 be (prefix(s2), child(s2), suffix(s2)).

Case 3. Both s1 and s2 are suffixes only. If usuffix(s1) u $ 4, let s3 be
(suffix(s1), À, suffix(s2)). (This makes suffix(s1) into a green prefix.) Otherwise,
pop the at most three elements on suffix(s1), push them in the opposite order
onto suffix(s2), and let s3 be suffix(s2).

LEMMA 5.1. If s1 and s2 are semiregular, then s3 is semiregular. If in addition s1
is regular, then s3 is regular.

PROOF. In Case 3, the only steque in s3 is the top-level one, which is green.
Thus, s3 is regular. In Case 2, the push onto child(s2), if it happens, preserves the
semiregularity of child(s2), and the prefix of the result steque s3 is green. Thus,
s3 is regular. In Case 1, both child(s1) and child(s2) are semiregular. The
injections into child(s1) preserve its semiregularity. Steque s1 has the same prefix
as s1 and the same child steque as s1, save possibly for one or two injects. Thus,
s3 is semiregular if s1 is, and is regular if s1 is. e

A pop is the most complicated steque operation. To pop a steque that is a
suffix only, we merely pop the suffix. To pop a steque that is a triple, we pop the
prefix. This may result in a steque that is no longer regular, but only semiregular.
We restore regularity by modifying the nearest red descendant steque, say s1, of
the top-level steque, as follows: If child(s1) is empty, pop the two elements on
prefix(s1), push them in the opposite order onto suffix(s1), and represent s1 by its
suffix only. Otherwise, pop a pair, say ( p, s2) from child(s1), pop the two
elements on prefix(s1) and push them in the opposite order onto p, catenate s2
and child(s1) to form s3, and replace s1 by the triple ( p, s3, suffix(s1)).

LEMMA 5.2. The restoration method described above converts a semiregular
steque s to regular. Thus, the implementation of pop is correct.

PROOF. Let s1 be the nearest red descendant steque of s. If child(s1) is
empty, s1 is replaced by a green steque with no child, and the result is a regular
steque. Suppose child(s1) is nonempty. Then, child(s1) before the pop is regular,
because it is semiregular since s1 is semiregular and since s1 is red the nearest
non-yellow descendant of child(s1) must be green. Hence, child(s1) is at least
semi-regular after a pop. The triple ( p, s3, suffix(s1)) replacing s1 has p green
and s3 semiregular, which means it is regular. e
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THEOREM 5.1. A push, pop, or inject on a regular steque takes O(1) time and
results in a regular steque. A catenation of two regular steques takes O(1) time and
results in a regular steque.

PROOF. The O(1) time bound per steque operation is obvious if the stack of
substacks representation is used. Regularity is obvious for push and inject, is true
for catenate by Lemma 5.1, and for pop by Lemma 5.2. e

For an alternative way to build real-time catenable steques using noncatenable
stacks as buffers, see Kaplan [1996].

6. Catenable Deques

Finally, we extend the ideas presented in the previous two sections to obtain a
data structure that supports the full set of deque operations, namely push, pop,
inject, eject, and catenate, each in O(1) time. We omit certain definitions that are
obvious extensions of those in previous sections.

A common feature of the two data structures presented so far is an underlying
linear skeleton (the sequence of descendants). Our structure for catenable
deques replaces this linear skeleton by a binary-tree skeleton. This seems to be
required to efficiently handle both pop and eject. The branching skeleton in turn
requires a change in the work-allocation mechanism, which must funnel compu-
tation cycles to all branches of the tree. We add one color, orange, to the color
scheme, and replace the two-beat rhythm of the green-yellow-red mechanism by
a three-beat rhythm. We obtain an O(1) time bound per deque operation
essentially because 2/3 , 1; the “2” corresponds to the branching factor of the
tree structure, and the “3” corresponds to the rhythm of the work cycle. The
connection to redundant numbering systems is much looser than for the green-
yellow-red scheme used in Sections 4 and 5. Nevertheless, we are able to show
directly that the extended mechanism solves our problem.

6.1. REPRESENTATION. Our representation of deques uses two kinds of buff-
ers: prefixes and suffixes. Each buffer is a noncatenable deque. We can implement
the buffers either as described in Section 4 or by using the incremental
stack-reversing method outlined in Section 2. Henceforth, by “deque” we mean a
catenable deque unless we explicitly state otherwise. As in Section 5, we can
optionally store with each buffer its size, which may provide a constant-factor
speedup.

We define a triple over a set A recursively as a prefix of elements of A, a
possibly empty deque of triples over A, and a suffix of elements of A. Each triple
in the deque we call a stored triple. We represent a nonempty deque d over A
either by one triple over A, called an only triple, or by an ordered pair of triples
over A, the left triple and the right triple. The deques within each triple are
represented recursively in the same way. The order of elements within a deque is
the one consistent with the order in each of the component parts.

We define a parent– child relation on the triples as follows: If t 5 (prefix,
deque, suffix) is a triple with deque Þ À, the children of t are the one or two
triples that make up deque. We define ancestors and descendants in the standard
way. Under this relation, the triples group into trees, each of whose nodes is
unary or binary. Each top-level triple and each stored triple is the root of such a
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tree, and a deque is represented by the one or two such trees rooted at the
top-level triples. See Figure 5.

There are four different kinds of triples: stored triples, only triples, left triples,
and right triples. We impose size constraints on the buffers of a triple depending
upon what kind it is. If t 5 ( p, d, s) is a stored triple, we require that both p and
s contain at least three elements unless d and one of the buffers is empty, in
which case the other buffer must contain at least three elements. If t is an only
triple, we require that both p and s contain at least five elements, unless d and
one of the buffers is empty, in which case the other buffer can contain any
nonzero number of elements. If t is a left triple, we require that p contain at least
five elements and s exactly two. Symmetrically, if t is a right triple, we require
that s contain at least five elements and p exactly two.

We assign colors to the triples based on their types and their buffer sizes, as
follows: Let t 5 ( p, d, s) be a triple. If t is a stored triple or if d 5 À, t is green.
If t is a left triple and d Þ À, t is green if p contains at least eight elements,
yellow if p contains seven, orange if six, and red if five. Symmetrically, if t is a
right triple and d Þ À, t is green if s contains at least eight elements, yellow if
seven, orange if six, and red if five. If t is an only triple with d Þ À, t is green if
both p and s contain at least eight elements, yellow if one contains seven and the
other at least seven, orange if one contains six and the other at least six, and red
if one contains five and the other at least five.

The triples are grouped into trees by the parent– child relation. We partition
these trees into paths as follows: Each yellow or orange triple has a preferred
child, which is its left child or only child if the triple is yellow and its right child
or only child if the triple is orange. The preferred children define preferred
paths, each starting at a triple that is not a preferred child and passing through
successive preferred children until reaching a triple without a preferred child.
Thus, each preferred path consists of a sequence of zero or more yellow or
orange triples followed by a green or red triple. (Every triple with no children is

FIG. 5. Partial expansion of the representation of a catenable deque. Conventions are as in Figure 3,
with two triples comprising a deque separated by a comma.
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green.) We assign each preferred path a color, green or red, according to the
color of its last triple.

We impose a regularity constraint on the structure, like those in Sections 4 and
5 but a little more complicated. We call a deque semiregular if both of the
following conditions hold:

(1) Every preferred path that starts at a child of a red triple is a green path.
(2) Every preferred path that starts at a nonpreferred child of an orange triple is

a green path.

This definition implies that if a deque is semiregular, then all the deques in its
constituent triples are semiregular. We call a deque regular if it is semiregular
and if, in addition, each preferred path that starts at a top-level triple (one of the
one or two representing the entire deque) is a green path. We maintain the
invariant that any top-level deque is regular, except possibly in the middle of a
deque operation, when it may temporarily be only semiregular. Note that an
empty deque is regular.

We need a representation of the trees of triples that allows us to shortcut
preferred paths. To this end, we introduce the notions of an adopted child and its
adoptive parent. Every green or red triple that is on a preferred path of at least
three triples is an adopted child of the first triple on this path, which is its
adoptive parent. That is, there is an adoptive parent–adopted child relationship
between the first and last triples on each preferred path containing at least three
triples.

We define the compressed forest by the parent– child relation on triples, except
that each adopted child is a child of its adoptive parent instead of its natural
parent. In the compressed forest, each triple has at most three children, one of
which may be adopted. We represent a deque by its compressed forest, with a
node for each triple containing the prefix and suffix of the triple and pointers to
the nodes representing its child triples. See Figure 6.

FIG. 6. Top-level trees in the compressed forest representation of a deque. Letters denote triples of
the corresponding colors. Dashed arrows denote adoptive-parent, adoptive-child relationships that
replace the natural parent– child relationships marked by hatched arrows. The complete compressed
forest representation (not shown) would include the buffers of the triples and the lower-level
compressed trees rooted at the stored triples.
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The operations that we describe in the next section rely on the following
property of the compressed forest representation. Given the node of a triple t 5
( p, d, s), we can extract in constant time a pointer to a compressed forest
representation for d when t is a top-level triple, a stored triple, or the color of t
is either red or green.

6.2. DEQUE OPERATIONS. The simplest deque operations are push and inject.
Next is catenate, which may require a push or an inject or both. The most
complicated operations are pop and eject, which can violate regularity and may
force a repair deep in the forest of triples (but shallow in the compressed forest).

We begin by describing push; inject is symmetric. Let d be a deque onto which
we wish to push an element. If d is empty, we create a new triple t to represent
the new deque, with one nonempty buffer containing the pushed element. If d is
nonempty, let t 5 ( p1, d1, s1) be its left triple or its only triple. If p1 is
nonempty, we push the new element onto p1; otherwise, we push the new
element onto s1.

LEMMA 6.1. A push onto a semiregular deque produces a semiregular deque; a
push onto a regular deque produces a regular deque.

PROOF. If the push does not change the color of t, the lemma is immediate. If
the push does change the color of t, it must be from yellow to green, from orange
to yellow, or from red to orange. (Red-to-orange can only happen if the original
deque is semiregular, but not regular.) The yellow-to-green case obviously
preserves both semiregularity and regularity. In the orange-to-yellow case, let u
be the nonpreferred child of t before the push if t has a nonpreferred child. If u
exists, semiregularity implies that the preferred path containing u is a green path.
The push adds t to the front of this path. This means that the push preserves
both semiregularity and regularity. If u does not exist, then the push does not
change any of the preferred paths but only changes t from orange to yellow. In
this case also, the push preserves both semiregularity and regularity. In the
red-to-orange case, before the push every child of t starts a preferred path that is
green, which means that after the push the nonpreferred child of t, if it exists,
starts a preferred path that is green. Thus, the push preserves semiregularity. e

Note that the only effect a push has on the preferred path decomposition is to
add t to or delete t from the front of a preferred path (or both). This means that
the compressed forest can be updated in O(1) time during a push.

Next, we describe catenate. Let d and e be the two deques to be catenated.
Assume both are nonempty; otherwise, the catenate is trivial. To catenate d and
e, we apply the appropriate one of the following four cases:

Case 1. All the buffers in the two, three, or four top-level triples of d and e
are nonempty. The new deque will consist of two triples t and u, with t formed
from the top-level triple or triples of d, and u formed from the top-level triple or
triples of e. There are four subcases in the formation of t.

Subcase 1a. Deque d consists of two triples t1 5 ( p1, d1, s1) and t2 5 ( p2,
d2, s2), with d1 Þ À. Combine s1 and p2 (each containing exactly two elements)
into a single buffer p3. Eject the last two elements from s2 and add them to a
new buffer s3; let s92 be the rest of s2. Inject ( p3, d2, s92) into d1 to form d91. Let
t 5 ( p1, d91, s3).
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Subcase 1b. Deque d consists of two triples t1 5 ( p1, À, s1) and t2 5 ( p2,
d2, s2). Inject the elements in s1 and p2 into p1 to form p91. Replace the
representation of d by the only triple ( p91, d2, s2) and apply Subcase 1c or 1d as
appropriate.

Subcase 1c. Deque d consists of an only triple t1 5 ( p1, d1, s1) with d1 Þ À.
Eject the last two elements from s1 and add them to a new buffer s2. Let the
remainder of s1 be s91. Form a new triple (À, À, s91) and inject it into d1 to form
d91. Let t 5 ( p1, d91, s2).

Subcase 1d. Deque d consists of an only triple t1 5 ( p1, À, s1). If s1
contains at most eight elements, move all but the last two elements of s1 to p1 to
form p91; let the remaining two elements of s1 form s91. Let t 5 ( p91, À, s91).
Otherwise (s1 contains more than eight elements), move the first three elements
on s1 into p1 to form p91, move the last two elements on s1 into a new buffer s2,
and let the remainder of s1 be s91. Push the triple (À, À, s91) onto an empty deque
to form the deque d2. Let t 5 ( p91, d2, s2).

Operate symmetrically on e to form u.

Case 2. Deque d consists of an only triple t1 5 ( p1, d1, s1) with only one
nonempty buffer, and all the buffers in the top-level triple or triples of e are
nonempty. Let t2 5 ( p2, d2, s2) be the left or only triple of e. We combine t1
and t2 to form a new triple t, which is the left or only triple of the new deque; the
right triple of e, if it exists, is the right triple of the new deque. To form t, let p3
be the nonempty one of p1 and s1. If p3 contains less than eight elements, push
all these elements onto p2 to form p92, and let t 5 ( p92, d2, s2). Otherwise, form
a triple ( p2, À, À), push it onto d2 to form d92, and let t 5 ( p3, d92, s2).

Case 3. Deque e consists of an only triple with only one nonempty buffer,
and all the buffers in the top-level triple or triples of d are nonempty. This case
is symmetric to Case 2.

Case 4. Deques d and e each consist of an only triple with a single nonempty
buffer. Let p be the nonempty buffer of d and s the nonempty buffer of e. If
either p or s contains fewer than eight elements, combine them into a single
buffer b and let t 5 (b, À, À). Otherwise, let t 5 ( p, À, s).

LEMMA 6.2. A catenation of two semiregular deques produces a semiregular
deque. A catenation of two regular deques produces a regular deque.

PROOF. Consider Case 1. We shall show that, in each subcase, triple t and its
descendants satisfy the semi-regularity or regularity constraints as appropriate.
The symmetric argument applies to u, which gives the lemma for Case 1.

In Subcase 1d, triple t is green and either has a green child and no
grandchildren or no child at all. In either case, t satisfies the regularity
constraints. Consider Subcase 1c. Deque d91 is formed from a semiregular deque
d1 by an injection and hence is semiregular by Lemma 6.1. The color of triple t 5
( p1, d91, s2) is at least as good as the color of triple t1 5 ( p1, d1, s1), since the
color of t depends only on the size of p1, whereas the color of t1 depends on the
minimum of the sizes of p1 and s1. We must consider several cases, depending on
the color of t1 and on whether we are trying to verify regularity or only
semiregularity. If t1 is green, t and its descendants satisfy the regularity con-
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straints. If t1 is red, the semiregularity of d implies that d1 and hence d91 is
regular, and t and its descendants satisfy the semiregularity constraints. If t1 is
orange and d is regular, then d1 and hence d91 must be regular, and t and its
descendants satisfy the regularity constraints. If t1 is orange and d is only
semiregular, then the nonpreferred child of t1, if it exists, starts a green path.
The corresponding nonpreferred child of t also starts a green path, by an
argument like that in Lemma 6.1. This means that t and its descendants satisfy
the semiregularity constraints. If t1 is yellow, the semiregularity of d91 implies
that t and its descendants satisfy the semiregularity constraints. Finally, if t1 is
yellow and d is regular, then the preferred child of t1 is on a green path, as is the
corresponding child of t, again by an argument like that in Lemma 6.1. Thus, t
and its descendants satisfy the regularity constraints.

Subcase 1b creates a one-triple representation of d that is semiregular if the
original representation is and regular if the original one is. Subcase 1b is then
followed by an application of 1c or 1d as appropriate. In this case, too, triple t
and its descendants satisfy the semiregularity or regularity constraints as appro-
priate.

The last subcase is Subcase 1a. As in Case 1c, the argument depends on the
color of t1 5 ( p1, d1, s1) and whether we are trying to verify regularity or
semiregularity. In this case, t1 and triple t 5 ( p1, d91, s2) have exactly the same
color. Deque d91 is semiregular by Lemma 6.1, since d1 and d2 are semiregular.
The remainder of the argument is exactly as in Subcase 1c.

Consider Case 2. If p3 contains less than eight elements, then t is formed by
doing up to seven pushes onto t2, so t satisfies regularity or semiregularity by
Lemma 6.1. Otherwise, deque d92 is formed from deque d2 by doing a push, and
triple t is either green or has the same color as triple t2. The remainder of the
argument is exactly as in Subcase 1c.

Case 3 is symmetric to Case 2. Case 4 obviously preserves both semiregularity
and regularity. e

A catenate changes the colors and compositions of triples in only a constant
number of levels at the top of the compressed forest structure. Hence, this
structure can be updated in constant time during a catenate.

We come finally to the last two operations, pop and eject. We shall describe
pop; eject is symmetric. A pop consists of two parts. The first removes the
element to be popped and the second repairs the damage to regularity caused by
this removal. Let t be the left or only triple of the deque d to be popped. The
first part of the pop consists of popping the prefix of t, or popping the suffix if
the prefix is empty, and replacing t in d by the triple t9 resulting from this pop,
forming d9. As we shall see below, d9 may not be regular but only semiregular,
because the preferred path starting at t9 may be red. In this case, let u be the red
triple at the end of this preferred path. Using the compressed forest representa-
tion, we can access u in constant time. The second part of the pop replaces u and
its descendants by a tree of triples representing the same elements but which has
a green root v and satisfies the regularity constraints. This produces a regular
representation of d9 and finishes the pop.

To repair u 5 ( p1, d1, s1), we apply the appropriate one of the following
cases. Since u is red, d1 Þ À.
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Case 1. Triple u is a left triple. Pop the first triple ( p2, d2, s2) from d1
(without any repair); let d91 be the rest of d1.

Case 1a. Both p2 and s2 are nonempty. Push (À, À, s2) onto d91, forming d 01.
Push the elements on p1 onto p2, forming p92. Catenate deques d2 and d 01,
forming d3. Let v 5 ( p92, d3, s1).
Case 1b. One of p2 and s2 is empty. Combine p1, p2, and s2 into a single
buffer p3. Let v 5 ( p3, d91, s1).

Case 2. Triple u is an only triple. Apply the appropriate one of the following
three cases:

Case 2a. Suffix s1 contains at least eight elements. Proceed as in Case 1,
obtaining v 5 ( p4, d4, s1) with p4 containing at least eight elements.
Case 2b. Prefix p1 contains at least eight elements. Proceed symmetrically to
Case 1, obtaining v 5 ( p1, d4, s4) with s4 containing at least eight elements.
Case 2c. Both p1 and s1 contain at most seven elements. Pop the first triple
( p2, d2, s2) from d1 (without any repair); let d91 be the rest of d1. If d91 5 À,
combine p1 and p2 to form p4, combine s2 and s1 to form s4, and let v 5 ( p4,
d2, s4). Otherwise, eject the last triple ( p3, d3, s3) from d91 (without any
repair); let d 01 be the rest of d91. If one of p2 and s2 is empty, combine p1, p2,
and s2 into a single buffer p4 and let d4 5 d 01. Otherwise, push (À, À, s2) onto
d 01, forming d901; push the elements on p1 onto p2, forming p4; and catenate d2
and d901 to form d4. Symmetrically, if one of p3 and s3 is empty, combine p3,
s3, and s1 into a single buffer s4, and let d5 5 d4. Otherwise, inject ( p3, À, À)
into d4, forming d94; inject the elements on s1 into s3, forming s4; and catenate
d94 and d3 to form d5. Let v 5 ( p4, d5, s4).

LEMMA 6.3. Removing the first element ( from the first buffer) in a regular deque
produces a semiregular deque whose only violation of the regularity constraint is that
the preferred path containing the left or only top-level triple may be red. Removing
the first and last elements ( from the first and last buffers, respectively) in a regular
deque produces a semiregular deque.

PROOF. Let d be a regular deque, and let t 5 ( p1, d1, s1) be its left or only
triple. Let t9 be formed from t by popping p1, and let d9 be formed from d by
replacing t by t9. If t is green, yellow, or orange (t cannot be red by regularity),
then t9 can be yellow, orange, or red, respectively. (One of these transitions will
occur unless both t and t9 are green, in which case d9 is regular since d is.) In
each case, it is easy to verify that the regularity of d implies that triple t9 satisfies
the appropriate semiregularity constraint; so do all other triples since their colors
don’t change. The only possible violation of regularity is that the preferred path
containing t9 may be red. An analogous argument shows that if the last element
of d9 is removed to form d0 then d0 will still be semiregular: if t is the only triple
of d, the two removals can degrade its color by only one color; if t is a left triple,
an argument symmetric to that above applies to its sibling. e

LEMMA 6.4. Popping a regular deque produces a regular deque.

PROOF. Let d be the deque to be popped, and let d9 be the deque formed by
removing the first element from the first buffer of d. Let t9 be the left or only
triple of d9. By Lemma 6.3, d9 is semiregular, and the only violation of regularity
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is that the preferred path containing t9 may be red. If this preferred path is
green, then d9 is regular, the pop is finished, and the lemma is true. Suppose, on
the other hand, that this preferred path is red. Let u 5 ( p1, d1, s1) be the red
triple on this path. Since d9 is semiregular and u is red, d1 must be regular. We
claim that the repair described above in Cases 1 and 2 replaces u and its
descendants by a tree of triples with a green root satisfying the semiregularity
constraints, which implies that the deque d0 resulting from the repair is regular,
thus giving the lemma.

Consider Case 1 above. Since d1 is regular, the deque d91 formed from d1 by
popping the triple ( p2, d2, s2) is semiregular by Lemma 6.3. In Case 1a, the push
onto d91 to form d 01 leaves d 01 semiregular by Lemma 6.1. Deque d2 is
semiregular since d1 is regular, and by Lemma 6.2 the deque d3 formed by
catenating d2 and d 01 is semiregular. The triple v 5 ( p92, d3, s1) is green. This
gives the claim. In Case 1b, the triple v 5 ( p3, d91, s1) is green, and d91 is
semiregular, again giving the claim.

Consider Case 2 above. The same argument as in Case 1 verifies the claim in
Cases 2a and 2b. In Case 2c, if d91 5 À, v is green and d2 is semiregular, which
gives the claim. In Case 2c, d 01 is semiregular by Lemma 6.3, deque d5 is
semiregular by appropriate applications of Lemmas 6.1 and 6.2, and v is green.
Again the claim is true. e

As with the other operations, a pop changes only a constant number of levels
at the top of the compressed forest and hence can be performed in constant time.

THEOREM 6.1. Each of the deque operations takes O(1) time and preserves
regularity.

PROOF. It is straightforward to verify that the compressed forest representa-
tion allows each of the deque operations to be performed as described in O(1)
time. Lemmas 6.1, 6.2, and 6.4 give preservation of regularity. e

The deque representation we have presented is a hybrid of two alternative
structures described in Kaplan [1996] one based on pairs and quadruples and the
other, suggested by Okasaki [1998], based on triples and quintuples. The present
structure offers some conceptual simplifications over these alternatives. The
buffer size constraints in our representation can be reduced slightly, at the cost
of making the structure less symmetric. For example, the lower bounds on the
suffix sizes of right triples and only triples can be reduced by one, while
modifying the definition of colors appropriately.

7. Further Results and Open Problems

We conclude in this section with some additional results and open problems. We
begin with two extensions of our structures, then mention some recent work, and
finally give some open problems.

If the set A of elements to be stored in a deque has a total order, we can
extend all the structures described here to support an additional heap order
based on the order on A. Specifically, we can support the additional operation of
finding the minimum element in a deque (but not deleting it). Each operation
remains constant-time, and the implementation remains purely functional. We
merely have to store with each buffer, each deque, and each pair the minimum
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element contained in it. For related work, see Buchsbaum et al. [1995], Buchs-
baum and Tarjan [1995], Gajewska and Tarjan [1986], and Kosaraju [1994].

We can also support a flip operation on deques, for each of the structures in
Sections 4 and 6. A flip operation reverses the linear order of the elements in the
deque; the ith from the front becomes the ith from the back and vice-versa. For
the noncatenable deques of Section 4, we implement flip by maintaining a
reversal bit that is flipped by a flip operation. If the reversal bit is set, a push
becomes an inject, a pop becomes an eject, an inject becomes a push, and an
eject becomes a pop.

To support catenation as well as flip requires a little more work. We need to
symmetrize the structure and add reversal bits at all levels. The only nonsymme-
try in the structure is in the definition of preferred children: the preferred child
of a yellow triple is its left child and the preferred child of an orange triple is its
right child. Flipping exchanges left and right, but we do not want this operation
to change preferred children; we want the partition of the compressed forest into
preferred paths to be unaffected by a flip. Thus, when we create a brand-new
triple, we designate its current left child to be its preferred child if it is yellow
and its current right child to be the preferred child if it is orange. When a triple
changes from orange to yellow or yellow to orange, we switch its preferred child,
irrespective of current left and right.

To handle flipping, we add a reversal bit for every deque and every buffer in
the structure. A reversal bit set to 1 means that the entire deque or buffer is
flipped. Reversal bits are cumulative along paths of descendants in the com-
pressed forest: for a given deque or buffer, it is reversed if an odd number of its
ancestors (including itself) have reversal bits set to 1. To flip an entire deque, we
flip its reversal bit. Whenever doing a deque operation, we push reversal bits
down in the structure so that each deque actually being manipulated is not
reversed; for reversed buffers, push and inject, and pop and eject, switch roles.
The details are straightforward.

Now we turn to recent related work. In work independent of ours, Okasaki
[1996; 1998] has devised a confluently persistent implementation of catenable
stacks (or steques). His implementation is not real-time but gives constant
amortized time bounds per operation. It is also not purely functional, but uses
memoization. Okasaki uses rooted trees to represent the stacks. Elements are
popped using a memoized version of the path reversal technique previously used
in a data structure for the disjoint set union problem [Tarjan and Van Leeuwen
1984]. Though Okasaki’s solution is neither real-time nor purely functional, it is
simpler than ours. Extending Okasaki’s method to the case of deques is an open
problem.

After seeing an early version of our work [Kaplan and Tarjan 1996], Okasaki
[1996; 1998] observed that if amortized time bounds suffice and memoization is
allowed, then all of our data structures can be considerably simplified. The idea
is to perform fixes in a lazy fashion, using memoization to record the results. This
avoids the need to maintain the “stack of stacks” structures in our representa-
tions, and also allows the buffers to be shorter. Okasaki called the resulting
general method “implicit recursive slow-down.” He argues that the standard
techniques of amortized analysis [Tarjan 1985] do not suffice in this case because
of the need to deal with persistence. His idea is in fact much more general than
recursive slow-down, however, and the standard techniques [Tarjan 1985] do
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indeed suffice for an analysis. Working with Okasaki, we have devised even
simpler versions of our structures that need only constant-size buffers and take
O(1) amortized time per deque operation, using a replacement operation that
generalizes memoization [Kaplan et al. 1998].

Finally, we mention some open problems. As noted above, one is to extend
Okasaki’s path reversal technique to deques. A second one is to modify the
structure of Section 6 to use buffers of bounded size. We know how to do this for
the case of stacks, but the double-ended case has unresolved technicalities. Of
course, one solution is to plug the structure of Section 4 in-line into the structure
of Section 6 and simplify to the extent possible. But a more direct approach may
well work and lead to a simpler solution. Another open problem is to devise a
version of the structure in Section 6 that uses only one subdeque instead of two,
thus leading to a linear recursive structure. A final open problem is to devise a
purely functional implementation of finger search trees (random-access lists)
with constant-time catenation. Our best solution to this problem has O(log log
n) catenation time [Kaplan and Tarjan 1996].
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