
Addendum to “Scalable Secure Storage when Half the System is

Faulty”

Noga Alon∗ Haim Kaplan∗ Michael Krivelevich∗ Dahlia Malkhi† Julien Stern‡

Introduction. We consider the following problem. A file of size s bits is to be stored on n disks.
Our failure model assumes that a potentially malicious adversary may choose after the file is stored
less than half of the disks, and arbitrarily alter the data they store. The adversary is constrained in
its computation power, which is assumed to be polynomial. Note that this disk-corruption model is
different from the classical fault model for error correcting codes, in which individual bits experience
faults independently. The goal is to store the file on the disks in such as way that recovery of the
file is possible despite the corruption with high probability, where probability is over the choices of
data alterations made by the adversary.

With guaranteed correct recovery, standard methods from coding theory indicate a lower bound
of sn total storage bits (on all disks together). However, if we allow negligible probability of error,
more compact schemes are possible (see a survey of known approaches in [1]).

More concretely, the probabilistic relaxation of recovery guarantee allows the use of a crypto-
graphically secure hash function, such as the conjectured collision-resistant hash function SHA-1
[7], in order to probabilistically fingerprint data. This works as follows: During storage time, di-
gests of certain data values are stored, such that a polynomially bounded adversary has negligible
probability of consistently modifying the data without mismatching its digest. The probability of
false-match is typically very small, e.g., 2−160 with SHA-1, and is not dependent on other system
parameters like n. Therefore, from here on, we neglect this probability of error in our exposition,
and simply say that if a certain data matches an (unaltered) pre-stored digest, then w.h.p. the data
is unaltered.

The scheme we previously suggested in [1] 1 requires holding for the fingerprinting information a
total storage of O(n log n) bits. Our scheme employs expander graphs for redundant cross-checking
of fingerprint values. Some of the techniques in [1] may have other applications. In particular,
Theorem [1] [4.1] demonstrates the robustness of an LPS expander [3] against deletion of half of
the vertices, improving on the numerical constants of a similar result by Upfal in [8].

In this addendum, we demonstrate a simple solution, which is an application of Merkle hash-
trees [4, 5]. The solution is asymptotically as efficient as the method in [1], works even for small n,
and has much smaller (and no hidden) constants. In the remainder of this exposition, we describe
the building blocks of the solution and combine them together to obtain the full scheme.
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1For previous solutions, we refer the reader to the survey of related works in [1].

1



IDA. Denote the file to be stored by F , thus |F | = s bits. Rabin has proposed in [6] an Infor-
mation Dispersal Algorithm (IDA) for fault tolerant storage and for message dissemination. IDA
makes use of Reed-Solomon codes with the Berlekamp-Welch decoding (described in [2]), to store
F on n disks as follows. We split the file into n− t segments, each consisting of s/(n− t) bits, and
think of these segments as representing a polynomial of degree n − t − 1 over a finite field F of
cardinality p ≥ 2s/(n−t). The n pieces to store are the values of this polynomial at n fixed points
of the field F . Clearly we can reconstruct this polynomial from only n − t such values. Since the
total amount of space taken by n − t pieces is exactly s, the space overhead is clearly optimal.

The IDA protects a file against loss of information on up to t disks. However, if any of the
obtained pieces is altered, the integrity of the reconstructed document may be compromised.
Moreover, a user obtaining such an erroneous document has no way of detecting that an error has
occurred, and may simply return erroneous results undetectably.

The main idea of combining fingerprinting with IDA is to somehow detect which pieces are
corrupted using the fingerprints, discard them, and then apply IDA with the good ones. The
remaining, uncorrupted pieces suffice to reconstruct the file.

Below, we denote by IDA(F, i) the i’th piece produced by the IDA, to be stored on the i’th
disk.

Digests. We produce fingerprints using a cryptographically secure hash function H, such as the
conjectured collision-resistant SHA-1 [7]. For any value v, in an unlimited range, H(v) has fixed
size (in bits). We denote this size by |H|. We assume that it is computationally infeasible to find
two different values v and v′ such that H(v) = H(v′). Typically, setting |H| to 160 bits suffices to
guarantee this today, e.g., with SHA-1, and hence we will assume this.

Merkle Trees. A Merkle hash-tree over the values {IDA(F, 1), ..., IDA(F, n)} is a binary tree,
where the ith leaf corresponds to the value IDA(F, i) to be stored on disk i. For simplicity, assume
n = 2`. Each internal node is identified by a pair (i, j), where the level i is between 1..` + 1, and
j ranges between 1..2`+1−i. The levels of the nodes are ascending from bottom to top, such that
the level of a leaf is 1 and the level of the root is ` + 1. We associate a hash value with each node
recursively as follows. The hash value associated with leaf i is the hash of IDA(F, i). The hash
associated with an internal node is the hash of the hashes of its children. Let h(i, j) denote the
hash value of node (i, j) then more precisely we have

1. h(1, j) = H(IDA(F, j)), for j = 1..2`.

2. h(i, j) = H(h(i − 1, 2j − 1), h(i − 1, 2j)), for i = 2..` + 1, and j = 1..2`+1−i.

We now define the fingerprint which is stored on disk i (in addition to the data piece IDA(F, i)).
Let 〈b`, b`−1, ..., b1〉 be the binary representation of i using ` = log2 n bits (from most to least
significant, going from left to right). There is a unique ascending path from the leaf i in the hash-
tree to the root (` + 1, 1), namely, (1, i), (2, bi/2c), (3, bi/4c), ..., (` + 1, 1). In this path, for each k,
the node (k, bi/2(k−1)c) is a child of (k + 1, bi/2kc). The second child of (k + 1, i/2k) is the node
(k, bi/2kc) ∗ 2 + (1 − b(k−1)). We store on disk i, together with IDA(F, i), the hash values of all
siblings of the nodes on the path from leaf i to the root, and h(` + 1, 1) – the hash value of the
root. More precisely, define finger(i) = g(` + 1, i), h(` + 1, 1), and store it on disk i, where g(·, ·)
is constructed recursively as follows.
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• g(0, i) = IDA(F, i).

• g(j, i) = g(j − 1, i) , h(j − 1, bi/2jc ∗ 2 + (1 − b(j−1))).

The verification predicate of an IDA share IDA(F, i) against the root value h(`+1, 1) is naturally
defined as the reverse of the above: we verify the share by calculating the hash values of the nodes
along the path from leaf i to the root, using the appropriate hash value of siblings of nodes on this
path, stored in g(` + 1, i), and compare it with h(` + 1, 1).

The main property achieved by the use of a Merkle tree over the IDA shares is the following.
For any index i, if a pair of data items (di, fi) passes the above verification against h(`+1, 1), then
w.h.p. we have di ≡ IDA(F, i) and fi = finger(IDA(F, i)), i.e., these are the original IDA share
and its fingerprint.

Storage and Retrieval The storage of F is done by computing its IDA shares IDA(F, 1), . . . , IDA(F, n),
and the corresponding fingerprints finger(1), . . . , finger(n), and storing IDA(F, i), finger(i) on
disk i.

Retrieval is done by reading all disks, and recovering h(`+1, 1) from a majority. Then for each
disk i, we perform the verification test against h(` + 1, 1). If the calculated hash of the root equals
to h(` + 1, 1) then we use IDA(F, i) to recover the file. After a majority of the pieces are verified
for correctness, the file content is restored using IDA.

It is easy to see that w.h.p. all the IDA shares used in the retrieval are correct, and hence,
w.h.p. the file is correctly retrieved by our scheme.

Complexity. The storage complexity of the scheme is |H|(log n+1) bits of information per node
not counting the IDA storage. Thus the total storage for fingerprinting verification is O(n log n)
bits. The computation costs are all negligible compared with the erasure code manipulation.
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