Finding the position of the k-mismatch and
approximate tandem repeats.

Haim Kaplan!, Ely Porat?, and Nira Shafrir!

! School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
{haimk,shafrirn}@post.tau.ac.il
2 Department of Mathematics and Computer Science, Bar-Ilan University,
Ramat-Gan 52900, Israel.
porately@cs.biu.ac.il

Abstract. Given a pattern P, a text T, and an integer k, we want to
find for every position j of T', the index of the k-mismatch of P with the
suffix of T' starting at position j. We give an algorithm that finds the
exact index for each j, and algorithms that approximate it. We use these
algorithms to get an efficient solution for an approximate version of the
tandem repeats problem with k-mismatches.

1 Introduction

Let P be a pattern of length m and let T be a text of length n. Let T'(i, £) denote
the substring of T' of length / starting at position .2 In the k-mismatch problem
we determine for every 1 < j < n —m+ 1, if T(j, m) matches P with at most
k mismatches. In case T'(j,m) does not match P with at most & mismatches
we compute the position k(j) in P of the k-mismatch. In case T'(j, m) matches
P with at most k mismatches we compute the position of the last mismatch if
there is at least one mismatch.

Several classical results are related to the k-mismatch problem. Abrahamson
[1], gave an algorithm that finds for each 1 < j <n —m+ 1, the number of mis-
matches between T'(j,m) and P. The running time of Abrahamson’s algorithm is
O(nv/mlogm). Amir et. al. [2], gave an algorithm that for each 1 < j < n—m+1,
determines if the number of mismatches between T'(j,m) and P is at most k.
running time of this algorithm is O(n+/klog k). Both of these algorithms do not
give any information regarding the position of the last mismatch or the posi-
tion of the k-mismatch. This information is useful for applications that want
to know not only if the pattern matches with at most k-mismatches, but also
want to know how long is the prefix of the pattern that matches with at most
k-mismatches.

The major technique used by the algorithms of Abrahamson and of Amir
et. al. is convolution. Lets fix a particular character x € Y. Suppose we want
to compute for every 1 < 57 < n —m + 1, the number of places in which an =
in P does not coincide with an z in T when we align P with T'(j,m). We can

3 We always assume that i < n —m + 1 when we use this notation.

perform this task by computing a convolution of a binary vector P(z) of length
m, and a binary vector T'(z) of length n as follows. The vector P(z) contains 1
in every position where P contains the character and 0 in all other positions.
The vector T'(z) contains 1 in every position where 7" does not contains x and 0
in every position where 7' contains x. We can perform the convolution between
P(z) and T'(z) in O(nlogm) time using the Fast Fourier Transform. So if P
contains only | Y| different characters we can count for each 1 < j <n —m + 1,
the number of mismatches between T'(j, m) and P in O(|X|nlogm). We do that
by performing | X| convolutions as described above, one for each character in P,
and add up the mismatch counts.

There is a simple deterministic algorithm for the k-mismatch problem that
runs in O(nk) time and O(n) space of Landau and Vishkin [8]. They construct a
suffix tree for the text and the pattern, with a data structure for lowest common
ancestor (LCA) queries, to allow constant-time jumps over equal substrings in
the text and pattern. The algorithm of Landau and Vishkin finds for each j
the position of the k-mismatch (or the last mismatch if there are less than k
mismatches) between T'(j, m) and P in O(k) time. It does that by performing at
most k& LCA queries on the appropriate substrings of the text and the pattern.
We give an alternative algorithm that runs in O(nk’% 10g1/ 3 mlog k) time and
linear space.

To see why the bound of O(nkg logl/3 m), may be natural, consider a pattern
of length m = O(k). In this case, we can solve the problem using the method
of Abrahamson [1]. We divide the pattern into k3 /log!/® k blocks, each block
of size z = O(k? log'/® k). By applying the algorithm of Abrahamson with the
first block as the pattern, we determine in O(ny/zlog z) = O(nk3 log?? k) time,
the number of mismatches of each text location with the first block. Similarly,
by applying the method of Abrahamson to each of the subsequent ks / logl/ 3k
blocks of the pattern, and accumulating the number of mismatches for each
text position, we know in O(nk% logl/3 k) time for each text position, which
block contains the k-mismatch. Moreover we also know for each text position
the number of mismatches in the blocks preceding the one that contains the
k-mismatch. With this information, we can find for each text position the k-
mismatch in the relevant block in O(k% logl/3 k) time by scanning the block
character by character looking for the appropriate mismatch. It is not clear how
to get a better bound even for this simple example.

We also define the approzimate k-mismatch problem. This problem have an
additional accuracy parameter €. The task is to determine for every 1 < j <
n —m+ 1 a position k(j) in P such that the number of mismatches between
T(j,k(4)) and P(1,k(5)) is at least (1 —€)k and at most (1 + €)k, or report that
there is no such position.

We give a deterministic and randomized algorithms for the approzimate k-
mismatch problem. We describe the deterministic algorithm in Section 3. The
running time of this algorithm is O((n/e3)v/klog® m). In Sect. 4, we give a ran-
domized algorithm with running time of O(Z% log nlog® mlog k). The random-
ized algorithm guarantees that for each j the number of mismatches between

T(j,k(j)) and P(1,k(j)) is at least (1 — €)k and at most (1 + €)k with high
probability.*

A position k(j) computed by our algorithms for the approzimate k-mismatch
problem may not contain an actual mismatch. That is, the character k(j) of P
may in fact be the same as character j + k(j) — 1 of T. We can change both
algorithms such that k(j) would always be a position of a mismatch in O(n) time
as follows. For a string S we denote by S the string obtained by reversing S.
We build a suffix tree for T% and P, with a data structure for lowest common
ancestor (LCA) queries in constant time. For each position j in T we perform an
LCA query for the suffixes (P(1,k(5)))® of P and (T(1,j + k(j) — 1))® of TE.
Let h be the string depth of the resulting node. Clearly h is the length of the
longest common prefix of (P(1,k(5)))® and (T'(1,j +k(j) —1))%, and k(j) — h is
the position of the last mismatch between P and T'(j,m) prior to position k(j).
We change k(j) to k() — h.

In Sect. 5, we use our algorithms for the k-mismatch problem to solve an ap-
proximate version of the k-mismatch tandem repeats problem. The ezxact tandem
repeats problem is defined as follows. Given a string S of length n, find all sub-
strings of S of the form uu. Main and Lorentz [9] gave an algorithm that solves
this problem in O(nlogn + z) time, where z is the number of tandem repeats
in S. Repeats occur frequently in biological sequences, but they are usually not
exact. Therefore algorithms for finding approximate tandem repeats were de-
veloped. The k-mismatch tandem repeats problem is defined as follows. Given a
string S and a parameter k find all substrings wv of S such that |u| = |v| > k
and the number of mismatches between u and v is at most k. The best known
algorithm for this problem is due to Landau, Schmidt and Sokol [7] and it runs in
O(nklog(n/k) + z) time, where z is the number of k-mismatch tandem repeats.

We define the approzimate k-mismatch tandem repeats problem which is a re-
laxation of the k-mismatch tandem repeats problem. In this relaxation we require
that the algorithm will find all substrings uv of S such that |u| = |v] > k and
the number of mismatches between v and v is at most k, but we also allow the
algorithm to report substrings uv such that the number of mismatches between
u and v is at most (1 + €)k. Using our algorithm for the k-mismatch problem
we get an algorithm for approximate k-mismatch tandem repeats that runs in
O((n/e)k3 log"® nlog klog(n/k)+z) time. Using our deterministic algorithm for
the approximate k-mismatch problem we get an algorithm for approximate k-
mismatch tandem repeats that runs in O((n/e*)v'k log® nlog(n/k)+ z) time. We
can also use the randomized algorithm of Sect. 4 and get an algorithm that re-
ports all k-mismatch tandem repeats with high probability, and possibly tandem
repeats with up to (1 + €)k mismatches in O(Z% log® nlog klog(n/k) 4 z) time.
Preliminaries: A string s is periodic with period u, if s = uw, where j > 2 and
w is a prefix of u. The period of s is the shortest substring u such that s = u/w
and w is a prefix of u.

A break of s is an aperiodic substring of s. An ¢-break is a break of length
£. We choose a parameter ¢ < k (the value of ¢ will be decided later). We use

4 By high probability we mean probability that is polynomially small in n.

the method of [3] to find a partition of the pattern into ¢-breaks separated by
substrings shorter than ¢, or periodic substrings with period of length at most
£/2. We call the substrings that separate the breaks periodic stretches.

In Sect. 2, we show how to solve the k-mismatch problem when the pattern
P contains at most 2k ¢-breaks in the time and space bounds mentioned above.
In case the pattern P contains more than 2k ¢-breaks, we reduce it to the case
where P contains 2k {-breaks as follows.

Assume P contains more than 2k ¢-breaks and let P’ be the prefix of P
with exactly 2k f-breaks. We run our algorithm using P’ rather than P. Our
algorithm also finds all positions in T that match P’ with at most & mismatches.
Amir et. al. [2] proved that at most n/¢ positions of the text T match P’ with
at most k& mismatches. After running our algorithm and finding these positions
we use the algorithm of Landau and Vishkin [8] to check whether each of these
positions matches the original pattern P with at most & mismatches, and to find
the location of the k-mismatch in case it does not. The total time it takes to
check all of these positions is O(nk/{). Therefore we assume from now on that
the pattern P contains at most 2k ¢-breaks, and that the running time of our
algorithm is 2(nk/?).

2 Finding the position of the k-mismatch

We describe an algorithm that solves the problem in O(nk% log!/4 m) time and
O(n) space. In the full version of this paper we show how to add another
level of recursion to this algorithm and get an algorithm whose running time
is O(nk? log'/® mlog k) and uses O(n) space.

Recall that we assume that the pattern contains O(k) breaks, which are
substrings of length at most ¢, and at most 2k periodic stretches. Let A be a
periodic stretch let a be its period, |z| < ¢/2. Let 2’ be the lexicographically
first cyclic rotation of x. We call a’ the canonical period of A. We can write
A =yx"2,i > 0, where y is a prefix of x, (y may be empty), and z is a prefix of
2’ which may be empty. Let A’ = 2'*. We add y and z to the set of breaks. We
redefine the term break to include also the above substrings. The string A’ is the
new periodic stretch. We added to the set of breaks a total of O(k) substrings
each of length at most ¢. After this preprocessing, the set of all different periods
of the periodic stretches of the pattern contains only canonical periods, and
thus it doesn’t contain two periods that are cyclic rotations one of the other. In
addition, all periodic stretches with period u are of the form u’,i > 0.

Choosing a prefix of the pattern: We now show how to choose a prefix S of
the pattern for which we can find the position of the k-mismatch with T'(j, |S])
or determine that S matches T'(j,|S|) with less than k-mismatches. We also
prove that S cannot match T'(j,]S|) with at most k-mismatches in too many
positions j. We assume that P contains O(k) breaks, which are substrings of
length at most ¢, and at most 2k periodic stretches. All periodic stretches are of
the form u‘, where u is a canonical period. We partition each periodic stretch

into segments of length ¢. We ignore the segments that are not fully contained
in a periodic stretch.

Let S be the shortest prefix of P that satisfies at least one of the following
criteria, or P itself if no prefix of P satisfies at least one of these criteria.

1. S contains a multiset A of 2k segments of periodic stretches, such that at
most k/¢ are of the same canonical period.

2. S contains a multiset of 2k characters in which each character appears at
most k/¢ times.

We use the following definitions. Let C' be the set of canonical periods of
the periodic stretches in S. We define a period v € C' to be to frequent in S,
if there are more than k/¢ segments in the above partition with period u and
rare otherwise. Similarly, we define a character to be frequent in S, if it appears
more than k/¢ times in S, and rare otherwise. The prefix S has the following
properties.

1. C contains at most 2¢ frequent periods. If C' contains more than 2¢ frequent
periods, then we can obtain a shorter S satisfying (1) by taking the shortest
prefix that contains k/¢ segments of each of exactly 2¢ frequent periods. By
a similar argument, the total number of segments of periodic stretches that
belong to rare periods in S is at most 2k.

2. S contains at most 2¢ frequent characters. Furthermore, the total number of
occurrences of rare characters in S is at most 2k.

We add to the set of breaks all rare periodic stretches. By property 1 we added
O(k) breaks of length at most £. Following these changes, S contains O(k) breaks.
The set C of periods of the periodic stretches is of size O(£).

Finding the position of the k-mismatch in S: Next we show how to find
the position of the k-mismatch of each location of the text T" with a prefix S of
the pattern chosen as in Sect. 2. Recall that S contains O(k) breaks and at most
2k periodic stretches, and satisfies Properties 1 and 2.

We partition the pattern into at most O(k/y) substrings each contains at
most y breaks, at most y rare characters and at most y periodic stretches. First
we compute for each text position j the substring W (j) of P that contains the
k-mismatch of P with T'(j,m), or determine that P matches T'(j,m) with less
than k-mismatches.

To do that we process the substrings sequentially from left to right, main-
taining for each text position j the cumulative number of mismatches of the
text starting at position j with the substrings processed so far. We denote this
cumulative mismatch count of position j by r(j). Let the next substring W of
P that we process start at position ¢ of the pattern. For each text position j,
we compute the number of mismatches of T'(j,|W|) with W and denote it by
¢(). (We show below how to do that.) Then, for each text position j for which
we haven’t yet found the substring that contains the k-mismatch, we update
the information as follows. If r(j) + ¢(j 4+ ¢) < k, we set r(j) = r(j) + c(§ +1).
Otherwise, 7(j) + ¢(j + i) > k, and we set W (j) to be W.

We now show how to find the number of mismatches between a substring W of
S and T'(j, |W|) for every 1 < j < n—|W|+1. We do that by separately counting
the number of mismatches between occurrences of frequent characters in W
and the corresponding characters of T'(j, |W|), and the number of mismatches
between occurrences of rare characters in W and the corresponding characters
of T'(j,|W]). Then we add these two counts.

By Property 2, W contains at most 2¢ frequent characters. For each fre-
quent character x we find the number of mismatches of the occurrences of x
in W with the corresponding characters in T'(j, |W]) for all j, by performing a
convolution as described in the introduction. We perform O(¢) convolutions for
each of the O(k/y) substrings, so the total time to perform all convolutions is
O((k/y)fnlogm).

It remains to find the number of mismatches of rare characters in W with
the corresponding characters in T'(j,|WW|). We do that using the algorithm of
Amir et. al. [2]. This algorithm counts the number of mismatches of a pattern
which may contain don’t care symbols with each text position. The running time
of this algorithm is O(ny/glogm), where g is the number of characters in the
pattern that are not don’t cares. We run this algorithm with a pattern which we
obtain from W by replacing each occurrence of a frequent character by a don’t
care symbol, and the text 7. We obtain for each j the number of mismatches
between rare characters in W and the corresponding characters in T'(j, |W).
Since W contains at most y rare characters, the running time of this application
of the algorithm of Abrahamson is O(n+/ylogm). So for all O(k/y) substrings
this takes O((k/y)ny/ylogm) = O(n(k/y"/?)/logm) time.

‘We now show how to find the position of the k-mismatch within the substring
W (j) that contains it for each text position j. We assume that each substring
contains y breaks and y periodic stretches. Each periodic stretch is of the form
u®, where u € C, and |C| < 2¢.

We begin by finding for each text position which periodic stretch or break
contains the k-mismatch. We find it by performing a binary search on the peri-
odic stretches and breaks in W(j). We do the binary search simultaneously for
all text positions j. After iteration h of the binary search, for each text position
we focus on an interval of y/2" consecutive breaks and periodic stretches in W ()
that contain the k-mismatch between W (j) and the corresponding substring of
T'(j,m). In particular after log y iterations, we know for each text position which
periodic stretch or break contains the k-mismatch.

At the first iteration of the binary search we compute the number of mis-
matches in the first y/2 of the periodic stretches and breaks of W (j). From
this number we know if the k-mismatch is in the first y/2 breaks and periodic
stretches or in the last y/2 breaks and periodic stretches of W(j). In iteration
h, let I(j) be the interval of y/2" consecutive breaks and periodic stretches in
W (j) that contains the k-mismatch between W (j) and the corresponding piece of
T(j,m). We compute the number of mismatches between the first yy/2"*! breaks
and periodic stretches in 1(j) and the corresponding part of T'(j,m). Using this
count we know if to proceed with the first half of I(j) or the second half of I(j).

We describe the first iteration of the binary search. Subsequent iterations
are similar. We count the number of mismatches in each of the first y/2 breaks
in W(j) and T(j,m) by comparing them character by character in y¢/2 time
for a specific j, and nyf/2 total time. To count the number of mismatches in
each of the first y/2 periodic stretches we process the different periods in C' one
by one. For each period u € C' and each text position j we count the number
of mismatches in periodic stretches of u among the first y/2 periodic stretches
of W(j). The sum of these mismatch counts over all periods u € C gives us
the total number of mismatches in the first y/2 periodic stretches of W(j) and
T(j,m) for every text position j.

Let w € C. We compute the number of mismatches of u with each text
location using the algorithm of Abrahamson [1] in O(ny/?log?) time. We build
a data structure that consists of |u| prefix sums arrays A4;,i = 1,---,|ul, each
of size n/|u|. We use these arrays to find the number of mismatches of periodic
stretches of u among the first y/2 periodic stretches of W (j) for all text positions
Jj. The total size of the arrays is O(n).

The entries of array A; correspond to the text characters at positions [
such that 0 modulo |u| = ¢ modulo |u|. The first entry of array A; contains
the number of mismatches between T'(i,|u|) to u that was computed by the
algorithm of Abrahamson. Entry j in A; contains the number of mismatches
between T'(i,jlu|) and u?. It is easy to see that based on entry j — 1, entry
j in A; can be computed in O(1) time. Suppose we need to find the number
of mismatches of T(i + jlul,r|u|) with a periodic stretch «”". The number of
mismatches can be computed in O(1) time given A;. If j = 0, then the number
of mismatches is A;[r]. If § > 0, then the number of mismatches is A;[j+r]—A4;[4].

In each iteration of the binary search we repeat the procedure above for
every u € C. Since |C| = O(f) we compute the number of mismatches of
all periodic stretches in the first y/2 periodic stretches of W(j) for all j, in
O(nt3/?\/log?) time. Summing up over all iterations the time of counting the
number of mismatches within breaks and the time of counting the number of
mismatches within periodic stretches, we obtain that the binary search takes
O(nt3/%\/log Zlogy) + O(nyl) time.

‘We now know for each text position which periodic stretch or break contains
the position of the k-mismatch. If the k-mismatch is contained within a break
we find it in O(¢) time by scanning the break character by character. If the k-
mismatch is contained in a periodic stretch, then we find it as follows. For each
u € C we build the n/|u| prefix sum arrays A;, as described above. We then
compute the position of the k-mismatch, for all text position for which the k-
mismatch occurs with a periodic stretch of period u. Given such text position, we
perform a binary search on the appropriate prefix sum array to locate a segment
of length |u| within the periodic stretch that contains the k-mismatch. The binary
search is performed on a sub-array of length at most m/|u| in O(logm) time.
At the end of the binary search, we found the segment of length |u| < ¢ that
contains the k-mismatch, we search in this segment sequentially in O(¢) time to
find the k-mismatch. We repeat this process for all the periods in C.

Summing over all stages we obtain that the total running time of the algo-
rithm is O((k/y)nllogm)+O0(n(k/y'/?)\/Togm)+O(nt*/?\/log llog y)+O(nyf).
The space used by the algorithm is O(n).

To complete the analysis we prove in the full version of this paper that if S is
not equal to P, then T contains at most n/¢ positions that match S with at most
k mismatches. In these cases we use the algorithm of Landau and Vishkin [8] to
find the position of the k-mismatch (or the last mismatch if there are less than
k-mismatches) of each of these positions with the pattern in O(nk/¢) time. We
also recall that we have to take into account the overhead of O(nk/{) time of the
reduction in Sect. 1 to a pattern with at most O(k) breaks and periodic stretches.

So if we add the extra O(nk/{) overhead to the overall running time and
choose ¢ and y to balance the expressions (and thereby minimize the run-
ning time) we get that ¢ = Icl/‘l/logl/4 m,y = vklogm and a running time
of O(nk3/*log** m).

3 Approximate k-mismatch

In this section we sketch how to obtain an algorithm for the approximate k-
mismatch problem whose running time is O(n(1/€3)v/klog® m). The algorithm
is similar to the algorithm of Sect. 2. The main difference is that instead of us-
ing convolutions or the algorithm of Abrahamson [1] (that uses convolutions), to
count the number of mismatches of various parts of the pattern and the text, we
use the algorithm of Karloff [6]. Given a pattern P and a text T, the algorithm
of Karloff [6], finds for every text position 1 < j < n—m+1, a number g(j) such
that m(j) < g(j) < (14 ¢€)m(j), where m(j) is the exact number of mismatches
between P and T'(j,m).

We choose a prefix S to satisfy the first of the two criteria of Sect. 2. We
partition S into O((1/€)k/y) substrings each containing at most ey breaks and at
most ey periodic stretches. We use the algorithm of Karloff [6] to approximately
count the number of mismatches of each text position and each substring of P
in O(n/e?log® m) time. Then we know for each j which substring of P contains
the k-mismatch with T'(j,m). We then search within the substring by a binary
search as in Section 2. Here we set ¢ = \/E/ log k, and y = Vk, so yl = k/logk,
and therefore the total length of the breaks within each substring is at most
eyl = ek/log k. This allows us to ignore the breaks when looking for the position
within a substring.

4 A Randomized Algorithm for approximate k—mismatch

We assume w.l.o.g. that the alphabet X consists of the integers {1,---,|X|}.
The algorithm computes signatures for substrings of the pattern and the text.
These signatures are designed such that from the signatures of two strings we
can quickly approximate the number of mismatches between the two strings. We
construct a random string R of sparsity k by setting R[i] to 0 with probability

(1-— %), and setting R[i] to be a random integer with probability %, for every
i=1,---,|R|. We choose a random integer from a space IT of size polynomial in
n. For a string W and a random string R with sparsity k, we define the signature
of W with respect to R as Sigp(W, R) = Zl‘ﬂ Wi R[d].

Let W7 and W5 be two strings of the same length. If W; and W, agree in
all positions where R[i] # 0, then Sigy(Wi, R) = Sigp(W2, R). On the other
hand, if W7 and W5 disagree in at least one position ¢ where R[i] # 0, then
Sigr(W1, R) = Sigr(Wa, R) with probability at most ﬁ Let us call the latter
event a bad event. Our algorithm compares sub-quadratic number of signatures
so by choosing IT large enough, we can make the probability that a bad event
ever happens polynomially small. Therefore, we assume in the rest of the section
that such event does not happen.

For k > 2 we define an algorithm Ay, as follows. The input to Ay consists of
a substring S of T" and a substring W of P such that S and W are of the same
length. Let y be the true number of mismatches between S and W. The algorithm
Ay, either detects that y > 2k, or detects that y < k, or returns an estimate y’
of y. The algorithm Ay works as follows. Let ¢ = 5 logn for some large enough
constant ¢ that we determine later, and let b = |W| = |S|. Algorithm Ay takes ¢
random strings Ry, - - -, R, of length b and sparsity k and compares Sigy (W, R;)
and Sig (S, R;) fori =1,...,¢q. Let z be the number of equal pairs of signatures.
If z > (1—€)q(1—+)*/2 then Ay, reports that the number of mismatches between
S and W is smaller than k. If 2 < (1 + €)q(1 — £)3" then Aj, reports that the
number of mismatches between S and W is greater than 2k. Otherwise let 3 be
the largest integer such that z < q(l—%)y,. We then return ¢’ as our estimate of y.

Using standard Chernoff bounds we establish that Ay satisfies the following
properties with high probability. (Proof omitted from this abstract.)

1. If y < k/2 then Ay, reports that the number of mismatches is smaller than
k.

2. If y > 3k then Ay reports that the number of mismatches is larger than 2k.

3. If k <y < 2k then A;, gives an estimate 3’ to v.

4. Whenever Ay, gives an estimate y’ of y then (1—€)y <y’ < (14€)y. (This can
happen if k/2 < y < 3k and happens with high probability if k <y < 2k.)

For k < 2 we build a generalized suffix tree for P and T. We use this suffix
tree to check whether the number of mismatches between a substring of P and a
substring of 7" is at most 2, and if so to find it exactly, by the method of Landau
and Vishkin. We shall refer to this procedure as Ag.

We are now ready to describe the algorithm. To simplify the presentation,
we assume that k is a power of 2. Our algorithm compares substrings of P and
T, by comparing their signatures using the algorithm A;, for some j < k which
is a power of two, and we always compare substrings of length which is a power
of two. We prepare all signatures required by for these applications of A; in a
preprocessing phase using convolutions as follows.

For any 27, 0 < j < |logm], and for any 2¢, 0 < i < logk, we generate
independently at random ¢ = 5logn strings Ry, ---, Ry, of sparsity 2¢ and

length 27. For each random string R; of length 27, we compute the signature
of every substring of T of length 2/ with R; by a convolution of T' and R;.
We compute the signature of every substring of P of length 27 with R; by a
convolution of P and R;. We compute a total of 5 lognlogmlogk signatures in
O(% log nlog? mlogk) time.

We find the approximated location of the k-mismatch of T'(j,m) with P
by a binary search as follows. To simplify the presentation we assume that m
is a power of 2 and we show in the full version of the paper how to handle
patterns whose length is not a power of 2. We compute the approximate number
of mismatches y’, between P(1,m/2) and T'(j,m/2). We find y' by performing a
binary search on A;(P(1,m/2),T(j,m/2)), for j =0,2,4,---, k. We first apply
A (P(1,m/2),T(j,m/2)), if A s reports that the number of mismatches is
smaller than \/E/Q we repeat the process for j =0,2,4,--- \/E/Q If A j; reports

that the number of mismatches is larger than 2v/k, we repeat the process for
j = 2Vk,---, k. Otherwise the algorithm gave us a good estimation 3’ of the
number of mismatches between P(1,m/2), and T(j,m/2). Once we find 3’ we
proceed as follows. If ¢y’ > (1 + €)k we search recursively for the position of the
kE-mismatch in P(1,m/2). If 4/ < (1 — €)k we search recursively for the k — y/-
mismatch in P(m/2 4+ 1,m/2). If (1 — e)k < y' < (1 + €)k, the approximated
k-mismatch is at position m/2 of the pattern and we are done.

It is easy to see that the running time of the search is O(Z log n log m log logk).

The total running time of the algorithm is O(Z% log nlog? mlogk).

5 Approximate Tandem Repeats

We first describe the algorithm for exact tandem repeats. Then we describe the
algorithm for the k-mismatch tandem repeats that runs in O(nklog(n/k) + z).
Finally we show how to change this algorithm to get our algorithm. Let S be
the input string of length n. Let S[i---j] be the substring of S that starts at
position i and ends at position j, and recall that S[i - - - 5] is the string obtained
by reversing S[i-- - j]. Let S[¢] be the character at position i.

We now describe the exact algorithm of Main and Lorentz [9]. Let h = |n/2].
Let w = S[1---h] be the first half of S, and let v = S[h + 1---n] be the second
half of S. The algorithm finds all tandem repeats that contain S[h] and S[h+ 1].
That is repeats that are not fully contained in u and are not fully contained in
v, and then calls itself recursively on u to find all tandem repeats contained in
the first half of S, and calls itself recursively on v to find all tandem repeats
contained in the second half of S.

The repeats that contain S[h] and S[h+ 1] are classified into left repeats and
right repeats. Left repeats are all tandem repeats zz where the first copy of z
contains h. Right repeats are all tandem repeats zz where the second copy of
z contains h. We describe how to find all left repeats. Right repeats are found
similarly. We build a suffix tree that supports LCA queries in O(1) time for S
and S The algorithm for finding left repeats in S has n/2 iterations. In the
i-th iteration, we find all left repeats of length 2i as follows.

1. Let j = h+1i.

2. Find the longest common prefix of S[h---n] and of S[j---n]. Let ¢; be the
length of this prefix.

3. Find the longest common prefix of S[1---h — 1] and of S[1---j — 1]%. Let
{5 be the length of this prefix.

4. If 1+ €5 > i there is at least one tandem repeat of length 2i. All left repeats
of length 2i, begin at positions max(h — o, h —i+ 1), -+, min(h + €1 — i, h).

Using the suffix tree we can find each longest common prefix in O(1) time. There-
fore, we can find an implicit representation of all left repeats of length 2¢ in O(1)
time. The total time it takes to find all left and right repeats for h = [n/2] is
O(n), and the total running time of the algorithm is O(nlogn + z).

The algorithm of [7] for finding k-mismatch tandem repeats is an extension
of the algorithm of Main and Lorentz [9]. Here we stop the recursion when the
length of the string is at most 2k, and in each iteration we compute only repeats
of length greater than 2k. Given h = [n/2] and ¢ > k the algorithm for finding
all k-mismatch left repeats of size 2i is as follows.

1. Let j = h+i.

2. We find the positions of the first £+ 1 mismatches of S[h---n] and S[j---n]
by performing k + 1 successive LCA queries on the suffix tree of S. Let 1
be the position of the (k 4+ 1)-mismatch of the two strings.

3. Similarly, we find the positions of the first k+ 1 mismatches of S[1---h—1]%
and S[1---j — 1]% by performing k + 1 successive LCA queries on a suffix
tree of ST. Let £5 be the position of the (k + 1)-mismatch of the two strings.

4. If 61 + 45 > i, the k-mismatch tandem repeats will be those at positions
max(h —¥fa,h —i+1)---min(h + ¢; — i, h) that have at most k& mismatches.
We can find all these positions in O(k) time by merging the sorted list of
item 2 containing the positions of the mismatches that are in [h - - - h+1] with
the sorted list of item 3 containing the positions of the mismatches that are
in [h---h+i]. All positions in a segment between two successive elements in
the merged list either all correspond to tandem repeats or none does. (See
[7,5] for more details).

The time it takes to find all left and right k-mismatch tandem repeats for h =
[n/2] is O(nk), and the total running time of the algorithm is O(nk log(n/k)+z).

We are now ready to describe our approximate tandem repeats algorithm
for € and k. We use the algorithm of Sect. 2 (with minor modifications and
with different scaling of ¢ we can also use the algorithms of Sect. 3, and Sect.
4 instead). The algorithm has the same steps as the algorithm of [7]. The only
difference is in the way left (and right) tandem repeats are computed. Let h =
|n/2]. Let the string P, = S[h---n] and let T}, = S[h---n]$"/? be the string
which is the catenation of P, and the string $7/2, where $ is a new character that
doesn’t appear in S. The string $™/2 is used to make sure that the text is always
longer than the pattern, we ignore mismatches that are caused by it. Let Pf_l =
S[1---h—1]" and let T# = S[1---n]®. We compute the left repeats as follows.

1. Compute the position of the i-mismatch between the text T} and the pattern
Py, for i = €k,2¢k, -,k — ek, k. We do that by running the algorithm of
Sect. 2 once for every i = €k, 2¢k, -,k — ek, k. Let B; be the vector that
contains these positions. That is B;[r],7 > h contains the position of the
i-mismatch between S[r---n] and S[h---n].

2. Compute the position of the i-mismatch between the text 7% and the pat-
tern P,f';l, for ¢ = €k,2¢ek, -,k — ek, k with the algorithm of Sect. 2. Let
B i € {ek,2¢k,---,k} be the vector that contains these positions. That is
BE[r],r > h contains the position of the i-mismatch between S[1 ---7]% and
S[1---h—1)%

3. For each r > k we find all approximate tandem repeats of length 2r whose
first half contains h as follows. The ¢'* element in the sequence B[h +
r],- -+, Bi[h+7r] contains the position of the gek-mismatch between S[h - - - n]
and S[h+7---n]. The ¢'" element in the sequence BE [h+r—1],---, BE[h+
r — 1] contains the position of the gek-mismatch between S[1---h —1]% and
S[1---h + 7 — 1]%. We activate the procedure of [7] that we described in
item 4 of the previous algorithm, on these sequences of O(1/€) positions of
mismatches in O(1/¢) time. It is easy to see that this algorithm produces all
tandem repeats with at most k& mismatches. The algorithm may also report
tandem reports with at most (1 + 2¢)k-mismatches.

Items 1 and 2 that take O((1/€)nk?/31log"/® nlog k) time dominated the running
time of each recursive call.

Therefore the total time is O((1/€)nk?/3log'/3 nlog klog(n/k) + z).
Acknowledgements: We thank Uri Zwick for suggesting to use prefix sum
arrays in Sect. 2.

References

1. Karl Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039—
1051, 1987.

2. Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string
matching with k mismatches. J. Algorithms, 50(2):257-275, 2004.

3. Richard Cole and Ramesh Hariharan. Approximate string matching: A simpler
faster algorithm. SIAM J. Comput., 31(6):1761-1782, 2002.

4. M. Crochemore and W. Rytter. Text Algorithms. Oxford Univ. Press, New-York,
1994. pp. 27-31.

5. Dan Gusfield. Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge Univ. Press, 1997.

6. Howard J. Karloff. Fast algorithms for approximately counting mismatches. Inf.
Process. Lett., 48(2):53-60, 1993.

7. Gad M. Landau, Jeanette P. Schmidt, and Dina Sokol. An algorithm for approxi-
mate tandem repeats. Journal of Computational Biology, 8(1):1-18, 2001.

8. G.M. Landau and U. Vishkin. Efficient string matching in the presence of errors. In
Proc. 26th IEEE Symposium on Foundations of Computer Science, pages 126136,
Los Alamitos CA, USA, 1985. IEEE Computer Society.

9. Michael G. Main and Richard J. Lorentz. An o(n log n) algorithm for finding all
repetitions in a string. J. Algorithms, 5(3):422-432, 1984.

