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Abstract

Let P be a set of n points in R
d, so that each point is colored by one of C given colors. We

present algorithms for preprocessing P into a data structure that efficiently supports queries
of the form: Given an axis-parallel box Q, count the number of distinct colors of the points of
P ∩Q. We present a general and relatively simple solution that has polylogarithmic query time
and worst-case storage about O(nd). It is based on several interesting structural properties of
the problem that we derive. We also show that for random inputs, the data structure requires
almost linear expected storage.

We then present several techniques for achieving space-time tradeoff. In R
2, the most effi-

cient solution uses fast matrix multiplication in the preprocessing stage. In higher dimensions
we use simpler tradeoff mechanisms, which behave just as well. We give a reduction from ma-
trix multiplication to the offline version of problem, which shows that in R

2 our time-space
tradeoffs are close to optimal in the sense that improving them substantially would improve the
best exponent of matrix multiplication. Finally, we present a generalized matrix multiplication
problem and show its intimate relation to counting colors in boxes in any dimension.

1 Introduction

We consider the following range counting problem. Let P be an input set of n points in R
d, each

colored in one of C different colors. Our goal is to preprocess P into a data structure that, for a
given query axis-parallel box Q ⊂ R

d, can efficiently count the number of distinct colors of points
in Q ∩ P . We call this problem colored orthogonal range counting. In this work we only deal with
the static setting of the problem, not allowing insertions or deletions to the data structure.

The problem arises in many applications. For example, in database applications, the items in
the database have some attribute (e.g., the city where they have been born, the college that they
have attended, or even numerical attributes such as their age), and the query asks for the number of
different attribute values of all the items in a query box (e.g., how many different cities of birth do
the persons in a query box have?). In geometric contexts, the problem arises, e.g., in the following
scenario: We are given C rectilinear polygons in the plane with a total of n edges, and wish to
count the number of distinct polygons that intersect a given query box. Similar problems arise in
higher dimensions. (We note that the attribute (color) is not related to the d coordinates of the
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data points. We could have added it as an additional coordinate, but this would not have changed
the nature of the problem.)

1.1 Related work

Colored intersection range searching. In colored intersection range searching we are given
n colored objects of constant description complexity. We wish to construct a data structure, that
can report or count the colors of objects in a query range. Colored range searching problems1 have
been studied for many years by Gupta, Janardan, Smid and others (see a recent survey by Gupta et
al. [12] for a comprehensive review). As has been observed, colored variants of range searching are
in general much harder to solve than the standard variants. The reason for this discrepancy is that
colored problems are not decomposable. For example, partitioning the query box into two (disjoint)
sub-ranges and counting the number of colors in each sub-range tells us practically nothing about
the number of colors in the full range. Halfspace colored range searching (with halfspaces as queries
and points as colored objects) was studied in [15]. Orthogonal colored range searching problems
(where queries are axis-parallel boxes) were studied in [4, 6, 13, 16, 19]. Additional colored range
searching problems were studied in [4, 6, 14, 15]. Batched colored range intersection problems,
where we report all pairs of colors (c1, c2) such that an object of color c1 intersects an object of
color c2, were studied in [5, 20].

Orthogonal colored range reporting. In [16], Gupta et al. describe solutions for colored range
reporting in R

1, R
2, and R

3, with poly-logarithmic query time and near-linear storage. For R
1, they

perform orthogonal colored range searching (counting and reporting) in both static and dynamic
settings, by a reduction to standard orthogonal range searching in R

2. Specifically, they obtain a
dynamic data structure of size O(n), such that the i distinct colors of the points in a query interval
can be reported in O(log n + i) time (or counted in O(log n) time), while supporting updates
(insertions and deletions of points) in O(log n) time. Specifically, if the points of some color are
p1 < p2 < . . . < pn, then they are mapped to the points (−∞, p1), (p1, p2), . . . , (pn−1, pn) in R

2.
A query interval Q = [a, b] is mapped to the semi-unbounded rectangle Q̃ = [a, b] × (−∞, a]. It
is an easy observation that [a, b] contains at least one (resp., no) point of color c if and only if
[a, b] × (−∞, a] contains exactly one (resp. no) transformed point of color c. Hence, counting or
reporting colors in intervals in R

1 is equivalent to counting or reporting points in the above kind
of semi-unbounded rectangles in the transformed set in R

2.

(b, a)

Q̃

(pi, pi−1)

(pi+2, pi+1)

(pi+1, pi)

x = y

(a, a)

Figure 1: The transformed point set of color c (points below the line x = y). The highlighted
semi-unbounded rectangle Q̃ = [a, b] × (−∞, a] contains exactly one transformed point of color c;
the interval [a, b] contains two original points of color c.

1These problems are also referred to in the literature as generalized range searching problems; see [12].
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In R
2, the static data structure of Janardan et al. [19] uses O(n log2 n) space and answers

queries in time O(log n + i), where as above, i is the output size. Gupta et al. [16] obtain a semi-
dynamic solution for the reporting problem by first dealing with the special case, when the queries
are quadrants of the form [a,∞) × [b,∞). They reduce this special case to standard ray-segment
intersection searching in R

2. In order to process arbitrary rectangular queries, they decompose a
rectangular query into four quadrant queries, each answered over an appropriate subset of points.
The resulting data structure requires O(n log2 n) space and allows reporting the i distinct colors of
points contained in a query rectangle in O(log2 n + i) time. We can insert a point into this data
structure in O(log3 n) amortized time. Finally, Gupta et al. [16] gave a fully dynamic solution to
the reporting problem in R

2. Their solution is based on decomposing the two-dimensional query
into O(log n) one-dimensional queries, each answered over a proper subset of points. This data
structure uses O(n log n) space, supports queries in O(log2 n + i log n) time, where i is the number
of reported colors, and allows insertions and deletions in O(log2 n) time.

In R
3, Gupta et al. [16] extend their two-dimensional semi-dynamic solution and describe a

static data structure of size O(n log4 n) with O(log2 n + i) query time, where i is the number of
reported colors. In [13], Gupta et al. describe a static data structure for orthogonal colored range
reporting in any dimension, which requires storage O(n1+ǫ)2, such that for any query box in R

d,
the i distinct colors of points contained in it are reported in O(log n + i) time.

These results use the fact that if we decompose the problem into a small (constant or logarith-
mic) number of subproblems, and solve each subproblem separately then each color is discovered
only a small number of times. This still keeps the query time close to O(polylogn + i).

Orthogonal colored range counting. Orthogonal colored range counting turns out to be harder
than orthogonal colored range reporting. In [16], Gupta et al. describe solutions for colored range
counting in R

1 and R
2. Similarly to the case of reporting, they reduce3 the one-dimensional problem

to standard orthogonal range searching in R
2. The resulting solution has query time O(log n) and

storage and preprocessing cost O(n log n). Its dynamic version also requires O(n log n) space and
supports queries and updates in O(log2 n) time. (The storage of the static and the dynamic data
structures can be further reduced by a logarithmic factor, as noted in [4].) Using persistence, Gupta
et al. [16] extend their one-dimensional data structure into a static two-dimensional structure which
supports queries that involve 3-sided boxes; that is, boxes of the form, say, [a, b] × (−∞, c]. Using
a linear number of copies of this structure, they obtain a complete solution in R

2, with query time
O(log2 n), and storage and preprocessing cost O(n2 log2 n).

Halfspace colored range searching. Efficient static data structures for halfspace colored range
searching were described by Gupta et al. [15]. Their solution in R

2 and R
3 for counting and

reporting is based, through duality, on a straightforward reduction to an instance of the ray-
envelope intersection problem. In this problem, we are given a set of upper envelopes of linear
functions (the lines/planes dual to the input points) such that each envelope is computed for the
lines/planes of some fixed color. The overall complexity of the envelopes is O(n). The objective is to
preprocess the envelopes into a data structure such that given an upward vertical ray we can report
(resp., count) the envelopes that it intersects. See Figure 2. The solution in R

2 uses O(n log n)
space and answers reporting (resp., counting) queries in O(log2 n + i) (resp. O(n1/2)) time. The
solution in R

3 is based on partition trees (see [22]) and uses O(n log2 n) space and answers reporting
(resp., counting) queries in O(n1/2+ǫ + i) (resp., O(n2/3+ǫ)) time. Using cutting trees instead [24],

2Bounds of this form hold for any ǫ > 0; the constant of proportionality depends on ǫ, and generally tends to ∞

as ǫ descends to 0.
3In a sense, their reduction is the forefather of the decomposition scheme that we develop for the higher-dimensional

cases; see Section 3.
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reporting in R
3 can be solved with O(n2+ǫ) storage, so that a query takes O(log2 n + i) time. Note

that the time and space bounds for the colored range counting in R
2 and R

3 are close to those
achieved for standard range counting problem in R

2 and R
3, respectively [22, 24].

��h∗

Ec

Figure 2: Ec is the upper envelope of the dual hyperplanes of the input points having color c. h∗ is
the point dual to the hyperplane h bounding the query half-space below h. There is an input point
below h having color c if and only if the the upward vertical ray emanating from h∗ intersects Ec

(that is, h∗ lies below Ec).

This approach does not efficiently generalize to R
d, for d > 3. Gupta et al. [15] solve the

reporting problem in R
d, for d > 3, using a balanced binary tree CT built over the colors. Each

node v in CT points to a halfspace range-emptiness data structure (described in [21]), built over
the points, whose colors belong to the subtree of v. The query algorithm starts at the root of CT
and continues to the children of a node v only if the query range contains at least one point, whose
color belongs to the subtree of v. The resulting data structure requires O(n⌊d/2⌋/ log⌊d/2⌋−1−ǫ n)
storage, and can report the i distinct colors of points contained in a query halfspace in time
O(log n + i log2 n). Other applications of this approach can be found in [14].

Batched colored intersection searching. In a batched colored intersection searching problem
we are given a set of colored geometric objects, and wish to compute all the pairs of colors (c1, c2)
such that there are two intersecting input objects, one of color c1 and one of color c2. Often
a bipartite version of the problem is considered, where we are given two sets of objects of two
different classes, and wish to report all pairs (c1, c2) such that an object of the first set having
color c1 intersects an object of the second set having color c2. Efficient solutions of the colored
batched intersection searching problem for line segments in R

1, line segments in R
2, axis-parallel

boxes in R
d, points and triangles in R

2, and points and halfspaces in R
d, are given in [5, 20]. For

example, in the case of segments in R
1 the problem can be solved in time O(nc0.69) if n ≥ c1.69,

and O(n0.7c1.21 + c2) if n ≤ c1.69, using matrix multiplication techniques [20]. Variants of these
techniques will also be used in this paper. See Section 4.

1.2 Our contribution

We present a different approach to orthogonal colored range counting, based on a reduction from
this problem to standard orthogonal range counting, which works in any dimension. We transform
P into a higher-dimensional space, where each query box corresponds to a point, and for each color
c ∈ C, the space Q(c)+ of all (points representing) query boxes containing a point with color c is
the union of positive orthants.

For each color c, we show how to decompose Q(c)+ into pairwise disjoint boxes. As a con-
sequence, a query box contains a point of color c iff the point corresponding to the query in the
transformed space is contained in exactly one of the boxes in the decomposition of Q(c)+. Our
algorithm thus collects the decomposition boxes, over all colors c, and stores them in a data struc-
ture that supports efficient containment counting queries of the form: Given a query point x, count
the number of boxes that contain x.
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A straightforward implementation of this technique yields a solution for the colored orthogonal
range counting problem in R

d, having query time O(log2d−1 n), storage complexity O(nd log2d−1 n)
and worst case (deterministic) preprocessing time O(nd log2d−1 n). A simple enhancement of the
technique reduces all three performance parameters by a factor of O(log n), thus matching the
performance parameters of the algorithms of Gupta et al. [12] for d = 2. If our queries are
orthants; that is, boxes that are semi-unbounded in each (say, negative) coordinate direction,
we can do better, obtaining a data structure with a query time of O(logd−1 n) and storage and
preprocessing cost O(n⌊d/2⌋ logd−1 n). For d ≥ 4 and even, the same enhancement trick mentioned
above reduces all three performance parameters by a log n factor.

In fact, the storage size and preprocessing time of our algorithm depend on the overall number
of boxes in the decomposition of Q(c)+, over all colors c. This can be as large as O(nd) (for general
box queries), but in practice we expect it to be much smaller. To support this statement, we
show that, for random point sets (drawn independently and uniformly at random from [0, 1]d), the
expected number of boxes in our decomposition is only O(n logd−1 n), which leads to algorithms
with polylogarithmic query time and near-linear expected storage and preprocessing cost.

Time-space tradeoff. We also consider techniques for reducing the storage (and preprocessing) at
the cost of increasing the query time. In R

2, we use a technique of Gupta et al. [12] to decompose a
query [a, b]× [c, d] into two 3-sided queries [a, b]×(−∞, d] and [a, b]× [c,∞) on secondary structures
stored at the nodes of a binary search tree over the points sorted by their y-coordinates. (This
leads to significant gains, because, as we show, the structure for answering 3-sided queries requires
only near-linear storage and preprocessing, whereas the structure for 4-sided queries may require
near-quadratic storage.) We obtain the solution for each 3-sided query as a collection of pairwise
disjoint canonical sets of colors. The difficulty is that a single color may appear in the solutions
of the two 3-sided queries but we need to count it only once. To efficiently compute the union of
the answers of the two queries we use the principle of inclusion-exclusion to reduce the problem
to computing the sizes of all pairwise intersections of the output canonical subsets. We use sparse
matrix multiplication techniques [7, 20, 26] to precompute efficiently some of these intersection
sizes, and handle others on the fly when processing a query.

We obtain a solution that has query time O(X log7 n), and storage O
(

(

n
X

)2
log6 n + n log4 n

)

,

for any tradeoff parameter 1 ≤ X ≤ n. The construction time of the data structure is (the O∗(·)
notation hides polylogarithmic factors):























O∗
(

n(ω+1)/2

X(ω−1)/2

)

= O
(

n1.688

X0.688

)

when X ≥ n
ω−1
ω+1 ≈ n0.408,

O∗

(

n
2−αβ+2β

β+1

X
2−αβ
β+1

)

= O
(

n1.898

X1.203

)

when n
α/2

α/2+1 ≈ n0.128 ≤ X ≤ n
ω−1
ω+1 ≈ n0.408,

O∗( n2

X2 ) when X ≤ n
α/2

α/2+1 ≈ n0.128.

Here ω is the smallest number such that two t × t matrices can be multiplied in time O(tω)
(the best known upper bound on ω is 2.376), α > 0.294 is another parameter related to matrix
multiplication and β = ω−2

1−α ; see [10, 11] and Section 4. In particular, it follows from these bounds

that, for m ≤ n, we can answer m queries in overall time O∗(nm
ω−1
ω+1 ) = O(nm0.408) (including

preprocessing).
Interestingly, we also show a reduction of a version of sparse matrix multiplication to an offline

version of colored orthogonal range counting in R
2. This reduction implies that if we can answer m

queries on a set of n points, for m
1+ω

4 ≤ n, in o(nm
ω−1

4 ) = o(n1.34) time, then we can obtain a better
algorithm for sparse rectangular matrix multiplication than the best known to date. Furthermore,

if we can answer n such queries in o(n
2.376

2 ) = o(n1.188) time, we improve the best known bound on
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ω. This suggest that our bounds, while not claimed to be near optimal, are significant, and that
substantial improvements are likely to be quite different.

A simple bucketing technique allows us to trade time for space also in dimension d > 2. Specif-
ically, for any threshold parameter 1 ≤ X ≤ n, we obtain a data structure, having query time

O(X logd n + log2d−1 n) and preprocessing and storage cost O( nd

Xd−1 log2d−1 n). We suggest two

additional techniques to improve this tradeoff for X = Ω∗(n
d−2
d−1 ).

Finally, we show that colored orthogonal range counting in dimension d > 2 is related to the
following generalization of sparse matrix multiplication, which we believe to be of independent
interest. One is given a 0-1 matrix A with N nonzero entries in sparse representation, and a list O
of M d-tuples of indices of rows of A. Let t be the number of columns in A. The goal is to compute
for each tuple (i1, . . . , id) ∈ O the sum

∑t
j=1

∏d
k=1 Aik,j. We call this problem d-dimensional output

restricted sparse matrix multiplication (ORSMMd). (Note that the case d = 2 asks for computing
t specified entries in AAT .) We give a reduction from this problem to colored range counting in
boxes in dimension d, showing that the offline version of the latter problem is at least as hard as
this generalized matrix multiplication problem. Finally, we describe reasonably efficient algorithms
for ORSMMd.

The paper is organized as follows.
In Section 2 we describe the solution to colored orthogonal range counting in R

d, having poly-
logarithmic query time and about O(nd) space. The solution is based on decomposition of the
c-positive region Q+(c) (the union of the positive orthants dual to points with color c —see below),
for each of the colors c, into pairwise disjoint boxes.

In Section 3 we describe the decomposition of the c-positive region into disjoint boxes and
analyze its complexity and construction time. Next, we analyze, for random point sets (according to
a natural model that we detail in Section 3.2), the expected number of boxes in our decomposition.
This leads to algorithms with polylogarithmic query time and near-linear expected storage and
preprocessing cost.

In Section 4 we describe efficient methods for achieving time-space tradeoff. We also consider
the time required to answer m queries over an input set of n colored points.

In Section 5 we consider the relation between colored orthogonal range counting in R
d and

sparse matrix multiplication, or its generalized version ORSMMd, as defined above. In addition,
we provide efficient algorithms for solving the generalized ORSMMd.

2 Reducing to Standard Orthogonal Range Counting

We first solve the semi-unbounded colored range counting problem, in which the query boxes are
orthants of the form

∏d
i=1(−∞, ai]. Then we show how to reduce the colored counting problem in

general boxes to the semi-unbounded case.
Let us represent each query orthant

∏d
i=1(−∞, ai] by its apex (a1, . . . , ad) ∈ R

d. Fix a color c,
1 ≤ c ≤ C, and let Pc denote the subset of points of P with color c. For a point p ∈ Pc, denote
by Q+

p ⊆ R
d the locus of all points that represent (closed) query orthants containing p. Clearly,

if p = (p1, . . . , pd), then Q+
p is the positive orthant

∏d
i=1[pi,∞) ⊆ R

d. We refer to Q+
p as the dual

orthant of p.
The c-positive region of color c, denoted Q(c)+, is the region in R

d of all points representing
queries that contain at least one point of Pc. Clearly, Q(c)+ =

⋃

p∈Pc
Q+

p . For any point set A ⊂ R
d,

define U(A) :=
⋃

p∈A Q+
p . According to this definition, Q(c)+ = U(Pc). In Section 3 we establish

the following theorem.

Theorem 2.1. For any set A ⊂ R
d of n points, we can decompose U(A) into O(n⌊d/2⌋) pairwise

disjoint boxes. Furthermore we can generate these boxes in O(B logd−1 n) time, where B is the
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number of boxes.

We remark that Theorem 2.1 can be regarded as a refinement of the result of Boissonnat et
al. [3] concerning the complexity of the union of n congruent axis-parallel cubes in R

d (think of the
orthants as very large congruent cubes). As a matter of fact, our constructive proof of the theorem
follows similar footsteps to those in the proof of the bound in [3]; see also [8]. In the rest of the
paper, unless stated otherwise, decomposition of U(A) means the disjoint decomposition asserted
in Theorem 2.1.

We use Theorem 2.1 to solve the semi-unbounded colored range counting problem as follows.
For each color 1 ≤ c ≤ C, we generate the boxes in the decomposition of U(Pc) = Q(c)+. We build
a standard orthogonal range searching data structure for counting the number of boxes containing
a query point4 q ∈ R

d. By construction (using the fact that the boxes corresponding to any fixed
color are pairwise disjoint), this number is equal to the number of distinct colors that appear in
the original query orthant.

To implement the data structure, we use a d-dimensional segment tree with fractional cascading
at its deepest level. Let Bc be the number of boxes in the decomposition of Q(c)+. Then this
structure has query time O(logd−1 n), and space and preprocessing time O(

∑

1≤c≤C Bc logd−1 n).
These improved bounds on the storage and preprocessing time (by a logarithmic factor, as compared
with standard d-dimensional segment trees) are based on the fact, established below in Section 3,
that all the decomposition boxes are unbounded in the positive x1-direction. This allows us to use
a simple search tree instead of a segment tree at the bottom level of the data structure, thereby
saving a logarithmic factor in both storage and preprocessing time. Fractional cascading takes care
care of the corresponding saving in the query time. We thus obtain the following theorem.

Theorem 2.2. Let P be a set of n colored points in R
d, let Bc be the number of boxes in the

decomposition of Q(c)+, for each color 1 ≤ c ≤ C, and let B =
∑

1≤c≤C Bc. Then there exists a

data structure supporting semi-unbounded (orthant) colored range counting queries in O(logd−1 n)
time, whose storage is O(B logd−1 n) and which can be constructed in O(B logd−1 n) time.

Using the bounds of Theorem 2.1, we immediately obtain the following corollary.

Theorem 2.3. There exists a data structure for colored semi-unbounded (orthant) range counting
queries on n colored points in dimension d ≥ 2, which answers a query in O(logd−1 n) time, requires
O(n⌊d/2⌋ logd−1 n) space, and can be constructed in O(n⌊d/2⌋ logd−1 n) time.

General orthogonal range counting. The general colored orthogonal range counting prob-
lem, in which queries are arbitrary bounded axis-parallel boxes in R

d, can be reduced to the
semi-unbounded case in R

2d, as follows. We denote the xi-coordinate of a point p by xi(p). Dou-
ble all the coordinates of each point p = (x1(p), . . . , xi(p), . . . , xd(p)) ∈ P , to obtain the point
(x1(p), x1(p), . . . , xi(p), xi(p), . . . , xd(p), xd(p)) in R

2d, which is given the same color as the original

point p. Now, answering a colored range counting query
∏d

i=1[ai, bi] on the original point set is

equivalent to answering the query
∏d

i=1[ai,∞) × (−∞, bi] on the transformed point set. Thus we
obtain the following theorems.

Theorem 2.4. Let P be a set of n colored points in R
d, let P̃ ⊂ R

2d be the transformed point
set of P as defined above, let Bc be the number of boxes in the decomposition of U(P̃c), for color
1 ≤ c ≤ C, and let B =

∑

1≤c≤C Bc. Then there exists a data structure supporting colored range

counting queries in O(log2d−1 n) time, whose storage is O(B log2d−1 n) and which can be constructed
in O(B log2d−1 n) time.

4The problem is called the “stabbing query problem” in [2].
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Theorem 2.5. There exists a data structure for colored orthogonal range counting queries on n col-
ored points in dimension d ≥ 2, which answers a query in O(log2d−1 n) time, requires O(nd log2d−1 n)
space, and can be constructed in O(nd log2d−1 n) time.

We can generalize this approach to colored orthogonal range counting queries for boxes with
bounded projections on k specific coordinates, and semi-unbounded projections on the remaining
d − k coordinates. In this case we can reduce the problem to a semi-unbounded problem in R

d+k,
by duplicating the k “bounded” coordinates of each point in our input set. A query then takes
O(logd+k−1 n) time, and the storage and preprocessing cost are both O(n⌊(d+k)/2⌋ logk+d−1 n).

As a special case, consider the colored orthogonal range counting problem on n points in the
plane, where the queries are 3-sided boxes of the form [a, b] × (−∞, c]. Here d = 2, k = 1, and
we obtain an algorithm with O(log2 n) query time and space and preprocessing cost O(n log2 n).
These performance parameters are the same as those obtained by Gupta et al. [12], using a dif-
ferent approach based on persistence (which, as already noted, does not seem to extend to higher
dimensions).

We can then use the same paradigm as in [12] to extend this solution to the general case of
bounded box queries. That is, let (p1, . . . , pn) be the sorted sequence of the points of P in their
increasing y-order. For each i = 1, . . . , n, construct the above data structure (for 3-sided queries)
for the set P+

i = {pj | j ≥ i}. Now, given a query box [a, b] × [c, d], we find, by binary search,
the index i satisfying y(pi) ≥ c > y(pi−1), and search with the 3-sided box [a, b] × (−∞, d] in the
structure of P+

i . This yields a slightly improved algorithm, in which a query takes O(log2 n) time,
and the storage and the preprocessing cost are both O(n2 log2 n) (saving a logarithmic factor over
the bounds in Theorem 2.5). The same enhancement can be applied in any dimension, leading to
the following result.

Theorem 2.6. There exists a data structure for colored orthogonal range counting queries on n col-
ored points in dimension d ≥ 2, which answers a query in O(log2d−2 n) time, requires O(nd log2d−2 n)
space, and can be constructed in O(nd log2d−2 n) time.

The same enhancement can save a logarithmic factor for any d and k for which d + k is even
and ≥ 4. In particular, for d ≥ 4 even and k = 0, we can improve all three performance parameters
in Theorem 2.3 by a logarithmic factor.

In Section 4 we present a more sophisticated approach that reduces colored box range counting
to colored range counting with boxes unbounded in one direction, so as to obtain a much more
significant reduction in storage and preprocessing (at the cost of increasing query time).

3 Decomposing the Union of Orthants into Disjoint Boxes

Let A be a set of n points in R
d in general position, meaning that no two points have the same

xi-coordinate5, for any i = 1, . . . , d. In this subsection we prove Theorem 2.1 and show how to
decompose U(A) into pairwise disjoint boxes.

An open maximal empty orthant O (with respect to A) is a region of the form
∏d

i=1(−∞, ai),
where ai ∈ R ∪ {+∞} for each i, which does not contain any point of A, and is maximal with this
property under inclusion. That is, any open orthant O′ that strictly contains O must also contain
a point of A. It follows that each facet of O must contain a distinct point of A in its relative
interior. Let si be the point in the relative interior of the facet of O orthogonal to the xi-axis,
for 1 ≤ i ≤ d. Thus O =

∏d
i=1(−∞, xi(si)) (see Figure 3). Note that we also include under this

5We can remove the general position assumption by imposing a strict order on the xi-coordinates of all points for
1 ≤ i ≤ d, breaking ties arbitrarily. We then construct the decomposition using the new coordinates. In terms of the
old coordinates some of the boxes that we obtain may be empty.
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definition orthants O that are unbounded in the positive direction of some coordinate axes. As an
extreme example, the halfspace x1 < mins∈A x1(s) is such a degenerate maximal empty orthant.
In such cases, not all the points si are defined. (Alternatively, for each coordinate xi in which O
is unbounded in both directions, we can define si to be the point at infinity whose xi-coordinate is
+∞ and all other coordinates are −∞.) We say that O is defined by the tuple of points 〈s1, . . . , sd〉.

s1

s2

O

Figure 3: A maximal empty orthant.

Our decomposition of U(A) is constructed so that there is a bijection between its boxes and the
maximal empty orthants defined by tuples 〈s1, . . . , sd〉 such that x1(s1) < ∞. Specifically, let O be
such a maximal empty orthant defined by 〈s1, . . . , sd〉. The box in our decomposition corresponding
to O is

B(O) = [x1(s1),∞) ×
d

∏

i=2

[

max
j<i

{xi(sj)}, xi(si)

)

.

Note that each interval in the product is nonempty, which follows from obvious properties of
orthants. See Figure 4 for an illustration.
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�������
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�������
�������
�������
�������
�������

O

B(O)

Figure 4: A maximal empty orthant O and its corresponding box B(O) in the decomposition of
U(A).

Lemma 3.1. Let A be a finite point set in R
d, and let B be the collection of boxes B(O), where O

ranges over all maximal empty orthants with respect to A, which are defined by tuples 〈s1, . . . , sd〉
satisfying x1(s1) < ∞. Then the boxes of B are pairwise disjoint, and their union is U(A).

Proof. We establish the lemma by induction on the dimension of the space containing A.
For the induction basis, consider a one-dimensional set of points A = {p1, . . . , pn} ⊂ R, where

p1 < p2 < · · · < pn. The orthant (−∞, p1), defined by 〈p1〉, is the only maximal empty orthant with
respect to A (which clearly satisfies x1(p1) < ∞). The corresponding box B = [x1(s1),∞) = [p1,∞)
is indeed equal to U(A), as required.

Assume now that the lemma is true for any set of points in R
d−1. Sweep U(A) with a hyperplane

h orthogonal to the xd-axis. Let (p1, . . . , pn) be the sequence of the points of A sorted in increasing
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order of their xd-coordinates. For 1 ≤ j ≤ n, put qj := xd(pj), let hj be the hyperplane xd = qj,
and let Hj be the half-closed slab bounded between hj and hj+1 (containing hj but not hj+1); let
Hn be the infinite slab “beyond” hn, i.e., the slab xd ≥ xd(pn).

By definition, the boxes in our decomposition that intersect Hj correspond to maximal empty
orthants defined by tuples 〈s1, . . . , sd〉, such that qj+1 ≤ xd(sd) (or xd(sd) = ∞ for j = n),
maxj<d{xd(sj)} ≤ qj, and x1(s1) < ∞. See Figure 5 for an illustration. Denote by Oj the set of
these orthants, and denote by B(Oj) the corresponding set of boxes. We claim that the intersections
of the boxes in B(Oj) with Hj form a pairwise disjoint decomposition of Hj ∩ U(A).

Hj

pj

hj

O

pj+1hj+1

Figure 5: The proof of Lemma 3.1.

Indeed, let Dj = {pi | i ≤ j}, and let D′
j be the orthogonal projection of Dj on the hyperplane

hj . Let O′
j be the set of maximal empty orthants with respect to D′

j in the (d − 1)-dimensional
space hj , defined by tuples 〈s1, . . . , sd−1〉 satisfying x1(s1) < ∞. Let B(O′

j) be the corresponding
set of boxes within hj . The following facts are easy to verify.

1. The intersection of U(A) with hj is equal to the intersection of U(Dj) with hj , which in turn
is equal to U(D′

j).

2. Each maximal empty orthant O′ ∈ O′
j is the intersection of an orthant O ∈ Oj with hj .

Conversely, for each orthant O ∈ Oj , the (d − 1)-orthant O′ = O ∩ hj is a maximal empty
orthant with respect to D′

j .

3. Let O ∈ Oj and let B(O) be the corresponding box. The intersection of B(O) with hj is
equal to B(O′), where O′ is the (d − 1)-orthant O ∩ hj .

See Figure 5 for an illustration. By the induction hypothesis, the boxes of B(O′
j) form a pairwise

disjoint decomposition of U(D′
j). Furthermore, by (2) and (3), each box B(O) in B(Oj) corresponds

to a box B(O′) in B(O′
j), where O′ = O∩hj , so that B(O′)×[qj, qj+1) ⊆ B(O), and vice versa. Thus

the boxes in B(Oj) are pairwise disjoint within Hj, and by (1) their union is equal to U(A) ∩ Hj.
Repeating this argument for each slab Hj completes the proof.

The number of boxes. Let A ⊂ R
d be an arbitrary finite set of points. As we have seen, the

number of cells in the decomposition of U(A) is bounded by the number of maximal empty orthants
with respect to A. Hence, it suffices to bound the latter quantity.

Here is a straightforward constructive derivation of the bound O(n⌊d/2⌋) for this latter quantity,
which resembles the analysis of Boissonnat et al. [3]. Given any empty orthant O, with some
points of A on its boundary (possibly on lower-dimensional boundary faces), a shift of O is the
operation of shrinking O by translating a facet of O in the negative direction (of the orthogonal
coordinate axis). By the general position assumption, when a shift starts, exactly one point leaves
the boundary of O. The shift is legal if such a point lies in the relative interior of a facet. A legal
shift terminates as soon as one of the points of A on ∂O reaches the relative boundary of the face
it is currently on, so that it now lies on a lower-dimensional face. Note that the orthant reached at
the end of a legal shift is contained in the original orthant and is thus also empty.
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a a

b b b c
cc

a

(i) (ii) (iii)

Figure 6: Three legal shifts that turn a maximal empty orthant into the one that has point b as an
apex.

We start with a maximal empty orthant O, and apply to it any sequence of legal shifts, until we
reach an orthant O′ to which no further legal shifts can be applied. See Figure 6. Upon termination,
no point of A lies in the relative interior of any facet of O′. Hence each point of A on ∂O′ determines
at least two of the coordinate values that define facets of O′, and, since we assume general position,
no such coordinate value is determined by more than one point. Hence, the number of points
on ∂O′ is at most ⌊d/2⌋, which implies that the number of such empty orthants O′, which can be
obtained from some maximal empty orthant in the manner described above, is O(n⌊d/2⌋). Moreover,
knowing the sequence of directions of the legal shifts that have transformed an original maximal
empty orthant O into O′, the orthant O can be uniquely reconstructed from O′, using a sequence
of reverse legal shifts, each stopping when the facet that moves outwards hits a new point. Clearly,
the total number of such sequences of shifts is at most d!. The bound on the number of maximal
empty orthants with respect to A follows. This completes the proof of the first part of Theorem
2.1.

3.1 Output sensitive construction

In order to construct the desired decomposition of U(A), it suffices to enumerate all the maximal
empty orthants with respect to A, each with the d-tuple defining it. We have seen that each such
maximal empty orthant can be defined (up to a constant number of possibilities) by a t-tuple of
points of A, such that t ≤ ⌊d/2⌋. The constructive proof of the bound on the number of boxes
(or, rather, of maximal open orthants) can be trivially converted into an algorithm that generates
O(n⌊d/2⌋) candidate empty orthants, prunes away those that are not empty (using orthogonal
emptiness range queries on the set A), and extends each of them, by some sequence (out of O(1)
possible ones) of reverse legal shifts, into a maximal empty orthant.

The running time of this straightforward algorithm is close to O(n⌊d/2⌋), and is always Ω(n⌊d/2⌋),
which might be much larger than the actual complexity of the decomposition of U(A). In this
section, we present an alternative output sensitive algorithm for constructing all maximal empty
orthants with respect to A. This immediately leads to an output sensitive construction of our
decomposition of U(A).

We can enumerate all maximal empty orthants with respect to A by implementing the sweep
that was used to establish Lemma 3.1. Let p1, . . . , pn be the points in the increasing order of their
xd-coordinates. We sweep R

d with a hyperplane π orthogonal to the xd-direction. As above, let
Dj = {pi | i ≤ j}, let p′j be the projection of pj on π, and let D′

j be the projection of Dj onto π,
i.e., D′

j = {p′i | i ≤ j}.
After π passes through pj, we update the maximal empty ((d − 1)-dimensional) orthants with

respect to D′
j on π. Specifically, we find the set Q of all maximal empty orthants (on π) with respect

to D′
j−1 which are not maximal empty orthants with respect to D′

j (because the projection p′j of pj ,
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or rather, pj itself at this moment, lies in their relative interior). Each such orthant, together with
pj, defines a maximal empty orthant with respect to A, which we output. We delete all orthants
in Q, and generate a new set N of maximal empty orthants with respect to D′

j which were not
maximal empty (d − 1)-orthants with respect to D′

j−1 (those have a (d − 2)-facet containing pj in
its relative interior). See Figure 7.

pj

O1

O2

O3

pj

N1

N2

O1

O3

(a) (b)

Figure 7: (a) The set Q of (d − 1)-orthants that are eliminated by pj. (b) The set N of (d − 1)-
orthants that are generated by pj. In the example, |Q| = 3 and |N | = 2. The new orthant N1 is
obtained by shrinking O1 to the left, and N2 is obtained by shrinking O3 downwards.

To efficiently identify the set Q when processing pj , we maintain the maximal empty (d − 1)-
orthants on π in a dynamic (d−1)-dimensional range tree, where each orthant is represented by its
apex (a point on π). Using this structure, we can find all k orthants containing p′j in O(logd−1 n+k)

time. We can also delete from, or insert into the dynamic data structure an orthant, in O(logd−1 n)
time (see [25] for more details).

To efficiently identify the set N , we make the following observation. Let O be an orthant in N ,
containing pj on its facet which is orthogonal to the xi-axis, for some i. Ignoring pj, and shifting
the facet containing pj away from O, we either hit a point of D′

j−1, or have this facet of O reach
infinity. In both cases, we end up with an orthant O′ of Q. Hence, each orthant in N can be
obtained by taking an orthant O′ of Q, and by replacing a facet of O′ by a parallel facet through
pj. (Not all orthants obtained in this manner are valid: one also needs to ensure that each facet
of the shrunk orthant, other than the one through pj , still contains a point of D′

j in its relative
interior.)

It is easily verified that the total number of updates to the dynamic range tree is bounded by
the number H of maximal empty orthants with respect to A. Indeed, this is clear for orthants in Q:
each such orthant O corresponds to a unique maximal empty d-orthant that is “completed” when
the sweep hyperplane reaches its present position. Each orthant O in N will either be completed
into a maximal empty d-orthant when it hits a new point at some future position of the sweep
hyperplane, or else survive until the sweep is completed, and then become a degenerate d-orthant,
unbounded in both directions of the xd-axis. Hence, the decomposition of U(A) can be constructed
in time O(H logd−1 n).

It remains to prove that the number B of boxes in the decomposition of U(A), is O(H). Note
that not every maximal empty orthant induces a decomposition cell B(O), because O may be
unbounded in the positive direction of the x1-axis, having x1(s1) = ∞. Instead, we claim that each
maximal empty orthant corresponds to a distinct face on the boundary of U(A). This is sufficient,
since the total complexity of the boundary of U(A) is clearly Θ(B). To establish the claim, let O
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be a maximal empty orthant, defined by the d-tuple < s1, . . . , sd >. Let F be the set of all points
o, such that for 1 ≤ i ≤ d, xi(o) = xi(si) if xi(si) < ∞, and xi(o) ≥ max1≤j 6=i≤d{xi(sj)} otherwise.
First, observe that o belongs to the boundary of U(A). Moreover, let o′ be a point obtained by
shifting o in the positive xi-direction, for some 1 ≤ i ≤ d such that xi(si) < ∞. Clearly, the
(negatively-oriented) orthant O′ whose apex is o′ contains si in its interior. Hence, o′ does not
belong to U(A). Let k be the number of indices 1 ≤ i ≤ d such that xi(si) = ∞. Then F is a
k-dimensional face, on the boundary of U(A), having nonzero (and unbounded) extent in exactly
the k coordinates just defined. Moreover, as easy to check, O is uniquely defined by F .

This implies the second part of Theorem 2.1, and thus completes its proof. 2

3.2 Random sets of points

The decomposition-based data structure of Theorem 2.5 is especially efficient, when the number of
maximal empty orthants with respect to each of the sets Pc ⊂ R

d, for 1 ≤ c ≤ C, are all small. A
maximal empty box with respect to a point set P is an orthogonal axis-parallel box, and which does
not contain any point of P in its interior, and is maximal with this property under inclusion (so, as
in the case of orthants, each facet of the box contains a point of P in its relative interior). We allow
a maximal empty box to be unbounded in certain directions, so every maximal empty orthant with
respect to P is also a maximal empty box. In this subsection we prove that the expected number
of maximal empty boxes for a random point-set with n points in R

d is only O(n logd−1 n). It would
be interesting to explore the connection between this result and the known bound of O(logd−1 n)
on the number of maximal points in a set of n random points in R

d; see [1, 17].
We assume that the set P is constructed so that each point is chosen independently and uni-

formly at random from the uniform distribution on [0, 1]d. Thus, with probability 1, the points of
P are in general position, and, for each i, the xi-coordinates of the sampled points form a random
permutation, which are independent of each other. We define a t-box to be an axis-parallel box B,
that may be unbounded in certain directions, containing t points on its boundary, such that each
one of the finite facets of B contains a point of P (possibly on its relative boundary). Let Bt,k(P )
(resp., Bt,≤k(P )), for 1 ≤ t ≤ 2d, denote the set of t-boxes containing exactly (resp., at most) k
points of P in their interior, and put Nt,≤k(P ) = |Bt,≤k(P )|. Note that we may have degenerate
boxes with identical opposite facets. However, the number of such boxes is at most O(n), due

to the general position assumption. Finally, we let N
(d)
t,k (n) (resp., N

(d)
t,≤k(n)) denote the expected

value of |Bt,k(P )| (resp., |Bt,≤k(P )|), over the random choice of a set P of n points in R
d. In order

to obtain the asserted bound on the expected number of maximal empty boxes with respect to P ,

it suffices to show that N
(d)
t,0 (n) = O(n logd−1 n), for all 1 ≤ t ≤ 2d.

We prove the bound by induction on d. The case d = 1 is trivial: We clearly have N
(1)
1,0 (n) is

O(n), since any empty non-degenerate 1-box in R
1 is an empty ray emanating from a point of P .

Similarly, N
(1)
2,0 (n) = n − 1, since any empty 2-box is a segment bounded by a pair of points of P .

Assume now that d > 1, and that the bound holds for d− 1 (and for all t ≤ 2(d − 1)). Assume
also (without really changing the model) that we draw each point p ∈ P by first drawing a point
p′ ∈ [0, 1]d−1, thereby fixing the projection of p on the hyperplane xd = 0 to be p′, and then drawing
xd uniformly from [0, 1] to be the xd-coordinate of p.

Let P ′ = {p′ | p ∈ P} be the set of projections of all points in P on the hyperplane xd = 0. Let
B̃t,0(P ) denote the set of empty t-boxes of P whose both facets orthogonal to the xd-axis contain

a point of P on their relative boundary. Set Ñt,0(P ) = |B̃t,0(P )| and Ñt,0(n) = max|P |=n Ñt,0(P ).

Every t-box B in B̃t,0(P ) corresponds to the t-box B′ of P ′, obtained by projecting B onto xd = 0;
note, however, that B′ is not necessarily empty.

Fix P ′, and consider the random drawings of the xd-coordinates of the points of P . What
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is the probability that a t-box B′ in Bt,k(P
′) corresponds to an empty t-box B in B̃d

t,0(P )? For
this to happen, it is necessary and sufficient that the t boundary points of B′ be consecutive in
the permutation defined by the t + k boundary and interior points of B′ along the xd-axis (see

Figure 8). This happens with probability
t!(k + 1)!

(k + t)!
=

t!

(k + 2)(k + 3) · · · (k + t)
. So we obtain the

following inequality:

E(Ñt,0(P )) ≤
n−t
∑

k=0

t!
∏t

i=2(k + i)
|Bt,k(P

′)|.

Rearranging this sum, we get:

E(|B̃t,0(P )|) ≤
n−t
∑

k=0

t!(t − 1)
∏t+1

i=2(k + i)
|Bt,≤k(P

′)| +
t!

∏t
i=2(n − t + i)

|Bt,≤n−t(P
′)|.

This holds for every choice of P ′, so if we average over the choices of P ′, we obtain the following
recurrence:

Ñ
(d)
t,0 (n) ≤

n−t
∑

k=0

t!(t − 1)
∏t+1

i=2(k + i)
N

(d−1)
t,≤k (n) +

t!
∏t

i=2(n − t + i)
N

(d−1)
t,≤n−t(n). (1)

We next consider empty t-boxes, for which neither of their facets orthogonal to the xd-axis
contain points of P in their relative boundaries. We only consider boxes that are not strips bounded
by one or two hyperplanes orthogonal to the xd-direction (there are O(n) such strips). Any such
box B can be charged to a box in B̃t′,0(P ), for some t−2 ≤ t′ ≤ t, by applying two legal shifts to B
(as in Section 3), the first shifting the top facet down, and the second shifting the bottom facet up.
With some care, this also applies to boxes that are unbounded in the xd-direction. The resulting
box B̃ is uniquely charged in this manner. Similarly, an empty t-box B, such that one of its facets
orthogonal to the xd-axis does not contain a point in the relative boundary, can be charged to a
box B̃ in B̃t′,0(P ), for some t − 1 ≤ t′ ≤ t. This can be done by applying just one legal shift that

shifts that facet. Such a B̃ is charged at most twice. Hence we have

N
(d)
t,0 (n) = O(Ñ

(d)
t,0 (n) + Ñ

(d)
t−1,0(n) + Ñ

(d)
t−2,0(n) + n). (2)

To estimate N
(d)
t,≤k(n), for k ≥ 1, we note that if we sample a random subset of P of size n/k,

we obtain a random set of n/k points drawn independently from the same uniform distribution as
P . Hence, we can apply the Clarkson-Shor probabilistic technique [9] to conclude that

N
(d)
t,≤k(n) = O(ktN

(d)
t,0 (n/k)). (3)

By the induction hypothesis we have N
(d−1)
t,0 (n) = O(n logd−2 n), for any 1 ≤ t ≤ 2d, and for any

n. Hence, by (3), N
(d)
t,≤k(n) = O(nkt−1 logd−2 n), for any 1 ≤ t ≤ 2d. Plugging this into inequality

(1) and using (2), we obtain the bound N
(d)
t,0 (n) = O(n logd−1 n), for 1 ≤ t ≤ 2d.

We thus have proven the following theorem.

Theorem 3.2. Let P be a set of n points in R
d, drawn independently from the uniform distribution

on [0, 1]d. Then the expected number of maximal empty boxes with respect to P is O(n logd−1 n),
where the constant of proportionality depends on d.

In particular, the bound of Theorem 3.2 also applies to the expected number of maximal empty
orthants. Using Theorem 2.2, we obtain the following result.
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B

x2

x1

Figure 8: Bounding the expected number of empty boxes in the plane. The highlighted box B
belongs to B̃2,0(P ), and its x-projection belongs to B2,5(P

′). The two points defining B must be
consecutive in the y-order of the points in the shaded strip.

Theorem 3.3. Let P be a set of n colored points in R
d, such that each point is drawn inde-

pendently from the uniform distribution on [0, 1]d. Then there exists a data structure support-
ing semi-unbounded colored range counting queries in O(logd−1 n) time, whose expected storage is
O(n log2d−2 n) and which can be constructed in expected O(n log2d−2 n) time.

General colored range counting for random sets. Recall that we solve the problem when
queries are general bounded boxes by a reduction to the semi-bounded problem. However, since
this reduction transforms the points by doubling each coordinate, we can no longer assume that
the transformed set satisfies our randomness assumption.

We overcome this difficulty using the following observation. Let A be a random point set in R
d

and Â the point set in R
2d into which A is mapped. It follows by definition that every maximal

empty orthant in R
2d with respect to Â corresponds to a maximal empty box in R

d with respect to
A. Hence, we can still apply Theorem 3.2 to the original set A in order to upper-bound the number
of maximal empty orthants with respect to Â. Using the data structure of Theorem 2.4 we obtain
the following result.

Theorem 3.4. Let P be a random colored point-set of cardinality n in R
d, such that the points

of each color are selected as above. Then there exists a data structure supporting colored range
counting queries in O(log2d−1 n) time, whose expected storage is O(n log3d−2 n) and which can be
constructed in expected O(n log3d−2 n) time.

Using the same technique, we can build a data structure to answer colored range counting
queries for boxes with bounded projections on k specific coordinates, for a random point set, by
reducing the problem to a semi-unbounded problem in R

d+k and using Theorem 3.2.
Remark: The enhancement that shaves off a logarithmic factor, as provided in Theorem 2.6, does
not apply in this case, because it is based on n copies of the structure, and the expected number of
maximal empty orthants may be linear in each subproblem, giving rise to an overall data structure
of super-quadratic size.

4 Achieving Time-Space Tradeoff

In this section we present several techniques for reducing storage at the expense of increasing query
time.
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4.1 The planar case: Splitting boxes

Our tradeoff technique for the planar case uses the more space efficient data structure of Theo-
rem 2.3 that supports colored range counting queries with 3-sided boxes of the form [a, b]× (−∞, d]
or [a, b]× [c,∞). Recall that this problem can be transformed into a standard orthogonal contain-
ment searching in R

3, and that the resulting data structure requires only O(n log2 n) storage and
preprocessing cost. For the present solution, instead of just counting colors, we want to output the
set of all colors in the query 3-sided box as a union of canonical subsets of colors. Since the data
structure has three levels, the number of such sets in a query output is O(log3 n), and each color
appears in at most one of these sets (because of the disjointness of the boxes in the decomposition
of any single U(Pc)).

The full data structure. In order to handle general queries of the form [a, b] × [c, d], we use
the following technique, which has already been used in [12], for solving orthogonal colored range
reporting problems. We store the points of P , in the increasing order of their y-coordinates, at
the leaves of a balanced binary tree T . At each internal node v, we store a pair of auxiliary data
structures, one for answering queries of the form [a, b] × [c,∞), and one for queries of the form
[a, b] × (−∞, d]. The first (resp., second) structure is built on the points stored at the left (resp.,
right) subtree of v. We also store at v a y-coordinate Y (v) that separates the y-coordinates of the
points stored at the left subtree from those stored at the right subtree of v. If v is a leaf, we let
Y (v) be the y-coordinate of the singleton point stored at v.

For each node t of some tree at the deepest (third) level of the structure, denote by c(t) the set
of colors represented in the canonical subset of t.

Let q = [a, b] × [c, d] be a query box. We search down the tree T with [c, d] and denote by
vq the highest node for which [c, d] contains Y (vq). If vq is a leaf, we check whether the single
point that it stores lies in q, and return 1 if it does and 0 otherwise. If vq is an internal node,
we query the two structures at vq with [a, b] × [c,∞) and with [a, b] × (−∞, d], respectively. Let
Dq (resp., Uq) denote the set of O(log3 n) canonical nodes that are returned by the former (resp.,
latter) sub-query. Observe that the set of colors in q is exactly the union of the canonical sets of
colors associated with the nodes in Uq ∪Dq. Another crucial property (which follows from the fact
that, for each color c, the boxes that represent U(Pc) are pairwise disjoint) is that each color in the
output appears in the canonical set of at most one node of Uq and at most one node of Dq (see [12]
for more details). Hence, using the exclusion-inclusion principle, the number of colors that appear
in q is equal to

∑

s∈Uq

|c(s)| +
∑

t∈Dq

|c(t)| −
∑

s∈Uq, t∈Dq

|c(s) ∩ c(t)|. (4)

Ideally, we would like to have for every s ∈ Uq and t ∈ Dq the value of |c(s) ∩ c(t)| pre-stored.
However, doing this for every possible pair of canonical sets would be too expensive, and may result
in super-quadratic space complexity. Nevertheless, if we did have these values available, answering
a query could then be done in O(log6 n) time, using (4).

Instead, we derive a tradeoff between storage and query time, determined by a threshold param-
eter X in the range 1 ≤ X ≤ n. Let D(v) (resp., U(v)) be the set of canonical nodes in the auxiliary
structure of node v ∈ T used for answering queries of type [a, b] × [c,∞) (resp., [a, b] × (−∞, d]).
A node t ∈ D(v) ∪ U(v) is called X-heavy if |c(t)| > X; otherwise it is called X-light. For every
node v ∈ T we construct and store, as part of the preprocessing stage, a matrix M(v), whose rows
and columns correspond to the X-heavy nodes in D(v) and U(v), respectively. For each pair of
X-heavy canonical nodes s ∈ U(v) and t ∈ D(v), we store in Ms,t(v) the value of |c(t) ∩ c(s)|.
Let nv be the number of points stored at the subtree of T rooted at v. The overall size of all the
canonical subsets associated with the nodes of U(v) ∪ D(v) is O(nv log3 n). Hence, the number of
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X-heavy canonical nodes in D(v) ∪ U(v) is O
(

nv
X log3 n

)

, so M(v) has size O
(

(

nv
X

)2
log6 n

)

. (The

time needed to construct M(v), for all nodes v ∈ T , is discussed later.) Summing this bound over

all nodes v of T , we get an overall bound of O(
(

n
X

)2
log2 n).

For each canonical node t ∈ D(v) ∪ U(v), in addition to storing the size |c(t)| of its canonical
subset, we also store a dictionary data structure on c(t) (implemented as a binary search tree),
supporting logarithmic-time searches. Clearly, since

∑

t∈D(v)∪U(v) |c(t)| = O(nv log3 n), these addi-

tional structures take a total of O(n log4 n) extra storage.

The total space complexity of our solution is thus O
(

(

n
X

)2
log6 n + n log4 n

)

.

Handling queries. It suffices to describe how to compute |c(s)∩ c(t)| efficiently, for each s ∈ Uq

and t ∈ Dq. If both s and t are X-heavy, then this value is stored in M(vq) and we simply retrieve
it. Otherwise, we can assume, without loss of generality, that |c(s)| ≤ X. In this case we check,
for each c ∈ c(s), whether c ∈ c(t), and count the number of such colors. This takes a total of
O(X log n) time. We repeat this for each pair (s, t) ∈ Uq × Dq, for a total of O(X log7 n) query
time.

Preprocessing. Clearly, T with all its auxiliary data structures can be constructed in time
O(n log3 n) and the dictionary structures at the nodes of |U ∪D| can be constructed in overall time
O(n log4 n). It remains to describe the construction of matrices Mv .

Denote by D (resp., U) the set of canonical nodes in all the auxiliary structures used for
answering queries of type [a, b] × [c,∞) (resp., [a, b] × (−∞, d]). Let MD (resp., MU ) denote
the matrix whose rows correspond to the X-heavy nodes of D (resp., of U), and whose columns
correspond to the colors 1, . . . , C, such that, for t ∈ D (resp., t ∈ U) and color c, the (t, c)-entry
of the matrix is 1 if c ∈ c(t) and is 0 otherwise. It follows that M = MDMU

T contains all the
matrices Mv as submatrices6.

Using the fact that
∑

v nv = O(n log n), we get that each of the matrices MD and MU has
t = O

(

n
X log4 n

)

rows and N = O(n log4 n) non-zero entries. Hence, we can construct M using the
sparse rectangular matrix multiplication technique of Kaplan et al. [20] (which extends a technique
of Yuster and Zwick [26] and of Chan [7]). Specifically, for two matrices A,B, each having t rows
and at most N non-zero items, these methods construct ABT in time











O(Nt
ω−1

2 ) if N ≥ t
ω+1

2 ,

O(N
2β

β+1 t
2−αβ
β+1 ) if t1+

α
2 ≤ N ≤ t

ω+1
2 ,

O(t2) if N ≤ t1+
α
2 .

Here (i) ω is the exponent of matrix multiplication, i.e., ω is the smallest number such that two
t × t matrices can be multiplied in time O(tω); (ii) α is the largest value of r for which a t × tr

matrix and a tr × t matrix can be multiplied in time O(t2); and (iii) β = ω−2
1−α . It is known (see,

e.g., [18]) that ω < 2.376 and α > 0.294; thus we can use β ≈ 0.533.
Hence, the construction time of the data structure is:























O∗
(

n(ω+1)/2

X(ω−1)/2

)

= O
(

n1.688

X0.688

)

when X ≥ n
ω−1
ω+1 ≈ n0.408,

O∗

(

n
2−αβ+2β

β+1

X
2−αβ
β+1

)

= O
(

n1.898

X1.203

)

when n
α/2

α/2+1 ≈ n0.128 ≤ X ≤ n
ω−1
ω+1 ≈ n0.408,

O∗( n2

X2 ) when X ≤ n
α/2

α/2+1 ≈ n0.128.

(5)

6We combine all the matrices Mv into one matrix M to simplify the presentation. In doing so, we lose a polylog-
arithmic factor in the time bound.
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We thus have the following result.

Theorem 4.1. Let P be a set of n colored points in the plane, and let 1 ≤ x ≤ n be a given tradeoff

parameter. Then we can preprocess P into a data structure of size O
(

(

n
X

)2
log6 n + n log4 n

)

so

that a colored range counting query can be answered in O(X log7 n) time. The preprocessing cost is
as given in (5).

Optimizing for a fixed number of queries. Suppose next that we know (or guess) in advance
the number m of queries. We can then optimize the choice of X, so as to minimize the overall
time for answering m colored range counting queries, including the time spent at the preprocessing
stage. A simple calculation yields:

Corollary 4.2. Let P be a set of n colored points in the plane.

(a) m ≤ n colored range counting queries can be answered in overall time O∗(nm
ω−1
ω+1 ) = O(nm0.408).

(b) n ≤ m ≤ n
4+4β−αβ−α
(α+2)(β+1) ≈ n1.616 colored range counting queries can be answered in overall time

O∗(n
2−αβ+2β

2−αβ+β+1m
2−αβ

2−αβ+β+1 ) = O(n0.862m0.546).

(c) m ≥ n
4+4β−αβ−α
(α+2)(β+1) ≈ n1.616 colored range counting queries can be answered in overall time

O∗(m2/3n2/3).

In particular, n colored range counting queries can be answered in overall time O(n
2ω

ω+1 ) =
O(n1.408), including time spent at the preprocessing stage.

4.2 Tradeoff in higher dimensions

In higher dimensions, there are other approaches to achieving a tradeoff between query time and
storage.

Bucketing. Partition the set of colors into O(log n) “buckets” Ci, such that c ∈ Ci if and only if
2i−1 ≤ |Pc| < 2i. Put Ci := |Ci|, and let ni be the number of points having colors in Ci. Clearly,
ni = Θ(2iCi). We solve the colored range counting problem separately within each Ci, and output
the sum of the counts obtained in each of these O(log n) subproblems.

Again, we fix some threshold parameter 1 ≤ X ≤ n. Answering a colored range counting query
with a box q within Ci depends on the relationship between X and Ci. If X ≥ Ci, we simply test,
for each color c in Ci, whether q ∩ Pc 6= ∅, and count up the number of colors with this property.
Using the standard orthogonal range searching machinery [2], this takes O(logd−1 |Pc|) = O(id−1)
time per color c, for a total of O(id−1Ci) = O(id−1X) time. Summing these bounds over all buckets
with X ≥ Ci, we obtain a total of O(X logd n) time.

If X < Ci, we use the technique of Theorem 2.5 for answering the query. The query time is
O(log2d−1 ni), and the space and preprocessing cost are both

O
(

Ci · 2
id log2d−1 ni

)

= O

(

nd
i

Xd−1
log2d−1 n

)

(we use here the facts that ni/Ci = Θ(2i) and that X < Ci). Hence, summing over the buckets,
and adding the costs for buckets with X ≥ Ci, the overall query time is O(X logd n + log2d−1 n).
(For this, we use a single colored range counting data structure for all the buckets with Ci > X.)

The overall preprocessing and space complexity is O
(

nd

Xd−1 log2d−1 n
)

. Optimizing the choice of

X, we can answer m colored range counting queries in time O(nm1−1/d logd+1−1/d n+m log2d−1 n),
including time spent at the preprocessing stage. We thus have the following result.

18



Theorem 4.3. Let P be a set of n colored points in R
d, d > 2, and let 1 ≤ X ≤ n be a trade-

off parameter. We can preprocess P , in time O
(

nd

Xd−1 log2d−1 n
)

, into a data structure of size

O
(

nd

Xd−1 log2d−1 n
)

, which supports colored range counting queries in time O(X logd n). In particu-

lar, m such queries can be answered in total time O(nm1−1/d logd+1−1/d n+m log2d−1 n), including
the cost of preprocessing.

Two additional methods are presented in Subsection 4.3. They partially improve the upper

bounds in the time-space tradeoff for X = Ω∗(n
d−2
d−1 ), but they are more expensive at the prepro-

cessing stage. Ignoring storage, the bucketing method described above provides the best upper
bound so far on the time required to answer any fixed number of queries, if time spent at the
preprocessing stage is also included.

4.3 Additional time-space tradeoffs in dimension d > 2

Bucketing with box-splitting. We further improve the tradeoff achieved by bucketing for values

of X = Ω∗(n
d−2
d−1 ), by using the box-splitting technique within each bucket, as in the planar case.

Specifically, apply bucketing with some threshold value 1 ≤ X ≤ n. Again, if the number of colors
within a fixed bucket Ci is smaller than X, test each of the Ci colors in the bucket for intersection
with the query range. This costs O(X logd−1 n) time per bucket, for a total of O(X logd n).

Consider then buckets with Ci > X. Apply the box splitting technique for the colors in Ci

(using the same parameter X). That is, construct a binary tree on the points sorted by their x1-
coordinates. For each node of the tree we maintain two auxiliary structures for querying with boxes
that are semi-unbounded in the x1-direction. As above, the data structures can be implemented
so that processing a query takes O(log2d−1 n) time, and returns the output as the disjoint union
of O(log2d−1 n) canonical sets, each stored at some node of the structure. The preprocessing and
space complexity of the structure are both O(Ci · (ni/Ci)

d−1 log2d−1 ni) = O(nd−1
i /Xd−2 log2d−1 n).

To process a bounded-box query, we proceed as above, finding the highest node in the tree that
splits the x1-span of the query box, performing appropriate queries in the auxiliary data structures
with the two corresponding semi-unbounded “half-boxes”, and combining the solutions, using an
appropriate variant of (4). The time of the query is then O(X log4d−1 n) (extending the analysis
from the planar case).

Since the total size of all canonical subsets of nodes of the respective collections U(v), D(v) is
now O(nd−1

v /Xd−2 log2d−1 n), for a given vertex v ∈ T , the size of the matrix M(v) is

O((nd−1
v /Xd−2/X)2) log4d−2 n) = O((nv/X)2d−2 log4d−2 n), (6)

and the total storage, over all nodes v and buckets i, is thus

O
(

nd−1/Xd−2 log2d−1 n + (n/X)2d−2 log4d−2 n
)

. (7)

Comparing this with the bound for the bucketing technique alone, we get an improved tradeoff for

X = Ω∗(n
d−2
d−1 ), as asserted.

It remains to bound the preprocessing time, which is dominated by the cost of computing the
matrix M in each bucket. The analysis is similar to the one in Section 4.1, and it yields the bounds























O∗
(

n(d−1)(ω+1)/2

X(d−1)(ω+1)/2−1

)

when n
(d−1)(ω−1)

(d−1)(ω−1)+2 ≤ X,

O∗

(

n
(d−1)

2β+2−αβ
β+1

X
(d−2)

2β
β+1

+(d−1)
2−αβ
β+1

)

when n
(d−1)α

(d−1)α+2 ≤ X ≤ n
(d−1)(ω−1)

(d−1)(ω−1)+2 ,

O∗
(

n2d−2

X2d−2

)

when X ≤ n
(d−1)α

(d−1)α+2 .

(8)
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That is, we have:

Theorem 4.4. Let P be a set of n colored points in R
d, d > 2, and let 1 ≤ X ≤ n be a tradeoff

parameter. We can preprocess P , in time as in (8), into a data structure of size

O
(

nd−1/Xd−2 log2d−1 n + (n/X)2d−2 log4d−2 n
)

,

which supports colored range counting queries in time O(X log4d−1 n).

Grid. Using this method, we achieve additional improvement of the time-space tradeoff for X =

Ω∗(n
d+1
d+2 ). Again, we assume general position of the points of P , in the sense that no two points

have the same xi-coordinate for any 1 ≤ i ≤ d. We fix a parameter t, and partition R
d, for each

1 ≤ i ≤ d, into t slabs, each containing n/t points of P and bounded by two hyperplanes orthogonal
to the xi-axis. These partitions, when superimposed on each other, induce a non-uniform grid G
with td cells. There are O(t2d) “canonical” boxes, each bounded by 2d grid hyperplanes. We
preprocess each of these boxes, and compute the number of colors that it contains. This can be
done, using the bucketing method, in time O(t2d−2n logd+1−1/d n + t2d log2d−1 n).

Q0

Q

Figure 9: The grid construction in the plane, a query rectangle Q, its (lightly-shaded) “core” Q0,
and its (darkly-shaded) fringe.

To perform an actual query with some box Q, we find the maximal canonical box Q0 that it
contains, and retrieve the number C0 of colors in Q0. We then retrieve the n′ ≤ 2dn/t points of P
that lie in the “fringe” Q \Q0 of Q, using a standard orthogonal range reporting data structure [2].
See Figure 9. For each such point p, we check whether its color c(p) is a color that appears in Q0. For
this, we preprocess each of the monochromatic subsets Pc of P , for c = 1, . . . , C, for d-dimensional
orthogonal emptiness range queries. For each p ∈ Q \Q0, with color c = c(p), such that this is the
first fringe point of that color, we test whether Q0 ∩Pc(p) = ∅ using the corresponding structure, in

O(logd−1 n) time. If this is the case, we add 1 to the color count. In all other cases p is ignored. The

overall query time is O
(n

t
logd−1 n

)

. The data structure uses O(n logd−1 n + t2d) storage, and can

be constructed in time O(t2d−2n logd+1−1/d n + t2d log2d−1 n). Alternatively, substituting X := n
t ,

we obtain tradeoff bounds that are similar to the previous ones (we leave it to the reader to verify

that we get an improvement for X = Ω∗(n
d+1
d+2 )).

Theorem 4.5. Let P be a set of n colored points in R
d, d > 2, and let 1 ≤ X ≤ n be a tradeoff

parameter. We can preprocess P , in time O
(

(

n
X

)2d−2
n logd+1−1/d n +

(

n
X

)2d
log2d−1 n

)

, into a

data structure of size O(( n
X )2d + n logd−1 n), which supports colored range counting queries in time

O(X logd−1 n).
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5 Colored Range Counting and Sparse Matrix Multiplication

In this section we further elaborate on the relation between sparse matrix multiplication and colored
orthogonal range counting. We use this relation to derive lower bounds for the offline version of the
problem in R

2. We also define and analyze a generalized version of sparse matrix multiplication
that is related to colored orthogonal range counting in higher dimensions.

5.1 Hardness of orthogonal colored range counting

Consider the following Output Restricted Sparse Matrix Multiplication problem (ORSMM). The
input is a sparse matrix A with N non-zero entries (and therefore at most N rows and columns),
and a set O of M pairs, (i, j), where i and j are indices of two rows of A. The goal is to compute,
for each pair (i, j) ∈ O, the (i, j)-th entry of the product AAT . We further assume here that A is
Boolean, although AAT is computed over the integrals (or reals).7

The offline version of the colored orthogonal range counting problem with n points and m
queries is closely related to the ORSMM problem, as follows from our solution to colored range
counting in R

2 in Section 4:

Theorem 5.1. The 2-dimensional orthogonal colored range counting problem on n points and m
query rectangles can be reduced to an ORSMM problem, where the matrix A has N = O(n log4 n)
non-zero entries and we ask for M = O(m log6 n) entries of the matrix AAT . The reduction takes
O(n log4 n) time.

The following theorem shows that a reverse reduction also exists.

Theorem 5.2. The ORSMM problem, for a Boolean matrix A with N non-zero entries, where we
need to compute M output pairs, can be reduced in linear time to a 2-dimensional colored orthogonal
range counting problem on O(N) points and M query rectangles.

Proof. We can restate the ORSMM problem as follows. Let X be the set of columns in the matrix
A. For each row i, let Si ⊆ X denote the the set of columns where row i has ones. Let O be the set
of M output pairs to be computed. For each pair (i, j) ∈ O we have to compute |Si ∩ Sj|, which is
the (i, j)-th entry of AAT . Since |Si ∩ Sj| = |Si|+ |Sj | − |Si ∪ Sj|, this is equivalent to computing,
for each pair (i, j) ∈ O, the quantity |Si ∪ Sj|.

Let k denote the number of nonempty rows of A. We construct a colored range counting instance
where the points are p1 = (1, 1), p2 = (2, 2), . . ., pk = (k, k) and p′1 = (k + 1, 1), p′2 = (k + 2, 2),
. . ., p′k = (2k, k). We assign a distinct color to each column of A. We next replace each point pi

by |Si| points, which are close to each other within distance ǫ ≪ 1 of pi. We color these points
by the colors of the columns in Si. We do the same for each of the points p′i. Let P denote the
resulting point set; we have |P | = 2N . Clearly, with an appropriate representation of the input,
this construction takes O(N) time.

��

��

��

��

��

��

��

��

��

��q
pi

p′j

Figure 10: The rectangle q contains only pi and p′j.

7We can instead ask for M entries in the product of two arbitrary Boolean matrices A and B with N nonzero
items in both. Our results carry over to this generalized version.
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Now, in order to calculate |Si ∪ Sj|, for j ≤ i, we query P with the rectangle q = [i− ǫ, k + j +
ǫ] × [j − ǫ, i + ǫ]. Since q contains only the points pi and p′j , it is clear that the number of distinct
colors in q is |Si ∪ Sj|. See Figure 10.

We next describe some observations regarding the complexity of ORSMM and the implications
of Theorem 5.2. For any t × t Boolean matrix A, computing AAT (over the reals) is a special case
of ORSMM , with N = M = t2 [11]. The best known algorithm for computing AAT runs in
O(tω) = O(Nω/2) time, for ω ≃ 2.376. So any algorithm for ORSMM whose running time is
faster than O(min(N,M)ω/2) would immediately imply a better algorithm for Boolean matrix
multiplication (over the reals), thereby solving a long-standing open problem. Using Theorem
5.2, we obtain that an algorithm for planar colored orthogonal range counting that can answer m
box queries with respect to a set of O(n) colored points in o(min(n,m)ω/2) time would imply an
algorithm that can compute AAT in o(tω) time, for any t × t Boolean matrix A.

Similarly, consider the problem of computing AAT , where A is a sparse rectangular Boolean

matrix with t rows and N ones such that N ≥ t
ω+1

2 . The best known algorithm for performing this

computation runs in O(Nt
ω−1

2 ) time (see Section 4). For any such matrix A, computing AAT is also
an instance of ORSMM , with N ones and M = t2 pairs. So an algorithm for ORSMM that runs

in o(NM
ω−1

4 ) time, for N ≥ M
ω+1

4 , would imply a faster algorithm for sparse rectangular matrix
multiplication than the best known to date. Using Theorem 5.2, we obtain that the existence of an
algorithm for planar colored orthogonal range counting that can answer m box queries with respect

to a set of n colored points in o(nm
ω−1

4 ) ≈ o(nm0.344) time, for n ≥ m
1+ω

4 ≈ m0.844, would also
imply an algorithm that can compute AAT for any rectangular Boolean matrix A with t rows and

N ones, such that N ≥ t
ω+1

2 , faster than what is known to date.

Generalized matrix multiplication and higher-dimensional colored range counting.

For d > 2, we can show a similar relation between colored orthogonal range counting and a general-
ization of ORSMM . In this generalization, one is given a Boolean matrix A with N nonzero entries
in sparse representation, and a list O of M d-tuples of indices of rows of A. Let t be the number
of columns in A. The goal is to compute, for each tuple (i1, . . . , id) ∈ O, the sum

∑t
j=1

∏d
k=1 Aik ,j.

We call this problem the d-dimensional Output Restricted Sparse Matrix Multiplication problem,
and denote it by ORSMMd. The following theorem generalizes Theorem 5.2 to dimension d > 2.

Theorem 5.3. Any instance of the ORSMMd problem, of a Boolean matrix A with N nonzero
entries and M output tuples, can be reduced, in linear time, to O(1) instances of d′-dimensional
colored orthogonal range counting, for d′ ≤ d, each on O(N) points and M query boxes.

Proof. Let X be the set of columns of A. The matrix multiplication problem is equivalent to the
following problem. We are given a family of sets F = {S1, . . . , Sk}, such that Si ⊆ X, for each i,

and
∑k

i=1 |Si| = N , and M d-tuples {(i1, . . . , id)}
M
i=1; the goal is to compute, for each of the tuples,

the corresponding quantity |
⋂d

j=1 Sij |.
By using the inclusion-exclusion principle, one can easily verify that the above problem is

equivalent to computing, for each output tuple (i1, . . . , id), the quantities |
⋃

j∈J Sij |, for every
J ⊆ {1, . . . , d}. Without loss of generality, we show how to do it for the case J = {1, . . . , d}.

Let k denote the number of nonempty rows of A. Each column of A is assigned a distinct color.
Let ~1 ∈ R

d be the vector with all components equal to 1. Let ~1<j ∈ R
d be the vector whose ℓ-th

component is 1, for ℓ < j, and 0 for ℓ ≥ j. Our colored range counting instance has dk “point
clusters” pj

i = i~1 + k~1<j , for 1 ≤ i ≤ k and 1 ≤ j ≤ d. For each i and j, we replace pj
i by a set P j

i

of |Si| distinct points placed at distance < ǫ ≪ 1 from pj
i and given the colors of the columns in

Si. Let P be the resulting overall set of points.
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Now, in order to compute |
⋃d

j=1 Sij |, where 1 ≤ id < id−1 < . . . < i1 ≤ k, we query P with the
box R = [i1−ǫ, i2+k+ǫ]×[i2−ǫ, i3+k+ǫ]×· · ·×[id−2−ǫ, id−1+k+ǫ]×[id−1−ǫ, id+k+ǫ]×[id−ǫ, i1+ǫ].

We claim that R∩P =
⋃d

j=1 P j
ij

. The number of colors in R is then |
⋃d

i=1 Sij |. We have |P | = dN ,

and P can be constructed in O(N) time, assuming an appropriate representation of A. We repeat
this reduction for each subset J ⊆ {1, . . . , d}, and obtain an instance of |J |-dimensional colored
orthogonal range counting, with M query boxes. Hence, the overall resulting collection of O(M)
queries solve the given instance of ORSMMd.

To prove the claim, consider a fixed point pj
ij

. The first j−1 coordinates of this point are equal

to ij + k, and the rest are equal to ij . It easily follows that this point is contained in R. On the

other hand, let pj
a be a point such that a 6= ij . We argue that pj

a /∈ R.

Case 1a: If a < ij and j 6= d then the projection of R on the j-th coordinate is the interval

[ij , ij+1 + k], but the j-th coordinate of pj
a is a, and since a < ij , we get that pj

a /∈ R.

Case 1b: If a < ij and j = d then the projection of R on the dth coordinate is the interval [id, i1],

but the d-th coordinate of pj
a is a, and since a < id, we get that pj

a /∈ R.

Case 2a: If a > ij and j 6= 1 then the projection of R on the (j − 1)-th coordinate is the interval

[ij−1, ij +k], but the (j−1)-th coordinate of pj
a is a+k, and since a > ij , we get that pj

a /∈ R.

Case 2b: If a > ij and j = 1 then the projection of R on the d-th coordinate is the interval [id, i1],

but the d-th coordinate of pj
a is a, and since a > i1, we get that pj

a /∈ R.

This establishes the claim and thus completes the proof of the theorem.

5.2 Efficient algorithms for ORSMMd

We obtain an efficient algorithm for ORSMMd in three stages, where each stage uses the previous
algorithm as a subroutine.

The case of non-sparse matrices with no output restriction. We start by considering
the non-sparse version of the problem where A is any t × t matrix and we want to compute
∑t

j=1

∏d
k=1 Aik,j for any d-tuple of rows of A. With a slight possible abuse of notation, we refer to

this problem as d-dimensional matrix multiplication.
Let ω < 2.376 be the smallest constant such that (regular) matrix multiplication (of t × t

matrices) takes O(tω) time. Let ωd be a constant such that d-dimensional matrix multiplication
takes O(tωd) time (in particular, ω2 = ω). The output size of the d-dimensional matrix multipli-
cation problem is Θ(td), so ωd ≥ d. On the other hand we can compute each of the O(td) sums
∑t

j=1

∏d
k=1 Aik,j in O(t) time, so ωd ≤ d + 1. In fact it is not hard to obtain a better upper bound

on ωd:

Lemma 5.4. ωd ≤ ω + d − 2. Furthermore, if ω > 2 and d > 2 then ωd < ω + d − 2.

Proof. For d = 2 the lemma obviously holds, so we assume d ≥ 3. Let A be the input matrix. First
compute two matrices B and C, so that B (resp., C) is a t⌈d/2⌉ × t matrix (resp., t× t⌊d/2⌋ matrix)
whose rows (resp., columns) contain the element-wise products of all sets of ⌈d/2⌉ (resp., t⌊d/2⌋) rows
of A. Both B and C can be computed in time O(

( t
⌈d/2⌉

)

· t) = O(td). By construction, the (usual,

two-dimensional) product BC provides a solution to the d-dimensional matrix multiplication for
A. By partitioning BC into blocks of size t × t, computing BC can be done in O(tω+d−2) time.
In fact, if ω > 2 then the results of Huang and Pan [18] about rectangular matrix multiplication
allows us to improve this, thus establishing the second part of the lemma.
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Lemma 5.5. Let A be an s × t rectangular matrix. Then one can compute
∑t

j=1

∏d
k=1 Aik,j, for

all d-tuples of rows of A, in time











O(sω+d−3t) if s ≤ t,

O(sd−αβtβ) if sα < t < s,

O(sd) if t ≤ sα.

Proof. As in the proof of of Lemma 5.4, we reduce the problem, in O(
( s
⌈d/2⌉

)

· t) time, to the

multiplication of two rectangular matrices B and C of size s⌈d/2⌉ × t and t × s⌊d/2⌋, respectively.
The multiplication can be done by partitioning B and C in blocks of size s×t and t×s, respectively.
The lemma follows using the upper bound











O(sω−1t) if s ≤ t,

O(s2−αβtβ) if sα < t < s,

O(s2) if t ≤ sα

on the complexity of multiplication of two rectangular matrices of size s× t and t× s, respectively
(Coppersmith [10], Huang and Pan [18]; see also [7, 20, 26]).

The case of sparse matrices with no output restriction. We next consider the d-dimensional
sparse matrix multiplication problem, where the Boolean input matrix has N ones and s rows, and
the goal is to compute

∑t
j=1

∏d
k=1 Aik ,j, for all d-tuples of the rows. For d = 2 we already considered

this problem in Section 4.
We solve this problem, for d > 2, using the same approach as in [20] (which is built upon the

earlier technique of [26]; see also [7]). Let x be a parameter to be determined shortly. We consider
separately columns with fewer than x non-zero entries (light columns), and columns with at least x
non-zero entries (heavy columns). A light column with z ≤ x nonzero entries contributes a nonzero
term to zd products. So the total time to handle the light columns is at most O(

∑

i x
d
i ), where xi

is the number of nonzero items in the i-th light column. This expression is maximized, and equals
to N

x xd, if we split the ≤ N nonzero entries among ≤ N/x light columns, placing x nonzero entries
in each column. We have at most N/x heavy columns and we compute their contribution to the
output by the previous algorithm for d-dimensional multiplication of the corresponding rectangular
(non-sparse) matrix with s rows and N/x columns, as provided by Lemma 5.5. Optimizing over x,
we obtain the following overall bound on the running time:















O
(

Ns(ω+d−3) d−1
d

)

if N ≥ s1+(ω+d−3)/d,

O
(

N
β−1

d+β−1
(d−1)+1s

d−αβ
d+β−1

(d−1)
)

if s1+α−α
d ≤ N ≤ s1+(ω+d−3)/d,

O(sd) if N ≤ s1+α−α
d .

The general case: An efficient algorithm for ORSMMd. We fix another threshold parameter
y, and consider separately the rows with at most y non-zero entries (the light rows), and the rows
with at least y non-zero entries (the heavy rows). We can compute each product in which a light
row takes part in O∗(y) time, so all such products can be computed in O∗(My) time. We are
left with products that include only heavy rows. Since there are at most N/y heavy rows, we can
compute all remaining products by solving a d-dimensional sparse sparse multiplication problem
(with no output restriction) with s = N

y rows and N nonzero entries, using the algorithm just
described. Optimizing over y in order to minimize the total time complexity of the solution, we
obtain the following theorem.
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Theorem 5.6. ORSMMd with N nonzero entries and M output tuples can be solved in time:



























O∗

(

NM
(d−1)(ω+d−3)

d+(d−1)(ω+d−3)

)

if N ≥ M
ω+2d−3

d+(d−1)(ω+d−3) ,

O∗

(

N
(d−αβ+β−1)(d−1)+d+β−1

(d−αβ)(d−1)+d+β−1 M
1− d+β−1

(d−1)(d−αβ)+d+β−1

)

if M
1+α−α/d
d−α+α/d ≤ N ≤ M

d+ω+d−3
d+(d−1)(ω+d−3) ,

O∗
(

N
d

d+1 M
d

d+1

)

if N ≤ M
1+α−α/d
d−α+α/d .

In particular we get for d = 2 a solution for ORSMM2 that takes O∗
(

NM
ω−1
ω+1

)

time, for

M ≤ N . Note that this solution is inferior to the one given in Subsection 4.1 for the case M =
(t
2

)

(no output restriction): the previous algorithm takes O
(

Nt
ω−1

2

)

time, whereas the new one takes

O

(

Nt
2(ω−1)

ω+1

)

time, which is indeed much larger. It would be interesting to improve the new

algorithm for all possible values of M .
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