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Abstract

In this paper we consider the dynamic vertical ray shooting

problem, that is the task of maintaining a dynamic set S of n

non intersecting horizontal line segments in the plane subject

to a query that reports the first segment in S intersecting

a vertical ray from a query point. We develop a linear-

size structure that supports queries, insertions and deletions

in O(log n) worst-case time. Our structure works in the

comparison model and uses a RAM .

1 Introduction

In this paper we consider data structures for the dy-
namic vertical ray shooting problem. In this problem
we maintain a dynamic set S of n non intersecting hor-
izontal line segments in the plane such that we can ef-
ficiently report the segment in S immediately above a
given point. The vertical ray shooting problem is in
fact a version of the dynamic rectilinear planar point

location problem. In particular, given a subdivision of
the plane by horizontal and vertical line segments, our
data structure allows to find the rectangle containing
a query point. The dynamic rectilinear planar point

location problem is a special case of the general dy-

namic planar point location problem in which segments
are not restricted to be horizontal or vertical. Obtain-
ing a linear space data structure with logarithmic query
and update time for dynamic planar point location is a
central open question in algorithms and computational
geometry. Although the restriction of segments to be
horizontal is strong, an optimal algorithm for this spe-
cial case was not known prior to our work.

We present a data structure in the RAM model of
computation, that requires linear space and supports
updates and queries in O(log n) worst-case time. Our
data structure does not make any assumptions on the
segments. That is, we manipulate the segments only by
comparisons. In this sense our result is optimal, since
by an easy reduction from sorting, at least one of the
operations takes Ω(log n) time.

Specifically, we present three data structures for
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the vertical ray shooting problem. The first two struc-
tures work in the pointer-machine model of computa-
tion. The first structure requires O(n logε n) space,
and supports queries in O(1

ε log n) worst-case time, and

updates in O(1
ε log1+ε n) worst-case time. The second

structure requires linear space, and supports queries in
O(1

ε log1+ε n) worst-case time and updates in O(1
ε log n)

worst-case time, where ε > 0 is as small as we want. For
the third structure we use the RAM model of compu-
tation, and achieve a linear size structure that supports
both updates and queries in O(log n) worst-case time.

All our data structures use a segment tree with fan-
out O(logε n). In the first two structures we use dy-
namic fractional cascading, extended appropriately for
our needs. To obtain logarithmic query and update time
we generalize the Van Emde Boas structure [21]. This
generalization allows to exploit word-level parallelism
to speed up the fractional cascading query. A similar
generalization has been made by Mortensen [17]. Fi-
nally, we reduce the space to linear, using a technique
of Baumgarten et al. [4], in which we store all the seg-
ments in an interval tree, where only a carefully chosen
subset of the segments is stored in a segment tree.

Our data structure extends, using standard tech-
niques (multi-dimensional segment tree), to solve the
dynamic vertical ray shooting problem in R

d, for d > 2.
In this problem, you maintain a dynamic set of hyper-
planes orthogonal to the xd-axis such that you can query
for the first hyperplane intersecting a vertical ray from
a given query point. We pay an overhead of a logarith-
mic factor in space, update time, and query time per
dimension.

We denote an open horizontal segment from (xs, y)
to (xe, y) by a triple (xs, xe, y).

Applications: Our data structure allows to obtain
optimal (in the comparison model) solutions to the
following two problems.

1) The three-dimensional layers-of-maxima problem: A
point p ∈ R

3 dominates another point q ∈ R
3 if

each coordinate of p is larger than the corresponding
coordinate of q. Given a set S of n points in R

3, the
maximum points are those that are not dominated by
any point in S. We define the maximum points in
S to be layer 1 of S. We then delete the maximum



points from S and the maximum points among the
remaining points are layer 2 of S. We continue to
assign a layer to each point until S is empty. In the
three-dimensional layers-of-maxima problem we want to
efficiently compute the layer of each point.

Buchsbaum and Goodrich [5] present an algorithm
to solve the three-dimensional layers-of-maxima prob-
lem. We use our data structure to implement their al-
gorithm in linear space as follows. We sort the points by
their z-coordinate. Then we sweep the space from +∞
with an hyperplane parallel to the x-y plane. When the
sweep plane reaches a point p, it assigns p to its layer.
Let Si consist of the projections on the sweep plane of
the points that were already processed and assigned to
layer i. Let Mi be the maximum points of Si. Each set
Mi form a staircase, where Mi dominates Mi+1 in the
plane. When we process a point p we find the staircase
Mj which is immediately above p. The layer of p is
j +1, and furthermore, p should be added to Mj+1, and
points in Mj+1 dominated by p should be removed. We
implement this algorithm by maintaining the horizontal
segments of all the staircases Mj in our ray shooting
data structure H . We locate the staircase immediately
above p by a ray shooting query from p. If we also
maintain each Mj as a list, then we can easily find all
the points in Mj to delete, as they are consecutive. To
analyze the performance of this structure we note that
for each point p ∈ S we perform three operations on H ,
and on a list representing Mj . It follows that our im-
plementation requires linear space and O(n log n) time.
This answers the open problem of [5], as their imple-
mentation requires O(n log n/ log log n) space.

2) The retroactive successor problem: Retroactive data
structures were introduced by Demaine, Iacono, and
Langerman [10]. A (fully) retroactive data structure
allows to perform an update or a query at any given
time. In the retroactive successor problem, a key with
time stamp t can be inserted or deleted at time t. A
query with a pair (t, k) should return the successor of k
at time t.

The data structure of Demaine et al. [10] supports
updates and queries in O(log2 n) time. We use our
data structure to obtain an optimal solution to the
retroactive successor problem as follows. We represent
each key of the retroactive structure with a segment in
an optimal vertical ray shooting structure H . To insert
a key y at time ts, we insert the segment (ts,∞, y) to
H . We implement a deletion of a key y at time te, by
removing the segment (ts,∞, y) from H , and inserting
the segment (ts, te, y) instead. To return the successor
of y at time t, we perform a query with a point (t, y).
It follows that the retroactive successor problem can be
implemented in linear space, to support updates and

queries in O(log n) time, where n is the total number of
updates performed on the retroactive structure.

Previous results: Mehlhorn and Näher [16] present
a data structure for the vertical ray shooting prob-

lem that requires O(n log n) space, supports queries
in O(log n log log n) worst-case time, and updates in
O(log n log log n) amortized time. The best result we
know with logarithmic query time is by Kaplan, Mo-
lad, and Tarjan [15], and requires O(log2 n) time for
updates.

Agarwal, Arge, and Yi [1] present an optimal
solution to the interval stabbing-max problem. In this
problem we maintain a dynamic set S of n intervals
on the line, where each interval s ∈ S has a weight
w(s). A query reports the interval in S with maximum
weight containing a given point q ∈ R. Assume without
loss of generality that w(s) > 0 for all s ∈ S, and
that we want to find the interval in S with minimum
(rather than maximum) weight containing q. If we
think of w(s) as the y-coordinate of a segment s′

in R
2 that corresponds to the interval s, then the

interval stabbing-max problem reduces to the vertical
ray shooting problem, restricted to query points on the
x-axis. Our implementation has the same performance
as the implementation in [1], but we allow the query to
be any point in R

2 rather than only in R.
Mortensen [17] presented a fully dynamic data

structure for the two dimensional orthogonal range re-
porting problem and for the two dimensional line seg-
ment intersection reporting problem. The fully dy-
namic two dimensional line segment intersection report-
ing problem is the task of maintaining a set of hori-
zontal line segments in R

2 subject to a query that re-
ports all the segments that intersect an vertical query
line segment. The implementation presented in [17]
is in the comparison model, and uses a RAM . It
requires O(n log n/ log log n) space, supports insertions
and deletions in O(log n) worst-case time, and queries
in O(log n+k) worst-case time, where k is the size of the
output. The line segment intersection reporting prob-
lem can be viewed as the decision version of our prob-
lem. We borrow several techniques from Mortensen [17]
in this paper.

There has been a lot of work on the more gen-
eral dynamic planar point location problem. Baum-
garten et al. [4] describe a data structure for the ver-
tical ray shooting version of the general problem, and
therefore also solves our problem. This solution re-
quires linear space, supports queries in O(log n log log n)
worst-case time, insertions in O(log n log log n) amor-
tized time, and deletions in O(log2 n) amortized time.
Arge, Brodal, and Georgiadis [2] also describe a data
structure for the general problem (which solves our



problem). They provided two linear space implementa-
tions. Their first implementation works in the pointer
machine model, supports queries in O(log n) worst-case
time, insertions in O(log1+ε n) amortized time, and
deletions in O(log2+ε n) amortized time. Their sec-
ond implementation is randomized, requires a RAM ,
and supports queries in O(log n) time, insertions in
O(log n log1+ε log n) amortized time, and deletions in
O(log2 n/ log log n) amortized time.

Results in other papers, summarized in Table 1
below, assume that the segments of S form a particular
subdivision of the plane. In these cases, a segment can
be inserted to S only if it divides a single facet of the
subdivision. If we try to solve the vertical ray shooting
problem using one of these structures, by defining
a subdivision based on the input set of segments,
we are bound to fail, since an inserted segment can
be contained in many facets. These previous works
consider different families of planar subdivisions.

The structure of the rest of the paper: We present
our data structure in four steps. Each step improves the
previous one by using an additional technique. In the
last step we obtain an optimal solution to the problem
(i.e., it uses linear space, and supports all operations in
logarithmic time). The first step presents two simple
solutions to the vertical ray shooting problem in the
pointer machine model. The running time in these
solutions have a logε n overhead factor over the optimal
solution. The overhead of the first solution is in the
update time, and the overhead of the second solution
is in the query time. In the second step we use the
unit cost RAM model (with a word size logarithmic
in n), and show how to get rid of the logε n overhead
factor to achieve logarithmic bounds for all operations.
In the third step we sketch a space saving technique.
With this technique we improve the space requirement
of our three implementations. In the full version of this
paper [13] we add the forth step, in which we explain
how to deamortize all our results. Before we present
our implementations, we review several data structures.
This review starts with a preliminary discussion about
segment trees and interval trees, generalized to apply
to a tree with a large fan-out rather than a binary tree.
We continue by providing a detailed review for weight-
balance B-trees and fractional cascading, since we use
these structures throughout this paper.

2 Preliminaries

In this section we review the techniques that we use and
improve, to achieve our results. In Section 2.1 we review
segment trees and interval trees. These trees form the
basic building blocks of our structures. In fact we use
a version of these trees with large fan-out implemented

as weight-balance B-trees. We review weight-balance
B-trees in Section 2.2. We also formalize the splitting
theorem (Theorem 2.1) for weight-balance B-trees, that
we need and have not found stated explicitly. In Section
2.3 we review Fractional Cascading. We also add a
new lemma (Lemma 2.1) that allows us to add and
remove edges from a weight-balance B-tree T , while
using Fractional Cascading with T as the underlying
graph.

2.1 Segment trees and interval trees A segment
tree T stores a set S of n intervals on the line. A
standard segment tree is a balanced binary search tree
over the 2n endpoints of S that are stored at the leaves
of T . We use the same notation for both a leaf and the
point that it contains. We associate an interval denoted
by range(v) with each node v ∈ T . If v is a leaf then
range(v) is the interval [v, v]. If v is an internal node,
where w is the leftmost leaf in the subtree rooted by v,
and z is the rightmost leaf in the subtree rooted by v,
then range(v) = [w, z]. We associate with each node
v ∈ T a set S(v) consisting of all segments s ∈ S
containing range(v) but not containing range(p(v)).
Each node v ∈ T holds a secondary data structure,
representing the set S(v).

An interval tree is defined similarly. The difference
is that in an interval tree an interval s = (xs, xe) is in
S(v) if and only if v is the lowest common ancestor
of xs and xe in T . It follows that a segment tree
required O(n log n) space and an interval tree requires
O(n) space.

We use segment trees and interval trees which are
not binary but each node has O(d) children for some
parameter d. The definition of S(v) remains the same
both for a segment tree and for an interval tree with a
large fan-out.

For a point x on the line we denote by P (x) the
search path of x in T . The basic property of a segment
tree is that the set of intervals that intersect a point x
is the set {S(v) : v ∈ P (x)}. For an interval tree the set
{S(v) : v ∈ P (x)} contains (but not necessarily equals
to) all intervals that intersect x. To locate exactly the
intervals containing x we need to further search each
secondary structure representing S(v).

2.2 Weight-balanced B-trees We implement a
segment tree and an interval tree as a weight-balance B-
tree. Weight-balance B-trees were introduced by Arge
and are mainly used to solve problems in the external

memory model [3]. In this section we review a simpler
version of weight-balance B-trees than the one intro-
duced by Arge, and suggest a formal proof to their most
important property.



Type Space Query Insert Delete

General [4] O(n) O(log n log log n) Ō(log n log log n) Ō(log2 n)

General [2] O(n) O(log n) Ō(log1+ε n) Ō(log2+ε n)

General [2] O(n) O(log n) Ō(log n log1+ε log n) Ō(log2 n/ log log n)

Connected [7] O(n) O(log2 n) O(log n) O(log n)

Connected [8] O(n log n) O(log n) Ō(log3 n) Ō(log3 n)

Monotone [9] O(n log n) O(log n) Ō(log2 n) Ō(log2 n)

Monotone [14] O(n log n) O(log2 n) O(log n) O(log n)
Convex [19] O(N + n log N) O(log n + log N) O(log n log N) O(log n log N)

Table 1: Previous results. We use Ō(∗) to denote an amortized bound. N denotes the number of possible
y-coordinates for edge endpoints in the subdivision.

For each node v we define following: n(v) is the
number of leaves in the subtree rooted by v, h(v) is the
height of v.

Definition 2.1. A weight-balance B-tree T with
branching parameter d > 4 is a search tree that keeps
the items at its leaves, and has the following properties:

1. All leaves are at the same distance from the root
(and their height is 0).

2. Each internal node v ∈ T satisfies that 1
2dh(v) <

n(v) < 2dh(v).

The following properties immediately follow from this
definition:

1. Each internal non root node has between d/4 and
4d children.

2. The root has between 2 and 4d children.

3. The height of T is h = Θ(log n/ log d) (where n is
the number of elements in the structure).

We keep a single point in each leaf, but note that
Arge [3] defined weight-balance B-trees to have a leaf
parameter k, which specifies the number of points stored
in each leaf. An implementation of a weight-balance B-
tree keeps in each node v, the numbers n(v), h(v), and a
small search tree on O(d) keys to direct the search. To
find the leaf associated with an input key, we need to
perform h = O(log n/ log d) search operations on these
small search trees, which takes O(log n) time. When we
insert a leaf into T , we may violate Definition 2.1 for
some nodes v ∈ T . We handle such a violation by split-
ting v into two nodes. We implement deletions lazily by
marking the relevant leaf ` as deleted. This lazy-deletion

technique requires periodic rebuilding of the structure,
so that the height of T remains O(log n/ log d) (n is the
number of live elements in T ). This rebuilding does not
affect the amortized time bound of the operations. In

the full version of this paper [13] we describe the im-
plementation of each operation, and prove the following
splitting theorem.

Theorem 2.1. Let T be a weight-balance B-tree with
branching parameter d, and let g be a function such
that g(n) ≥ 1 for all n ≥ 0. Let n(v) · g(n) be the
time spent when we split a node v, due to rebuilding of
some secondary structures. Then the amortized time of
insertion and deletion is O(g(n) · log n/ log d).

2.3 Dynamic fractional cascading Fractional
Cascading (FC) [16] is a data structure to search a key
in many ordered lists. Let U be an ordered set, and let
G = (V, E) be an undirected graph, which we call the
control graph. Each vertex v ∈ V is associated with a
dynamic set C(v) ⊆ U , called the catalogue of v. By
this definition, the size n of the input is proportional
to

∑
v∈V |C(v)| + |V | + |E|.

Let T ′ ⊆ V be a tree, and let k ∈ U be a key. FC
supports the following operation:

• Find(k, T ′): For each v ∈ T ′ return yv ∈ C(v),
such that yv is the successor of k in C(v).

In the dynamic version of the problem we also support
the following two operations:

• Insert(k, T ′): For each v ∈ T ′ insert k into C(v).

• Delete(k, T ′): For each v ∈ T ′ delete k from C(v).

The first implementation of dynamic FC was intro-
duced by Mehlhorn and Naher [16]. Their implemen-
tation require that the degree of the underlying graph
would be locally bounded by a constant: Let R(e) =
[l(e), r(e)] be a range associated with an edge e ∈ E
such that all FC operations with e ∈ T ′ have their
key k in R(e). We say that G has locally bounded de-

gree if there is a constant c such that for every vertex
v ∈ V , and for every key k ∈ U , there are at most



c edges e = (v, w) such that k ∈ R(e). Our control

graphs which are weight-balance B-trees with branch-
ing parameter d do not have locally bounded degree.
Their local degree equals O(d) where d is not a con-
stant. To apply FC to a weight-balance B-tree, we use
the implementation of Raman [20]. In the full version
of this paper [13] we provide all the details regarding
the implementation of Raman. The following theorem
summarizes the properties of the FC data structure of
Raman.

Theorem 2.2. We can implement FC in linear space
such that each operation on a tree T ′ takes O(log n +
|T ′|(log log n + log d)) time. The time bound is worst-
case for queries and amortized for insertions and dele-
tions.

To apply FC with a weight-balance B-tree T as the
underlying graph we show [13] how to add and remove
edges to the control graph G, as Raman [20] did not
consider modifications to G. We also prove that if for
each v ∈ T , C(v) is proportional to n(v), then the
size of the data structure that FC holds in v is also
proportional to n(v). Our FC data structure then has
the following property.

Lemma 2.1. Let the control graph T for the FC struc-
ture be a weight-balance B-tree with branching parameter
d, such that for all v ∈ G, |C(v)| ≤ g(n) ·n(v) for some
function g such that g(n) ≥ 1 for n ≥ 0. Then inserting
or deleting an edge e = (u, v) to or from T , respectively,
takes O(g(n)(n(u) +n(v)) log d+log log n

d log n ) amortized time.

3 Pointer machine implementations

In this section we present two simple solutions to the
vertical ray shooting problem, both in the pointer
machine model. Intuitively, we apply fractional cas-
cading to a segment tree whose primary structure is
a weight-balance B-tree T with branching parameter
O(logε n) (for some ε > 0). The height of T is
O(1

ε log n/ log log n), which allows us to achieve the de-
sired bounds.

3.1 An implementation with optimal query

time Our data structure is a segment tree T imple-
mented as a weight-balance B-tree with fan-out d =
O(logε n). We store a segment s = (xs, xe, y) in S(v) for
all the nodes v ∈ T associated with the interval (xs, xe).
Each segment is thus stored in at most O(logε n) nodes
at each level and a total of O(1

ε log1+ε n/ log log n) nodes
overall. We use T as the control graph for a FC data
structure, where for every node v ∈ T we define the cat-
alogue C(v) as the set of segments S(v) sorted by their
y-coordinate.

Let q = (qx, qy) be a query point. All the segments
in S that intersect the vertical line x = qx are stored in
the catalogues of the nodes on the search path P (qx) of
qx in T . Since we use FC it suffices to spend O(log log n)
time at each node v of P (qx), to locate the segment right
above q in S(v). So a query takes O(log n) time. In the
full version of this paper [13] we bound the space used
by this structure, and describe the implementation of
each operation. The following theorem summarizes the
properties of our data structure:

Theorem 3.1. The fully dynamic vertical ray shooting
problem can be implemented in O(1

ε n log1+ε n/ log log n)
space, to support queries in O(1

ε log n) worst-case time,

and updates in O(1
ε log1+ε n) amortized time.

3.2 An implementation with optimal update

time Our data structure is a weight-balance B-tree T ,
similar to the structure of Section 3.1. We use T as the
control graph for a FC structure, but we change the
definition of the catalogues. We also store a secondary
structure only at internal nodes of height at least two.

Let s = (xs, xe, y) be a segment in S, let P (xs) and
P (xe) be the search paths of xs and xe in T , and let
LCA(s) be the lowest common ancestor of xs and xe.
Rather than storing a segment s in all nodes v such that
s ∈ S(v) we store s at the set of nodes on the suffixes of
P (xs) and P (xe) from LCA(s) to xs and xe respectively.
We define S′(v) to contain all segments (xs, xe, y) such
that v is a descendant of LCA(s) on P (xs), or v is a
descendant of LCA(s) on P (xe). The catalogue C(v)
now contains all segments of S′(v) sorted by their y-
coordinate.

Each internal node v of height at least two, has a
secondary structure denoted by M(v). The structure
M(v) is a small independent FC structure whose con-

trol graph is a star with a center v∗. The catalogue of
v∗, C(v∗), is identical to C(v). For every pair of children
(u, w) of v, we connect v∗ to a leaf ξ(u, w). The cata-
logue C(ξ(u, w)) contains all segments in C(u)

⋂
C(w).

That is, segments (xs, xe, y) such that xs is a leaf de-
scendant of u and xe is a leaf descendant of w. In ad-
dition, for each child u of v, v∗ has a leaf ξr(u) whose
catalogue C(ξr(u)) contains all segments (xs, xe, y) such
that xe is a leaf descendant of u and xs is not a descen-
dant of v. Similarly, v∗ has a leaf ξ`(u) whose cata-
logue C(ξ`(u)) contains all segments such that xs is a
leaf descendant of u and xe is not a descendant of v.
Note that C(v∗) (= C(v)) is the union of all the cat-
alogues of the leaves in M(v). To gain some intuition
note that insertion would be faster than for the data
structure of Section 3.1 since a segment is contained
only in O(1

ε log n/ log log n) catalogues. On the other
hand, query is more expensive since for each node v on



the query path we perform a FC query to M(v) with a
tree of size O(log2ε n).

We differ the description of the operations and the
precise analysis to the full version of this paper. The
following theorem summarizes the properties of our data
structure.

Theorem 3.2. The fully dynamic vertical ray shooting
problem can be implemented in O(1

ε n log n/ log log n)

space, to support queries in O(1
ε log1+ε n) worst-case

time and updates in O(1
ε log n) amortized time, for any

ε > 0.

4 An implementation for the RAM model

This section provides an implementation for the
vertical ray shooting problem that supports both
queries and updates in logarithmic time, and requires
O(n log n/ log log n) space. To achieve this result, we
use the unit cost RAM model, with a word size of w
bits. Let W be the maximum number of objects in the
structure. We assume that log W ≤ w. We allow arith-
metic operations as well as bitwise boolean operations.
For any integer M ≤ 2w we denote by [M ] the set of
integers in the interval [0, M − 1].

In the first part of this section, we introduce two
data structures. The first structure is a Generaliza-
tion of the Van Emde Boas structure [22] which we
call GV EB. To implement the second structure, we
use GV EB to construct a Generalized Union-Split-

Find structure which we call GUSF (for a definition of
Union-Split-Find see [11] Section 4.2, and [20] Section
5.2.3, and Section 4.2). These implementations are in-
fluenced by the work of Mortensen [17]. Mortensen ([17]
Lemma 3.1), present a data structure which he denotes
by Sn. Our GV EB is similar to Sn, but is defined in
a somewhat simpler way. GV EB is designed to an-
swer a different query than Sn. This is why we had to
change some of the internals of Sn, and maintain differ-
ent lookup tables. These modifications are made at the
bottom level of the structure, so we have to describe it
in detail to be able to describe our changes.

In the second part of this section, we present an
implementation for the vertical ray shooting problem.
This implementation, is similar to the one in Section
3.2. We hold a weight-balance B-tree T with branching

parameter d = 1
4 log

1

8 n. Let s = (xs, xe, y) be a
segment of S, and let P (xs) and P (xe) be the search
paths of xs and xe in T . We store s in all the nodes on
P (xs)

⋃
P (xe), where the secondary structure M(v) of

a node v ∈ T is a GUSF structure.

4.1 GV EB - A generalized Van Emde Boas

structure Let N, C ≤ 2w be two integers. A GV EB

structure with parameters (N, C) supports insertions
and deletions of ordered pairs (k, c), where k is an

integer in [N ], and c is an integer in [log
1

4 C]. We think
of k as the key of the element, and of c as the color of

the element. Let Cq ⊆ [log
1

4 C] be some set of colors.
GV EB supports a find(k, Cq) query that returns the
successor of k with color c ∈ Cq. Our implementation
is a variation of the recursive V EB structure [22], and
supports all operations in O(log log N) worst-case time.
Instead of holding the minimum and maximum integers
in the structure, each (recursive) structure keeps the
minimum and maximum integers for each color c ∈ C.
We use a q-heap data structure to manipulate these
values in worst-case constant time. A q-heap [12] is
a linear size data structure that supports insertions,
deletions and successor queries in worst-case constant
time. A q-heap with parameter M can accommodate

up to log
1

4 M elements of [M ], and requires a lookup
table of size M . A q-heap also supports in constant time
a rank(k) query, that returns the number of elements
smaller than k in the structure. We use q-heaps with
parameter C.

In the full version of this paper [13] we provide
all the details regarding this implementation. The
following theorem summarizes the properties of our data
structure.

Theorem 4.1. A GV EB structure with parameters

(N, C) requires O(N log
1

4 C) space, can be initialized in

O(N log
1

4 C) time, requires a lookup table of size C, and
supports find, insert and delete in O(log log N) worst-
case time.

4.2 GUSF - A generalized Union-Split-Find

structure The dynamic union-split-find structure
holds a list of n elements subject to insertions and dele-
tions, where some elements are marked. It supports a
query with a key x that returns the marked successor
of x in the list. Dietz and Raman implemented this
structure in the RAM model ([11] Section 4.2, [20] Sec-
tion 5.2.3). In their implementation all operations take
O(log log n) worst-case time. A GUSF structure G with
parameter C generalizes the dynamic union-split-find

structure as follows. Each element x of G is associated
with a subset C(x) ⊆ [log

1

4 C] of colors. Let y and prev

be pointers to elements in the list, and let Cq ⊆ [log
1

4 C]
be a set of colors. GUSF supports the following opera-
tions:

• Find(y, Cq): Return the successor of y with color
c ∈ Cq.

• Add(y, prev): Inserts y immediately after prev,
with C(y) = φ.



• Erase(y): Removes y from the structure. We
assume that C(y) = φ when y is deleted.

• Mark(y, c): Adds c to C(y).

• Unmark(y, c): Removes c from C(y).

The implementation which we describe is similar to
the implementation in Section 5.2.3 of [20]. The main
difference is that we use the GV EB structure of Section
4.1 rather than a V EB structure. Intuitively, the idea is
to associate an integer value k with each element x of the
list, where the order between those integers is equivalent
to the order of the elements in the list. We assign integer
values using the data structure of [23]. For each color
c ∈ C(x) we insert the pair (k, c) into a GV EB structure
of the previous section. Again, postponing details to
the full version, the following theorem summarizes the
properties of our data structure:

Theorem 4.2. A GUSF with parameter C can be
implemented in linear space, using a lookup table of size
C, such that each operation takes O(log log C+log log n)
time, where the bound is amortized for insertions and
deletions, and worst-case for all other operations.

4.3 An implementation with optimal update

and query time We implement a “compact” version
of the segment tree structure of Section 2.1, by holding
a GUSF structure of Section 4.2 in each internal node.
We maintain a weight-balance B-tree T with branching
parameter d = 1

4 log1/8 n. Each internal node v ∈ T
stores a GUSF structure with parameter N = O(n)
(see Section 4.2), denoted by M(v). The parameter N
is set to n whenever we rebuild T . A segment (xs, xe, y)
stored in M(v) is mapped to a color that identifies the
children of v such that xs and xe are their descendants.
To achieve that we maintain at each node v the following
three tables.

1. The table U(v) maps each pair u, w of children of v,

to a color c(u, w) ∈ [log
1

4 n] (note that we allow u
to equal w, so there is a color c(u, u)). This would
be the color of every segment such that xs is a
descendant of u and xe is a descendant of w. The
table U(v) also maps each child u of v to a color

c`(u) ∈ [log
1

4 n] that corresponds to each segment
such that xs is a descendant of u and xe is not a
descendant of v. Similarly, U(v) maps u to a color
cr(u) that corresponds to each segment such that
xe is a descendant of u and xs is not a descendant
of v. We use this table to insert (delete) segments
to (from) M(v).

2. The table Q(v) maps a child u of v to the following
set of colors. For each pair (z, w) of children of v

such that z is a left sibling of u and w is a right
sibling of u, the colors {c(z, w), c`(z), cr(w)} belong
to this set. We use this table when we perform a
query on M(v).

3. The table F (v) maps a child u of v to the set
of colors containing c`(u), cr(u) and c(u, u). This
set of colors also contains for each child z 6= u
of v the color c(u, z). The role of this table is to
replace the FC structure we used in the previous
implementations.

We store a segment s = (xs, xe, y) in the M(v)
structures of all the nodes v on P (xs)

⋃
P (xe), where

P (xs) and P (xe) are the search paths of xs and xe in
T . For such a node v, we store y in M(v) with a color
c(s, v) that is defined as follows. If both P (xs) and
P (xe) contain v then c(s, v) = c(vs, ve) where vs is the
child of v on P (xs) and ve is the child of v on P (xe).
If only P (xs) contains v then c(s, v) = c`(u) where u is
the child of v on P (xs). If only P (xe) contains v then
c(s, v) = cr(u) where u is the child of v on P (xe). Let
r be the root of T . The structure M(r) contains all
the segments in our data structure. We also maintain
a binary search tree T0 over the y-coordinates of the
segments stored in M(r). We use T0 to start the search
in all the operations.

We now bound the space used by this structure.
Each segment s ∈ S is stored in O(log n/ log log n)
GUSF structures. Each GUSF structure requires space
linear in the number of elements in it (see Theorem 4.2).
To use the GUSF structures with parameter N = O(n)
we also need a lookup table of size O(n). We hold three
additional tables, each of size O(n). These tables are
described below. So the overall space this structure
requires is O(n log n/ log log n).

We now describe the implementation of each oper-
ation.

Query: We perform a query with a point q =
(qx, qy) as follows. Let (v0, v1, . . . , vk) be the search
path for qx in T , where v0 is the root of T . Let yi

be the successor of qy in M(vi). To find y0 we use the
search tree T0. Then, we perform the following two
steps for every 0 ≤ i < k. In the first step we find
the segment si right above q in M(vi) by performing
a find(yi, Q(vi+1)) on M(vi). In the second step we
find yi+1 by performing a find(yi, F (vi+1)) on M(vi).
Note that all the segments of M(vi+1) are contained in
M(vi), and their colors correspond to the set F (vi+1).
We return the segment with minimum y-coordinate in
{si : 0 ≤ i ≤ k}. Correctness follows as we perform the
query process described in Section 2.1.

We now bound the running time of a query. Search-
ing in T0 takes O(log n) time. Each query on a M(v)



structure takes O(log log n) worst-case time (see The-
orem 4.2). Since we perform O(log n/ log log n) such
queries, query takes O(log n) worst-case time. Next we
define how to perform insertions and deletions.

Insert: We insert a segment s = (xs, xe, y) in two
phases. In the first phase we insert xs and xe into T . In
the second phase we insert s into the M(v) structures of
nodes v ∈ P (xs)

⋃
P (xe). We begin the second phase

by finding the successors of y in the M(v) structures
of the nodes v on P (xs)

⋃
P (xe) in O(log n) time, just

like we did in query. For each node v ∈ P (xs)
⋃

P (xe)
we insert y to M(v) with the color c(s, v). Each such
insertion takes O(log log n) time, so the second phase of
the insertion takes O(log n) time.

We insert xs and xe to T using the regular imple-
mentation of insert into weight-balance B-trees. An in-
sertion into a weight-balance B-tree may split nodes.
We now describe how to carry out such splitting. Let v
be a node that we need to split into v` and vr, and let
p(v) be the parent of v in T . First, we delete v from T .
Then, we update Q(p(v)), F (p(v)), and U(p(v)), and
remove all the segments of M(v) from M(p(v)), since
their color in M(p(v)) may change. Then, we insert v`

into T , so we have to update the tables representing
p(v) again, and create M(v`) and the three lookup ta-
bles associated with v`. Similarly, we insert vr into T .
Finally, we traverse the segments of M(v), and insert
each segment s = (xs, xe, y) into M(p(v)). If either xs

or xe is a descendant of v` we also insert s into M(v`),
and similarly for M(vr).

We now explain how to update and create all the
new lookup tables in constant time. When we delete v
(or when we insert v` or vr), the old lookup tables of
p(v), are no longer valid, and have to be replaced. The
new lookup tables of p(v) can be viewed as a function
of the old tables and the index of v in the child list of
p(v). (The new lookup tables of v` and vr are produced
similarly.) To compute the new tables in constant time,
we keep three super lookup tables: U∗, F ∗ and Q∗ as
follows.

U∗ maps an old table U(v) and an index k ∈

[log
1

8 n], to a new table U(v). The table U(v) is a

function U : [log
1

8 n]2 → [log
1

4 n], since it maps a pair of
children of v to a color. Therefore the number of entries
in U∗ is

log
1

4 n
log

2

8 n
· log

1

8 n << n .

Each entry of U∗ contains of a table U(v) of size log
2

8 n,
so the overall space required by U∗ is smaller than n.

Q∗ maps an old table Q(v) and an index k, to a new

table Q(v). The table Q(v) is a function from [log
1

8 n]

to the power set of [log
1

8 n]2, since it maps a child of v
to a set of pairs of children of v. Therefore the number

of entries in Q∗ is

(2log
2

8 n)
(log

1

8 n)

· log
1

8 n << n .

Each entry of Q∗ contains of a table Q(v). A table Q(v)

contains log
1

8 n entries of size log
2

8 n each, so the overall
space required by Q∗ is smaller than n.
The size of F ∗ can be bounded analogously. We rebuild
U∗, Q∗ and F ∗ whenever we rebuild T .

We now analyze the running time of insert. Other
than the constant time operations described above,
we perform a constant number of updates on GUSF
structures for every element in M(v). Since |M(v)| =
O(n(v)), these operation take O(n(v) log log n) time,
which dominates the running time of the split. By
Theorem 2.1 insertion takes O(log n) amortized time.

Delete: Deleting a segment s = (xs, xe, y) is an
easier task, since we use the lazy-deletion technique (see
Section 2.2). To delete s, we first remove s from the
M(v) structures of all the nodes on the search paths of
xs and xe in T . Just like in insertion, these updates
take O(log n) time. Then, we delete xs and xe from
T (i.e., lazily marking these leaves as deleted) and we
are done. Using the lazy-deletion technique requires
periodical rebuilding of the entire structure (see Section
2.2). This rebuilding does not affect the amortized time
bound of the operations. It follows that deletion also
takes O(log n) amortized time.

The following theorem summarizes the properties of
our data structure.

Theorem 4.3. The fully dynamic vertical ray shooting
problem can be implemented in O(n log n / log log n)
space, to support updates and queries in O(log n) time,
where the bound is amortized for updates and worst-case
for queries.

5 How to use only linear space

In this section we show how to reduce the space required
by the three structures we presented in this paper. The
space saving technique, is influenced from the work
of Baumgarten et al. [4], that present a linear space
implementation for dynamic point location in general
subdivisions. Intuitively, we save space by inserting the
segments of S into a large fan-out interval tree, where
only a fraction of the segments is also inserted into a
segment tree. Here we show how to reduce the space
of the data structure described in Section 3.1. The
details related to reducing the space of the two other
data structures are in [13].

We use as the primary structure a variation of
the large fan-out interval tree defined in Section 2.1,
implemented as a weight-balance B-tree (see Section
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Figure 1: The segment s belongs to I`(2), Ir(6), Im(3),
Im(4) and Im(5)

2.2). We denote this tree by TI . The difference is that
a node v ∈ TI does not maintain S(v) in a secondary
data structure, but segments from S(p(v)) as follows.

Consider a segment s = (xs, xe, y) ∈ S. Let vs

be the child of LCA(xs, xe) such that xs is a leaf
descendant of vs. Similarly, let ve be the child of
LCA(xs, xe) such that xe is a leaf descendant of ve. We
store s at all children of LCA(xs, xe) that are between
vs and ve (including vs and ve). For each node v ∈ T
we define I(v) as the set of segments s = (xs, xe, y)
such that v is a child of LCA(xs, xe) between vs and
ve. We divide the set I(v) into three subsets: I`(v),
Im(v) and Ir(v). The set I`(v) contains the segments
s = (xs, xe, y) ∈ I(v) such that v = vs. The set Ir(v)
contains the segments such that v = ve. The set Im(v)
contains the segments s ∈ I(v) such that s contains
range(v) (See Figure 1).

The main property of an interval tree still applies:
Let x ∈ R be a point, and let P (x) be the search path
for x in T . Let I`(v, x) denote the set of segments
of I`(v) whose left endpoints is smaller then x, and
let Ir(v, x) denote the set of segments of Ir(v) whose
right endpoints is larger then x. The set of all the
segments that intersect the vertical line X = x is
{v ∈ P (x) : I`(v, x) ∪ Ir(v, x) ∪ Im(v)}.

We build on top of TI three FC data structures; Π`,
Πm, and Πr. The FC structure Πm has in each node
v ∈ TI a catalogue C(v) containing the set of segments
Im(v), sorted by their y-coordinate. The structures
Π` and Πr are defined analogously. For each v ∈ TI ,
we divide the set Ir(v) in Πr into blocks each of size
Θ(1

ε log1+ε n/ log log n). For each block Br of Ir(v)
we maintain the segment win(Br) of maximum right
endpoint. Similarly, we divide the set I`(v) into blocks,
and for each block B` of I`(v) we maintain the segment
win(B`) of minimum left endpoint.

In addition to TI we maintain two segment trees;
Tr and T` as in Section 3.1. The structure of Section

3.1 supports a Find+(q) query that returns the segment
right above q. We extend Tr and T` in a straightforward
way to also support a Find−(q) query, that returns the
segment right below q. For every node v ∈ TI , and
every block Br of Ir(v) we maintain win(Br) in Tr,
unless Br is the only block representing the set Ir(v).
Similarly, for every node v ∈ TI , and every block B` of
I`(v) we maintain win(B`) in T`, unless B` is the only
block representing the set I`(v).

A block Br of Πr is implemented as a balanced
binary search tree, whose leaves correspond to the
set of y-coordinates of elements in Br. In addition,
each internal node u holds the maximum x-coordinate,
max(u), of a segment in its subtree. The blocks of Π`

are implemented symmetrically. Next we bound the
space used by this structure.

By Theorem 2.2 the space used by Πm is
O(n logε n), since each segment in Πm is stored in
O(logε n) catalogues. A segment sr ∈ Πr is stored in
a single catalogue and in a single block. It follows that
Πr requires linear space. The segment tree Tr keeps
O(n/(1

ε log1+ε n/ log log n)) segments of Πr, and thus
uses linear space (by Theorem 3.1). The space used by
Π` and by T` is also linear. It follows that our struc-
ture uses O(n logε n) space. To perform a query, we first
query T` and Tr, which returns the segment right above
q and the segment right below q amongst all the win-
ners. We show that with these segments we can find
the answer in T . In the full version of this paper [13] we
provide all the details of how to perform each operation.
The following theorem summarizes the properties of our
data structure:

Theorem 5.1. There exists a data structure for the
fully dynamic vertical ray shooting problem which re-
quires O(n logε n) space, supports queries in O(1

ε log n)

worst-case time, and updates in O(1
ε log1+ε n) amortized

time, for any ε > 0.

We reduce the space of the structure described in
Section 3.2 to linear, using a similar technique. The
main difference is that we divide the sets of segments
represented at the leaves of each M(v) structure into
blocks. This result is summarized in the following
theorem.

Theorem 5.2. There exists a data structure for the
fully dynamic vertical ray shooting problem that requires
linear space, supports queries in O(1

ε log1+ε n) worst-
case time, and updates in O(1

ε log n) amortized time,
for any ε > 0.

To reduce the query time in Theorem 5.2, we use
the M(v) structure described in Section 4.3, rather than
the M(v) structure described in Section 3.2. This way



we finally achieve an optimal solution, as stated in the
following theorem.

Theorem 5.3. There exists a data structure for fully
dynamic vertical ray shooting problem that requires
linear space, supports queries in O(log n) worst-case
time, and updates in O(log n) amortized time.

6 Open Problems

We present an optimal implementation to the vertical
ray shooting problem, that works in the RAM model
of computation. It is an open question whether a linear
space implementation that supports all operations in
logarithmic time exists for the pointer machine model.

Our implementation can be used for a set of seg-
ments that are not necessarily horizontal but have a
constant number of different slopes (we can use a differ-
ent data structure for each slope). It is an open question
whether there exists an optimal solution for segments
that have a non constant but still small number of dif-
ferent slopes.

Recent papers ([6], and [18]) present implementa-
tions to the static planar point location problem with
query time o(log n), where the endpoints of all the seg-
ments belong to a [u] by [u] grid. It is an open question
whether the (optimal) bounds presented in this paper
can be improved, under the assumption that the end-
points of all the segments belong to a [u]2 grid.
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