
On the Price of Stability for Designing

Undirected Networks with Fair Cost Allocations

Amos Fiat, Haim Kaplan, Meital Levy, Svetlana Olonetsky, and Ronen
Shabo

School of Computer Science, Tel-Aviv University,Israel

Abstract. In this paper we address the open problem of bounding the
price of stability for network design with fair cost allocation for undi-
rected graphs posed in [1]. We consider the case where there is an agent
in every vertex. We show that the price of stability is O(log log n). We
prove this by defining a particular improving dynamics in a related graph.
This proof technique may have other applications and is of independent
interest.

1 Introduction

The price of stability [1] of a noncooperative game is the ratio between
the cost of the least expensive Nash equilibria and the cost of the social
optimum. The price of stability for network design games is motivated by
the scenario where one may have some centralized control for a limited
time when the network is set-up. But, once the network is up and running,
it should be stable without central control. Of course, the price of stability
is not larger than the price of anarchy [6] which is the ratio of the cost of
the most expensive Nash Equilibrium and the cost of the social optimum.

We consider the game of network design with fair cost allocation in-
troduced in [1]. In this game, agent i has to choose a path (strategy) from
source node si to destination node ti. The cost of an edge e, c(e), is shared
equally by all agents i whose chosen path pi = si, ..., ti includes e.

It follows from the potential function arguments of [7, 8] that pure
strategy Nash equilibria always exist for general congestion games, and
in particular for the network design game that we consider here (both
directed and undirected versions)1. In the following, we consider the price
of stability for this network design game with respect to pure strategies.

The social optimum for this game is a minimum Steiner network con-
necting all source-destination pairs. Anshelevich et al. [1] show that the
price of stability of this game is at most H(n) = 1 + 1/2 + · · · + 1/n,

1 Some weighted congestion games do not have Nash equilibria in pure strategies.

where n is the number of agents. They also exhibit a directed network
where this bound is tight.

For undirected graphs the upper bound of H(n) on the price of sta-
bility still holds but the lower bound does not. Furthermore, for the case
of two players and an undirected graph with a single source Anshelevich
et al. [1] prove a tight bound on the price of stability of 4/3 which is less
than H(2) = 3/2. Thus, [1] left open the question of whether there is a
tighter bound for undirected graphs.

Our results We prove that for undirected graphs with an agent in every
vertex and a distinguished source vertex r to which all agents must con-
nect, the price of stability of the network design game of [1] is O(log log n)
where n is the number of agents. In contrast, in directed graphs even when
there is a single source and an agent in every vertex the price of stability
is still Θ(log n). This follows by a slight modification of the lower bound
example of [1].

Related work on Network games Much of the work on network
games has focused on congestion games [7, 8]. In particular, latency min-
imization and some network construction/design games can be modeled
as congestion games or weighted congestion games.

Most of the previous work has been focused on bounding the price of
anarchy. The main focus was latency minimization for linear and poly-
nomial latency functions [3, 5, 9]. The price of stability for linear latency
functions has been studied by Christodoulou and Koutsoupias [4].

As most of previously considered games the game that we consider
here is also a congestion game where players are source-destination pairs
and a strategy of a player is a single path from the source to the desti-
nation. The difference is that the cost that a player pays for each edge e
on its path is c(e)/xe where xe is the number of players using the edge.
The price of anarchy for this game can be high as shown in [1]. But we
are interested in the price of stability. The price of stability of a different
connection game was also considered by Anshelevitz et al. [2].

2 Preliminaries

Our input is an undirected graph G = (V,E), along with a distinguished
source vertex r ∈ V , and a cost function c : E 7→ R+. We will refer to
c(e), e ∈ E, as the cost of the edge e.

Associated with every vertex v ∈ V is a selfish player. The network
design game defines a strategy of a player v, to be a simple path in G

connecting v to the source r. Let Sv denote the strategy chosen by player
v, we define the state S to be the set of all paths Sv, for all players v.
We define E(S) to be the set of edges that appear in one or more of the
paths in state S. 2

It follows that the graph (V,E(S)) is a subgraph of G. In state S,
let xs(e) be the number of players whose strategy contains edge e ∈ E.
We define the cost of player v in state S, CS(v), to be

∑
e∈Sv

c(e)/xs(e).
A state S is in a Nash equilibrium if no player can lower her cost by
unilaterally changing her path to the source r.

We shall use the standard potential function Φ, see e.g. [1, 7], that
maps every state S into a numeric value: Φ(S) =

∑
e∈E c(e)H(xs(e)),

where H(n) = 1 + 1/2 + 1/3 + · · · + 1/n is the n’th Harmonic number.
If a single player v changes her strategy then the difference between the
potential of the new state and the potential of the original state is ex-
actly the change in the cost of player v. This implies that the improving
response dynamics converges to a Nash equilibrium in pure strategies.

Notice that the sum of the costs of all players in state S is exactly the
sum of the costs of the edges of E(S). It follows that if the social cost
function is the sum of the costs of all players then the social optimum of
this game is a minimum spanning tree of the graph. We denote by OPT

an arbitrary but fixed minimum spanning tree. Let p be the path from
vertex u to vertex v in OPT. We define the distance between u and v
in OPT, denoted by dopt(u, v), to be the sum of the costs of the edges
between vertex u and vertex v along p.

Let S be a state and let e = (x, y) ∈ Su. We say that u uses e in the
direction x → y if y is closer than x to the r on Su. Similarly, we say that
u uses e in the direction y → x if x is closer than y to r on Su. We say
that e appears in S in the direction x → y (or simply x → y appears in
S) if there is a player u such that e appears in Su in the direction x → y.

In the following definitions assume that v is the only player making
the change, and we denote the new state by S ′ which is identical to
S except that we replace Sv by S′

v. We say that a player v makes an
improvement move when the player chooses a new strategy S ′

v such that
CS′(v) < CS(v). We limit player v to choose strategies S ′

v of the following
three types.

EE (Existing Edges) – An improvement move such that E(S ′) ⊆ E(S).
Furthermore, if S ′

v uses an edge e = (x, y) in the direction x → y then
x → y appears in S.

2 Note that if one allow non simple paths as strategies then for every non simple
strategy there is always a simple one which is strictly better.

OPT – An improvement move such that E(S ′) ⊆ E(S) ∪ OPT, but
E(S′) * E(S). Furthermore, if S ′

v uses an edge e = (x, y) /∈ OPT in
the direction x → y then x → y appears in S.

OPT – The first edge e = (v, w) on S ′

v is not in E(S) ∪ OPT, and
E(S′) − {e} ⊆ E(S). Furthermore, if S ′

v uses an edge e′ = (x, y),
e′ 6= e in the direction x → y then x → y appears in S.

Remark 1. Note that if we start from OPT and perform only EE, OPT,
and OPT moves then in the state that we reach, no edge (x, y) /∈ OPT

appears in both directions, x → y and y → x. It appears in the same
direction determined by the OPT move that added (x, y).

Overview In Section 3 we prove that if no player has an improvement
move of type EE, OPT, or OPT then the state is a Nash equilibrium.
We single out a specific Nash equilibrium, denoted by N , that we reach
by carefully scheduling EE, OPT, and OPT moves. We then prove that
the cost of N is larger than the cost of OPT by a factor of at most
O(log log n).

After an OPT move of a player u that adds the edge (u, v) into the
current state, we make further OPT and EE moves so that more players
use (u, v). We traverse players in increasing distance from u in OPT. Each
player that improves her strategy by using the path to u in OPT following
by the strategy of u makes the corresponding improvement move.

Let c(u, v) = z. This scheduling has two effects which our proof ex-
ploits.

1. If there are O(log n) players whose distance to u in OPT is no larger
than z/4 then the potential decreases by O(z log n). Therefore, the
total cost introduced into N by such edges is O(OPT).

2. Edges in N \ OPT cannot be too close to each other in the metric
defined by OPT. This allows us to relate the cost of all other edges in
N \ OPT to the cost of OPT.

Our scheduling algorithm is described in Section 4. In Section 5 we
prove the bound on the price of stability of the Nash Equilibrium obtained
by the scheduler. Due to the space limit some of the proofs are omitted.

3 Improvement moves result in Nash equilibria

We now show that if no player has an improvement move of type EE,
OPT, or OPT then the current set of strategies is a Nash equilibrium.

Lemma 1. Let S be a state such that no player has an improving move
of type EE. Then (V,E(S)) is a tree.

Proof. Assume that (V,E(S)) is not a tree. Since our strategies are simple
paths there must be some vertex w from which one can follow two paths
to r; one path is the strategy Sw of w, and the other path, denoted
by Ŝw, is a suffix of some path Su of a vertex u that goes through w.
If

∑
e∈Ŝw

c(e)/xs(e) ≤
∑

e∈Sw
c(e)/xs(e) then w has an improving EE

move in which she replaces her path by Ŝw which is a contradiction. On
the other hand, if

∑
e∈Sw

c(e)/xs(e) ≤
∑

e∈Ŝw
c(e)/xs(e) then u has an

improving EE move in which she replaces the suffix Ŝw of Su by Sw. ut

Lemma 2. Let S be a state in which no player can make an OPT, OPT,
or EE improvement move. Then S is in a Nash equilibrium.

4 Scheduling OPT, OPT, and EE Improvement Moves

For technical reasons that we will elaborate on later, instead of considering
the stability problem on the graph G, we switch to a related multigraph,
G. It would be clear from the definition of G that every minimum spanning
tree in G corresponds to a minimum spanning tree in G with the same cost
and vice versa. We also argue that a Nash equilibrium in the multigraph
gives us a Nash equilibrium in the original graph with the same cost.

We define G as follows. Associate with every edge e ∈ G, not in OPT,
an identical edge e′ ∈ G. Replace an edge e ∈ G that is in OPT by
parallel edges e1 and e2 in G, each of weight c(e). We say that e1 and e2

are associated with e and vice versa. We can show that:

Lemma 3. For every Nash equilibrium in G there is a Nash equilibrium
in G of the same cost.

We define EE, OPT, or OPT moves in G the same as we defined them
in Section 2 where by edges of OPT in G we refer to both copies of each
edge of OPT in G.

The scheduler: We start the scheduler on G from an initial state
isomorphic to OPT. We define the initial state S to consist of all edges
e1 ∈ G associated with some e ∈ OPT. The scheduler halts and the
process converges when no EE, OPT, or OPT moves are possible. The
scheduler works in phases where in each phase we make a single OPT
move.

Let S be some state, that includes strategy Sv for player v and Sw

for player w. Given that w is a vertex on Sv, we define Follow(S, v, w)
as a possible alternative strategy for vertex v. Strategy Follow(S, v, w)
consists of the prefix of Sv up to and including vertex w, followed by Sw.

As an aid to the exposition, we use colors red and blue to label the
parallel edges of G. Initially, for every e ∈ OPT we assign the edge e1 the
color red and the edge e2 the color blue. In the beginning of a phase we
may change the assignment of the red/blue colors to the parallel edges.

OptFollow(S, v, w) is a strategy for player v that is defined if there is
an edge (v, w) that is a copy of an edge in OPT colored blue. The strategy
OptFollow(S, v, w) consists of the single edge (v, w) followed by Sw.

A phase of the scheduler: Let S be the state at the beginning
of a phase. We maintain the invariant that in S no player can make
an improving OPT or EE move, and thereby S is a tree according to
Lemma 1. Before the phase starts we make a Recoloring step. In this step
we recolor red each edge in S which is a copy of an edge in OPT, and we
color blue the other copy of the edge which not in S.

OPT-move: The phase starts with some player u changing her strat-
egy by an improving OPT move. We denote by S ′ the state after this
OPT move of u at the beginning of the phase.

OPT-loop: Following this OPT move we start a breadth first search
of OPT from u and for each player v in increasing order of dopt(u, v) we
do the following. Let CurS be the state right before we process v, and
let p(v) be the parent of v in the breadth first search tree. We check if
OptFollow(CurS, v, p(v)) is an improving strategy for v. If it is improving
then v changes her strategy to OptFollow(CurS, v, p(v)). If it is not im-
proving then we truncate the breadth first search at v. Note that all these
OptFollow moves are defined since we started the phase with a recoloring
step. We call this part of the phase of the scheduler the OPT-loop since
all improvement moves made in this part are OPT moves. We denote by
D the set of players that includes u and players who performed an OPT
move in the OPT-loop.

EE-loop: For each player w ∈ D let Mw be the subset of descendants
of w in the tree S rooted at r, such that v ∈ Mw if and only if v /∈ D
and w is the first player in D along the path from v to r in S. In the
second part of the phase we traverse the vertices in

⋃
w∈D Mw. For each

player v ∈ Mw, let CurS be the state right after we process w, if the
strategy Follow(CurS, v, w) is an improving strategy for v, then v changes
her strategy to Follow(CurS, v, w). We call this part of the phase of the

scheduler the EE-loop since all improvement moves made in this part are
EE moves.

In the last part of the scheduler we perform any improving OPT or
EE moves until no such improving move exists. Then the phase ends, and
we start the next one if there is an improving OPT move, or we stop if
there isn’t.

5 The price of stability

In this section we bound the cost of the Nash equilibrium reached by the
scheduler.

We introduce the following definitions. Let S be the state which is a
tree. Assume we root the tree at r. Let PS(v, w) be the path from vertex
v to w in state S and let LCAS(v, w) be the lowest common ancestor of
v and w in state S (when we root the tree at r). We remove the subscript
S when it is clear from the context.

Let P v
w = P (w,LCA(v, w)) and define Cv

S(w) =
∑

e∈P v
w

c(e)
xs(e)+1 +

∑
e∈Sw−P v

w

c(e)
xs(e)

, where Sw is the strategy of w in state S. In other words,

we take into account an additional player on the path from w to LCA(v, w)
in S. One can think of Cv

S(w) as the cost of w after v changes her strategy
to a strategy in which she takes some path to w and then continues to the
source according to Sw. It is clear that Cv

S(w) ≤ CS(w) since the share of
w in the cost of each edge on P v

w in Cv
S(w) is smaller than in CS(w).

Lemma 4. Assume that no improving OPT moves, and no improving
EE moves are possible in a state S. Then for every pair of players v and
w the inequality CS(v) ≤ Cv

S(w) + dopt(v, w) holds.

Proof. Suppose that CS(v) > Cv
S(w) + dopt(v, w). Consider the strategy

S′

v that consists of the path of OPT edges from v to w followed by the
strategy of w. The strategy S ′

v has cost CS′(v) ≤ Cv
S(w) + dopt(v, w), so

it is an improving OPT move and we get a contradiction. ut

Let S′ be the state after player u performs an OPT move during the
execution of the scheduler and let S be the state preceding this move. Let
the cost of the newly used edge e′ = (u, v) be c(e′) = z. In the following
lemma we show that for every player w for which dopt(u,w) ≤ z

4 , w would
pay less if she takes the path in OPT to u and then continues as u in
S′. The intuition of why this holds is as follows: From Lemma 4 we know
that when no OPT moves are possible the cost of u in S could not be
much larger than the cost of w. The difference is about dopt(u,w) ≤ z

4 .

So if we make w go through u in S her cost may increase by at most z/2.
It increases by at most z/4 for the path to get to u and by at most z/4
since the cost of u may be larger by at most z/4 from the cost of w. In
S′ however w will split the cost of the edge (u, v) with u, paying only z/2
to go through it and thereby recovering the extra cost to get to u.

Lemma 5. Let S be a state where no OPT moves and no EE moves
which are improving are possible. Let S ′ be the new state after player u
makes an improving OPT move defined by the edge e′ = (u, v). Let the
cost of c(e′) be z. Then for every player w for which dopt(u,w) ≤ z

4 ,
CS′(w) > CS′(v) + z

2 + dopt(u,w).

Proof. The strategy of player u in S ′ is the edge (u, v) followed by the
strategy of player v, Sv, that is CS′(u) = CS′(v) + z. Since u performed
an improving OPT move, CS′(u) < CS(u), and thus

CS′(v) + z < CS(u) . (1)

Since in S there are no improving OPT moves and no improving EE
moves, then, by Lemma 4,

CS(u) ≤ Cu
S(w) + dopt(u,w) . (2)

We claim that Cu
S(w) ≤ CS′(w). First note that the strategy Sw is equal

to the strategy S ′

w, since only the strategy of u is different in S and S ′.
The cost of w however may be different in S and S ′. Split Sw into two
pieces. One piece, denoted by P1, from w to LCAS(u,w), and the other
piece, denoted by P2, from LCAS(u,w) to the source (see Figure 1). In
S, player w shares with player u the cost of the edges in P2, but this may
not be true in S ′, so for e ∈ P2, xs(e) ≥ xs′(e). Consider P1. In S player
w does not share with player u the cost of the edges on P1, but she may
share this cost with u in S ′. So for e ∈ P1 we have xs(e) + 1 ≥ xs′(e). In
contrast Cu

S(w) is the tentative cost of w assuming that she shares with
u the cost for every edge of her strategy. Therefore,

Cu
S(w) =

∑

e∈P1

c(e)

xs(e) + 1
+

∑

e∈P2

c(e)

xs(e)
≤

∑

e∈S′

w

c(e)

xs′(e)
= CS′(w) , (3)

as we claimed. From inequalities (2) and (3) we obtain

CS(u) ≤ CS′(w) + dopt(u,w) . (4)

Considering inequalities (1) and (4) we get CS′(w)+dopt(u,w) > CS′(v)+
z, and therefore

CS′(w) > CS′(v) + z − dopt(u,w) .

For player w for which dopt(u,w) ≤ z
4 ,

CS′(w) > CS′(v) + z − dopt(u, w) ≥ CS′(v) +
3z

4
≥ CS′(v) +

z

2
+ dopt(u, w) . ut

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���������
���������
���������
���������
���������

�������
�������
�������
�������
�������

c(e′) = z

r

v
P1

P2

w

LCA(u,w)

u

Fig. 1. Player u makes an OPT-move and buys edge e′ = (u, v) of cost z. We assume
that dopt(u, w) ≤ z

4
.

Let S′ be the state after player u performs an OPT move during the
execution of the scheduler, defined by the edge eu = (u, v) whose cost
is z. Let w0, w1, w2, . . . , wm be the vertices with dopt(u,wi) ≤ z

4 . As-
sume that dopt(u,wi) ≤ dopt(u,wi+1). In particular w0 = u, and the
vertex w1 is adjacent to u in OPT. Lemma 5 implies that the strat-
egy OptFollow(S,w1, u) is improving for w1. But what happens after w1

changes her strategy? Can w2 still make an OPT move using some edge
which is not in S and lower her cost? The following lemma shows that
indeed this is the case.

Lemma 6. Let wk be the vertex following wi on the path from wi to u
in OPT (that is, wk is the parent of wi in the BFS tree traversed by the
OPT-loop). Let Si be the state just before the scheduler processes wi in
its OPT-loop. Then CSi(wi) > CSi(v) + z

2 + dopt(u,wi), and therefore
OptFollow(Si, wi, wk) is an improvement move for wi and the scheduler
changes the state of wi to this strategy.

Remark 2. To make Lemma 6 work we had to introduce G. With one set
of OPT edges it is possible that when wi changes her strategy she uses
OPT edges that can be part of the strategy of w` for some ` > i. If these
edges are not in Sv, and are not on the path between w` and u in OPT

then this may lower the cost of Sw`
such that when the scheduler gets to

w` in the OPT-loop, her alternative OptFollow move is not improving.

The following lemma gives a lower bound on the decrease in the po-
tential during a phase of the scheduler.

Lemma 7. Let u be the player making the OPT move at the beginning
of a phase. Let e′ = (u, v) be the first edge in the new strategy of player
u, and let z = c(e′). Let m be the number of players at distance at most z

4
from player u in OPT (other than u itself). If m ≥ 2 then the potential of
the state at the end of the phase is smaller by Ω(zm) from the potential
of the state at the beginning of the phase.

Proof. Let w1, . . . , wm be the players such that dopt(u,wi) ≤ z
4 . Assume

that dopt(u,wi) ≤ dopt(u,wi+1). Let Si be the state right before the sched-
uler processes wi in its OPT-loop.

By Lemma 6, when the scheduler processes player wi we have that
CSi(wi) > CSi(v) + z

2 + dopt(u,wi). Also according to Lemma 6 players
w1, . . . , wi−1 already use the edge (u, v) in their strategy in S i. There-
fore the cost of the new strategy OptFollow(S i, wi, wk) for wi is at most
CSi(v) + z

i+1 + dopt(u,wi). (Here wk is the vertex adjacent to wi on the
path in OPT from wi to u.) It follows that player wi decreases her cost
by at least z

2 −
z

i+1 . Summing up the decrease in the cost of all m players
w1, . . . , wm, we get

∑m
i=1

z
2 −

z
i+1 = z(m

2 −(H(m+1)−1)) = Θ(zm). This
is also the decrease in the potential since when a single player changes
her strategy the change in the potential is equal to the change in the cost
of the player. ut

As before, let S ′ be the state after player u performs an OPT move and
uses an edge e′ = (u, v) 6∈ OPT. Let D be the set of vertices accumulated
while the scheduler performed the OPT-loop, together with u, and let S ′′

be the state after the execution of the EE-loop. Consider an edge e 6∈ OPT

which was the first edge in the strategy Sw in state S, of some player
w ∈ D. By the definition of the scheduler, the first edge in the strategy of
w in S′′ would be an edge in OPT (or e′ for u) and not e. However, it could
be that some descendant of w still uses e in her strategy. We want to show
that this could not be the case. That is, while performing the EE-loop all
these descendants take an alternative strategy that does not use e.

Lemma 8. Consider a phase of the scheduler. Let S be the starting state,
and let D be the set of players that includes player u and the players that
change their strategy in the OPT-loop. Let e 6∈ OPT be the first edge in
a strategy Sw, for some w ∈ D. Let S ′′ be the state after the execution of
the EE-loop. Then e 6∈ S ′′.

The total cost of the edges in N ∩ OPT is no larger than the cost of
OPT. We associate each edge (u, v) ∈ N \ OPT with player u that actu-
ally improved her strategy by the OPT move that added the edge (u, v)
to N . We further partition the edges e = (u, v) in N \ OPT according to
the number of vertices in OPT in a neighborhood of size c(e)/4 around
the associated player. Specifically, let e = (u, v) ∈ N \OPT be associated

with player u. We say that e is crowded if |{w | dopt(u,w) ≤ c(e)
4 }| ≥ log n,

and we say that e is light otherwise.

Lemma 9. The total cost of all crowded edges is O(OPT).

Proof. Let e be a crowded edge in N \ OPT. By Lemma 7, in the phase
that started with the OPT move that put e into N , the potential dropped
by Ω(c(e) log n). Since initially the potential is at most OPT · log n, and
is always decreasing, the lemma follows. ut

Lemma 10. The total cost of all light edges in N is O(OPT · log log n).

Proof. Let U be the set of players assigned to light edges. For a player
v ∈ U we denote the associated light edge by ev. We define the cost of v
to be the cost of ev and denote it by zv.

We choose a subset F ⊆ U as follows. Start with T = U and F = ∅. Let
v ∈ T be a player of maximum cost in T . Let Uv = {w ∈ U | dopt(v, w) ≤
zv/4, zw ≤ zv/log n}. Add v to F and continue with T = T \ ({v} ∪ Uv)
until T is empty.

Since every vertex v ∈ F is a light vertex, the total cost of all vertices
in Uv is at most zv, so its enough to prove that the total cost of all vertices
in F is O(OPT · log log n).

For v ∈ F , consider a ball, Bv, of radius zv/12 around v in OPT.
According to Lemma 4, zv < dopt(v, r), so the ball Bv contains at least
one path of length at least zv/12. We prove that every point ξ ∈ OPT is
contained in at most log log n balls Bv for v ∈ F . Therefore the total cost
of all vertices in F is O(OPT · log log n).

Let e ∈ OPT and let ξ be some point on edge e. Let Aξ be the
set of vertices whose balls contain ξ. We show that |Aξ| ≤ log log n.
Let v1, . . . , vm be the vertices of Aξ in the order that their light edges
ev1

, . . . , evm were added to N (if some edge was added more than once,
we consider the last time it was added). Let 1 ≤ i < j ≤ m. By Remark 1,
when vj makes the OPT move that adds evj

, vi was using evi
in her strat-

egy. Since evi
∈ N , that is vi did not change her strategy in the OPT -loop

of the phase where vj added evj
, according to Lemma 8, we have

dopt(vi, vj) >
zvj

4
. (5)

Since dopt(vi, ξ) ≤ zvi
/12 and dopt(vj , ξ) ≤ zvj

/12, we obtain

dopt(vi, vj) ≤
zvi

12
+

zvj

12
. (6)

Substituting j = i + 1 and combining the Inequalities (5) and (6), we
get zvi+1

< zvi
/2 and, by induction, zvi+1

<
zv1

2i . In particular, for every
i we have zvi+1

< zv1
, so by applying Equation 6 to vi+1 and v1 we get

dopt(vi+1, v1) ≤ zv1
/6. Therefore, by the definition of F , it must be that

zvi+1
> zv1

/log n. Since
zv1

log n
< zvi+1

≤
zv1

2i , we get that i < log log n, and
therefore |Aξ| ≤ log log n. ut

The following theorem follows from Lemmas 9 and 10 and is the main
result of this work.

Theorem 1. For a graph with a source vertex and a player in every
vertex the price of stability is O(log log n).

Acknowledgements

We would like to thank Micha Sharir for helpful discussions.

References

1. E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Rough-
garden. The price of stability for network design with fair cost allocation. In Proc.

of 45th FOCS, pages 295–304, 2004.
2. E. Anshelevich, A. Dasgupta, E. Tardos, and T. Wexler. Near-optimal network

design with selfish agents. In Proc. of 35th STOC, pages 511–520, 2003.
3. B. Awerbuch, Y. Azar, and A. Epstein. Large the price of routing unsplittable flow.

In Proc. of 37th STOC, pages 57–66, 2005.
4. G. Christodoulou and E. Koutsoupias. On the price of anarchy and stability of

correlated equilibria of linear congestion games. In Proc. of 13th ESA, pages 59–70,
2005.

5. G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion
games. In Proc. of 37th STOC, pages 67–73, 2005.

6. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proc. of 16th

STACS, pages 404–413, 1999.
7. D. Monderer and L. Shapley. Potential games. Games and Economic Behavior,

pages 14:124–143, 1996.
8. R. Rosenthal. A class of games possessing pure-strategy nash equilibria. Interna-

tional Journal of Game Theory, pages 2:65–67, 1972.
9. T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM,

pages 49(2):236–259, 2002.

