
Approximation Algorithms for Asymmetric TSP by

Decomposing Directed Regular Multigraphs∗

Haim Kaplan†

Tel-Aviv University, Israel
haimk@post.tau.ac.il

Moshe Lewenstein
Bar-Ilan University, Israel

moshe@cs.biu.ac.il

Nira Shafrir†

Tel-Aviv University, Israel
shafrirn@post.tau.ac.il

Maxim Sviridenko

IBM T.J. Watson Research Center
sviri@watson.ibm.com

January 26, 2007

Abstract

A directed multigraph is said to be d-regular if the indegree and outdegree of every
vertex is exactly d. By Hall’s theorem one can represent such a multigraph as a
combination of at most n2 cycle covers each taken with an appropriate multiplicity.
We prove that if the d-regular multigraph does not contain more than ⌊d/2⌋ copies of
any 2-cycle then we can find a similar decomposition into n2 pairs of cycle covers where
each 2-cycle occurs in at most one component of each pair. Our proof is constructive
and gives a polynomial algorithm to find such a decomposition. Since our applications
only need one such a pair of cycle covers whose weight is at least the average weight of
all pairs, we also give an alternative, simpler algorithm to extract a single such pair.

This combinatorial theorem then comes handy in rounding a fractional solution
of an LP relaxation of the maximum Traveling Salesman Problem (TSP) problem.
The first stage of the rounding procedure obtains two cycle covers that do not share
a 2-cycle with weight at least twice the weight of the optimal solution. Then we
show how to extract a tour from the 2 cycle covers, whose weight is at least 2/3 of
the weight of the longest tour. This improves upon the previous 5/8 approximation
with a simpler algorithm. Utilizing a reduction from maximum TSP to the shortest
superstring problem we obtain a 2.5-approximation algorithm for the latter problem
which is again much simpler than the previous one.

For minimum asymmetric TSP the same technique gives two cycle covers, not shar-
ing a 2-cycle, with weight at most twice the weight of the optimum. Assuming triangle

∗Preliminary version of this paper appeared in the Proceedings of the 44th Symposium on Foundations
of Computer Science (FOCS 2003) [20].

†Research partially supported by the Israel Science Foundation (ISF) (grant no. 548/00).

inequality, we then show how to obtain from this pair of cycle covers a tour whose weight
is at most 0.842 log2 n larger than optimal. This improves upon a previous approxima-
tion algorithm with approximation guarantee of 0.999 log2 n. Other applications of the
rounding procedure are approximation algorithms for maximum 3-cycle cover (factor
2/3, previously 3/5) and maximum asymmetric TSP with triangle inequality (factor
10/13, previously 3/4).

1 Introduction

The ubiquitous traveling salesman problem is one of the most researched problems in com-
puter science and has many practical applications. The problem is well known to be NP-
Complete and many approximation algorithms have been suggested to solve variants of the
problem.

For general graphs it is NP-hard to approximate minimum TSP within any factor (to see
this reduce from Hamiltonian cycle with non-edges receiving an extremely heavy weight).
However, the metric version can be approximated. The celebrated 3

2
-approximation algo-

rithm of Christofides [11] is the best approximation for the symmetric version of the problem.
The minimum asymmetric TSP (ATSP) problem is the metric version of the problem on di-
rected graphs. The first nontrivial approximation algorithm is due to Frieze, Galbiati and
Mafioli [15]. The performance guarantee of their algorithm is log2 n. Recently Bläser [6]
improved their approach and obtained an approximation algorithm with performance guar-
antee 0.999 log2 n. In this paper we design a 4/3 log3 n-approximation algorithm. Note that
4/3 log3 n =≈ 0.841 log2 n.

The Maximum TSP Problem is defined as follows. Given a complete weighted directed
graph G = (V, E, w) with nonnegative edge weights wuv ≥ 0, (u, v) ∈ E, find a closed tour of
maximum weight visiting all vertices exactly once. Notice that the weights are non-negative.
If we allow negative weights then the minimum and maximum variants essentially boil down
to the same problem.1

One can distinguish 4 variants of the Maximum TSP problem according to whether weights
are symmetric or not, and whether triangle inequality holds or not. The most important
among these variants is also the most general one where weights are asymmetric and triangle
inequality may not hold. This variant of the problem is strongly connected to the shortest
superstring problem that has important applications in computational molecular biology.
Table 1 summarizes the approximation factors of the best known polynomial approximation
algorithms for these problems. On the negative side, these problems are MAX SNP-hard
[25, 13, 14]. A good survey of the maximum TSP is [4].

We will be primarily interested in the general maximum ATSP problem. We describe a new
approximation algorithm for this problem whose approximation guarantee is 2/3. For the
asymmetric version with triangle inequality we also describe a new approximation algorithm
whose approximation guarantee is 10/13. Thereby we improve both results of the second

1The non-negativity of the weights is what allows approximations even without the triangle inequality
since the minimum TSP is hard to approximate in that case.

2

Symmetric Asymmetric

Triangle inequality 7/8 [17] 3/4 [23]

no triangle inequality 3/4 deterministic [26] 5/8 [24]

any fixed ρ < 25/33
randomized [16]

Table 1: Best known approximation guarantees for maximum TSP variants

column of Table 1. Our algorithm rounds a fractional solution of an LP relaxation of the
problem. This rounding procedure is an implementation of a new combinatorial decomposi-
tion theorem of directed multigraphs which we describe below. This decomposition result is
of independent interest and may have other applications.

Since the maximum ATSP problem is related the several other important problems our
results have implications for the following problems.

1. The shortest superstring problem, which arises in DNA sequencing and data compression,
has many proposed approximation algorithms, see [9, 29, 12, 22, 2, 3, 10, 27]. In [10]
it was shown that a ρ approximation factor for maximum ATSP implies a 3.5 − (1.5ρ)
approximation for shortest superstring. Thus our 2/3-approximation algorithm for maximum
ATSP gives 2.5-approximation algorithm for the shortest superstring problem, matching the
approximation guarantee of [27] with a much simpler algorithm.

2. The maximal compression problem [28] has been approximated in [28] and [30]. The
problem can be transformed into a maximum ATSP problem with vertices representing
strings and edges representing weights of string overlaps. Hence, a ρ approximation for
maximum ATSP implies a ρ approximation for the maximal compression problem. This
yields a 2/3-approximation algorithm improving previous results.

3. The minimum asymmetric {1,2}-TSP problem is the minimum ATSP problem where the
edge weights are 1 or 2, see [25, 31, 8]. The problem can easily be transformed into the
maximum variant, where the weights of 2 are replaced by 0. A ρ factor approximation for
maximum ATSP implies a 2−ρ for this problem [25]. Thus our approximation algorithm for
maximum ATSP yields a new 4/3 approximation for the minimum asymmetric {1,2}-TSP,
matching the previous result of [8]. Recently, Bläser [5] obtained a 5/4 approximation for
this problem.

4. In the maximum 3-cycle cover problem one is given a directed weighted graph for which a
cycle cover containing no cycles of length 2 is sought [7]. Obviously, a solution to maximum
ATSP is a solution to Max 3-cycle cover. Since the LP which we round is also a relaxation of
the max 3-cycle cover problem we get that our algorithm is in fact also a 2/3-approximation
to Max 3-cycle cover improving the 3/5-approximation of [7].

An overview of our rounding technique: To approximate maximum ATSP the following
LP was used in [24], which is a relaxation of the problem of finding a maximum cycle cover
which does not contain 2-cycles.

3

LP for Cycle Cover with Two-Cycle Constraint

Max
∑

(u,v)∈K(V) wuvxuv subject to
∑

u xuv = 1, ∀v (indegree constraints)
∑

v xuv = 1, ∀u (outdegree constraints)
xuv + xvu ≤ 1, ∀u 6= v (2-cycle constraints)
xuv ≥ 0, ∀u 6= v (non-negativity constraints)

The 2-cycle constraints are in fact a subset of the well known subtour elimination constraints
studied by Held and Karp [18, 19]. In the Held-Karp formulation each subtour elimination
constraint corresponds to a subset S of the vertices and requires that the tour contains at
least one edge outgoing of S. Focusing on sets S consisting only of two distinct vertices say
u and v, and using the indegree and outdegree constraints, it is easy to see that the subtour
elimination constraint corresponding to S is equivalent to the 2-cycle constraint defined by
u and v. It follows that any solution to the Held-Karp LP is also a solution to our LP.

The algorithm in [24] transformed the solution of this LP into a collection of cycle covers
with useful properties. This collection of cycle covers is then merged with a matching in a
way similar to the procedure in [22]. (Note that the results of [24] and those we describe
here hold also for the minimum version of the LP.)

Here we take a completely different approach and directly round the LP. We scale up the
fractional solution to an integral one by multiplying it by the least common denominator D
of all variables. This (possibly exponential) integral solution defines a multigraph, where the
sum of the weights of its edges is at least D times the value of the optimal solution.2 From
the definition of the LP this multigraph has the property that it does not contain more than
⌊D/2⌋ copies of any 2-cycle.

We prove that any such multigraph can be represented as a positive linear combination
of pairs of cycle covers (2-regular multigraphs) where each such pair contains at most one
copy of any 2-cycle. This decomposition theorem can be viewed as a generalization of Hall’s
theorem that takes advantage of the 2-cycle constraints to get a decomposition of the regular
multigraph into cycle covers with stronger structural guarantees. This decomposition can
be computed in polynomial time using an implicit representation of the multigraph. As it is
quite general we hope that it might have applications other than the one presented in this
paper.

Once we have the decomposition it follows that one pair of cycle covers has weight at least
twice (at most twice, in case of minimum) the weight of the optimum solution. (This pair
of cycle covers defines a fractional solution to the LP whose weight is at least (at most,
respectively) 2/3 the weight of OPT.) It turns out that it is slightly simpler to directly
extract one such pair of cycle covers with the same weight bounds. Since this is what
is necessary for our applications, we present the simpler method. However, for the sake
of generality and potential future applications, we also show how to obtain the complete
decomposition.

2We never represent this multigraph explicitly.

4

For minimum ATSP we show how to obtain a TSP by recursively constructing cycle covers
and choosing at each recursive step from the better of three possibilities, either one of the
two cycle covers of the pair or the combination of both.

For maximum ATSP we show how to decompose this pair of cycle covers into three collections
of paths. The heaviest among these collections has weight at least 2/3 of the weight of OPT
so by patching it into a tour we get our approximate solution.

When a graph satisfies the triangle inequality better results for the maximum ATSP are
known, as depicted in Table 1. We improve upon these results obtaining a 10/13 approxi-
mation factor. Our solution uses the method for finding the pair of cycle covers as before.
The idea is to take the graph containing all 2-cycles of both cycle covers, decompose it into
two collections of paths, and patch the heavier collection into a tour. Then by taking the
best among this tour and another tour constructed from the two cycle covers using an older
technique, we obtain the improved approximation guarantee.

Roadmap: In Section 2 we present some basic definitions. In Section 3 we show how to
find the pair of heavy cycle covers with the desired properties. In Section 4 we present an
algorithm for the minimum ATSP. In Section 5 we show how to partition a pair of cycle
covers satisfying the 2-cycle property into 3 path collections to obtain a 2/3 approximation
algorithm for maximum ATSP and in Section 6 we present an improved algorithm for graphs
that satisfy triangle inequality. In Section 7 we present the full decomposition theorem.

2 Preliminaries, definitions and algorithms outline

Let G = (V, E) be a TSP instance, maximum or minimum. We assume that G is a complete
graph without self loops. Let n = |V |, and V = {v1, v2, · · · , vn}, and E = K(V) = (V ×
V)\{(v, v) | v ∈ V }. Each edge e in G has a non negative integer weight w(e) associated
with it. We further denote by w(G) the weight of a graph (or a multigraph) G i.e. w(G) =
∑

e∈G w(e). A cycle cover of G is a collection of vertex disjoint cycles covering all vertices of
G. An i-cycle is a cycle of length i.

Consider the LP described in the introduction and let {x∗

uv}uv∈K(V) be an optimal solution of
it. Let D be the minimal integer such that for all (u, v) ∈ K(V), Dx∗

uv is integral. We define
k · (u, v) to be the multiset containing k copies of the edge (u, v). We define the weighted
multigraph D · G = (V, Ê, w) where Ê = {(Dx∗

uv) · (u, v) | (u, v) ∈ K(V)}. All copies of
the same edge e ∈ E have the same weight w(e). The multiplier D may be exponential in
the graph size but log D, which is the number of bits needed to represent D, is polynomial
in n. We also denote by mG(e) the number of copies of the edge e in the multigraph G.
We represent each multigraph G′ that we use throughout the proof in polynomial space by
maintaining the multiplicity mG′(e) of each edge e ∈ G′. We denote by Cu,v the 2-cycle
consisting of the edges (u, v), (v, u).

Notice that the solution to the LP is such that D ·G is D-regular, and for any two nodes u, v,
D · G contains at most ⌊D/2⌋ copies of the 2-cycle Cu,v. We say that a regular multigraph
with this property is half-bound . In other words a D regular multigraph is half-bound if for
any u, v ∈ V there are at most ⌊D

2
⌋ edges from u to v or there are at most ⌊D

2
⌋ edges from

5

v to u.

In particular a 2-regular multigraph is half-bound if it has at most one copy of each 2-cycle.
It is well known that we can decompose a d-regular multigraph into d cycle covers.3 So if we
decompose a 2-regular half-bound multigraph we obtain two cycle covers that do not share
a 2-cycle. Therefore a 2-regular half-bound multigraph is equivalent to two cycle covers that
do not share a 2-cycle.

We denote by OPT the value of the optimal solution to the TSP problem. It follows from
the definition of the LP that w(D · G) ≥ D · OPT in case of a maximization LP, and
w(D · G) ≤ D · OPT in case of a minimization LP.

Using the graph D · G, we find 2 cycle covers C1 and C2 in G such that,

(a) C1 and C2 do not share a 2-cycle, i.e. if C1 contains the 2-cycle Cu,v then C2 does not
contain at least one of the edges (u, v), (v, u), and vice versa.

(b) w(C1) + w(C2) ≥ 2OPT .

Analogously, we can replace the second requirement to be:

(b) w(C1) + w(C2) ≤ 2OPT .

in case the solution to the LP minimized the cost. Our methods for finding two cycle covers
will work in the same way for either requirement. The appropriate requirement will be used
in accordance with the application at hand.

For maximum ATSP, we partition the edges of C1 and C2 into 3 collections of disjoint paths.
Since w(C1) + w(C2) ≥ 2OPT at least one of these collections has weight of 2

3
OPT . Finally

we patch the heaviest collection into a Hamiltonian cycle of weight ≥ 2
3
OPT .

For minimum ATSP, we improve upon the recursive cycle cover method by choosing at a
recursive step one of C1, C2 and C1 ∪ C2 according to the minimization of an appropriate
function. Here we use the fact that w(C1) + w(C2) ≤ 2OPT .

Finally, we also use this result, in a different way, to achieve better results for maximum
ATSP with triangle inequality.

3 Finding two cycle covers

In this section we show how to find two cycle covers (CC) C1 and C2 that satisfy the
conditions specified in Section 2. First we show how to find such a pair of CCs when D is a
power of two, then we give an algorithm for all values of D.

3One can do this by decomposing a related d-regular bipartite multigraph into d perfect matchings. See
Section 3.1.

6

3.1 Finding two CCs when D is a power of 2

In the following procedure we start with D · G which satisfies the half-bound invariant and
also has overall weight ≥ D ·OPT . By careful rounding we recurse to smaller D maintaining
the half-bound invariant and the weight bound, i.e. ≥ D · OPT . We recurse until we reach
D = 2 which gives us the desired result. We describe the algorithm for the maximization
version of the problem, i.e. we will find two cycle covers such that w(C1) + w(C2) ≥ 2OPT .
The algorithm for the minimization problem is analogous.

Let G0 = D · G. Recall that G0 is D-regular, w(G0) ≥ D · OPT, and G0 is half-bound, i.e.
it contains each 2-cycle at most D/2 times. We show how to obtain from G0 a D/2-regular
multigraph G1, such that w(G1) ≥

D
2
OPT, and G1 is half-bound, i.e. it contains each 2-cycle

at most D/4 times. By applying the same procedure log(D)− 1 times we obtain a 2-regular
multigraph, Glog(D)−1, such that w(Glog(D)−1) ≥ 2OPT, and Glog(D)−1 contains at most one
copy of each 2-cycle. It is then straightforward to partition Glog(D)−1 into two CCs that
satisfy the required conditions.

We first build from G0 = D ·G a D-regular bipartite undirected multigraph B as follows. For
each node vi ∈ V we have 2 nodes vi, and v′

i in B, that is VB = {v1, v2, · · · , vn, v
′

1, v
′

2, · · · , v
′

n}.
For each edge (vi, vj) in G0 we have an edge (vi, v

′

j) in B.

We use the following technique of Alon [1] to partition B into two D/2-regular bipartite
multigraphs B1, B2. For each edge e ∈ B with mB(e) ≥ 2, we take ⌊mB(e)/2⌋ copies of e to
B1 and ⌊mB(e)/2⌋ copies to B2, and omit 2⌊mB(e)/2⌋ copies of e from B. Next we find an
Eulerian cycle in each connected component of the remaining subgraph of B, and assign its
edges alternately to B1 and B2.

4

Let G′, be the subgraph of G0 that corresponds to B1, and let G′′, be the subgraph of G0

that correspond to B2. Clearly G′ and G′′ are D/2-regular directed multigraphs. It is also
straightforward to see that each of G′ and G′′ contains at most D/4 copies of each 2-cycle.
The reason is as follows. Since we had at most D/2 copies of each 2-cycle in G0, then for
each pair of vertices at least one of the edges (u, v), and (v, u) appeared at most D/2 times
in G0. By the definition of the algorithm above this edge will appear at most D/4 times in
both graphs G′, and G′′.

We let G1 be the heavier among G′ and G′′. Since G′ and G′′ partition G it is clear that
w(G′) + w(G′′) = w(G). Therefore, since w(G) ≥ D · OPT we obtain that w(G1) ≥

D
2
OPT.

The running time of this algorithm is O(n2 log D), since we have log D iterations, each of
them costs O(n2).

4The technique of using an Euler tour to decompose a multigraph has been used since the early 80’s
mainly for edge coloring (See [21] and the references there). Alon does the partitioning while balancing
the number of copies of each individual edge that go into either of the two parts. We use it to keep the
multigraphs half-bound.

7

3.2 Finding 2 cycle covers when D is not a power of 2

We now handle the case where D is not a power of 2. In this case we first describe a rounding
procedure that derives from the solution to the LP a 2y-regular multigraph. Then we apply
the algorithm from Section 3.1 to this multigraph. We assume that G has at least 5 vertices.

3.2.1 Rounding the solution of the LP into a multigraph

Let Wmax be the maximum weight of an edge in G. Let y be an integer such that 2y−1 <
12n2Wmax ≤ 2y, and define D̄ = 2y − 2n. Let {x∗

uv}uv∈K(V) be an optimal solution for the
LP. We round each value x∗

uv down to the nearest integer multiple of 1/D̄. Let x̄uv be the
value obtained after rounding x∗

uv. Notice that x̄uv ≥ x∗

uv − 1/D̄.

We define the multigraph D̄ · G = (V, Ê, w) where Ê = {(D̄x̄uv) · (u, v) | (u, v) ∈ K(V)}.
The graph D̄ · G is well defined, since each x̄uv is a multiple of 1/D̄. We need the following
easy observation.

Lemma 3.1 Let d+
v be the outdegree of vertex v, and let d−

v be the indegree of vertex v in
D̄ · G. Then, D̄ − (n − 1) ≤ d+

v , d−

v ≤ D̄.

Proof: Since we rounded each value x∗

uv down to the closest integer multiple of 1/D̄ we have
that

x̄uv ≥ x∗

uv − 1/D̄ . (1)

From the definition of D̄ · G follows that

d−

v = D̄
∑

u

x̄uv . (2)

Substituting inequality (1) into inequality (2) and using the outdegree constraint
∑

u x∗

uv = 1
we obtain that

d−

v ≥ D̄
∑

(

x∗

uv −
1

D̄

)

≥ D̄
(

1 −
n − 1

D̄

)

.

from which the lower bound on d−

v follows. The upper bound follows immediatly from the
fact that x̄vu ≤ x∗

uv. The upper and lower bounds on d+
v are proved analogously. 2

As before, because of the 2-cycle constraints, D̄ ·G contains at most D̄ edges (u, v) and (v, u)
between every pair of vertices u and v and therefore at most ⌊D̄/2⌋ copies of each 2-cycle.

We want to apply the procedure of Section 3.1 to the graph D̄ · G. In order to do so,
we first complete it into a 2y-regular graph. We have to add edges carefully so that the
resulting multigraph is half-bound. Actually, we will maintain a stronger property during
the completion, namely we will assure that there are at most 2y edges (u, v) and (v, u)
between every pair of vertices u and v. We do it in two stages as follows. First we make the
graph almost D̄-regular in a greedy fashion using the following procedure.

Edge addition stage: As long as there are two distinct vertices i and j such that d+
i < D̄

and d−

j < D̄, and there are strictly less than D̄ edges between i and j we add a directed
edge (i, j) to the graph D̄ · G.

8

Let G′ denote the multigraph when the edge addition phase terminates, then the following
holds.

Lemma 3.2 When the edge addition stage terminates, the indegree and outdegree of every
vertex in G′ is equal to D̄ except for at most two vertices i and j. If indeed there are such
two vertices i and j, then the total number of edges (i, j) and (j, i) is exactly D̄.

Proof: Assume that the edge addition stage terminates and there are at least three vertices
such that for each of them either the indegree or the outdegree is less than D̄. Since the
sum of the outdegrees of all vertices equal to the sum of the indegrees of all vertices it must
be the case that we have at least one vertex, say i, with d+

i < D̄, and at least one vertex,
say j 6= i, with d−

j < D̄. Assume that for a third vertex k we have that d−

k < D̄. The case
where d−

k = D̄ but d+
k < D̄ is symmetric. Since the edge addition phase did not add an edge

(i, j) although d+
i < D̄ and d−

j < D̄ we know that the number of edges (i, j) and (j, i) is D̄.
Similarly, since the edge addition phase did not add an edge (i, k) we know that the number
of edges (i, k) and (k, i) is D̄. This implies that d+

i + d−

i = 2D̄. But since during the edge
addition phase we never let any indegree or outdegree to be bigger than D̄ we obtain that
d+

i = D̄ in contradiction with our assumption that d+
i < D̄. 2

By Lemma 3.2 in G′ all indegrees and outdegrees equal to D̄ except possibly for at most 2
vertices i and j. For i and j we still know by Lemma 3.1 that D̄ − (n − 1) ≤ d+

i , d−

i , d+
j , d−

j .
In the second stage we pick an arbitrary vertex k 6= i, j and add multiple copies of the edges
(k, i), (k, j), (i, k), (j, k) until d+

i = d−

i = d+
j = d−

j = D̄. At this point any vertex v 6= k has
d+

v = d−

v = D̄.

Since we have added at most 2(n − 1) edges (k, i), (k, j) and at most 2(n − 1) edges (i, k),
(j, k), and D̄ = 2y − 2n we still have d+

k , d−

k < 2y. Furthermore, since after the edge addition
phase we had at most D̄ edges (k, i) and (i, k), and we have added at most (n − 1) edges
(k, i) and at most (n − 1) edges (i, k) we now have at most 2y edges (i, k) and (k, i). By a
similar argument we have at most 2y edges (j, k) and (k, j). So it is still possible to augment
the current graph to a 2y-regular graph where between any pair of vertices we have at most
2y edge in both directions.

Notice that since k is now the only vertex whose indegree or outdegree is bigger than D̄ we
must have that d+

k = d−

k . Let L = d+
k = d−

k . Clearly D̄ ≤ L ≤ 2y. We finish the construction
by adding L− D̄ arbitrary cycles that go through all vertices except k, and 2y −L arbitrary
Hamiltonian cycles. In all cycles we do not use any of the edges (k, i), (i, k), (j, k), and
(k, j). We call the resulting graph G0. Notice that G must have at least 5 vertices so that
such Hamiltonian cycles exist. The following lemma is now obvious.

Lemma 3.3 The graph G0 is 2y-regular and satisfies the half-bound invariant. 2

3.2.2 Extracting the two cycle covers

We now apply the procedure of Section 3.1 to partition G0 into two 2y/2-regular graphs G′

and G′′. Repeating the same arguments of Section 3.1 both G′ and G′′ contain each at most

9

2y/4 copies of each 2-cycle. We now let G1 be the heavier among G′ and G′′ when solving
maximum ATSP and be the lighter graph among G′ and G′′ when solving minimum ATSP.
We apply the same procedure to G1 to get a 2y/4-regular graph G2. After y − 1 iterations
we get a 2-regular graph Gy−1. Let C be the graph Gy−1. The indegree and the outdegree
of each vertex in C is 2. Using the same arguments of Section 3.1, C contains at most one
copy of each 2-cycle. The next lemma proves a bound on the weight of C.

Lemma 3.4 Applying the algorithm of Section 3.1 to G0 for maximum ATSP gives a 2-
regular graph C such that w(C) ≥ 2OPT . For minimum ATSP we obtain a 2-regular graph
C such that w(C) ≤ 2OPT .

Proof: We first prove the statement for maximum ATSP and then indicate the changes
required to obtain the statement for minimum TSP.

Let us denote the fractional optimum
∑

(u,v)∈E w(u, v)x∗

uv by OPT f . The weight of the graph
G0 is

w(G0) ≥
∑

(u,v)∈E D̄w(u, v)x̄uv

≥ (2y − 2n)
(

OPT f −
∑

(u,v)∈E w(u, v)/(2y − 2n)
)

≥ 2yOPT f − 2nOPT f − n2Wmax

≥ 2yOPT f − 3n2Wmax

where the second inequality follows since x̄uv ≥ x∗

uv −
1
D̄

= x∗

uv −
1

2y−2n
. At each iteration we

retain the heavier graph. Hence, after y − 1 iterations we get a graph C, such that

w(C) ≥
2yOPT f − 3n2Wmax

2y−1
≥ 2OPT f −

3n2Wmax

6n2Wmax

The second inequality follows from the fact that 2y ≥ 12n2Wmax. If we use the fact that
OPT f ≥ OPT we get that

w(C) ≥ 2OPT −
1

2
.

Since w(C) and 2OPT are integers we obtain that w(C) ≥ 2OPT .

For minimum ATSP we use the following upper bound on w(G0).

w(G0) ≤
∑

(u,v)∈E D̄w(u, v)x∗

uv + 3n2Wmax

= D̄OPT f + 3n2Wmax.

This bound holds since we add at most 3n2 edges, n2 in the edge addition stage and 2n2

when adding the Hamiltonian cycles in the last stage. Since we retain the lighter graph in
each iteraion we obtain that

w(C) ≤
D̄OPT f + 3n2Wmax

2y−1
≤ 2OPT f +

3n2Wmax

6n2Wmax
≤ 2OPT +

1

2
.

Finally, since w(C) and 2OPT are integers it follows that w(C) ≤ 2OPT . 2

As in Section 3.1 it is now straightforward to partition the graph C into 2 cycle covers C1

and C2. The running time of the algorithm is O(n2y) = O(n2 log(nWmax)).

10

4 Minimum Asymmetric TSP

Recall that the minimum asymmetric TSP (ATSP) problem is the problem of finding a
shortest Hamiltonian cycle in a directed graph with edge weights satisfying the triangle
inequality. In this section we design a 4

3
log3 n-approximation algorithm for minimum ATSP.5

Following the result of the previous section if G has at least 5 vertices we can obtain a graph
C which is a union of two cycle covers C1 and C2 of G such that (1) W (C1)+W (C2) ≤ 2OPT
and (2) C1 and C2 do not share a 2-cycle. Observe that all connected components of C have
at least three vertices. Moreover the connected components of C are Eulerian graphs. We
may assume that C does not contain two oppositely oriented cycles since if this is the case
we may reverse the edges of the heavier cycle without increasing the total weight of C. The
graph C remains 2-regular, and therefore we can decompose it into two cycle covers C1 and
C2 with the same properties as before.

Consider the following deterministic recursive algorithm. Let G1 = G be the input graph,
and let C1 = C, C1

1 = C1, and C1
2 = C2. (The superscript indicates the iteration number.)

For any graph G, let N(G) be the number of vertices in G, and let c(G) be the number of
connected components in graph G. Recall that w(G) is the total weight of the edges of G.
Notice that since C1

1 and C1
2 are in fact cycle covers, then c(C1

1) and c(C2
2) are the number

of cycles of C1
1 and C2

1 , respectively.

Among the graphs C1, C1
1 and C1

2 we choose the one that minimizes the ratio

w(G)

log2(N(G)/c(G))
.

In each connected component of the chosen graph, we pick exactly one, arbitrary vertex.
Let G2 be the subgraph of G1 induced by the chosen vertices. The next iteration proceed in
exactly the same way starting from G2. That is we find an appropriate union of cycle covers
C2 = C2

1 ∪ C2
2 of G2, pick the one among C2, C2

1 , and C2
2 that maximizes the ratio above

and so on.6

This recursion ends when at some iteration p, Gp has less than 27 vertices. In this case we
can find an optimal minimum TSP tour T by an exhaustive search and add its edges to our
collection of chosen subgraphs. For a technical reason if Gp contains just one vertex we still
say that the algorithm has p iterations even if we do not add any edges in the last iteration.

The collection of edges chosen in all steps of this procedure satisfies the following properties.
Each edge is chosen in at most one step. Moreover, the edges form a connected Eulerian
graph. We obtain our TSP tour by taking an Eulerian tour of this collection of chosen edges,
and transforming it into a Hamiltonian cycle by using shortcuts that do not increase the
weight, by the triangle inequality.

To calculate the weight of the final Eulerian graph, we note that by the triangle inequality, the
weight of the minimum TSP tour in Gi is ≤ OPT . Hence w(Ci

1)+w(Ci
2) = w(Ci) ≤ 2OPT .

5Notice that 4/3 log
3
n = 4/3 log

2
n/ log

2
3 ≈ 0.841 log

2
n.

6This algorithm is similar to the algorithm of Frieze, Galbiati and Mafioli [15], who simply discarded a
cycle cover at each iteration. We are more careful at the graph which we discard.

11

Note also that N(Ci) = N(Ci
1) = N(Ci

2) so we denote this number by ni. The next property
is an upper bound on total number of connected components in the graph considered at step
i = 1, . . . , p − 1.

Lemma 4.1 c(Ci) + c(Ci
1) + c(Ci

2) ≤ ni, for i = 1, . . . , p − 1.

Proof: Consider a connected component A of size k in Ci. We show that this component
consists of at most k−1 cycles (components) in Ci

1 and Ci
2. So together with the component

A itself we obtain that the k vertices in A break down to at most k components in C i, Ci
1,

and Ci
2. From this the lemma clearly follows.

Assume first that k is odd. Since k is odd there is at least one cycle in C i
1 between vertices

of A that is of length ≥ 3. The same holds for Ci
2. Hence, A breaks into at most (k − 1)/2

cycles in Ci
1 and into at most (k − 1)/2 cycles in Ci

2, for a total of k − 1 cycles in both Ci
1

and Ci
2.

Consider now the case where k is even. If A breaks down only to 2-cycles in both C i
1 and

Ci
2 then A forms an oppositely oriented pair of cycles in Ci

1 ∪ Ci
2 which is a contradiction.

Hence, without loss of generality, Ci
1 contains a cycle of length greater than 2. If it contains

a cycle of length exactly 3 then there must be another cycle of odd length 3 or greater since
the total size of A is even. However, it is also possible that A in C i

1 contains a single cycle
of even length ≥ 4 and all other cycles are of length 2.

Hence, the component A in Ci
1 contains at least k−4

2
+ 1 = k−2

2
cycles in case it contains a

cycle of length at least 4, or at least k−6
2

+ 2 = k−2
2

cycles in case it contains at least two
cycles of length 3. Therefore even in case A breaks into k

2
2-cycles in Ci

2 the total number of
cycles this component breaks into in both Ci

1 and Ci
2 is at most k − 1. 2

Let p be the number of iterations of the recursive algorithm. Then the total cost of the final
Eulerian graph (and therefore the TSP tour) is at most

∑p
i=1 wi where wi is a weight of a

graph we chose on iteration i. Recall that ni = N(Ci) = N(Ci
1) = N(Ci

2), so in particular
n1 = n and 1 ≤ np ≤ 27. Note also np−1 ≥ 27, wp ≤ OPT and wp−1 ≤ 2OPT . If p ≤ 2 then
∑p

i=1 wi ≤ 3OPT . Otherwise,

∑p−2
i=1 wi

log2(n1/np−1)
=

∑p−2
i=1 wi

∑p−2
i=1 log2(ni/ni+1)

≤ max
i=1,...,p−2

wi

log2(ni/ni+1)
. (3)

Consider an iteration j on which maximum of the right hand side of Equation (3) is achieved.
Since nj+1 is equal to the number of connected components in the graph we chose on iteration
j we obtain

wj

log2(nj/nj+1)
≤

min{ w(Cj)
log2(N(Cj)/c(Cj)

,
w(Cj

1
)

log2(N(Cj

1
)/c(Cj

1
)
,

w(Cj

2
)

log2(N(Cj

2
)/c(Cj

2
)
} ≤

w(Cj)+w(Cj

1
)+w(Cj

2
)

log2(N
3(Cj)/(c(Cj)·c(Cj

1
)·c(Cj

2
))

≤ 4OPT
3 log2 3

.

12

The last inequality follows from the facts that w(Cj) + w(Cj
1) + w(Cj

2) ≤ 4OPT and that
c(Cj) ·c(Cj

1) ·c(C
j
2) subject to 0 ≤ c(Cj)+c(Cj

1)+c(Cj
2) ≤ N(Cj) (Lemma 4.1) is maximized

when c(Cj) = c(Cj
1) = c(Cj

2) = N(Cj)/3.

Therefore,

p
∑

i=1

wi ≤
p−2
∑

i=1

wi + 3OPT ≤
4 log3(n1/np−1)OPT

3
+ 3OPT ≤

(

4 log3(n1)

3
− 1

)

OPT.

To conclude we have the following theorem.

Theorem 4.1 There is a polynomial approximation algorithm for minimum ATSP that pro-
duces a tour of weight at most 4

3
log3 n the weight of the optimal tour. The running time of

the algorithm is O(n2 log(nWmax) log n).

5 Maximum Asymmetric TSP

Consider Lemma 7.2. Let C1 and C2 be the two cycle covers such that (1) W (C1)+W (C2) ≥
2OPT and (2) C1 and C2 do not share a 2-cycle. We will show how to partition them into
three collections of disjoint paths. One of the path collections will be of weight ≥ 2

3
OPT

which we can then patch to obtain a TSP of the desired weight.

Figure 1: A 2 regular directed graph is 3 path colorable iff it does not contain neither of
these obstructions: 1) Two 3 cycles oppositely oriented on the same set of vertices. 2) Two
copies of the same 2-cycle.

Consider the graphs in Figure 1, an oppositely oriented pair of 3-cycles and a pair of identical
2-cycles. Obviously, neither graph can be partitioned into 3 sets of disjoint paths. However in
C we do not have two copies of the same 2-cycle. Furthermore, as in Section 4 if C contains a
doubly oriented cycle of length at least 3 we can reverse the direction of the cheaper cycle to
get another graph C with the same properties as before and even larger weight. So we may
assume that there are no doubly oriented cycles at all. We call a graph 3-path-colorable if we
can partition its edges into three sets such that each set induces a collection of node-disjoint
paths. We color the edges of the first set green, edges of the second set blue, and edges of
the third set red. We prove the following theorem.

Theorem 5.1 Let G = (V, E) be a directed 2-regular multigraph. The graph G is 3-path-
colorable if and only if G does not contain two copies of the same 2-cycle or two copies,
oppositely oriented, of the same 3-cycle (see Figure 1).

13

Proof: We consider each connected component of the graph G separately and show that
its edges can be partitioned into red, green, and blue paths, such that paths of edges of the
same color are node-disjoint.

Consider first a connected component A that consists of two oppositely oriented cycles. Then
A must contain at least four vertices v1, v2, v3, v4 because G does not contain two copies of
the same 2-cycle or two oppositely oriented copies of the same 3-cycle (see Figure 1). We
do the path coloring in the following way. We color the edges (v2, v1) and (v3, v4) green, the
path from v1 to v2 blue, and the path from v4 to v3 red. So in the rest of the proof we only
consider a connected component which is not a union of two oppositely oriented cycles.

As mentioned in Section 2 we can decompose a 2-regular digraph G into two cycle covers.
Fix any such decomposition and call the first cycle cover red and the second cycle cover blue.
We also call each edge of G either red or blue depending on the cycle cover containing it.

We show how to color some of the red and blue edges green such that each color class form
a collection of paths. Our algorithm runs in phases where at each phase we find a set of one
or more disjoint alternating red-blue paths P = {p1, . . . , pk}, color the edges on each path
pj ∈ P green, and remove the edges of any cycle that has a vertex in common with at least
one such path from the graph. The algorithm terminates when there are no more cycles and
the graph is empty. Let V (P) be the set of vertices of the paths in P , and let E(P) be the
set of edges of the paths in P .

The set of paths P has the following key property:

Property 5.2 Each red or blue cycle that intersects V (P) also intersects E(P).

If indeed we are able to find a set P of alternating paths with this property at each phase
then correctness of our algorithm follows: By Property 5.2 we color green at least one edge
from each red cycle that we remove, and we color green at least one edge from each blue
cycle that we remove, so clearly after we remove all cycles, the remaining red edges induce
a collection of paths, and the remaining blue edges induce a collection of paths. By the
definition of the algorithm after each phase the vertices of V (P) become isolated. Therefore
the set of paths colored green in different phases are node-disjoint.

To be more precise, there are cases where the set P picked by our algorithm would violate
Property 5.2 with respect to one short cycle C. In these cases, in addition to removing P
and coloring its edges green we also change the color of an edge on C from red to blue or
from blue to red. We carefully pick the edge to recolor so that no red or blue cycles exist in
the collection of edges which we remove from the graph.

To construct the set P we use the following algorithm that finds a maximal alternating
red-blue path.

Algorithm 5.3 (Finding an alternating path) We first construct a maximal alternat-
ing path p in the graph G greedily as follows. We start with any edge (v1, v2) such that either
(v2, v1) 6∈ G or if (v2, v1) ∈ G then it has the same color as (v1, v2). An edge like that must
exist on every cycle C. Otherwise there is a cycle oppositely oriented to C, and we assumed
that our component is not a pair of oppositely oriented cycles.

14

Assume we have already constructed an alternating path v1, . . . , vk with edges of alternating
color (blue and red) and the last edge was, say, blue. We continue according to one of the
following cases.

1. If there is no red edge outgoing from vk we terminate the path at vk.

2. Otherwise, let (vk, u) be the unique red edge outgoing from vk, and let C be the red
cycle containing it. If C already contains an edge (vi, vi+1) on p we terminate p at vk.

3. If C does not contain an edge (vi, vi+1) on p then u 6= vi for 2 ≤ i < k. Since if
u = vi for some 2 ≤ i < k it must imply that the edge (vi, vi+1) is on C ∩ p and colored
red. If u 6= v1 then we add (vk, u) to p, define vk+1 = u, and continue to extend p by
performing one of these cases again to extend v1, . . . , vk, vk+1.

4. If u = v1 we stop extending p.

If we stopped extending p in Case 1 or Case 2 we continue to extend p backwards in a similar
fashion: If we started, say, with a blue edge (v1, v2) we look at the unique red edge (u, v1) (if
it exists) and try to add it to p if it does not belong to a cycle that has an edge on p and
u 6= vk. We continue using cases symmetric to the four cases described above.

Assume now that p = v1, . . . , vk denotes the path we obtain when the greedy procedure
described above stopped extending it in both directions. There are two cases to consider.

1. We stopped extending p both forward and backwards because of Case 1 or Case 2
above. That is, if there is an edge (vk, v1) that closes an alternating cycle with p then
p already contains some other edge on the same cycle of (vk, v1).

2. There is an edge (vk, v1) that closes an alternating cycle A with p and belongs to a
cycle that does not contain any other edge on p.

The first of these two cases is the easy one. In this case P consists of a single path p, and
we can prove the following claim.

Claim 5.4 Let p be an alternating path constructed by Algorithm 5.3 and assume that if
there is an edge (vk, v1) that closes an alternating cycle with p then p already contains some
other edge on the same cycle of (vk, v1). Then P = {p} satisfies Property 5.2.

Proof: Let C be a cycle that intersects p in a vertex vi. If 1 < i < k then C has an edge on p
since p contains an edge from both the blue cycle and the red cycle that contain vi. Assume
that C intersects p in vk. If (vk−1, vk) 6∈ C then C contains an edge (vk, u) of color different
from the color of (vk−1, vk). If p does not contain any edge from C then the algorithm that
constructed p should have added (vk, u) to p which gives a contradiction. We get a similar
contradiction in case C intersects p in v1. 2

To finish the proof of Theorem 5.1 we need to consider the harder case is when p together
with the edge (vk, v1) form an alternating cycle A, and the red or blue cycle containing

15

(vk, v1) does not have any other edge in common with p. Note that |A| ≥ 4 since we started
growing p with an edge (z, y) such that there is no edge (y, z) with a different color. We
continue according to the algorithm described below that may add several alternating paths
to P one at a time. After adding a path it either terminates the phase by coloring P green
(and possibly changing the color of one more edge) and deleting all cycles it intersects, or
it starts growing another alternating path p. When we grow each of the subsequent paths p
we use Algorithm 5.3 slightly modified so that it stops in Case 2 if the next edge (vk, u) is
on a cycle C that contains an edge on p, or an edge on a path already in P .

Let p be the most recently constructed alternating path. The algorithm may continue and
grow another path only in case when there is an edge on a cycle that has no edges in common
with p nor with any previously constructed path in P , that closes p to an alternating cycle
A. In case there is no such edge we simply add p to P and terminate the phase. Here is the
general step of the algorithm, where A is the most recently found alternating cycle.

1. The alternating cycle A contains an edge (vi, vi+1)
7 on a 2-cycle. Assume that this

2-cycle is blue. The case where the 2-cycle is red is analogous. We let P := P ∪ {p1}
where p1 is the part of A from vi+1 to vi. This P does not satisfy Property 5.2 since
the 2-cycle consisting of the edges (vi, vi+1), and (vi+1, vi) has vertices in common with
P but no edges. Next we terminate the phase but when we discard P and all cycles
intersecting it, we also recolor the edge (vi+1, vi) red. This keeps the collection of
blue and red edges which had been discarded acyclic since it destroys the blue 2-cycle
without creating a red cycle: The edges which remain red among the red edges of the
red cycle containing (vi−1, vi), and the edges which remain red among the edges of
the red cycle containing (vi+1, vi+2) join to one longer path when we color the edge
(vi+1, vi) red.

2. The alternating cycle A does not contain any edge on a 2-cycle. Let (v, u) and (u, w)
be two consecutive edges on A. Assume that (v, u) is red and (u, w) is blue. (The case
where (v, u) is blue and (u, w) is red is symmetric.) Let (u, x) be the edge following
(v, u) on its red cycle, and let (y, u) be the edge preceding (u, w) on its blue cycle.
Notice that since A does not contain any edge on a 2-cycle, and at most one edge from
each red or blue cycle, the vertices x, and y are not on A. Now we have two subcases.

(a) Vertices x and y are different (x 6= y). We add the part of A from w to v to P ,
and we grow another alternating path starting with the edges (y, u) and (u, x). If
we end up with another alternating cycle A′, and when we process A′ we have to
perform this case again then we pick on A′ a pair of consecutive edges different
from (y, u) and (u, x). That would guarantee that at the end P satisfies Property
5.2 for all cycles intersecting paths in P , except for at most one cycle intersecting
the last path added to P .

(b) We have x = y. Let C be the cycle containing the edges (v, u) and (u, x). If
|C| = 3 (i.e. C contains the vertices x, v, and u only.) then we add to P the path
that starts with the blue edge (x, u) and continue with the alternating path in A

7Indices of vertices in A are added modulo |A|.

16

from u to v.8 This set P satisfies Property 5.2 with respect to any cycle except C
that has vertices in common with the last path we added to A but no edges in P .
Next we terminate the phase but when we delete P and color its edges green we
also change the color of the edge (x, v) on C from red to blue. This turns C into
a path and extends the blue path from w to x by the edge (x, v) and a subpath of
the blue cycle containing v. Thus there would be no cycles in the set of red and
blue edges which we discard.

If |C| > 3 we add to P the path from u to v on A. Then we grow another
alternating path p′ starting with the red edge (x, x′) ∈ C. The greedy procedure
that constructs an alternating path indeed must end up with a path since the
cycle containing the blue edge entering x already has an edge on the path from u
to v. We add p′ to P and terminate the phase.

2

The proof of Theorem 5.1 in fact specifies an algorithm to obtain the partition into three
sets of paths. If when we add an edge to an alternating path we mark all the edges on the
cycle containing it, then we can implement a phase in time proportional to the number of
edges that we discard during the phase. This makes the running time of all the phases O(n).

As mentioned at the beginning of this section, Theorem 5.1 together with the algorithm to
obtain two cycle covers in Section 3 imply the following theorem.

Theorem 5.5 There is a polynomial approximation algorithm for maximum ATSP that
produces a tour of length at least 2

3
of the length of the optimal tour.

6 Maximum Asymmetric TSP with Triangle Inequal-

ity

Consider the maximum ATSP problem in a graph G with edge weights that satisfy the
triangle inequality, i.e. w(i, j) + w(j, k) ≥ w(i, k) for all vertices i, j, k ∈ G.

A weaker version of the following theorem appears in a paper by Serduykov and Kostochka
[23]. We provide a simpler proof here for completeness.

Theorem 6.1 Given a cycle cover with cycles C1, . . . , Ck in a directed weighted graph G
with edge weights satisfying the triangle inequality. We can find in polynomial time an
Hamiltonian cycle in G of weight

k
∑

i=1

(

1 −
1

2mi

)

w(Ci) (4)

where mi is the number of edges in the cycle Ci, and w(Ci) is the weight of cycle Ci.

8Note that this path starts with 2 blue edges, so it is not completely alternating. The correctness of our
argument however does not depend on the paths being alternating, but on Property 5.2.

17

Proof: Consider the following straightforward randomized algorithm for constructing an
Hamiltonian cycle. Discard a random edge from cycle Ci for every i. The remaining edges
form k paths. The paths are connected either in order 1, 2, . . . , k or in reverse order k, k −
1, . . . , 1 into a cycle. We choose either order at random with probability 1/2.

We show that the expected weight of this Hamiltonian cycle is ≥
∑k

i=1

(

1 − 1
2mi

)

w(Ci). We
estimate separately the expected length of edges remaining from the cycle cover and edges
added between cycles to connect them to an Hamiltonian cycle. Since we discard each edge
from cycle Ci with probability 1/mi the expected weight of edges remaining from the cycle
cover is

∑k
i=1(1 − 1

mi
)w(Ci).

Each edge between a vertex of Ci and a vertex of Ci+1 is used in the Hamiltonian cycle with
probability 1

2mimi+1
. So the expected weight of edges added to connect the paths remaining

from the cycle cover is
∑k

i=1
w(Vi,Vi+1)
2mimi+1

where w(Vi, Vi+1) is the total weight of edges between

the vertex set of Ci, which we denote by Vi, and the vertex set of Ci+1, which we denote by
Vi+1.

We claim that
w(Vi, Vi+1)

2mimi+1

≥
w(Ci)

2mi

from which our lower bound on the expected weight of the Hamiltonian cycle follows.

To prove this claim we observe that all edges between Vi and Vi+1 could be partitioned into
mi groups. One group per each edge in Ci. The group corresponding to an edge (u, v) ∈ Ci

contain mi+1 pairs of edges from u to some w ∈ Vi+1 and from w ∈ Vi+1 to v. The total
weight of edges in one group is lower bounded by |Vi+1|w(u,v) = mi+1w(u,v) by the triangle
inequality. 2

The proof of Theorem 6.1 suggests a randomized algorithm to compute an Hamiltonian cycle
with expected weight at least as large as the sum in Equation (4). Since we can compute
the expected value of the solution exactly even conditioned on the fact that certain edges
must be deleted we can derandomize our algorithm by the standard method of conditional
expectations.

We now use Theorem 6.1 together with our algorithm to obtain two cycle covers C1 and C2

not sharing 2-cycles such that w(C1)+w(C2) ≥ 2OPT , to get the main result of this section.

Theorem 6.2 There is a polynomial approximation algorithm for maximum ATSP in a
graph G with edge weight that satisfy the triangle inequality that produces a tour of weight
at least 10

13
the maximum weight of such tour.

Proof: In Section 3 we proved that we can construct in polynomial time two cycle covers
C1 and C2 not sharing 2-cycles such that w(C1) + w(C2) ≥ 2OPT . Let W ′

2 be the weight of
all the 2-cycles in C1 and C2 divided by 2 and let W ′

3 be the weight of all the other cycles
in C1 and C2 divided by two. Applying the algorithm to construct an Hamiltonian cycle as
in Theorem 6.1 to C1 and C2 and choosing the Hamiltonian cycle H of largest weight, we
obtain from (4) that

∑

e∈H

w(e) ≥
3

4
W ′

2 +
5

6
W ′

3 .

18

We propose another algorithm based on the results of Section 3. Let G′ be the graph which
is the union of all 2-cycles in C1 ∪ C2. Remember that C1 and C2 do not share a 2-cycle.
Moreover, we can assume, without loss of generality, that C1 and C2 do not contain oppositely
oriented cycles. (See Section 5.) Hence it follows that G′ is a collection of chains consisting
of 2-cycles and therefore we can decompose it to two path collections. If we complete these
path collections to Hamiltonian cycles and choose the one with larger weight then we obtain
an Hamiltonian cycle of weight at least W ′

2.

We now take the two algorithms described above and trade off their approximation factor
to receive an improved algorithm, i.e., in polynomial time we can construct an Hamiltonian
cycle of weight at least

max{
3

4
W ′

2 +
5

6
W ′

3, W
′

2} ≥
10

13
OPT .

The last inequality follows from the fact that W ′

2 + W ′

3 ≥ OPT . 2

7 Full Decomposition into Cycle Covers

By Hall’s theorem one can represent a D-regular multigraph as a combination of at most
n2 cycle covers each taken with an appropriate multiplicity. In this section we prove (con-
structively) that a D-regular half-bound multigraph, has a similar representation as a linear
combination of at most n2, 2-regular multigraphs (i.e. pairs of cycle covers) that satisfy
the half-bound invariant. The sum of the coefficients of the 2-regular multigraphs in this
combination is D/2.

In particular, we can use this decomposition to extract a pair of cycle covers from a solution
of the LP in Section 1 with the appropriate weight as we did in Section 3. By multiplying
the optimal solution x∗ of the LP by the least common denominator, D, of all fractions x∗

uv,
we obtain a half-bound D regular multigraph D · G. We then decompose this multigraph
into a combination of 2-regular half-bound multigraphs. If the weight of D ·G is ≥ D ·OPT
and the sum of the coefficients of the 2-regular multigraphs in this combination is D/2, one
of the 2-regular graphs must have weight ≥ 2 · OPT . Similarly if the weight of D · G is
≤ D · OPT then one of the 2-regular graphs must have weight ≤ 2 · OPT .

Let G0 be an arbitrary half-bound D regular multigraph, where D is even. In Section 7.1
we describe an algorithm to extract two cycle covers, C1 and C2 from the multigraph that
satisfy Property 7.1

Property 7.1
1) C1 and C2 do not share a 2-cycle,
2) every edge that appear in G0 exactly D/2 times appears either in C1 or in C2.

This procedure is the core of the decomposition algorithm which we present in Section 7.3.

We also show in Section 7.2 how to use the algorithm that extracts two cycle covers C1 and
C2 satisfying the properties above to describe an algorithm that finds two cycle covers that

19

do not share a 2-cycle and their weight is at least 1/(D/2) fraction of the weight of G0.
9

This without computing the full decomposition of G0. This method provides a combinatorial
alternative to the algorithm of Section 3: By applying it to the graph D · OPT where D is
the least common denominator of the fractions x∗

uv we get the required two cycle covers.

Note that the method of Section 3 used a 2y regular graph where y = O(log(nWmax)).
Here the regularity of the graph is proportional to the least common denominator D of
x∗

uv. The running time of the method we suggest here is O(n2 log(D) log(nD)) rather than
O(n2 log(nWmax)) in Section 3. I.e. we have double logarithmic dependence in the degrees
rather than a single one in Section 3. This suggests that the method here is preferable when
D is small and the weights are large.

Even if we start out with a half-bound D regular graph G0 (rather than with a solution to
the LP in Section 1), we can think of the normalized (by D) multiplicities of the edges as
a fractional solution to the LP in Section 1 and get a half-bound 2-regular graph using the
algorithm in Section 3. However notice that this approach can produce a 2-regular graph
that contains edges not in G0. In Section 7.2 we show how to get a half-bound 2-regular
graph which is a subgraph of G0.

7.1 Finding 2 Cycle Covers

In this section we show how to find in G0 two cycle covers C1 and C2 that satisfy Property
7.1.

We build from G0 a D-regular bipartite graph B as described in Section 3.1. In order to find
the pair of cycle covers C1 and C2 in G0, we find a pair of perfect matchings M1 and M2 in
B. We use the technique described by Alon in [1] to find a perfect matching in a D-regular
bipartite graph. Let m = Dn be the number of edges of B. Let t be the minimum such that
m ≤ 2t. We construct a 2t+1-regular bipartite graph B1 as follows. We replace each edge in
B by ⌊2t+1/D⌋ copies of itself. We get a D⌊2t+1/D⌋- regular graph B1 = (VB1

, EB1
). Recall

that D is even so D⌊2t+1/D⌋ is also even. Let y = 2t+1 − D⌊2t+1/D⌋, clearly y is even.
To complete the construction of B1 we find two perfect matchings M and M ′, and add y/2
copies of M and y/2 copies of M ′ to B1.

We find M and M ′ as follows. We define B′ = (VB, E ′) to be the subgraph of B where
E ′ = {(a, b) ∈ B | mB(a, b) = D/2}. Since B is D-regular, the degree of each node of B′ is
at most two. We complete B′ into a 2-regular multigraph A, (we can use edges not contained
in B), and we obtain M and M ′ by partitioning A into two perfect matchings. We call the
edges in M − B′ and in M ′ − B′ bad edges. All other edges in B1 are good edges. Since
y < D we have at most Dn bad edges in B1.

Lemma 7.1 If we have exactly D/2 copies of an edge e in B, then we have exactly 2t good
copies of e in B1. If we have less than D/2 copies of an edge e in B, then we have less than
2t good copies of e in B1.

9We can similarly find two cycle covers that do not share a 2-cycle and their weight is no larger than 1/D
fraction of the weight of G0.

20

Proof: Suppose we have D/2 copies of the edge (a, b) in the graph B, then if we ignore bad
edges, by construction (a, b) appears in exactly one of the matchings M , and M ′. So the
number of instances of (a, b) in B1 is: D/2⌊2t+1/D⌋ + y/2 = 1

2
(D⌊2t+1/D⌋ + y) = 2t all of

them are good edges. The proof of the second part of this lemma is similar. 2

Now, using the algorithm of [1] described in Section 3.1, we can divide B1 into two 2t-regular
graphs B′ and B′′. While doing the partitioning, we balance as much as possible the number
of good copies of each edge that go to each of the two parts. Let B2 be the one among B′

and B′′ containing at most half of the bad edges of B1. So B2 contains at most ⌊Dn/2⌋ bad
edges. Applying the same algorithm to B2 we get a 2t−1 regular graph B3 that contains at
most ⌊Dn/4⌋ bad edges. After t iterations we get a 2t+1−t = 2-regular graph Bt+1, containing
at most ⌊Dn/2t⌋ = 0 bad edges. We partition Bt+1 into the matchings M1 and M2. The
matchings M1 and M2 contain only edges from B and therefore correspond to cycle covers
C1, C2 in G0.

Lemma 7.2 The cycle covers C1 and C2 satisfy Property 7.1.

Proof: Since a 2-cycle Cu,v appears in G0 at most D/2 times, then at least one of the edges
(u, v), or (v, u) appears at most D/2 times in G0. By Lemma 7.1 this edge has at most 2t

good copies in B1. Since we partition the good copies of each edge as evenly as possible the
algorithm ensures that an edge that has at most 2t good copies in B1 will appear at most
once in Bt+1. Therefore Bt+1 will contain at most one instance of one of the edges of Cu,v so
there is at most one copy of Cu,v in Bt+1.

Suppose we have D/2 copies of e in G0, then by Lemma 7.1, this edge will have exactly 2t

good copies in B1. The algorithm ensures that an edge that has exactly 2t good copies in
B1 will appear exactly once in Bt+1. 2

Since the regularity of the graph we start out with is O(Dn), the algorithm performs
O(log(Dn)) iterations. Each iteration takes O(min{Dn, n2}) time, since the number of
distinct edges in G0 is O(min{Dn, n2}).
So to conclude the overall running time is O(min{Dn, n2} log(Dn)) = O(n2 log(Dn)).

7.2 Finding 2 Cycle Covers with at least the average weight

In this section we show how to find in a D regular multigraph G0 a half-bound 2-regular
subgraph whose weight is at least the weight of all edges in G0 divided by D/2. An analogous
algorithm can find a half-bound 2-regular subgraph whose weight is at most the weight of all
edges in G0 divided by D/2. This procedure is a combinatorial alternative to the algorithm
in Section 3.2 when we apply it to the multigraph obtained by multiplying the solution to
the LP of section 1 by the least common denominator of all fractions x∗

uv.

The algorithm is recursive. In each iteration we obtain a multigraph with smaller regularity
while keeping the properties of the original multigraph. We also keep the average weight
nondecreasing so at the end we obtain a 2-regular half-bound multigraph with average weight
as required.

21

We assume that D is even (otherwise we multiply by two the number of copies of each
edge of G0 to make D even). If D mod 4 = 0, then we partition G0 into two D/2-regular
multigraphs, G′ and G′′, as described in Section 3.1. We let G1 be the heavier among G′ and
G′′. So G1 is a D/2-regular graph (D/2 is even), G1 is half-bound, i.e. it contains at most

D/4 copies of each 2-cycle, and w(G1) ≥
1
2
w(G0) (so w(G1)

D/4
≥ w(G0)

D/2
).

If D mod 4 = 2, then we find two cycle covers C1 and C2 in G0 that satisfy Property 7.1
using the algorithm in Section 7.1.

If w(C1) + w(C2) ≥ w(G0)
D/2

, then C1 and C2 together are the half-bound 2-regular graph we

wanted to find and the process ends. If w(C1)+w(C2) < w(G0)
D/2

, then let G1 = G0 −C1 −C2.

Notice that G1 is a (D−2)-regular graph, (D−2) = 0 mod 4, and w(G1) = w(G0)−(w(C1)+

w(C2)) ≥ w(G0) −
w(G0)
D/2

= D−2
D

w(G0). So w(G1)
(D−2)/2

≥ w(G0)
D/2

. The next lemma shows that G1

contains at most D−2
2

copies of each 2-cycle.

Lemma 7.3 G1 contains at most D−2
2

copies of each 2-cycle.

Proof: Suppose that G1 contains more than D−2
2

copies of some 2-cycle (u, v), (v, u). Then
G1 and hence also G0 contain exactly D/2 copies of this 2-cycle. (They cannot contain more
by our assumption on G0.) But then one of the edges (u, v), or (v, u) appears exactly D/2
times in G0 and therefore is contained in exactly one of C1 or C2 so G1 must have less than
D/2 copies of it, which gives a contradiction. 2

We next repeat the step just described with G1. Since the average weight of G1 is no smaller
than that of G0 it follows that if we continue and iterate this process then we will end up
with a 2-regular multigraph whose weight is at least w(G0)

D/2
. Furthermore since we keep the

multigraphs half-bound the resulting 2-regular graph is also half-bound. The number of
iterations required is O(log D) since the regularity of the graph drops by a factor of at least
2 every other iteration. From Section 7.1 we know that the time it takes to find the two
cycle covers when D mod 4 = 2 is O(n2 log(Dn)). Therefore the total running time of the
algorithm is O(n2 log(Dn) log D).

7.3 Succinct Convex Combination Representation

We now show how to use the algorithm of Section 7.1 to decompose a D-regular half-bound
multigraph into 2-regular half-bound multigraphs (pairs of cycle covers which do not share
a 2-cycle).

For a multigraph G, we define the matrix A(G) as ai,j = mG(i, j), (entry ai,j of A(G) contains
the multiplicity of the edge (i, j) in G). Let G be D regular, containing at most ⌊D/2⌋ copies
of each 2-cycle. We partition G into pairs of cycle covers, Pi = Ci1, Ci2, where 1 ≤ i ≤ k,
and k ≤ n2, such that

1. A(G) =
∑k

i=1 ciA(Pi), where 2
∑k

i=1 ci = D, and ci ≥ 0.

2. For every 1 ≤ i ≤ k, Ci1 and Ci2 do not share a 2-cycle, i.e Pi is a half-bound 2-regular
graph.

22

We find the pairs of cycle covers P1, . . . , Pk iteratively in k iterations. After iteration i,
1 ≤ i ≤ k, we have already computed P1, . . . , Pi and c1, . . . , ci, and we also have a Di regular
multigraph Gi, and an integer xi such that the following invariant holds.

Invariant 7.2

1. Di is even, and furthermore for each e ∈ Gi, mGi
(e) is even.

2. Gi contains at most Di/2 copies of each 2-cycle.

3. G is a linear combination of the pairs of cycle covers we found so far and Gi, namely,
A(G) =

∑i
j=1 cjA(Pj) + 1

2xi
A(Gi)

We define G0 to be G, and x0 = 0 if all the multiplicities of the edges of G are even.
Otherwise we define G0 = 2 · G and x0 = 1. This guarantees that Invariant 7.2 holds before
iteration 1 with i = 0. In iteration i + 1, i ≥ 0 we perform the following.

1. We use the procedure described in Section 7.1 to find two cycle covers C1 and C2 in
Gi such that

(a) C1 and C2 don’t share a 2-cycle.

(b) Every edge that appears in Gi exactly Di/2 times, will appear in exactly one of
the cycle covers C1 or C2.

2. We define Gi+1 = Gi−c(C1+C2) for an appropriately chosen c. We will show that Gi+1

satisfies the properties of Invariant 7.2(2) and Invariant 7.2(3), where Pi+1 = {C1, C2},
ci+1 = c/2xi, and xi+1 = xi.

3. If there is an edge e ∈ Gi+1 such that mGi+1
(e) is odd, we increment xi+1 and multiply

by 2 the number of copies of each edge in Gi+1. Now Gi+1 also satisfies Invariant 7.2(1).

We now assume that we have a graph Gi that meets the conditions of Invariant 7.2. We use
the procedure of Section 7.1 to find two cycle covers C1, C2 that meet the conditions of item
1. Next we show how to calculate the integer c such that if we remove from Gi, c copies of
C1 and c copies of C2 then we obtain a graph Gi+1 that also satisfies Invariant 7.2(2) and
Invariant 7.2(3), where Pi+1 = {C1, C2} and ci+1 = c/2xi.

By Invariant 7.2 all the entries of A(Gi) consists of even integers. Let c′ be the minimum
such that if we remove c′ copies of C1 and c′ copies of C2 from Gi we zero an entry in the
matrix A(Gi). Since all entries of A(Gi) are even integers, c′ is also an integer (c′ may be
odd).

We define the multiplicity, ℓ(a, b), of a 2-cycle Ca,b in Gi to be the minimum between multi-
plicity of (a,b) and multiplicity of (b,a). By deleting one copy of C1 and C2 we decrease the
multiplicity of each 2-cycle Ca,b whose edge with smaller multiplicity (or just any edge if they
both have the same multiplicity), is contained either in C1 or in C2. Since C1 or C2 contain a
copy of each edge with multiplicity Di/2 it follows that we decrease the multiplicity of each

23

cycle whose multiplicity is exactly Di/2. Deleting a copy of C1 and C2 may not decrease
the multiplicity of cycles whose multiplicity is smaller than D/2. We denote the largest
multiplicity of a 2-cycle whose multiplicity does not decrease by deleting a copy of C1 and
C2 by maxc.

If Di − 2c′ > 2maxc, we set c = c′. If Di − 2c′ ≤ 2maxc we set c = (Di − 2maxc)/2. In
both cases c is a positive integer. Let Gi+1 be the graph that corresponds to the matrix
A′ = A(Gi) − c(A(C1) + A(C2)). The graph Gi+1 is well defined since the definition of c
guarantees that all entries of A′ are nonnegative. The following lemma implies the correctness
of the algorithm.

Lemma 7.4 Gi+1 satisfies Invariant 7.2(2) and Invariant 7.2(3).

Proof: Let Di+1 = Di − 2c. Clearly Gi+1 is a Di+1-regular graph. Since c is an integer,
and Di is even, Di+1 is also even. Since for each e ∈ Gi+1, mGi+1

(e) ∈ {mGi
(e), mGi

(e) −
c, mGi

(e)−2c}, mGi+1
(e) is a non-negative integer. At the end of iteration i+1, Gi and xi+1

satisfy that

G′

0 =
i
∑

j=1

cjPj +
1

2xi+1
Gi =

i
∑

j=1

cjPj +
1

2xi+1
(c(C1 + C2) + Gi+1) =

i+1
∑

j=1

cjPj +
1

2xi+1
Gi+1

Next we show that for any two nodes u, v ∈ Gi+1 the number of 2-cycles Cu,v in Gi+1 is
at most Di+1/2. By construction, Di+1/2 = Di/2 − c ≥ maxc. By the definition of maxc

and of C1 and C2, each 2-cycle Ca,b with ℓ(a, b) > maxc has at least one edge e ∈ Ca,b with
mGi

(e) = x ≤ Di/2 in one of the two cycle covers C1, C2. So after creating Gi+1 we have at
most x − c ≤ Di/2 − c = Di+1/2 instances of e in Gi+1. 2

It is straightforward to check that after the last step of the algorithm Gi+1 also satisfies
Invariant 7.2 (1). We continue doing these iterations as long as Gi is not empty. The next
lemma shows that Gi gets empty after at most n2 iterations and at that point by Invariant
7.2 we have a partition of G′ into pairs of cycle covers.

Lemma 7.5 After at most n2 − n + 1 iterations Gi becomes empty.

Proof: Since G0 doesn’t contain self loops, A(G0) contains at most n2 − n non-zero entries.
We will ignore the n zero entries of the self loops, and we will refer only to the n2 −n entries
of the edges of G0. Assume for a contradiction that Gn2−n+1 is not empty.

Let Ui be the set of edges (a, b) of Gi such that mGi
(a, b) = Di/2. Notice that if (a, b) ∈ Ui

then by lemma 7.2, it will appear in exactly one of the two cycle covers C1, and C2 that we
find in iteration i+1. Then when we remove c copies of C1 and c copies of C2 from Gi we get
a Di − 2c = Di+1-regular graph, Gi+1, in which the edge (a, b) appears Di/2 − c = Di+1/2
times. So once an edge belongs to Ui it stays in Uk for every k ≥ i until it disappears from
some Gk. Moreover, if an edge (a, b) ∈ Ui is zeroed in iteration i + 1, then c = Di/2 and
Di+1 = Di − 2c = 0. So once an edge (a, b) ∈ Ui disappears from the graph the whole graph

24

is zeroed. Thus if i + 1 is not the last iteration, all edges that are zeroed at iteration i + 1
do not belong to Ui.

It is also easy to verify that in each iteration in which we do not zero an entry of the matrix
A(Gi), Ui is increased by at least one. Let j be the cardinality of Un2−n, then j ≤ n2 −n. In
each iteration i in which the cardinality of Ui didn’t increase we zeroed an entry that didn’t
belong to Ui. Thus at the end of iteration n2 − n, we zeroed at least n2 − n− j entries, and
were left with j entries that belong to Un2−n. Since all non-zero entries of A(Gn2−n) belong
to Un2−n, their value is D(n2−n)/2, and in the next iteration all of these entries will be zeroed,
and Gn2−n+1 must be empty. 2

The algorithm consists of at most n2 iterations, and each iteration takes O(n2(log(Dn)))
time. Therefore we find the complete decomposition in O(n4(log(Dn))) time.

Acknowledgements

We thank the referees for their insightful and valuable suggestions.

References

[1] N. Alon. A simple algorithm for edge-coloring bipartite multigraphs. Information
Processing Letters 85 (2003), 301-302.

[2] C. Armen, C. Stein. Improved length bounds for the shortest superstring problem.
Proc. of the 4th International Workshop on Algorithms and Data Structures (WADS),
494-505, 1995.

[3] C. Armen, C. Stein. A 2 2/3-approximation algorithm for the shortest superstring prob-
lem. Proc. of the 7th Annual Symposium on Combinatorial Pattern Matching (CPM),
87-101, 1996.

[4] A. Barvinok, E. Kh. Gimadi and A.I. Serdyukov. The maximum traveling salesman
problem, in: The Traveling Salesman problem and its variations, 585-607, G. Gutin and
A. Punnen, eds., Kluwer, 2002.

[5] Markus Bläser. A 3/4-Approximation Algorithm for Maximum ATSP with Weights
Zero and One. Approximation, Randomization, and Combinatorial Optimization, Al-
gorithms and Techniques, 7th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, APPROX 2004, and 8th International Workshop
on Randomization and Computation, RANDOM 2004, Cambridge, MA, USA, August
22-24, 2004, Proceedings, Lecture Notes in Comput. Sci. 3122, pp. 61-71, 2004.

[6] Markus Bläser. A new approximation algorithm for the asymmetric TSP with triangle
inequality. In Proc. of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2003, 638-645.

25

[7] M. Bläser, B. Manthey. Two approximation algorithms for 3-cycle covers. Proc. of the
5th International Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems (APPROX), Lecture Notes in Comput. Sci. 2462, pp. 40-50, 2002.

[8] M. Bläser and B. Siebert, Computing cycle covers without short cycles, In Proceedings
of the European Symposium on Algorithms (ESA), LNCS 2161, 368–380, 2001.

[9] A. Blum, T. Jiang, M. Li, J. Tromp and M. Yannakakis, Linear Approximation of
Shortest Superstring. J. of the ACM, 31(4), 1994, 630-647.

[10] D. Breslauer, T. Jiang and Z. Jiang, Rotations of periodic strings and short superstrings,
Journal of Algorithms 24(2):340–353, 1997.

[11] N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Report 388, Graduate School of Industrial Administration, CMU, 1976.

[12] A. Czumaj, L. Gasieniec, M. Piotrw, W. Rytter. Sequential and parallel approximation
of shortest superstrings. Journal of Algorithms 23(1):74-100, 1997.

[13] L. Engebretsen, An explicit lower bound for TSP with distances one and two. Algorith-
mica 35(4):301-319, 2003.

[14] L. Engebretsen and M. Karpinski, Approximation hardness of TSP with bounded met-
rics, In Proceedings of the 28th International Colloquium on Automata, Languages and
Programming (ICALP), LNCS 2076, 201-212, 2001.

[15] A. Frieze, G. Galbiati, F. Maffioli. On the worst-case performance of some algorithms
for the asymmetric traveling salesman problem. Networks 12:23-39, 1982.

[16] R. Hassin, S. Rubinstein. Better approximations for max TSP. Information Processing
Letters, 75(4): 181-186, 2000.

[17] R. Hassin, S. Rubinstein. A 7/8-approximation algorithm for metric Max TSP. Infor-
mation Processing Letters, 81(5): 247-251, 2002.

[18] M. Held, R. M. Karp. The traveling-salesman problem and minimum spanning trees.
Operations Res. 18 (1970), 1138-1162.

[19] M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning trees:
Part II. Math. Programming 1 (1971), 6-25.

[20] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation Algorithms
for Asymmetric TSP by Decomposing Directed Regular Multigraphs. Proc. 44th Annual
Symposium on Foundations of Computer Science (FOCS), 56-66, 2003.

[21] H. J. Karloff and D. B. Shmoys. Efficient parallel algorithms for edge coloring problems.
Journal of Algorithms, 8:39-52, 1987.

[22] S.R. Kosaraju, J.K. Park and C. Stein. Long tours and short superstrings. Proc. 35th
Annual Symposium on Foundations of Computer Science (FOCS), 166-177, 1994.

26

[23] A. V. Kostochka and A. I. Serdyukov, Polynomial algorithms with the estimates 3
4

and
5
6

for the traveling salesman problem of the maximum. (Russian) Upravlyaemye Sistemy
26:55–59, 1985.

[24] M. Lewenstein and M. Sviridenko, Approximating Assymetric Maximum TSP. To ap-
pear in SIAM Journal of Discrete Mathematics, preliminary version appeared in Pro-
ceedings of SODA03, 646-654, 2003.

[25] C. H. Papadimitriou and M. Yannakakis, The traveling salesman problem with distances
one and two. Math. Oper. Res. 18(1):1–11, 1993.

[26] A. I. Serdyukov, An algorithm with an estimate for the traveling salesman problem of
the maximum. (Russian) Upravlyaemye Sistemy 25:80-86, 1984.

[27] Z. Sweedyk, 21
2
-approximation algorithm for shortest superstring, SIAM J. Comput.

29(3):954-986, 2000.

[28] J. Tarhio, E. Ukkonen. A Greedy approximation algorithm for constructing shortest
common superstrings. Theoretical Computer Science, 57:131-145, 1988.

[29] S.H. Teng and F. Yao. Approximating shortest superstrings. SIAM Journal on Com-
puting, 26(2), 410-417, 1997.

[30] J. S. Turner. Approximation algorithms for the shortest common superstring problem.
Information and Computation, 83:1–20, 1989.

[31] S. Vishwanathan, An approximation algorithm for the asymmetric traveling salesman
problem with distances one and two. Inform. Process. Lett. 44(6):297–302, 1992.

27

