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Abstract. We give a linear time recognition algorithm for circular-arc
graphs. Our algorithm is much simpler than the linear time recognition
algorithm of McConnell [10] (which is the only linear time recognition
algorithm previously known). Our algorithm is a new and careful imple-
mentation of the algorithm of Eschen and Spinrad [4, 5]. We also tighten
the analysis of Eschen and Spinrad.

1 Introduction

A Circular-arc graph is an intersection graph of arcs on the circle. That is, every
vertex is represented by an arc, such that two vertices are adjacent if and only
if the corresponding arcs intersect. Many subclasses of circular-arc graphs have
also been studied such as proper circular-arc graphs [3], and unit circular-arc
graphs [8]. An extensive overview of circular-arc graphs can be found at the
book by Spinrad [13]. Recent applications of circular-arc graphs are in modeling
ring networks [15] and item graphs of combinatorial auctions [2].

The first polynomial time algorithm for circular-arc recognition was given by
Tucker [16]. This algorithm splits into one of two cases according to whether Ḡ is
bipartite (G is co-bipartite). In case Ḡ is not bipartite the algorithm finds an odd
length induced cycle in Ḡ, and further splits into one of two subcases according
to whether the cycle it found is of length 3 or of length at least 5. Using Tucker’s
terminology we refer to the first case where G is co-bipartite as Case I. We refer
to the subcase where we found in Ḡ a cycle of length 3, and therefore we found
in G an independent set of size 3, as Subcase IIa. We refer to the case where we
found in Ḡ an induced cycle of length at least 5 as Subcase IIb.

Tucker showed how to implement his algorithm in O(n3) time. One of the bot-
tlenecks in Tucker’s implementation is a preprocessing phase where we identify
containment relations between the neighborhoods of the vertices. Specifically,
for every pair of vertices v and w we determine whether the neighborhood of v
is contained in the neighborhood of w or vice versa. Furthermore, Tucker runs
his algorithm recursively on particular graphs and this recursive structure also
leads to cubic running time.

Spinrad [12] simplified Case I in Tucker’s algorithm – the case where G is
co-bipartite. Spinrad reduced this case to the problem of recognizing two dimen-
sional posets [14]. We construct the poset using particular relations between the



vertices of G. Two vertices are related in the poset if their corresponding arcs are
either disjoint, one is contained in the other, or together they cover the circle.
The relations between the arcs are determined from the relations between the
neighborhoods of the vertices. In case G is a circular-arc graph then from any
two total orders that represent the poset we can construct a representation for
G. Spinrad showed that this algorithm runs in O(n3) time.

Eschen and Spinrad [4, 5] gave an O(n2) algorithm for recognizing circular-
arc graphs by addressing the two bottlenecks in Tucker’s implementation. Eschen
and Spinrad show how to compute neighborhood containment relations in O(n2)
time. Specifically, they construct four graphs such that if G is indeed circular-
arc graph then each of the four graphs is either an interval graph or a chordal
bipartite graph. These graphs are constructed such that the neighborhood of
v contains the neighborhood of w in G, if and only if the neighborhood of v
contains the neighborhood of w in each of these graphs. The quadratic time
bound follows since one can compute neighborhood containment relations in
interval graphs and chordal bipartite graphs in quadratic time [9, 4, 5].

Eschen and Spinrad also showed that in Case I of the algorithm, when G is
co-bipartite, we can use the same reduction to determine all pair of arcs that can
cover circle in a model of G in O(n2) time. Since this was the only bottleneck in
Spinrad’s algorithm for this case, we obtain an O(n2) implementation of Case I.
To implement Subcases IIa and IIb in O(n2) time, they changed the recursive
structure of Tucker’s algorithm. They show how to implement the algorithm
such that each recursive call is on a co-bipartite graph (Case I) and therefore
does not trigger further recursion. Since the sum of the sizes of the graphs in all
recursive calls is proportional to the size of G, the quadratic bound follows.

Recently, McConnell [10] presented the first recognition algorithm for circular-
arc graphs that runs in linear time. The algorithm reduced the problem to an
interval graph recognition problem where specific intersection types between the
intervals are specified. McConnell’s algorithm uses the same preprocessing stage
of Eschen and Spinrad where it computes neighborhood containment relations.
To establish the linear time bound, McConnell tightens the analysis of Eschen
and Spinrad’s preprocessing stage. He shows that this preprocessing stage can be
implemented in linear time since we are interested only in neighborhood contain-
ment relations between adjacent vertices, and the associated chordal bipartite
graphs cannot be too large.

McConnell’s algorithm is quite involved. Its most complicated computation
is to find a partition of a graph into a particular kind of modules called ∆ mod-
ules. Those ∆ modules are used to turn the input circular-arc graph into an
interval graph with specific types of intersections between the intervals, and to
find a representation for this interval graph. McConnell first presents an im-
plementation that runs in O(m + n log n) time. To get the linear time bound
a more complicated partitioning procedure has to be adapted from the linear
time transitive orientation algorithm [11] which is by itself quite involved. This
algorithm also uses probe interval graphs to find pairs of arcs that can cover the
circle in linear time.



Hsu [6] presented a different recognition algorithm for circular-arc graphs that
runs in O(mn) time and reduces the problem to recognition of circle graphs.

1.1 Our contribution

We give a careful implementation of the recognition algorithm of Eschen and
Spinrad that in fact runs in linear time. Our implementation first either finds
an independent set of size 3, and then we can apply Subcase IIa of the algo-
rithm, or it concludes that the graph has Θ(n2) edges. In the latter case the
implementation of Eschen and Spinrad in fact runs in linear time.

Eschen and Spinrad find in Subcase IIa a particular maximal independent set
and place the corresponding arcs one the circle. We show how to find the inde-
pendent set and place its arcs on the circle in linear time. Our implementation
then continues as the implementation of Eschen and Spinrad, but we tighten
their analysis to show that the running time is linear. Our main new insight
is that each subgraph considered by the algorithm while placing and ordering
the arcs on the circle is dense. That is, the number of edges that each subgraph
contains is quadratic in the size of its vertex set. Furthermore the total size of
these subgraphs is linear in the size of the input graph.

Our algorithm also performs a preprocessing phase where neighborhood con-
tainment relations are computed. As proved by McConnell [10] this can be done
in linear time. As all previous algorithms, we also require a postprocessing veri-
fication step where we check that the representation we obtain is indeed a repre-
sentation of G. McConnell [10] gave a straightforward linear time implementation
of this postprocessing step, which traverse the circular-arc model and extract all
the pairs of intersecting arcs from it. The model correspondes to the graph G,
only if the intersections of arcs fit the adjacencies of vertices.

We describe a linear time implementation of Subcase IIa. Subcase IIb can
also be implemented in linear time in a similar way. We do not describe it here
since we apply Subcase IIb only when we are sure that G has Θ(n2) edges. Our
implementation is much simpler than McConnell’s algorithm.

2 Preliminaries

We consider a finite simple graph G = (V, E), Where |V | = n and |E| = m. We
represent graphs using adjacency-lists. For a vertex v in a graph, the (closed)
neighborhood of v, denoted by N [v] is the set of all vertices adjacent to v together
with v itself. For a set of vertices U we define NU [v] to be N [v] ∩ U .

A circular-arc model of a graph G is a set of arcs on the circle. Each vertex
has an arc associated with it, such that two vertices are adjacent if and only if the
corresponding arcs intersect. A graph G is a circular-arc graph if it has a circular-
arc model. Note that a circular-arc graph may have more than one model.

We represent a single arc in a circular-arc model by its clockwise and counter-
clockwise endpoints. We assume that no arc covers the entire circle. We represent



a circular-arc model by an ordered cyclic list of the endpoints of its arcs. To sim-
plify we shall refer to the clockwise direction as right and to the counterclockwise
direction as left, as we view them if we stand at the center of the circle.

There are four possible types of intersections between two arcs x and y [16,
6]. Arcs x and y cross if each contains a single endpoint of the other. Arcs x
and y cover the circle if each contains both endpoints of the other. Arc x may
be contained in arc y. And arc x may contain arc y. If x and y either cross or
cover the circle, we say that x and y overlap.

For convenience, we refer to the vertices of G as arcs even before we decide
if G is a circular-arc graph and find a model for it. We would say that two
adjacent vertices intersect even before we have a model, because the arcs of
adjacent vertices must intersect in every model. Hsu [6] showed that if G is a
circular-arc graph then it has a model M such that for every pair of vertices v
and u, the arc representing v in M contains the arc representing u in M if and
only if N [u] ⊆ N [v]. So we would say that v contains u when N [u] ⊆ N [v], even
before we have found a model. This relation between u and v is the neighborhood
containment relation. Additionally we would say that two vertices overlap when
they intersect but do not contain each other.

A graph that can be partitioned into two independent sets is called bipartite.
If G is not bipartite then it must have an odd-length induced cycle. If Ḡ, the
complement of G, is bipartite then G is co-bipartite, and is covered by two cliques.

A (0,1)-matrix is said to have the circular-ones property if its columns can
be ordered such that the 1’s in each row are circularly consecutive. Circular-ones
arrangement can be found in O(m + n + r) time [1, 7] where m is the number of
columns, n is the number of rows, and r is the number of 1’s.

In the rest of the paper we show a linear time implementation of the algo-
rithm. Out of the three cases, we present only Subcase IIa, since the other cases
are applied only when m = Θ(n2).

3 Preprocessing

An arc which represent a universal vertex can be placed on the circle in O(1)
time by placing its right endpoint anywhere on the circle and its left endpoint
immediately to the right side of it. It is easy to find all universal arcs of G in
linear time. Thus, we may assume that G does not have any universal vertices.

Let x be an arc that have the same neighborhood as another arc y that was
already placed on the circle. The arc x can be placed on the circle by placing
its endpoints next to the endpoints of y, in O(1) time. McConnell [10] showed
how to find vertices with the same neighborhood in linear time using a simple
process called radix partitioning, which is similar to radix sort. Thus, we may
assume that there are no two vertices in G that have the same neighborhood.

Before running our algorithm we preprocess the graph and for every pair of
adjacent vertices v and u we check whether v contains u or u contains v, that
is whether N [v] ⊆ N [u] or N [u] ⊆ N [v]. Recall that Eschen and Spinrad [4, 5]
showed how to compute neighborhood containment relations in O(n2) time, and



McConnell [10] tighten the analysis to show that this can be done in linear time.
For more details of this part, which are not complicated, see [10].

4 Splitting into Cases

Recall that the algorithms of Tucker [16] and Eschen and Spinrad [4, 5] split
into one of three cases. Case I, where Ḡ is bipartite, that is G is co-bipartite.
Case II, where Ḡ has an odd-length induced cycle. Case II splits further into two
non-exclusive subcases. Subcase IIa where Ḡ has a triangle, that is G has three
independent vertices. And Subcase IIb where Ḡ has an induced of odd length 5
or more. Our algorithm, in fact, splits into one of these three cases as well. But
we decide on the case to apply more carefully.

Let a1 be a vertex of minimum degree in G. If |N [a1]| > n
2 then every vertex

of G has an edge to at least n
2 other vertices, so m = Θ(n2). Otherwise, let Y

be the set of arcs nonadjacent to a1. We look for a pair of nonadjacent vertices
in Y . For every vertex y ∈ Y we traverse its adjacency list, and construct its
restriction to Y . The time to traverse all the adjacency lists is O(n + m). If for
every y ∈ Y we found that NY [y] = Y then m = Θ(n2) since we know that
|Y | ≥ n

2 . Otherwise, we find nonadjacent pair of arcs a2, a3 ∈ Y .
So either we concluded that m = Θ(n2), and thus the O(n2) time bound

of Eschen and Spinrad [5] is linear. Or, we found three independent vertices
a1, a2, a3, and we can apply Subcase IIa. In the rest of the paper we describe a
linear time implementation of Subcase IIa.

The algorithm for Subcase IIa consists of the three stages of Tucker’s algo-
rithm. In Stage 1, we find a set of arcs that can be ordered easily around the
circle and divide it into sections, such that no arc has its both endpoints in the
same section. In Stage 2, we place every endpoint of every other arc in its sec-
tion. And in Stage 3, we order the endpoints within each section. We describe
each of these stages in the following three sections.

5 Stage 1: Dividing the circle into sections

The algorithm begins by finding an independent set of arcs, I, that can be easily
embedded around the circle, in an order consistent with some model of G. This
set of arcs divides the circle into sections, such that no arc has its two endpoints
in the same section.

5.1 Finding a maximal independent set

The algorithm of Tucker uses maximal independent set of arcs I of size at least 3
that obeys two requirements. First, no arc of I contains any other arc of G. Sec-
ond, there is no arc x ∈ I that has two nonadjacent arcs y, z /∈ I such that y and z
overlap x and do not overlap any other arc in I. We begin by constructing a max-
imal independent set I ′ greedily, which satisfies the first requirement, and then
change it to an independent set I that satisfies the second requirement as well.



Before constructing I ′, we eliminate any arc that contains another arc from
G, since those arcs cannot be in I. Let G′ be the subgraph of G without these
arcs. Every intersecting pair of arcs in G′ overlaps, since no arc of G′ contains
another. In order to construct I ′ we maintain a set J consisting of every arc in
G′ that is nonadjacent to any arc already in I ′. For every arc in G′ we maintain
a counter of the number of arcs in I ′ that intersect it.

Let {a1, a2, a3} be the independent set that we found in Sect. 4. We initialize
I ′ to consist of arcs {a′

1, a
′
2, a

′
3} where a′

i is an arc from G′ and may be either ai

or a minimal arc contained in ai. The set I ′ is an independent set in G′, since
{a1, a2, a3} is an independent set in G. For every a′

i ∈ I ′, we remove N [a′
i] from

J and increase the counters of the members of N [a′
i].

As long as J is not empty, we pick an arbitrary arc x ∈ J and add x to I ′.
We increase the counter of every arc y that overlaps x, and set J = J \ {y}.
When J is empty, I ′ is a maximal independent set.

Next we construct I from I ′. For every arc x ∈ I ′ such that there are two
nonadjacent arcs y1 and y2 in G′ which overlaps only x in I ′, we add y1 and
y2 to I. If such y1 and y2 do not exist, we add x to I. To do so in linear time,
we find all arcs in G′ that overlaps only x by scanning N [x], and identifying
all neighbors of x whose counter equals to one. Let Y ⊂ N [x] consist of these
neighbors. For every y ∈ Y we scan N [y] and construct NY [y], if NY [y] 6= Y
then we find y′ ∈ Y \ NY [y] which is nonadjacent to y.

The following lemma proves that I satisfies the requirements stated above.

Lemma 1. If G is a circular-arc graph then I is a maximal independent set in
G and we cannot get a larger independent set by replacing an arc y1 ∈ I with
two nonadjacent arcs z1, z2 /∈ I that intersect y1.

Proof. First note that I ′ is a maximal independent set in G, since it is a maximal
independent set in G′, and every arc in G which is not in G′ contains an arc in G′.

Assume that I is not a maximal independent set in G, then there is an arc
z /∈ I which is nonadjacent to every arc of I. We may assume that z is in G′. The
arc z cannot be in I ′ because otherwise z or an adjacent arc would be inserted
to I. Then, since I ′ is maximal independent set, z must overlap some x ∈ I ′,
such that x /∈ I and x was replaced by y1, y2 in I. It follows that {y1, y2, z} is an
independent set of three arcs that overlap x, but this is impossible since each of
them should cover an endpoint of x, and x has only two endpoints.

Assume that y1 ∈ I can be replaced by two nonadjacent arcs z1, z2 /∈ I that
overlap only y1 in I. The arc y1 cannot be a member of I ′, since otherwise we
would have added z1, z2 to I instead of y1. Therefore there are x ∈ I ′ and y2 ∈ I
such that y1 and y2 are nonadjacent and overlap x. Arcs z1 and z2 do not overlap
any x′ 6= x, x′ ∈ I ′, because if they do, they must overlap some arc different
from y1 in I. Since I ′ is maximal, the two arcs z1 and z2 must be adjacent to x.
Again, we got independent set of three arcs {y2, z1, z2}, that should overlap x,
but x has only two endpoints. ut

Note that if G is not a circular-arc graph, I might not satisfy the requirements
stated in Lemma 1. In this case our algorithm continues and will detect that G
is not a circular-arc graph later on.



In section 5.2 we show how to place the arcs of I on the circle. We label the
arcs of I by a1, . . . , a|I| according to their cyclic order around the circle, where a1

is some arbitrary arc in I. The endpoints of the arcs split the circle into sections.
Each section is either an arc of I or a gap between two consecutive arcs of I. Let
S be a section. The two endpoints of the arcs of I that define S are called the
endpoints of S. We assume that a section contains its left endpoint, but does not
contain its right endpoint. We denote by S2i the section of arc ai. We denote by
S2i+1 the section which is the gap between S2i and S2(i+1). Subscripts of arcs
are modulo |I| and subscripts of sections are modulo 2|I|.

Let Ic bet the set of arcs of G not in I. For every x ∈ Ic, the arc x cannot
be contained in an arc of I and is not universal. And since I is a maximal
independent set, the following lemma holds.

Lemma 2. [16] Let x ∈ Ic. In a model of G consistent with the placement of I,
the endpoints of x are in different sections.

5.2 Placing the independent set around the circle

We now place the arcs of I around the circle. Tucker showed how to order the
arcs in I around the circle, using the adjacencies between arcs in I and arcs in
Ic, such that there exist a circular-arc model of G consistent with this order.

Lemma 3. [16] If G is a circular-arc graph then there exists a model of G con-
sistent with every cyclic order of I that satisfies the following two requirements:
(1) For each arc x ∈ Ic, the neighborhood of x in I, NI [x], is consecutive around
the circle, with the arcs that are contained in x in the middle and the arcs that
overlap x in the ends. (2) For each pair of adjacent arcs x, y ∈ Ic, the union of
their neighborhoods in I, NI [x] ∪ NI [y] is consecutive around the circle.

Let x ∈ Ic. We define D(x) to be the set consisting of every arc y ∈ NIc [x]
such that NI [x] ∩ NI [y] = ∅. Let Dm(x) be the subset of D(x) consisting of
every arc y ∈ D(x) such that there is no y′ ∈ D(x) for which NI [y

′] ⊂ NI [y] (see
Fig. 1). Eschen and Spinrad [5] proved the following.

Lemma 4. [5] Assume that G is a circular-arc graph. Let P be an order of I
that satisfies the second requirement of Lemma 3 with respect to every pair of
arcs x, y ∈ Ic such that y ∈ Dm(x) and x ∈ Dm(y). Then, P satisfies the second
requirement of Lemma 3 with respect to every pair of adjacent arcs in Ic.

We construct a matrix M such that from a circular-ones arrangement of M
we can define the order of I. Every arc of I corresponds to a column of M and
every requirement of Lemma 3 has a row. We arrange the matrix such that the
ones in every row are cyclically consecutive. The order of the columns will give
us an order of I that is consistent with the requirements of Lemma 3. Any arc
x ∈ Ic with NI [x] = I cannot affect the order of I according to the requirements
of Lemma 3, so we ignore those arcs.

For each arc x ∈ Ic we create a row that have 1’s in the columns of the arcs in
NI [x]. This row forces the consecutiveness of NI [x]. If G is a circular-arc graph



then there are at most two arcs in I that x overlaps. For each such arc, z, we
create a row that have 1’s only in the columns of NI [x]\{z}. These rows will force
NI [x] to be ordered so that the arcs that x contains are in the middle and the
arcs that x overlaps are in the ends. If for some x there are more than two arcs
in I that it overlaps then we halt since G is not a circular-arc graph. We created
at most three rows for each arc, and a total of at most 3n rows with 3m ones.

In order to find D(x) and neighborhood containment relation with respect
to I, we decide for each pair of arcs x, y ∈ Ic whether NI [x] ∩ NI [y] = ∅ or
NI [x] ⊆ NI [y]. To do so, we find a circular-ones arrangement [1, 7] of M . This
arrangement gives us a preliminary cyclic order of the arcs of I. If such an
arrangement does not exist then G is not a circular-arc graph, and we halt. For
each pair of adjacent arcs in Ic we can detect if their neighborhoods in I do not
intersect or one contains the other by looking at the first and last neighbors of
both arcs in the cyclic order of I. We find the last neighbor of all arcs of Ic in
the cyclic order by scanning the arcs of I starting from an arbitrary arc in the
cyclic order. An arc z ∈ I is the last neighbor of x ∈ Ic if it is a neighbor of x,
but the arc z′ following z in the cyclic order is nonadjacent to x. We find the
first neighbor in I of each x ∈ Ic symmetrically.

Let x ∈ Ic and consider the neighborhood containment relation restricted to
I of the arcs in D(x). In any circular-arc model of G, every y ∈ D(x) covers one
endpoint of x and stretches away from x. So NI [y] consists of a member of I next
to x in the model, followed by zero or more members of I consecutive to it, in the
direction which y stretches. Therefore, the arcs of D(x) form at most two chains
with respect to the neighborhood containment relation restricted to I, each
consisting of arcs that cover the same endpoint of x. So, there are at most two
distinct neighborhoods in I for arcs in Dm(x). For example, in the illustration of
Fig. 1, NI [b] and NI [c] are the two distinct neighborhoods in I for arcs in Dm(x).

For each arc of x, we go through D(x) to find Dm(x). We find Dm(x) parti-
tioned into two sets, each consisting of arcs with the same neighborhood in I. We
consider the elements in D(x) one by one, in an arbitrary order. While scanning
D(x) we maintain at most two sets of minimal elements with respect to the neigh-
borhood containment relation restricted to I. We denote these sets by M1(x) and
M2(x). If for the next arc y ∈ D(x), we have that NI [y] = NI [mi] for mi ∈ Mi(x)
we add y to Mi(x). If NI [y] ⊂ NI [mi] for mi ∈ Mi(x), we replace Mi(x) by {y}.
If NI [mi] ⊂ NI [y] for mi ∈ Mi(x), we skip y. Otherwise, the relation does not
form two chains and thus G is not a circular-arc graph and we halt. When we
finish scanning D(x), we have identified Dm(x) partitioned into two sets M1(x)
and M2(x), each set consist of all elements with the same neighborhood in I.

According to Lemma 4, for every pair of arcs x, y ∈ Ic such that x ∈ Dm(y)
and y ∈ Dm(x), we should add a row to M with 1’s in the columns of NI [x] ∪
NI [y]. Although there could be Ω(n2) pairs x, y ∈ Ic such that x ∈ Dm(y)
and y ∈ Dm(x), the number of distinct sets NI [x] ∪ NI [y] is at most n. This is
because for every arc x ∈ Ic, the members of Dm(x) have at most two distinct
neighborhoods in I. We identify these distinct rows to add to M as follows.
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Fig. 1. D(x) and Dm(x). Arcs of I are
drawn in boldface. b, c, d ∈ D(x). Also,
b, c ∈ Dm(x) but d /∈ Dm(x), since
NI [b] ⊂ NI [d].
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are drawn in boldface. b ∈ Ui, c ∈
Wi, d ∈ Ae

i and e ∈ Ac
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For every x ∈ Ic, we traverse every set Mi(x) which is not empty. For each
y ∈ Mi(x) we check if x ∈ Dm(y). If indeed x ∈ Dm(y), we add a row to M with
1’s in the columns of NI [x] ∪ NI [y]. In this case we also set Mi(x) to be empty
and stop the traversal, since all other arcs in Mi(x) have the same neighborhood
in I as y. To check if x ∈ Dm(y) in constant time, we pick an arbitrary arc zi

from each Mi(y) that is not empty, and check if NI [x] = NI [zi].
Since we use the neighborhood of each arc to define at most two rows, we

add to M at most n rows containing at most 2m ones. We can find circular-ones
arrangement for M in O(n + m) time. If such an order does not exist then G is
not a circular-arc graph. Otherwise, we place the arcs of I in this order clockwise
on the circle. We keep the section S1, . . . , S2|I| that are formed by the endpoint
of I in an ordered cyclic list.

6 Stage 2: Placing the endpoints of the arcs in the

sections

Consider the order of I found in Sect. 5.2. For every arc x ∈ Ic, the members of
NI [x] are consecutive on the circle. Since there are no universal arcs in G, and
I is a maximal independent set, x cannot contain all arcs of I and NI [x] 6= ∅.
Also, x overlap at most two arcs of I, since otherwise G is not a circular-arc
graph and we should have detected it in Stage 1.

Let x ∈ Ic, the way we place the endpoint of x into their sections depends on
the relation between x and the arcs of I. In most cases these relations suffice to
determine the sections, and in the other cases we apply the algorithm recursively
on an appropriate graph. The arc x satisfies one of the following cases (see Fig. 2).

– Arc x contains arc ai ∈ I and does not intersect any other arc in I. In this
case the left endpoint of x is placed in S2i−1 and the right endpoint is placed
in S2i+1. For every ai ∈ I we accumulate all arcs that contain it and does
not intersect any other arc of I in a set which we call Ae

i .



– Arc x overlaps ai ∈ I and does not intersect any other arc in I. For every
ai ∈ I we accumulate these arcs in a set which we call Ui.

– Arc x intersects at least two arcs of I and does not intersect at least one. For
all these arcs we identify in NI [x] the leftmost arc ai, and the rightmost arcs
aj . We do that as we identified the first and last neighbor of every arc in the
preliminary order of I in section 5.2. If x contains ai then the left endpoint
of x is in S2i−1, if x overlaps ai then this endpoint is in S2i. Similarly, if x
contains aj then the right endpoint of x is in S2j+1, if x overlaps aj then this
endpoint in S2j . For every arc ai ∈ I we accumulate every arc that contains
all arcs in I except ai in a set which we call Ac

i .

– Arc x overlaps two consecutive arcs ai, ai+1 ∈ I and contains all other arcs
of I. In this case, we place the left endpoint of x in S2(i+1) and the right
endpoint of x in S2i

– Arc x overlaps one arc ai ∈ I and contains all other arcs of I. For each ai ∈ I
we accumulate these arcs in a set Wi.

At this point we placed the endpoints of all arcs in Ic into their sections
except arcs in Ui and Wi for I = 1, . . . , |I|. Consider any arc ai ∈ I and the
associated sets Ui and Wi. Each arc in Ui ∪ Wi has one endpoint in S2i and
the other in S2i−1 or in S2i+1. Furthermore, all arcs of Ui must form a clique,
as otherwise we can get from I a larger independent set by replacing ai by two
nonadjacent arcs in Ui, contradicting Lemma 1.

We place the endpoints of the arcs of Ui ∪ Wi in the sections S2i−1, S2i

and S2i+1 for each ai ∈ I separately, by solving a new problem recursively on
a graph Gi. The graph Gi which we construct is identical to the graph that
Eschen [4] constructs1. This graph is co-bipartite and therefore when we apply
the algorithm to Gi, Case I applies and there would not be further recursion.
We contribute the following observations. If G is a circular-arc graph then the
recursive application of the algorithm on Gi takes time linear in the size of Gi.
Furthermore, the sum of the sizes of all Gi’s is proportional to the size of G.

Let Ca
i be the set of arcs {ai} ∪ Ae

i ∪ Ui. The set Ca
i forms a clique in G,

since Ui forms a clique and all Ae
i arcs intersect every arc that ai intersects. The

clique Ca
i consists of all arcs contained in the union of the sections S2i−1, S2i

and S2i+1. Let Qi be the set of arcs adjacent to some but not all arcs in Ca
i .

To define Gi we first define a subgraph of G which we denote by G′
i. The

graph G′
i will also be a subgraph of Gi. The graph G′

i is the subgraph induced
by Ca

i ∪ Qi ∪ Ac
i ∪ Wi. Note that Qi is not necessarily disjoint of Wi and Ac

i .

We find Qi by scanning the adjacency list of each x ∈ Ca
i . We maintain the

set Y of arcs encountered during the scan. For each such arc y ∈ Y , we also keep a
counter that counts the number of neighbors of y in Ca

i . When we finish scanning
the adjacency list of every x ∈ Ca

i , the arcs of Qi are exactly those arcs y ∈ Y
whose counters are smaller than |Ca

i |. We construct G′
i by scanning the adjacency

list of each arc in it and restricting the list to contain only arcs inside G′
i.

The following lemma proves that all G′
i’s are constructed in linear time.

1 Note that this graph is different to the one from [5] which seems to have an error.



Lemma 5. [4] Every arc x participates in a constant number of graphs G′
i.

Proof. From the definition of the sets Ui, Wi, A
e
i , A

c
i , it follows that an arc x

can belong to at most one such set. If x ∈ Qi for some i, then one of the arcs
ai−1, ai, ai+1 must be the leftmost or the rightmost arc of NI [x] in the cyclic
order of I. So, x can belong to Qi only if one of ai−1, ai or ai+1 is the rightmost
or leftmost neighbor of it in the cyclic order of I. ut

Let n′
i be the number of vertices in G′

i, and let m′
i be the number of edges

in G′
i. Every arc in G′

i covers at least one of the four endpoints of the three
consecutive sections S2i−1, S2i, S2i+1. Therefore, the arcs of G′

i are covered by

four cliques, one for each endpoint. One of these cliques should have at least
n′

i

4

vertices and therefore has at least
n′

i

4 (
n′

i

4 −1) edges. So we check if m′
i ≥

n′

i

4 (
n′

i

4 −1).
If this inequality does not hold then G is not a circular-arc graph and we halt.
Otherwise, we know that m′

i = Θ(n′2
i ).

We construct Gi from G′
i by adding a constant number of vertices and

O(n′2
i ) = O(m′

i) edges. The vertices gurantee that any model of Gi can be
embedded into a model of G, and the edges make all the vertices which are not
in Ca

i into a second clique. So if ni and mi denote the number of vertices and
edges in Gi respectively, then we also have that mi = Θ(m′

i) = Θ(n′2
i ) = Θ(n2

i ).
The details of the construction of Gi are as in Eschen [4].

Since mi = Θ(n2
i ), the recursive application of our algorithm to Gi takes

O(mi) time. Since each arc of G belong to at most a constant number of graphs
Gi, then each edge of G must belong to at most constant number of graphs Gi.
And therefore,

∑
mi = O(m) and the linear time bound for Stage 2 follows.

7 Stage 3: Arranging the endpoints in each section

We now know which sections contain the endpoints of every arc. Next we would
arrange the endpoints inside each section. We follow Eschen and Spinrad’s algo-
rithm [4, 5], but provide a tighter analysis of it.

Our algorithm goes through the sections and tries to split each section S into
ordered list of subsections. If S is split to subsections, those subsections replace S
in the cyclic order of sections. When we cannot split sections anymore then each
section S has a corresponding section S′ such that all arcs that have one endpoint
in S have their other endpoint in S′ and vice versa. We then use recursion to
order the endpoints inside sections containing more than one endpoint.

Our initial list of sections, S1, . . . , S2|I|, are the sections of Stage 2. Let ni

be the number of arcs that have an endpoint in Si, and let mi be the number of
edges in G between these arcs. If G is a circular-arc graph then the arcs that have
their right endpoint in Si should be a clique in G, since they all cover the left
endpoint of Si. Similarly, the arcs that have their left endpoint in Si also form a
clique in G. So for each of the initial sections mi should be at least ni

2 (ni

2 − 1).
We check for all i = 1, . . . , 2|I| that indeed mi ≥

ni

2 (ni

2 − 1), and if it does not
hold for some i, then G is not a circular-arc graph. Note that since each arc has
endpoints in two sections,

∑
mi = O(m).



We split sections in the same way as Eschen and Spinrad [4, 5]. Intuitively,
since the order of the endpoints inside a particular section S is not affected by
any arc that does not have an endpoint in S, it suffices to determine the order
between pairs of endpoints in the same section. Therefore the time it takes to
split the sections is O(

∑
n2

i ). Since O(
∑

n2
i ) = O(

∑
mi) = O(m) this time is

linear in the size of G. Details of this stage can be found at [4, 16].
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