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Abstract. We give two new algorithms for recognizing proper circular-
arc graphs and unit circular-arc graphs. The algorithms either provide a
model for the input graph, or a certificate that proves that such a model
does not exist and can be authenticated in O(n) time.

1 Introduction

A certifying algorithm for a decision problem is an algorithm that provides a
certificate together with its answer. A certificate is an evidence that can be used
to authenticate the correctness of the answer (cf. [7,11]). An authentication
algorithm is an algorithm that validates the certificate. Certifying algorithms
reduce the risk of erroneous answer, caused by bugs in the implementation.

For example, a recognition algorithm of bipartite graphs can provide as a
certificates a 2-coloring when the graph is bipartite and an odd cycle when the
graph is not bipartite. Graph classes that have certifying recognition algorithm
include chordal graphs [15], planar graphs [11], interval graphs and permutation
graphs [7], proper interval graphs [4, 12], proper interval bigraphs [4], and more.

A circular-arc graph is an intersection graph of arcs on the circle. Every
vertex is represented by an arc, such that two vertices are adjacent if and only
if the corresponding arcs intersect. The arcs constitute a circular-arc model of
the graph. Circular-arc graphs can be recognized in linear time [9, 6].

A circular-arc model in which no arc contains another is a proper circular-arc
(PCA) model. A circular-arc graph that admits a PCA model is a proper circular-
arc (PCA) graph. Tucker gave characterizations of PCA graphs, in terms of the
adjacency matrix [16] and forbidden subgraphs [17]. Skrien [13] and Deng, Hell
and Huang [1] gave characterizations that use orientation of the edges. The char-
acterization of [1] leads to a linear-time recognition algorithm for PCA graphs.
Spinrad [14] showed that the characterization of [16] also leads to a linear-time
recognition algorithm for PCA graphs. Both algorithms construct a PCA model
if the graph is a circular-arc graph, but fail to provide a certificate otherwise.

A circular-arc model in which all arcs are closed (or all arcs are open) and of
the same length is a wnit circular-arc (UCA) model. A circular-arc graph that
admits a UCA model is a unit circular-arc (UCA) graph. Every UCA graph
is a PCA graph. Tucker [17] gave a characterization of PCA graphs which are
not UCA graphs. Recently, Durdn, Gravano, McConnell, Spinrad, and Tucker



[2] presented a quadratic recognition algorithm for UCA graphs, based on this
characterization. This algorithm does not provide a certificate for its answer.
Even more recently, Lin and Szwarcfiter [8] gave new characterization for UCA
graphs based on the length of the arcs in a PCA model. This gave a linear-time
algorithm that constructs a UCA model if the input is a UCA graph, but fails
to provide a certificate otherwise.

Circular-arc graphs generalize interval graphs which are the intersection
graphs of intervals on the line. Kratsch, McConnell, Mehlhorn, and Spinrad
[7] gave a linear-time certifying algorithm for interval graphs.

Another related graph class is interval bigraphs. A bipartite graph with the
bipartition (X,Y") is an interval bigraph, if it can be represented by intervals on
the line, such that the interval of x € X intersects the interval of y € Y if and only
if z and y are adjacent in the graph. Two intervals corresponding to two vertices
in X or to two vertices in Y, may or may not intersect. An interval bigraph
that have a model in which no arc contains another, is a proper interval bigraph.
Hell and Huang [5] showed that the class of proper interval bigraphs, is exactly
the class of the complements of co-bipartite PCA graphs. These graph classes
are known to be equivalent to many other well known graph classes including
bipartite permutation graphs, bipartite AT-free graphs and bipartite trapezoid
graphs. Hell and Huang [4] also gave a simple linear-time certifying algorithm
for recognizing proper interval bigraphs, which we use in our algorithm.

In this paper, we present characterizations for PCA graphs and UCA graphs
which are based on [16, 17]. Those characterization leads to linear-time certifying
algorithms for recognizing these classes of graphs. If the input graph is a member
of the graph class, the algorithm provide the appropriate model for it. Otherwise,
if the input graph is not a member of the graph class, we provide a certificate
for this answer that can be authenticated in O(n) time, where n is the number
of vertices in the graph. This time bound is better than the time bound of the
recognition algorithm, so the certificate is a strong certificate [7].

2 Preliminaries

Let G(V, E) be a finite simple graph, and let n = |[V(G)| and m = |E(G)|. The
(closed) neighborhood of v is N[v] = {v} U {u | vu € E}. For u,v € V(G), if
uv ¢ E(G) then we say that uv is a non-edge.

The sequence P = (v1, va, ... vx) with v;v,41 € E(G) is a path. If vgv; € E(G)
then P is also a cycle. The sequence P = (v1,va,...vx) with v;v;,41 ¢ E(G) is
a co-path. If vyv, ¢ E(G) then P is also a co-cycle. The length of a path, or a
co-path, P is denoted by |P|. A path, cycle, co-path or co-cycle in which all the
vertices are distinct is simple.

A graph that can be partitioned into two independent sets is a bipartite graph.
The complement of a bipartite graph is a co-bipartite graph.

To simplify we refer to the clockwise direction of the circle as right and to
the counterclockwise direction of the circle as left, as we view them if we stand
at the center of the circle.



Table 1. Intersection types of two arcs in circular-arc model by order of their endpoints.

Endpoints order (left to right) Intersection type
[0(x),r(y),L(y),r(z)] # and ¢ cover the circle
[0(2),£(y),r(z),(y)] § overlaps the right side of &
[(z),r(y), r(z), £(y)] % overlaps the right side of §
[0(x),r(x), (), r(y)] % and 4 are nonadjacent
[U(z), €(y),r(y),r(x)] & contains
[U(x),r(x),r(y), £(y)] § contains &

For a PCA graph G with a PCA model g, every vertex v € V(G) has an arc
in ¢ with two endpoints. We denote the arc of v by o, the left endpoint by ¢(v)
and the right endpoint by r(v).

Every pair of arcs & and ¢ in g either cover the circle, overlap, or nonadjacent.
Containment of arcs in a PCA model is impossible. If & overlaps § and covers
r(y) then & overlaps the right side of §.

The adjacency matriz of a graph G, denoted by M(G), has 1 in position
(¢,7) if v;u; € E, and 0 otherwise. The augmented adjacency matriz of G is the
adjacency matrix of G with 1’s on the main diagonal, that is M*(G) = M (G)+1,
where [ is the identity matrix. We refer to the row and column in M*(G) that
correspond to the vertex v as row v and column v.

A (0,1)-matrix has the consecutive-ones property if its columns can be or-
dered so that in every row the 1’s are consecutive. McConnell [10] gave a linear-
time certifying algorithm for this property. A (0, 1)-matrix has the circular-ones
property if its columns can be ordered so that in every row the 1’s are circularly
consecutive.

2.1 Representation

The desired graph representation for certifying algorithms on graphs is discussed
in [7]. We use, as [7], ordered adjacency list representation of graphs. This repre-
sentation allow us to get the list of neighbors of a given vertex in constant time,
and to certify adjacency of two vertices in constant time. An edge is certified by
its location in the ordered adjacency list. A non-edge is certified by the location
in the adjacency list of the edge that would be its predecessor, if the non-edge
was an edge. To collect the locations of O(n) edges and non-edges, we radix sort
them, and scan the sorted list together with the adjacency lists of the graph.
The running time for this sort and scan is O(m + n).

We represent a PCA model by a cyclic order of the endpoints. The 2n end-
points in the model are indexed according to their ranks in the order, starting at
any arbitrary endpoint and going right. Each arc has the indices of its two end-
points. The type of intersection between two arcs can be determined, in constant
time, by the order of their endpoints [3] (see Table 1). A unit circular-model obey
length constraint, so the exact location of the endpoints on the circle is required.

We represent (0, 1)-matrices in a sparse way, similar to the representation



of graphs by ordered adjacency lists. This representation allows algorithms that
process matrices to run in time proportional to the number of 1’s in the matrix.
For M*(G) the number of 1’s is O(m + n).

3 Characterization of Proper Circular-Arc Graphs

We define an incompatibility graph for PCA graphs, in a way similar to the
definitions of incompatibility graphs for the consecutive-ones property [10] and
for permutation graphs [7], as follows.

Let ¢ be a PCA model of G, and vy be a vertex in G. We start at r(vg) and
traverse the circle to the right, we get a traversal ordering (vg,v1,...,0n—1) of
the vertices according to the order in which we meet their right endpoints. This
ordering defines a traversal order relation R = {(v;,v;) |1 < j}.

The following holds for any PCA model of G. For every z,y € V(G), (z,y)
and (y, z) cannot both appear in the same traversal order relation. We say that
(z,y) is incompatible with (y,z). For every w € V(G), the right endpoints of
all the vertices in N[w] must be consecutive around the circle. Assume that
vo ¢ N[w]. Then, in a traversal ordering that starts with vy the vertices of N[w]
must be consecutive. Therefore, if z, z € N[w] and y ¢ N[w], the vertex y cannot
be between x and z. So (z,y) and (y, z) are incompatible, with w as a witness.
Assume that vy € N[w], now the vertices of N[w] are not necessarily consecutive
in a traversal ordering that starts with vg, because it might be that v,,_; is also
in N{w]. But V(G)— N[w] must be consecutive in this ordering, so if z, z ¢ N[w]
and y € N[w] then (z,y) and (y, z) are incompatible, with w as a witness.

The incompatible pairs define the incompatibility graph IC(G;vo) of G with
starting vertex vg. The vertex set of IC(G;v) is {(z,y) | z,y € V(G),z # y}.
The edge set of IC(G;vp) are edges of the forms (z, y)(y, x), (x,y)(y, z) such that
x,z € Nwl], y ¢ Nw] for some w ¢ N[vg] and (z,y)(y, z) such that y € N[w],
x,z ¢ N[w] for some w € Nug].

The definition of IC(G;vp) is analogous to the definition of the incompatibil-
ity graph for the consecutive-ones property IC(M), presented by McConnell [10].
Since a consecutive-ones ordering is linear, we do not need a starting point to
define IC(M). The edge set of IC(M) are (z,y)(y, x), for every pair of columns
x and y, and (z,y)(y, 2) such that there is a row w, with ones in the column of
x, z but not in the column of y.

Theorem 1. Let G be a PCA graph. For any vy € V(G), the incompatibility
graph IC(G;wp) is bipartite.

Proof. Let p be a PCA model of G. Let vg € V(G) and let R be the traversal
order relation defined by the traversal ordering of o that starts with vg. The
relation R is made of vertices of IC(G;vg). The relation R cannot have any
incompatible pairs, so the vertices of R are an independent set in IC(G;vg). Let
o' be a PCA model of G that is obtained by replacing the right and left directions
of 0. Let R’ be the traversal order relation defined by the traversal ordering of o
starting with vo. Any vertex in IC(G;vg) that is not in R is in R’. The vertices
of R’ are also an independent set, and therefore IC(G;vg) is bipartite. O



To certify that G is not a PCA graph we can provide an odd cycle in one of
its incompatibility graphs. We do so without explicitly constructing the entire
incompatibility graph, since the size of this graph might be as large as ©(n?).
Note that IC(G;vp) might be bipartite even when G is not a PCA graph.

4 Certifying Algorithm for Proper Circular-Arc Graphs

Our certifying algorithm for PCA graphs consists of two cases, depending on
whether G is co-bipartite or not. We begin the algorithm by deciding whether G
is co-bipartite. If G is co-bipartite, then it is covered by two cliques. At least one
of those cliques should cover half of V(G), so m > 5(5 — 1). If this inequality
does not hold then G is not co-bipartite. Otherwise, m = ©(n?), and we check
if G is bipartite in O(n?) = O(m) time.

4.1 The Complement of G is Not Bipartite

In the case where G is not co-bipartite, Tucker [16] showed that G is a PCA
graph if and only if M*(G) has the circular-ones property.

To check if M*(G) has the circular-ones property, we use the following reduc-
tion of [16] from testing this property to testing the consecutive-ones property.
Let M; be a (0,1)-matrix. Fix a column j. Form the matrix My by comple-
menting those rows with 1 in column j of M;. Then M; has the circular-ones
property if and only if Ms has the consecutive-ones property.

Let vg be a vertex of minimum degree in G. To perform the reduction stated
above in linear time, we complement the rows of M*(G) which have one in the
column of vg. Since the degree of vy is O(m/n), we complement O(m/n) rows.
It takes O(n) time to complement a row so we perform the entire reduction in
O(m) time. We denote by M the new matrix that we obtain.

After the reduction we run the certifying algorithm of McConnell [10] to test
if M has the consecutive-ones property. If M has a consecutive-ones ordering,
we order the columns of M*(G) in the same way, to get a circular-ones ordering
for M*(G). Tucker [17] showed an algorithm to produce a PCA model of G from
a this ordering that can be implemented in O(n + m) time.

If M does not have the consecutive-ones property, then the algorithm of [10]
produces a certificate for this fact. This certificate is an odd cycle C' of length
at most n+ 2 in the incompatibility graph IC(M). Next, we show that all edges
of C exist in IC(G;vp) so C is also an odd cycle in IC(G;vp).

Edges of C' in IC(M) have one of two forms. Edges of the form (z,y)(y,x)
always exist in IC(G;vp). Consider an edge (z,y)(y, z) with a witness w, where w
is arow in M such that the columns of x and z have 1 in this row, but the column
of y has 0 in it. If w ¢ N|vg] then the row of w in M is the same as in M*(G). So,
x,z € N[w] while y ¢ N[w] and therefore (z,y)(y, z) is an edge of IC(G; vp), with
vertex w ¢ Nvg] as a witness. Otherwise, if w € N[vg], then the row of w in M
is the complement of the row of w in M*(G). So, y € N|w] while z, z ¢ N|[w] and
therefore (x,y)(y, z) is an edge of IC(G};vp), with vertex w € Nuvg] as a witness.



Fig. 1. Forbidden subgraphs.

We provide the odd cycle C in IC(G;wp), together with vy as a certificate.
To complete the certificate, we need to add a certificate for all edges and non-
edges of G that are involved in it. For an edge (z,v)(y, 2) with a witness w in
IC(G;vp), we need to provide a certificate for the edges or non-edges xw, yw, zw
and wvy in G. The length of the cycle in IC(G;vp) is O(n), and thus there are
O(n) edges or non-edges to certify.

4.2 The Complement of G is Bipartite

In this case, when G is co-bipartite, we use the following forbidden subgraphs
characterization of Tucker [17].

Theorem 2. [17] Let G be a graph. If G contains an induced even cycle of
length > 6 or one of the graphs in Fig. 1, then G is not a PCA graph.

A co-bipartite graph G is a PCA graph if and only if G is a proper interval
bigraph [5]. So, we use the certifying algorithm for recognizing proper interval
bigraph of Hell and Huang [4] on G. Note that the graphs in Theorem 2 are
exactly the graphs that the certifying algorithm for recognizing proper interval
bigraphs [4] uses as certificates.

The graph G is covered by two cliques, one of those two cliques must cover
at least n/2 of the vertices of G, therefore m = ©(n?). So we can produce G
from G in O(n?) = O(m) time.

If G is an interval bigraph, we get a model for it, and we use an algorithm of
Hell and Huang [5] to construct a PCA model of G, from this model. Otherwise,
we have one of graphs in Theorem 2 as a certificate. For a graph of Fig. 1, we
use its complement to certify that G is not a PCA graph.

If we have an induced even cycle of length > 6 as a certificate that G is not a
proper interval bigraph, we transform it into an odd cycle in an incompatibility
graph of G. We do so for two reasons. First, a straightforward authentication of
an even length cycle takes O(m + n) time, while authentication of an odd cycle
in an incompatibility graph takes O(n) time. Second, we reduce the number of
cases that the authentication algorithm has to deal with, since it has to verify
an odd cycle in an incompatibility graph in the case where G is not co-bipartite.

Let C = (wg,21,...,%2-—1) be an even induced cycle in G. For every i =
0,...,2r — 1, and for every j # i &+ 1, we have that (x;,2;) € E(G), where the
subscripts of the vertices are modulo 2r. We find an odd cycle in the incompat-
ibility graph IC(G;x1).



If r is even, we start the cycle in IC(G;x1) with (xg, ;). From the vertex
(xi,x;) in the cycle, we continue to (xj,z;y2). We can use x;41 as a witness
for the edge (z;,x;)(x;, zit2), since if we start with (zo,x,), we always have
zit1 € N[z1] and x;, zi12 € N{zi41] while zj € N[z, 41]. After r edges we get to
(xy,x0), we add an edge (z,, zo) (0o, zr) to complete an odd cycle of length r+1.

If r is odd, we start the cycle in the incompatibility graph in (zo, z,+1) and
continue in the same way. After r edges we get back to (g, zr4+1), and we have
odd cycle of length r.

Building the cycle in the incompatibility graph IC(G;x1), together with
certificate for all the edges in it takes O(n?) = O(m) time.

4.3 The Certificate and the Authentication Algorithm

The certificate of the recognition algorithm is either a PCA model of G, an odd
cycle in an incompatibility graph IC(G;vp), or one of the graphs of Fig. 1 as an
induced subgraph of G. If we got a PCA model for G, then G is a PCA graph.
For the other certificates, G is not a PCA graph by Theorem 1 or Theorem 2.
To authenticate a PCA model we first authenticate that the model is a
circular-arc model of G, this step is described by McConnell [9]. The model
is a PCA model only if no arc is contained in another, we check this for every
pair of adjacent vertices by checking the order of their endpoints (see Table 1).
The size of this certificate is O(n) and the time to authenticate it is O(n + m).
To authenticate an odd cycle in an incompatibility graph IC(G;vp), we first
verify that it has an odd length not larger then n + 2. Then, we verify that the
certificate is indeed a cycle. We also verify that each edge of the cycle belongs
to IC(G;vp), by checking that every edge is either of the form (z,y)(y, x) or has
a valid witness. The size of the cycle is O(n) and validating it takes O(n) time.
If the certificate is one of the graphs of Fig. 1, we verify that every edge exists
in the certificate if and only if it exists in the graph. The size of each of these
graphs is O(1), and hence the authentication time is also O(1).
When the algorithm found that G is not a PCA graph, both possible certifi-
cates can be authenticated in O(n) time and therefore are strong certificates.

5 Characterization of Unit Circular-Arc Graphs

In this section we present the structure theorem of Tucker [17] for UCA graphs
together with some relaxations of it that we use. Let G be a PCA graph with
a PCA model p. Every PCA graph has a PCA model in which no pair of arcs
covers the circle [17, 3]. In fact, the algorithm of Sect. 4 never constructs a model
with a pair of arcs that covers the circle. Thus, in this section we assume that o
does not contain a pair of arcs that covers the circle.

Let C = (=0, ...,xp—1) be a simple cycle in G, such that fori =1,...,p—1,
the arc Z; overlaps the right side of &;_1, and the arc Zy overlaps the right side of
Zp—1, in 0. We call such a cycle C, a bounding cycle. Assume that we traverse the
cyclic list of endpoints of g, starting immediately after ¢(x¢), going right to r(zo)



/E\
Xo Ya KK_/ Yo
X1 1
J
Fig. 2. Bounding cycle with ratio 5/2  Fig. 3. Bounding co-cycle with ratio 5/2

and continuing from 7(x;) to r(z;+1). We call the list of endpoints obtained this
way the walk of C'. The number of times that C goes around the circle is the num-
ber of times that the walk of C hits £(z¢), we denote this number by ¢(C). The
ratio of C, denoted by p(C'), is |C|/t(C'). See Fig. 2. We call C a minimum bound-
ing cycle if there is no other bounding cycle C" with p(C’") < p(C). We denote
a minimum bounding cycle by C™. If the union of the arcs in g does not cover
the circle, then there are no bounding cycles. In this case, we let p(C™) = oc.

Let I = (yo,...,Yp—1) be a simple co-cycle in G. We call I a bounding co-
cycle. We define the walk of I as we define it for bounding cycles. To compute
t(I), the number of times that I goes around the circle, we add 1 to the number
of times that the walk of I hit £(yg), to count also the last partial turn. The ratio
of I, denoted by p(I), is [I|/t(I). See Fig. 3. We call I a mazimum bounding co-
cycle if there is no other bounding co-cycle I' with p(I') > p(I). We denote a
maximum bounding co-cycle by I,

The circumference of a UCA model of closed arcs with a bounding cycle C'
can be at most p(C). On the other hand, the circumference of a UCA model
with a bounding co-cycle I must be strictly greater than p(I). So for any UCA
model p(I™) < p(C™). The following theorem shows that this condition is also
sufficient. Furthermore, the bounds do not depend on the specific model.

Theorem 3. [17] A PCA graph G is also a UCA graph if and only if for any
PCA model of G with no pair of arcs that cover the circle, p(I™) < p(C™).

Given a PCA model g, the algorithm of Durdn et al. [2] finds a minimum
bounding cycle and a maximum bounding co-cycle that start from a certain arc
in the model. To do so in linear time they use complicated data structures.

We relax the definitions of a bounding cycle and a bounding co-cycle, in two
ways, in order to get a simple implementation. First, we allow repetitions of
vertices. Second, we use paths instead of cycles.

Let P = (xo,...,%p—1) be a path of vertices in G, not necessarily simple,
such that for ¢ = 1,...,p — 1, the arc Z; overlaps the right side of z;_1, in o.
The path P is a bounding path. We define the walk of P and count the number
of times that P goes around the circle, denoted by ¢(P), in the same way as we
do it for bounding cycles. The ratio of P is p(P) = |P|/t(P). Note that since a
bounding path is not necessarily a cycle, it might be that ¢(P) = 0, in this case
we assume that p(P) = oo.



Let Q = (yo,---,Yp—1) be a (not necessarily simple) co-path of vertices in G.
We call QQ a bounding co-path. We define the walk of 2 and count the number
of times that @ goes around the circle, denoted by (@), in the same way as we
do it for bounding co-cycles. The ratio of Q is p(Q) = |Q|/t(Q).

6 Certifying Algorithm for Unit Circular-Arc Graphs

Every UCA graph is a PCA graph, so we start by testing whether G is a PCA
graph using the algorithm of Sect. 4. If G is not a PCA graph then it is also
not a UCA graph, and the algorithm of Sect. 4 certifies that. Otherwise, if G
is a PCA graph then we have a PCA model of it which we denote by p. As in
Sect. 5, we assume that there is no pair of arcs in p that covers the circle.

We generate bounding paths and bounding co-paths in g, which are simple
to find. Then, we show that we can find from this set of bounding paths and
co-paths a minimum bounding cycle and a maximum bounding co-cycle. We
compare the ratios of the minimum bounding cycle and maximum bounding
co-cycle, and use Theorem 3 to decide whether G is a UCA graph.

It can be shown that a PCA graph with a dominating vertex or a PCA graph
that has a PCA model in which the union of the arcs does not cover the circle,
is a UCA graph. Therefore, we assume that G does not contain any dominating
vertex and that the union of arcs in g covers the circle.

To obtain a certificate when G is a UCA graph, we use the algorithm of [8]
to find a UCA model for G. Note, that the first two steps of [8] are to find a
PCA model of G and to eliminate pairs of arcs that cover the circle. Thus, the
implementation of [8] can be simplified by using the algorithm in Sect. 4.

The algorithm of [2] iteratively looks for the minimal bounding cycle and
maximal bounding co-cycle that starts with every vertex in the graph. This is
not necessary since the bounding cycles and bounding co-cycles are cyclic, so we
only need to start from one of their vertices, not from all of them. Furthermore,
we show that for every vertex v € V(G), we can start only from vertices in N[v].

Let C™ = (zo, . .., Tp—1) be a minimum bounding cycle in a PCA model, and
let M = (yo,...,94-1) be a maximum bounding co-cycle. Let v be any fixed
vertex in V(G). The arcs of C™ covers the circle at least once, so there must be
an arc &; that overlaps 0. Because C™ is a cycle, we may assume that Z; is Zy,
hence, 2o € N[v]. Assume that v is not adjacent to any vertex of I’ we can add
v to I™ and get a bounding co-cycle I, with t(I) = t(I™) and |I| = |[I™|+1, and
therefore p(I) > p(I*), contradicting the fact that I is maximum. Because
I is a co-cycle, we may assume that yo € N[v].

For a particular vertex u, we find n bounding paths, of lengths 1 to n, each
starting with u, using the following greedy algorithm. Let ug = u. We start with
Py = (up) as a bounding path with ¢(P;) = 0. For i = 1,...,n — 1, we generate
Piy1 = (uo,...,u;) by adding to P; the vertex u;, where ¢(u;) is the rightmost
left endpoint covered by the arc ;1. Such a vertex u; exists since the circle is
covered by the union of all arcs. We let ¢(C;) = t(C;—1) + 1, if the arc @; covers
£(up), and otherwise t(C;) = t(C;—1). We stop after generating P,,. We represent



the n bounding paths by the list of vertices in P, and the list of the values t(P;)
fori=1,...,n.

Similarly, we find n bounding co-paths, of lengths 1 to n, each starting with
u, using the following greedy algorithm. Let ug = u. We start with Q1 = (uo)
as a bounding co-path with ¢(Q1) = 1. Fori =1,...,n — 1, we generate Q;4+1 =
(ug, ..., u;) by adding to @; the vertex u;, where £(u;) is the leftmost left end-
point not covered by the arc ;1. Since u;_1 is not a dominating vertex, u;_ju; ¢
E(G). We let t(Q;) = t(Qi—1) + 1, if the arc 4; covers £(ug), and otherwise
t(Q;) = t(Qi—1). We stop after generating @Q),,. We represent the n bounding co-
paths by the list of vertices in @,, and the list of the values t(Q;) fori = 1,...,n.

To implement these algorithms in O(n) time, we identify in advance, for every
arc, the rightmost left endpoint it covers, and the leftmost left endpoint not
covered by it. We do so by going around the circle from left to right, starting at
some left endpoint, and maintaining ¢(x), the last left endpoint we encountered.
When we encounter a right endpoint r(y), the last left endpoint that the arc g
covers is £(z). We can find the leftmost left endpoint following each arc in the
same way, by going around the circle from right to left.

Let vy € V(G) be a vertex with a minimum degree, so |N[v]| = O(m/n).
We find n bounding paths and n bounding co-paths that start with each of the
arc of vertices in Nuvg], by the greedy algorithms described above. This takes
O(n|Nv]]) = O(n-m/n) = O(m) time and O(m) space. We then find among the
O(m) bounding paths, the bounding path P™ for which p(P™) is the smallest
and the bounding co-path Q™ for which p(Q™) is the largest. If there are more
than one bounding paths or co-paths with the same ratio we take the shortest.

Lemma 1. For the bounding path P™ and the bounding co-path Q™ that we
have found, we have p(P™) < p(C™) and p(I™) < p(Q™M).

Proof. Let C™ be a maximum bounding cycle, starting with xo € NJuvg]. Let
k = |C™|, since C™ is a simple cycle, k < n. Let C; be the prefix of C™ with
|C;i| = i. The path C; is a bounding path. Let P; be the bounding path of length
1 stating at zo that our greedy algorithm has found. We prove by induction on
1, that the walk of C; is a prefix of the walk of P;. It follows that for every
i=1,...,k, we have t(C;) < t(F;), and in particular p(C™) = p(Cx) > p(Py) >
p(P™), as required.

For i =1, Cy = Py, and thus the walks of C; and P; are identical. Assume
that the walk of C} is prefix of the walk of P;. To get C;41, we add to C; a vertex
x; such that the last occurrence of ¢(x;) in the walk of C; is not followed by an
occurrence of r(z;). The walk of C;11 starts with the walk of C; and continues
until r(z;). To get P41, we add to P; the vertex u; such that ¢(u;) is the last
left endpoint in the walk of P;. The walk of P;; starts with the walk of P; and
continues until r(u;). Since by induction the walk of C; is a prefix of the walk of
P;, the last occurrence of ¢(x;) in the walk of C; corresponds to an occurrence
of £(z;) in the walk of P, preceding or equal to the last occurrence of £(u;) in
the walk of P;. Therefore the last occurrence of r(x;) in Cj41 corresponds to an
occurrence of 7(x;) in the walk of P;y; preceding or equal to the last occurrence
of r(u;) in the walk of P;11. Thus, the walk of C; 1 is a prefix of the walk of P; 1.



The claim p(I™) < p(QM) is proved similarly. O

Lemma 2. The bounding path P™ and the bounding co-path QM that we have
found, are a minimum bounding cycle and a mazimum bounding co-cycle.

Proof. Let P™ = (x0,...7p—1) and let Q™ = (yo,...y4—1). By Lemma 1 it
suffices to prove that P™ is a simple cycle and that Q™ is a simple co-cycle.

Assume that P™ is not a simple path. So, there are ¢, j such that x; = z; but
1 # j. Let i be the minimal index for which there exists £ > i such that x; = xy,
let j be the minimal possible value of £. The way that our greedy algorithm
chooses the successor of each vertex does not depend on its location on the path,
SO itk = Tji for every k = 1,...,(p—1) —j. Let C = (zp_(j—i), .- - Tp—1)-
The path C is simple by the way we choose z; and z;, C is a cycle since z,_1 =
Tp_(j—i)—1 and since C is a suffix of P™, it is a bounding cycle. We have a
bounding cycle with a ratio p(C) > p(C™) > p(P™). So we can truncate P™
after x,_(;_;—1 and get a new bounding path P with p(P) < p(P™) which is
a prefix of P™. This contradicts the definition of P™, to be the shortest path
with the maximal ratio that the greedy algorithm found. Similarly, we can show
that Q™ is a simple co-path.

Now, assume that P™ is not a cycle. The last arc #,_1 does not cover £(x),
so it does not start a new turn around the circle. Let P be the prefix of P™ of
length p — 1. We have |P| < |P™| but t(P) = t(P™) therefore p(P) < p(P™).
That is a contradiction to the way we found P™.

Assume that QM is not a co-cycle. It follows that the arc g,_1 overlaps go.
If the arc g4—1 covers r(yo) then g,_o covers £(yo), because otherwise the greedy
algorithm would have chosen yg to be y,—1. Since there is no dominating vertex
in G, there is a pair of nonadjacent vertices, this pair is a bounding co-cycle with
ratio 2, so we have 2 < p(QM). Let @ be the prefix of QM of length ¢ — 2. Since
there is one arc less in @ that covers £(y), we have t(Q) = t(Q*) — 1. And since
p(QM) > 2 we have p(Q™) < p(Q), which contradict the way we define Q™. O

Therefore, by Theorem 3, G is a UCA graph if and only if p(Q™) < p(P™).
If G is not a UCA graph we use P™ and QM as a certificate.

6.1 The Certificate and the Authentication Algorithm

If G is a UCA graph then the certificate is a UCA model. This certificate can
be authenticated by authenticating that it is a PCA model as in Sect. 4.3 and
comparing the length of all the arcs. This can be done in O(n + m) time.

If G is not a PCA graph, the certificate and its authentication algorithm are
as in Sect. 4.3. The size and the authentication time of this certificate are O(n).

If we decided that G is a PCA graph but not a UCA graph then we have a
bounding cycle P™, and a bounding co-cycle Q™ with p(Q™) > p(P™) in a PCA
model p. Authenticating that g is a valid PCA model without pairs of arcs that
cover the circle, takes O(m+n) time. We can verify in the same time bound that

P™ and QM are bounding cycle and bounding co-cycle respectively, and compute
t(P™) and t(QM) from the model, by following the walks of P™ and Q.



It is also possible to construct a strong certificate that can be authenticated
in O(n) time. This certificate proves, using edges and non-edges between vertices
of P™ and QM , that in any PCA model of G, P™ and Q™ are a bounding cycle
and a bounding co-cycle with p(Q™) > p(P™). Due to space constraint we omit
the details of this certificate.
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