
I/O Efficient Dynamic Data Structures for

Longest Prefix Queries⋆

Moshe Hershcovitch1 and Haim Kaplan2

1 Faculty of Electrical Engineering, moshik1@gmail.com
2 School of Computer Science, haimk@cs.tau.ac.il,

Tel Aviv University, Tel Aviv 69978, Israel

Abstract. We present an efficient data structure for finding the longest
prefix of a query string p in a dynamic database of strings. When the
strings are IP-addresses then this is the IP-lookup problem. Our data
structure is I/O efficient. It supports a query with a string p using

O(logB(n) + |p|
B

) I/O operations, where B is the size of a disk block.
It also supports an insertion and a deletion of a string p with the same
number of I/O’s. The size of the data structure is linear in the size of
the database and the running time of each operation is O(log(n) + |p|).

1 Introduction

We consider the longest prefix problem which is defined as follows. The input
consists of a set of strings S = {p1 . . . pn} which we shall refer to as prefixes. We
want to preprocess S into a data structure such that given a query string q we
can efficiently find the longest prefix in S which is a prefix of q or report that no
prefix in S is a prefix of q. We focus on the dynamic version of the problem where
we want to be able to insert and delete prefixes to and from S, respectively.

The main application of this problem is for packet forwarding in IP networks.
In this application a router maintains a set of prefixes of IP addresses according
to some routing protocol such as BGP (Border Gateway Protocol). When a
packet arrives, the router finds the longest prefix of the destination address of
the packet and sends the packet on the outgoing link associated with this longest
prefix. A longest prefix match query in this settings is often called IP-lookup.

The rapid growth of the Internet has brought the need for routers to maintain
large sets of prefixes, and to perform longest prefix match queries at high speeds
[7]. A main issue in the design of routers is the size of the expensive high speed
memory used by the router for packet forwarding. One can reduce the size of
this expensive memory by using external memory components. Therefore the I/O
efficiency of the algorithm we use is very important. In software implementations
the entire data structure may not fit into the cache and we may flip parts of it
back and forth from the main memory or the disk. In hardware implementations
it may be too expensive to fit the entire data structure in the memory which is

⋆ This work is partially supported by United states - Israel Binational Science Foun-
dation, project number 2006204.

integrated in the chip that implements the forwarding algorithm itself. So parts
of the data structure may reside in external memory devices (such as DRAM). In
such designs the communication between the main chip and the external memory
becomes the performance bottleneck of the system.

In addition to good I/O performance an efficient data structure for IP-lookup
should be able to perform queries at the line rate (which is about 40 Gbps and
more today). The data structure has to be scalable since the number of prefixes
a router has to maintain is growing rapidly as well as the length of these prefixes.
Finally, we need to support fast updates mainly due to instabilities in backbone
routing protocols and security issues.

Our computational model. Our algorithm works in the classical pointer ma-
chine model [19] using only comparisons to manipulate prefixes. This is in con-
trast with many other algorithms for IP-lookup that use bit manipulations on
IP addresses. See Section 1. This restriction which we obey does not come at
the cost of a complicated data structure. On the contrary, our data structure is
much simpler than previously known data structure with the same guarantees.

We develop our data structures in two steps. First we reduce the longest prefix
problem to the problem of finding the shortest segment containing a query point.
For this data structure we assume that each prefix fits into a constant number
of computer words so that we can compare two endpoints of segments in O(1)
time. In the second step we relax this assumption and deal with variable length
strings with no apriori upper bound on their length. We assume that the strings
are over an ordered alphabet Σ and that we can compare two characters of Σ
in O(1) time. We do not require direct access to the characters of each prefix.

To analyze I/O performance we use the standard external memory model
where memory is partitioned into blocks of size B, and we count the number of
blocks that we have to transfer from slow to fast memory in order to perform
the operation. This quantity is the number of I/O operations performed by the
operation.[20].

Overview of our results. We first consider the problem of maintaining a
dynamic set of segments for point stabbing queries. Specifically, we consider
a dynamic nested family of segments where each pair of segments are either
disjoint or one contains the other. We develop a data structure that given a
point p can efficiently find the shortest segment containing p.

Our data structure for this problem which is based on a segment tree (with
large fan-out) is particularly simple. In a segment tree we map a segment s
to every node v, such that s contains3 v, and does not contain the parent of
v. Typically one maintains at each node v all the segments that map to v in
some secondary structure [18, 13, 12]. We make the crucial observation that for
our point stabbing query it is sufficient to maintain for each node v only the
shortest segment which maps to v.

Our data structure performs a query, and an insertion or a deletion of a
segment in O(log n) time and O(logB(n)) I/O operations. We manipulate the
segments only via comparisons of their endpoints.

3 A segment contains a node if it contains all points in its subtree.

We use this result to solve the longest prefix problem as follows. We associate
a segment [pL, pR] with each string p, where L and R are two new characters,
smaller and larger than all other characters, respectively. We then apply the
previous data structure to this set of segments. This gives the data structure for
the case where we assume that two prefixes can be compared in O(1) time.

To handle strings with no fixed bound on their lengths we combine this idea
with the powerful string B-tree of Ferragina and Grossi [9]. This data structure is
a B-tree carefully designed for storing strings. For efficient searches and updates
it uses a Patricia trie [14] in each node. We show how to maintain the information
which we need for longest prefix queries using the string B-tree.

Since our data structure is based on a B-tree it is also I/O efficient. If we
pick the size of a node so that it fits in a disk block of size B, we obtain that a
query or update with a string q performs O(logB(n)+|q|/B) I/O operations. The
data structure requires O(n/B) disk blocks in addition to the blocks required
to store the strings themselves. The time for query or update with a string q is
O(log(n) + |q|). (This is as efficient as with tries implemented carefully [16], but
tries cannot be implemented I/O efficiently [6]).
Previous related results. There has been a lot of work mainly in the network-
ing community on the IP-lookup problem. The different data structures can be
classified into three families: trie based structures (See for example [7] and the
references there), hash based structures (See for example [11] and the references
there), and tree based structures. In the rest of this section we focus on dynamic
tree based solutions with worst case guarantees that are related to our approach.

Sahni and Kim [15] describe a solution based on a collection of red-black
trees that requires linear space and logarithmic time per operation. Feldmann
and Muthukrishnan [8] proposed Fat Inverted Segment tree (FIS). This data
structure supports queries in O(log log n + ℓ) time, where ℓ is the number of
levels in the segment tree. The space requirement is O(n1+1/ℓ), and insert and
delete take O(n1/ℓ log n) time, but there is an upper bound on the total number
of insertions and deletions allowed. Suri et al. [18] proposed a data structure
which is similar to ours in the sense that it is both a segment tree and a B-tree.
But they store in each node all the segments which are mapped to it and therefore
achieve logarithmic worst case time bound per operation and linear space only
for IP-addresses. Lu and Sahni [13] suggested an improvement of the segment
tree of Suri that stores each prefix only in one place. They maintain other bit
vectors in internal nodes and their update operations are quite complicated. Our
structure, which can be extended to general strings (and general segments) and
uses only comparisons, is simpler than all the solutions mentioned above. In
particular it is much cleaner than the latter two B-tree based implementations
when applied to IP addresses.

Kaplan, Molad, and Tarjan [12] considered the problem of point stabbing
a dynamic nested set of segments. In their setting, which is more general than
ours, each segment has a priority associated with it and we want to find the
segment of minimum priority containing a query point. They present a data
structure performing query and update in O(log n) time that requires linear
space. It uses both a balanced search tree and a dynamic tree [17] and thereby

more complicated than ours (when applied to the special case where the priority
of an interval is its length).

In recent years, external memory data structures have been developed for
a wide range of applications [20]. A classical I/O efficient data structure is the
B-tree [2]. This is a search tree in which we choose the degree of a node so
that it occupies a single block. The string B-tree of Ferragina and Grossi [9] is
a fundamental extension of the B-tree for storing unbounded strings. The main
idea is to use a Patricia trie [14] in each node to direct the search. Unfortunately
this data structure by itself does not solve the longest prefix problem.

Agarwal, Arge, and Yi [1] improved a more general data structure of Kaplan,
Molad, and Tarjan [12] for stabbing-min queries against general segments (not
necessarily nested). This data structure is based on a B-tree and can be imple-
mented so that it is I/O efficient. Specifically, a data structure for n intervals
uses O(n/B) disk blocks and O(logB(n)) I/O operations for query and update.
This data structure is quite complicated and assumes that endpoints of intervals
can be compared in O(1) time. Therefore it is not directly applicable for longest
prefix queries in a collection of unbounded strings.

Brodal and Fagerberg [5] obtained a cache oblivious (see Section 4) data
structure for manipulating strings. This data structure, which is essentially a
trie can be used to obtain an I/O efficient (though complicated) solution for the
static version of the longest prefix problem.

The outline of the rest of the paper is as follows. In section 2 we present our
basic ideas using the assumption that strings are of constant size. In section 3
we combine our ideas with the string B-tree to obtain a general I/O efficient
solution. In section 4 we suggest a future research.

2 B Tree for Longest Prefix Queries

Our input is a set of prefixes S = {p1 . . . pn} which are strings over the alphabet
Σ. We think of each prefix p as a segment I(p) = [pL, pR], where L and R are two
special characters not in Σ, L is smaller than all characters in Σ and R is larger
than all characters in Σ. The longest prefix p of a query q corresponds to the
the shortest segment I(p) containing q. We describe a dynamic data structure
to maintain a set of nested segments such that we can find the smallest segment
containing a query point. Although we can apply our data structure to any set
of nested segments we present our result using the string terminology and the
set of segments {I(p) | p ∈ S}.

Let P = {piL, piR | pi ∈ S} be the set of endpoints of the prefixes in S. We
store P ordered lexicographically at the leaves of a B+ tree T . Each internal
node x of T has n(x) children, where b ≤ n(x) ≤ 2b. If x is a leaf then it stores
n(x) endpoints of P , where b ≤ n(x) ≤ 2b. (See Figure 1.)

To simplify the presentation we assume that a leaf x with n(x) endpoints
has n(x) + 1 “dummy” children. From now on when we say a leaf of T , we
refer to one of these dummy nodes, and we refer to x as a height-1 node. Each
endpoint in a height-1 node plays the role of a key separating two consecutive

∅A2A3 A4 A5 ∅ A6 ∅ ∅A8

A6

A4R A7L A7R

A3L A5L A6RA5R

A3L A6R

A4R A7R A8L A8R A3R A2R

A2R

A2 ∅

A1

A4R

A8RA3L A4L A5L A5R A6L A6R

A3A4 A3 ∅∅

A4

A1

A2

A3

A8L A2RA3R

∅ A7 ∅

A7 A8

A5

Fig. 1. A B+ tree with b = 2 storing the prefixes A1, . . . , A8. Rectangles correspond
to internal nodes and squares correspond to dummy leaves. In each height-1 node we
show the endpoints that it stores. In each internal node v of height > 1 we show the
spans of its children which are also used as the keys which direct the search. (Note that
when we use the spans as keys, a search can never reach the first dummy leaf in each
height-1 node. Therefore we do not need to keep longest prefixes of these nodes and
we do not show them in the figure.) The span of a child u of v is the closed interval
from the point depicted to the left of the edge from v to u to the point depicted to the
right of the edge from v to u. On each edge (p(v), v) we show the longest prefix of v.

dummy leaves. We associate each leaf with the open interval from the endpoint
preceding the leaf to the endpoint following the leaf. We call this interval the
span of the leaf. (Note that the last dummy leaf in a height-1 node and the first
dummy leaf in the next height-1 node have the same span.) We define the span
of an internal node v to be the smallest interval containing the endpoints which
are descendents of v.4 We denote the span of a node v by span(v). We think of
T as a segment tree and map each segment [pL, pR] to every node v such that
pL is to the left of span(v) and pR is to the right of span(v), and either pL or
pR are in span(p(v)). We define the longest prefix (or the shorter segment) of
v and denote it LP (v) to be the shortest segment mapped to v.5 If there isn’t
any segment which is mapped to v we define LP (v) to be empty. (LP (v) is also
defined if v is a dummy leaf.)

4 This is the interval that starts at the leftmost endpoint in the subtree of v, and ends
at the rightmost endpoint in the subtree of v.

5 Note that all segments mapped to v form a nested family of segments, so the shortest
among them is unique.

We store span(v) and LP (v) with the pointer to node v. Note that when we
are at a node v we can use the span values of the children of v as the keys which
direct the search. We denote by B = O(b) the maximum size of a node. We pick
b so that B is the size of a disk block.

2.1 Finding the longest prefix

Assume we want to find the longest prefix of a query string q. We search the
B+ tree with the string q6 in a standard way and traverse a path A to a leaf
of T . We return LP (w), where w is the last node on A, such that LP (w) is not
empty.

The correctness of the query follows from the following observations. For each
prefix p of q, I(p) is mapped to some node u on A. Therefore p is LP (u) unless
some longer prefix is mapped to u. Furthermore, since for every v, LP (p(v)) is
a prefix of LP (v), it follows that the longest prefix of q must be LP (w), where
w is the last node on A for which LP (v) is not empty.

2.2 Inserting a new prefix

To insert a new prefix p we have to insert I(p) into T . We insert pL and pR
into the appropriate height-1 nodes w and w′, respectively, according to the
lexicographic order of the endpoints. The endpoint pL is inserted into the span
of a leaf y and the endpoint pR is inserted into the span of a leaf z. Assume first
that z 6= y. The span of y is now split between two new leaves: y′ that precedes
pL and y′′ that follows pL. We set the longest prefix of y′ to be the longest prefix
of y and the longest prefix of y′′ to be p. The span of z is now split between
two new leaves: z′ that precedes pR and z′′ that follows pR. We set the longest
prefixes of z′ to be p and the longest prefix of z′′ to be the longest prefix of z. If
y = z then the span of y is split between three new leaves y1, y2, and y3. We set
the longest prefixes of y1 and y3 to be the longest prefix of y, and the longest
prefix of y2 to be p.

There may be nodes v in T , such that after adding p, we have to update
LP (v) to be p. Let y be the leaf preceding pL and let z be the leaf following pR.
Let u be the lowest common ancestor of y and z. Let u′ be the child of u which
is an ancestor of y and let u′′ be the child of u which is an ancestor of z. We
may need to update LP (v) if either:

Case 1: v is a child of a node w on the path from u′ to y, which is right sibling
of the child w′ of w on this path.

Case 2: v is a child of a node w on the path from u′′ to z, which is left sibling
of the child w′ of w on this path.

Case 3: v is a child of u which is a right sibling of u′ and left sibling of u′′.

6 In fact we “pretend” to search with a string (not in the data structure) that imme-
diately follows qL in the lexicographic order of the strings.

For each such node v, we know that span(v) ⊂ I(p) so we change LP (v) to be
p, if p is longer than the current LP (v). Since the depth of T is O(logB(n)), we
update O(B logB(n)) longest prefixes which are stored at O(logB(n)) nodes.

After inserting pL and pR, if the height-1 node containing pL and the height-1
node containing pR have no more than 2b children, we finish the insert. Otherwise
we have to split at least one of these nodes. We split node v into two nodes v1

and v2. Node v1 is the parent of the first b (or b+1) children of v and node v2 is
the parent of the last b+1 children of v. Both v1 and v2 replace v as consecutive
children of p(v). We compute span(v1) from the span of its first child and the
span of its last child, and similarly for span(v2).

u1 u2 u3 u4 u5

v

∅

A3

A5

A1

A2

A3 A5A2 A2

A1

u1 u2 u3 u4 u5

A1

∅ ∅

A3

A5

A2

v1 v2

A3 A5

A2 A1

A2

Fig. 2. A node v at the left which is split into nodes v1 and v2 to the right. Since
span(v1) ⊆ I(A2) the prefix A2, which was the longest prefix of u2 before the split, is
the longest prefix of v1 after the split. The longest prefix of u2 after the split is empty.

Clearly we have to update LP (v1) and LP (v2). Furthermore, since a segment
that was mapped to a child u of v may now be mapped to v1 or v2, we may
also have to update LP (u) for children u of v1 and v2. Other longest prefixes do
not change. The following simple observations specify how to update the longest
prefixes. In the following if u is a child of v prior the split, then LP (u) refers to
the longest prefix of u before the split. Note that since v exists only before the
split then LP (v) is the longest prefix of v before the split. Similarly, LP (v1) and
LP (v2) are the longest prefix of v1 and v2, respectively, after the split.

Lemma 1. Let u be a child of v1 after the split. If span(v1) ⊂ I(LP (u)) then
after split LP (u) should be empty.

Proof. Let p = LP (u) since span(v1) ⊂ I(LP (u)) then the segment I(p) is
not mapped to u after the split. Since I(p) was the shortest segment that was
mapped to u no other segment is mapped to u after the split. ⊓⊔

Lemma 2. Let u1 and u2 be children of v1. If span(v1) ⊂ I(LP (u1)) and
span(v1) ⊂ I(LP (u2)) then LP (u1) = LP (u2).

Proof. Since span(v1) ⊂ I(LP (u1)) then span(u2) ⊂ I(LP (u1)). So LP (u1) can-
not be longer than LP (u2) since this would contradict the fact that I(LP (u2))
is the shortest segment containing span(u2). Symmetrically, LP (u2) cannot be
longer than LP (u1), so they must be equal. ⊓⊔

Lemma 3. If there exist child u of v1 such that span(v1) ⊂ I(LP (u)) then
LP (v1) is LP (u).

Proof. Obviously LP (u) is mapped to v1. Furthermore, LP (u) is the longest
prefix with this property, since if there is a longer prefix q with this property
then q should have been LP (u) before the split. ⊓⊔

Lemma 4. If there isn’t a child u of v1 such that span(v1) ⊂ I(LP (u)) then
LP (v1) is equal LP (v).

Proof. We claim that there exists a child u of v1 that LP (u) is empty. From this
claim the lemma follows since if there is a prefix q longer than LP (v) such that
I(q) is mapped to v1, then q is mapped to u before the split and LP (u) couldn’t
have been empty.

We prove this claim as follows. Assume to the contrary that LP (u) is not
empty for every child u of v1. Let w be a child of v1 such that I(LP (w)) is not
contained in I(LP (w′)) for any other child w′ of v (w exists since segments do
not overlap). From our assumption follows that I(LP (w)) ⊆ span(v1). Therefore
at least one of the endpoints of I(LP (w)), say z is in the subtree of v1. Let w′′

be a child of v1 whose subtree contains z. It is easy to see now that I(LP (w′′))
and I(LP (w)) overlap which is a contradiction. ⊓⊔

A symmetric version of Lemmas 1, 2, 3, and 4 hold for v2.
These observations imply the following straightforward algorithm to update

longest prefixes when we perform a split. If there is a child u of v1 such that
span(v1) ⊂ I(LP (u)) we set LP (v1) to be LP (u), otherwise we set LP (v1) to be
LP (v). In addition we set LP (u) to be empty for every child u of v1 such that
span(v1) ⊂ I(LP (u)). We update the span of v2 and its children analogously.
See Figure 2.

After splitting v we recursively check if p(v1) or p(v2) has more than 2b
children and if so we continue to split them until we reach a node that has no
more than 2b children.

2.3 Deleting a prefix

To delete a prefix p we need to delete I(p) from T . We first find the longest
prefix of p in S denoted by w.7 Then we delete pL and pR from the height-1
nodes containing them.

We have to change the longest prefix of every node v for which LP (v) = p
to w. Nodes v for which LP (v) may be equal to p are of three kinds as specified
in Cases (1), (2) and (3) of Section 2.2

As a result of deleting pL and pR from the height-1 nodes containing them
we may create nodes with less than b children. To fix such node v we either
borrow a child from a sibling of v or merge v with one of its siblings. We omit
the details of these rebalancing operations and their affect on longest prefixes
from this abstract. The following theorem summarizes the results of this section.

7 We do that by a query with a string (not in the data structure) that immediately
follows pR in the lexicographically order of strings.

Theorem 1. Assuming each string occupies O(1) words, the B-tree data struc-
ture which we described supports longest prefix queries, insertions, and deletions
in O(log(n)) time. Furthermore, it performs O(logB(n)) I/Os per operation, and
requires linear space.

3 String B-tree For Longest Prefix Queries

In a B-tree, we assume that Θ(b) keys that reside at a single node fit into one
disk block of size B. However if the keys are strings of variable sizes, which can
be arbitrarily long, there may not be enough space to store Θ(b) strings in a
single block. Instead, we can store Θ(b) pointers to strings in each node, but
accessing these strings during the search requires more than a constant number
of I/O operations per node. To reduce the number of I/Os, Ferragina and Grossi
[9] developed an elegant generalization of a B-tree called the string B-tree or
SB-tree for short.

76 7

5

8

0

76

3 4

6 6

4

c
b
c
a
b

b

b

a
a
b
a

a
b c

b

b
c
b
b
a

a
b
a
a
b
b

Correct
Position

b
c

b
b
a

b
c
b

leaf1

Common
prefix

mismatch

c

c
a
b
a

b

ba
b
a
c

a

a

b

b

c

b b

a

ba

a

a

P = bcbabcba

Fig. 3. A Patricia trie of a node in a string B-tree. The number in a node is its string
depth. The character on an edge is the branching character of the edge.

An individual node v of an SB-tree is shown in Figure 3. Instead of storing the
keys at a node v we store a Patricia trie [14] of the keys, denoted by PT (v). Using
this representation we can perform b-way branching using only Θ(b) characters
that are stored in a constant number of disk blocks of size B. Each internal node
ξ of the Patricia trie stores the length of the string corresponding the path from
the root to ξ. We call this the string depth of ξ. We store with each edge e the
first character of the string that corresponds to e. This character is called the
branching character of e.

As an example Figure 3 shows a Patricia trie of a node in a string B-tree.
The right child of the root has string depth 4 and it’s outgoing edges have the
branching characters “a” and “b”, respectively. This means that the node’s left
subtrie consists of strings whose fifth character is “a” , and its right subtrie
consists of strings whose fifth character is “b”. The first four characters in all

the strings in the right subtrie of the root are “bcbc”. Let ξ be a node of the
trie whose string depth is d(ξ). To make a branching decision at ξ, we compare
the d(ξ) + 1 character of the string that we search, to the characters on the
edges outgoing from ξ. For example, for the string “bcbabcba”, the search in the
trie in Figure 3 traverses the rightmost path of the Patricia trie, examining the
characters 1, 5, and 7 of the string which we search.

Unfortunately, the leaf of the Patricia trie that we reach (in our example, the
leaf at the far right, corresponding to “bcbcbbba”) is not in general the correct
branching point, from the node of the SB-tree represented by this trie, since
we did not compare all characters of the string which we search. We fix this by
sequentially comparing the string which we search with the key associated with
the leaf of the trie which we reached. If they differ, we find the position in which
they first differ. In the example the first character of the string “bcbabcba” that
is not equal to the corresponding character of the key “bcbcbbba”, is the fourth
character. Since the fourth character of “bcbabcba” is smaller we know that the
string which we search is lexicographically smaller than all keys in the right
subtree of the root. It thus fits in between the leaves “abac” and “bcbcaba”. For
more details see [9].

Searching each Patricia trie requires constant number of I/O to load it into
memory, plus additional I/Os to do the sequential scan of the key associated with
the leaf we reached. Therefore our structure as defined so far does not guarantee
that the total number of I/Os is O(logB n + ℓ/B), where ℓ is the length of the
string that we search.

To further reduce the number of I/Os Ferragina and Grossi [9] used the
leftmost and the rightmost strings in the subtree of a node v as keys at p(v).
Recall that we in fact did the same in our B-tree when we use the spans of the
children of v as the keys at v. Having the keys defined this way, we can use
information from the search in the trie PT (v) of a node v to reduce the number
of I/Os in the followings search of the trie PT (u) of a child u of v. Specifically,
let s be the string which we search, and let ℓ be the length of the longest common
prefix of s and the key at the leaf of PT (v), where the search ended. Then it is
guaranteed that the length of the longest common prefix of s and the key at the
leaf of PT (u), where the search of s ends is at least ℓ. Thus, we can avoid the
first ℓ comparisons and the I/Os associated with them. Ferragina and Grossi [9]
also showed how to insert and delete a string in O(logB n + ℓ/B) time in the
worst case.

We now describe how to combine the SB-tree with our algorithm for longest
prefix queries so that our input prefixes S = {p1 . . . pn} can be arbitrarily long.
As Ferragina and Grossi [9], we use the endpoints of span(v) as keys at p(v),
and represent the keys of each node v in a Patricia trie PT (v). Each leaf of
the Patricia trie stores a pointer to the first block containing the key that it
corresponds to. We use the same definition of the longest prefix of a node v,
denoted by LP (v), as in Section 2. Recall that from these definitions follow that
if LP (v) is not empty then span(v) ⊂ I(LP (v)) and therefore LP (v) is a prefix
of every key in the subtree of v. Let span(v) = [KL(v),KR(v)]. That is KL(v)

be the leftmost string in the subtree of v and KR(v) is the rightmost string
in the subtree of v. Clearly LP (v) is a prefix of KL(v) and KR(v). The string
KL(v) is a key separating v from its sibling in p(v) and therefore corresponds to
a leaf in PT (v). So we represent LP (v) by storing its length, and pointer to it,
in the leaf of PT (v), that corresponds to KL(v). If LP (v) is empty we encode
this by storing zero at the associated leaf.

Finding the longest prefix. We search the SB-tree and traverse a path A to
a leaf of T . Let w be the last node on A for which LP (w) is not empty. Together
with the pointer to w in p(w), we find |LP (w)| and a pointer to LP (w).

Inserting a new prefix. Assume we want to insert a new prefix p ∈ S to
the data structure. We insert pL and pR into the SB-tree using the insertion
algorithm of the SB-tree. As in Section 2.2 there may be nodes v in T , such that
after adding p, we need to update LP (v) to be p. Nodes v for which LP (v) may
be equal to p are of three kinds as specified in Cases (1), (2) and (3) of Section
2.2. For each such node v we change |LP (v)| to be |p|, if |p| is longer than the
current value |LP (v)|. This is correct since for each of these nodes v, we know
that span(v) ⊂ I(p). Note that all these changes are located at O(logB(n)) nodes
of the SB-tree, and therefore we can perform them while doing O(logB(n)) I/O
operations.

After inserting a prefix p we may split node v into two nodes v1 and v2.
We split a node in the SB-tree using the algorithm of Ferragina and Grossi
[9]. Splitting may change the longest prefixes. To perform these changes we use
the same algorithm as in Section 2.2. To implement this algorithm we need to
determine if there is a child u of v1 such that span(v1) ⊂ I(LP (u)).

Let u be a child of v1. We decide if span(v1) ⊂ I(LP (u)) as follows. Since
LP (u) is a prefix of KL(u) and KR(u), and KL(u) and KR(u) are keys in
PT (v1) then there is a path in PT (v1) that corresponds to the string LP (u).
It follows that LP (u) is a prefix of all the keys in PT (v1), and in particular
of KL(v1) and KR(v2), if |LP (u)| is not larger than the string depth of the
root of PT (v1). We check if there is a child u of v2 that span(v2) ⊂ I(LP (u))
analogously.

Deletion of a prefix is similar, we omit the details from this abstract. The
following theorem summarizes the results of this section.

Theorem 2. The data structure which we described in this section supports
longest prefix queries, insertions, and deletions in O(log(n) + |q|) time where
q is the string which we perform the operation with. Furthermore, it performs
O(logB(n) + |q|/B) I/Os per operation, and requires linear space.

4 Future Research

The cache oblivious model [10] is a generalization of the I/O model. In this
model we seek I/O efficient algorithms which do not depend on the block size.
Among the state of the art in this model is a cache-oblivious B-tree [3], and
an almost efficient cache-oblivious string B-tree [4] whose query time is optimal

but updates are not. An obvious open question is to find a cache oblivious data
structure for longest prefix queries.

References

1. P. K. Agarwal, L. Arge, and K. Yi. An Optimal Dynamic Interval Stabbing-Max
Data Structure? In Proceedings of SODA, pages 803–812, 2005.

2. R. Bayer and E. M. McCreight. Organization and Maintenance of Large Ordered
Indexes. Acta Informtica, 1(3):173–189, 1972.

3. M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-Oblivious B-Trees. SIAM

Journal on Computing, 35(2):341–358, 2005.
4. M. A. Bender, M. Farach-Colton, and B. C. Kusznaul. Cache-Oblivious String

B-Trees. In Proceedings of PODS, pages 233–242, 2006.
5. G. S. Brodal and R. Fagerberg. Cache-oblivious string dictionaries. In Proc. 17th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 581–590, 2006.
6. Erik D. Demaine, John Iacono, and Stefan Langerman. Worst-case optimal tree

layout in a memory hierarchy, 2004.
7. W. Eatherton, Z. Dittia, and G. Varghese. Tree Bitmap : Hardware/Software IP

Lookups with Incremental Updates. ACM SIGCOMM Computer Communications

Review, 34(2):97–122, 2004.
8. A. Feldmann and S. Muthukrishnan. Tradeoffs for Packet Classification. In Pro-

ceedings of INFOCOM, pages 1193–1202, 2000.
9. P. Ferragina and R. Grossi. The String B-Tree: A New Data Structure for String

Search in External Memory and Its Applications. Journal of the ACM, 46(2):236–
280, 1999.

10. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-Oblivious
Algorithms. In Proceedings of FOCS, pages 285–297, 1999.

11. J. Hasan, S. Cadambi, V. Jakkula, and S. Chakradhar. Chisel: A Storage-Efficient,
Collision-Free Hash- Based Network Processing Architecture. In Proceedings of

ISCA, pages 203–215, May 2006.
12. H. Kaplan, E. Molad, and R. E. Tarjan. Dynamic Rectangular Intersection with

Priorities. In Proceedings of STOC, pages 639–648, 2003.
13. H. Lu and S. Sahni. A B-Tree Dynamic Router-Table Design. IEEE Transactions

on Computers, 54(7):813–824, 2005.
14. D. R. Morrison. Patricia: Practical Algorithm to Retrieve Information Coded in

Alphanumeric. Journal of the ACM, 15(4):514–534, 1968.
15. S. Sahni and K. Kim. O(log n) Dynamic Packet Routing. In Proceedings of ISCC,

pages 443–448, 2002.
16. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the

ACM, 32:652–686, 1985.
17. D. D. Sleator and R. E. Tarjan. A Data Structure for Dynamic Trees. JCSS,

26(3):362–391, 1983.
18. S. Suri, G. Varghese, and P. Warkhede. Multiway Range Trees: Scalable IP Lookup

with Fast Updates. In Proceedings of GLOBECOM, pages 1610–1614, 2001.
19. R. E. Tarjan. A Class of Algorithms which Require Nonlinear Time to Maintain

Disjoint Sets. Journal of Computing System Science, 18:110–127, 1979.
20. J. S. Vitter. External Memory Algorithms and Data Structures: Dealing with

Massive Data. ACM Computing Surveys, 33(2):209–271, 2001.

