
Efficient Estimation Algorithms for

Neighborhood Variance and Other Moments

Edith Cohen ∗ Haim Kaplan †

Abstract

The neighborhood variance problem is as follows. Given a

(directed or undirected) graph with values associated with

each node, compute a data structure that for any given node

v and r ≥ 0, would quickly produce an estimate of the vari-

ance of all values of nodes that lie within distance r from v.

The problem can be generalized to other moment functions

and to arbitrary distance-dependent decay.

These problems are motivated by applications where the rel-

evance of a measurement observed (or data present) at a

certain location decreases with its distance, and thus the ag-

gregate value varies by location. The centralized version of

the problem is motivated by applications to query process-

ing on graphical databases. The distributed version of the

problem falls in a model we recently introduced for spatially

decaying aggregation and is motivated by sensor or p2p net-

works.

We present novel algorithms for the centralized and dis-

tributed versions of the problem. Our algorithms are nearly

optimal, the centralized version requires Õ(m) time and the

distributed version requires polylogarithmic communication

per node or edge (depending on assumptions).

1 Introduction

Variance and moments are commonly used and very
basic properties of data sets and distributions. We
consider these problems in a spatially-decaying setting,
where values are present at nodes of a graph (or
a network). Data items present at one node are
relevant to other nodes, yet, the relevance decreases
with distance [5]. Thus, each location views the items
through a different distribution and is interested in
aggregate values accordingly.

The weight of an item as viewed from a certain
location is determined by some decay function applied
to its distance [5]. One example of a decay function is
the r-threshold function, which assigns uniform weights
to items within distance r and 0 weight otherwise.

∗AT&T Research Labs, 180 Park Ave. Florham Park, NJ,
USA. Email: edith@research.att.com.

†School of Computer Science, Tel-Aviv University, Tel Aviv,
Israel. Email: haimk@cs.tau.ac.il.

The respective aggregates are computed over all items
present in the r-neighborhood. Generally, a decay
function can be any non-increasing function.

The spatially-decaying moments problem is to effi-
ciently compute a summary that would allow us to re-
trieve, for each node v, power ω in some fixed range, de-
cay function, and a point a, the (approximate) weighted
average of |x−a|ω over items. For an r-threshold decay
function, this aggregate value is simply the average of
|x − a|ω over all values x of items that reside at nodes
in the r-neighborhood of v. When instead of an arbi-
trary value a we use the weighted mean (which varies
from node to node), we refer to the problem as spatially-
decaying central moments; when ω = 2 this is the
spatially-decaying variance; and for r-threshold decay
this is the variance over all values in the r-neighborhood.
(see Figure 1 for an example of a network, values, and
respective moments.)

a,2

c,1
e,0 f,3

g,1h,2

d,2

b,0

Figure 1: The 2-neighborhood of node a is
{a, b, h, d, e, g, c}. The mean according to 2-threshold
decay is thus 8/7, the second moment about 0 is 14/7 =
2, and the variance is 238/343 = 34/49. For node c the
2-neighborhood is {c, b, f, g, e, a}, the respective mean
is 7/6, the second moment about 0 is 15/6 = 2.5 and
the variance is 246/216 = 41/36.

The problem has a centralized variant, where the
graph is given as input, and a distributed variant, where
the nodes form a network, and the goal is to use a small
amount of communication and obtain, at each node, a
compact summary that would allow it to answer queries
on its own neighborhoods (or arbitrary decay functions).
The centralized variant of the problem is motivated

by applications in traditional graphical databases, for
example, XML documents or analyzing Web structure.
The distributed version of the problem is motivated
by emerging applications, such as P2P networks and
sensor networks, where different data items are present
at nodes connected by some low-degree communication
network [5].

We present algorithms that yield (1 ± ε)-
approximate answers (for a fixed ε > 0) for spatially-
decaying moments and variance. The size of the sum-
maries are polylogarithmic per node and the running
time for the centralized version is Õ(m). Our algorithms
are novel for both the centralized and distributed ver-
sions of the problem.

Related work: From an algorithmic standpoint (but
less so from an application standpoint), spatially-
decaying aggregation generalizes time-decaying aggre-
gation on massive data streams [6] and in particular,
sliding-window aggregation for massive data streams [7,
8]: time-decaying aggregation on data streams cor-
respond to spatially-decaying aggregation on directed
path graphs, and sliding windows correspond to neigh-
borhoods. Thus, spatially-decaying variance generalizes
the sliding-windows variance problem which was stud-
ied by Babcock et al [1]. The Babcock et al techniques
do not seem to carry over to the spatial setting: Ex-
ponential Histograms [7] do not seem to work in the
spatial setting (see [5] for discussion). Moreover, their
algorithm relies on exact computation of the variance
and average in each bin of the histogram, an opera-
tion that seems fundamentally hard in the spatial set-
ting. It is also not clear if the Babcock et al sliding-
window variance algorithm can be extended beyond slid-
ing windows to time-decaying variance under general
decay functions [6].

The challenge in spatially-decaying aggregation is
that the aggregate value (or summary) is location-
dependent. Yet, we do not want to recompute it from
the raw distribution for each node, as this would result
in quadratic time in the centralized setting and flooding
with quadratic communication in the distributed set-
ting. The moments problem imposes additional chal-
lenges, since even beyond the issues of computational
efficiency, it is not even clear how to summarize the data
into a compact representation that captures sufficient
information to answer the queries. Distributed compu-
tation makes the problem even more challenging, since
it basically requires a very efficient way of both summa-
rizing and communicating the essence of the data such
that each node can distill the information relevant to it.
Overview and insights:

A basic ingredient in our algorithms is approximate
spatially-decaying counts, where given binary item val-

ues the goal is to produce a Neighborhood Summary
(NH-summary) which allows to obtain, for each node
v and decay function, an approximate decaying count
of values. (For the special case of threshold decay func-
tion this amounts to estimating, for any given r ≥ 0, the
count in the r-neighborhood of v). Algorithms for cen-
tralized computation of NH-summaries were introduced
by the first author in [4]. Further new ideas which allow
efficient distributed computation of NH-summaries and
handling of general decay functions are presented by the
authors in [5].

The crux of our approach is a novel technique to
summarize a set of values to a poly-logarithmic size
summary that allows us to retrieve an approximation
of the moment about any constant. These summaries
are obtained by applying a logarithmic number of global
predicates to each value. Over each predicate we then
compute an NH-summary for the count of values that
are true for the predicate. Each NH-summary has
polylogarithmic-size and can provide, for each decay
function, the approximate weight of items that satisfy
the predicate.

The key insights we need are in the choice of
these predicates. In order to estimate neighborhood
moments, we need to somehow be able to preserve
and retrieve information about the distances between
values and any given point. If we are only interested
in moments that are about some globally-fixed point
a, the problem is easy: Each value x is bucketized
according to its distance from a, |x − a|, using buckets
with exponentially growing width. We then only need
to know an approximate weight of items within each
bucket, something we can do using an NH-summary
obtained by performing a spatially-decaying count of
items in each bucket. The catch, however, is that we
want the same summary to work for arbitrary choices
of a. 1

The next approach we consider is partitioning the
range uniformly to a polylogarithmic number of bins
and producing an NH-summary for each bin. This
partially works, and only for nodes, decay functions,
and points a, where “most” of the weight lies in a bin
that is far from the bin that a lies in (Otherwise, too
much information is lost and we can not guarantee the
desired (1 ± ε) approximation). Our approach is based

1It may seem that this approach can work for the variance,

where we are interested in a moment about a specific point (the
mean). Note, however, that the mean is not global and rather
depends on the aggregating node and choice of the decay function.

Thus, there are many (possibly linearly many) relevant “means”
to consider that each value can be aggregated about. We shall
see that our solution to the variance relies on the summary which
can retrieve moments about arbitrary points.

on extending this attempt, by first folding the range of
values into a smaller range (the fold width), and then
uniformly partitioning it into a histogram with a fixed
number of bins. The folding essentially amounts to
discarding some values and then performing a modulus
operation by the fold width. The key property is
that all distances between values may decrease and
become at most the fold width, but distances that are
smaller than the fold width remain the same. After
partitioning the fold width uniformly to some constant
number of bins we obtain that all distances that are
not too big and not too small (that is, are of the
order of the fold width) are approximately preserved.
We use a logarithmic number of different fold widths
that are exponentially decreasing. When computing
our estimate on the moment about some value a, we
sum over different foldings. Each item is accounted
for in many foldings, but there is only one folding
that preserves its approximate distance from a. The
larger-width foldings would bucketize it together with a,
yielding a 0 contribution to the moment and the smaller-
width bins will account for a contribution that is much
smaller than the one corresponding to its true distance.

The computation of central moments, including
the variance, uses the same summaries but requires
some additional insights. The exact value of the mean
is not known to the aggregating node, and simply
computing the aggregate about a (1± ε) approximation
of the mean (which can be obtained using decaying
sum computations) is not sufficient for obtaining (1± ε)
approximation of the variance.

We organize our presentation as follows. In section
2 we state the spatial decay model and the spatially-
decaying sum problem [5]. Section 3 describes the sum-
maries by defining the folding functions and predicates
that are aggregated as spatially-decaying sums at each
node. Section 4 states the algorithm that for a given
decay function, point a, and power ω computes an es-
timate of a moment from the summary. Section 6 is
concerned with the variance computation (and other
central moments). The correctness proof of the algo-
rithm in Section 4 is given in Section 5. We conclude in
Section 7 with a discussion on extending our approach
to higher dimensions and k-medians.

2 Preliminaries

We start by defining spatially-decaying aggregation [5],
and in particular, the spatially-decaying sum prob-
lem [5]. We then proceed and define our problem of
spatially-decaying moments.

We model the network as a (directed or undirected)
graph G = (V,E), where V = {v1, . . . , vn} is the set of
nodes, and there is an edge between two nodes if and

only if the two nodes can communicate. We denote the
number of edges by m. Edges can have nonnegative
lengths associated with them, which correspond to
distances. We denote by dist(vi, vj) the distance
between two nodes vi and vj with respect to the
shortest-path metric on the edge lengths. Nodes in the
network have data items associated with them. Each
item i ∈ I is specified by a pair (fi, `i), where fi is its
value and `i ∈ V is its location.

A decay function is a non-increasing function g(x) ≥
0 defined for x ≥ 0. The decay function determines the
“weight” of a remote item as a function of its distance.
The decaying weight of the item i as viewed by a node
u is wu,g(i) = g(dist(u, `i)).

2 An important family of
decay functions are threshold functions Ballr (for r ≥
0), defined by Ballr(x) = 1 for x ≤ r and Ballr(x) =
0 otherwise. The corresponding aggregation is over the
r-neighborhood, where all data items that lie within
distance r have equal weight and all further items have
0 weight. Other natural classes of decay functions are
Exponential decay and Polynomial decay (see [5] for
details).

An aggregate function is a function defined on a
multiset of value-weight pairs. The goal of spatially-
decaying aggregation is to produce summaries with
respect to a particular aggregate function (or a class of
functions). Each node u obtains a localized summary3

which allows it, for any given decay function g() (and
any aggregate function in the set we consider), to
obtain (1± ε)-approximate estimates of the value of the
aggregate on the multiset {fi, wu,g(i)}.

We measure performance by the running time
needed to produce these summaries and by the size of
the resulting summaries. In the distributed setting we
consider the amount of communication per node and
storage at each node. In the sequel, (1±ε)-approximate
estimates (or just estimates) means that by appropri-
ately adjusting constants in our algorithms we can han-
dle any fixed ε ≥ 0. To simplify the discussion, we ignore
in several places scaling of ε by a constant factor.

A basic aggregate is the sum (weighted sum of
values), where the value at node u for decay function
g() is

Sg(u) =
∑

i

wu,g(i)fi .

(For the sum problem we assume fi ≥ 0 for all i.) In

2Our algorithms can be easily extended to a setting where
each item has a “local” weight w0

i
, and its decaying weight

is w0
i
g(dist(u, `i)). For simplicity of presentation we assume

uniform local weights.
3In the centralized version of the problem one can also consider

a single summary for all nodes. The algorithms we consider here
produce separate summaries.

the special case where the values fi are binary, we re-
fer to this aggregate as the count. We define Wu,g =∑

i wu,g(i) to be the decaying count of all items as
viewed by u. When u or g are clear from context we will
omit them from the subscript of Wu,g and wu,g(i). The
spatially-decaying sum problem is to obtain summaries
such that each location u ∈ V , for any decay function
g() can retrieve an (1 ± ε)-approximate value of Sg(u).
The summaries produced by spatially-decaying sum
algorithms are termed Neighborhood-summaries (NH-
summaries) [4, 5]. NH-summaries are particularly rel-
evant to us here since we reduce the spatially-decaying
moments problem to performing logarithmically-many
computations of NH-summaries. As discussed in the
Introduction, [4] shows that in Õ(m) time, we can ob-
tain for each node a polylogarithmic-size NH-summary
that gives (1 ± ε)-approximate answers with very high
probability4. We studied distributed algorithms for NH-
summaries in [5]. The communication needed per node
depends on the setup. Under some assumptions, e.g.,
if shortest path trees are pre-computed, the summaries
can be obtained using polylogarithmic communication
per node.

For a set of items (with values fi, weights w(i)
and W =

∑
i w(i)), a point ν, and a power ω, the

ω-moment about ν is defined as
∑

i w(i)(fi − ν)ω/W .
We refer to the non-normalized quantity

∑
i w(i)(fi −

ν)ω as the ω-power sum about ν. We also consider
absolute moments defined as

∑
i w(i)|fi − ν|ω/W and

the respective absolute power-sum
∑

i w(i)|fi − ν|ω.
Moments about the mean are termed central moments
whereas moments about arbitrary choices of ν are
termed raw moments.

The spatially-decaying (absolute) power-sums prob-
lem is to produce summaries, according to ε > 0 and
a range [ωa, ωb] (where ωb > ωa > 0). The summaries
should allow each node u to obtain, for each ν, g(), and
ω ∈ [ωa, ωb], a (1 ± ε)-approximation of the power sum

A
ω
ν,g(u) =

∑

i

(wu,g(i)|fi − ν|ω) .(2.1)

For “pure” moments we use the notation

M
ω
ν,g(u) =

∑

i

(wu,g(i)(fi − ν)ω) .(2.2)

Note that the ω-moment is the ratio M
ω
ν,g(u)/Wu,g and

the respective absolute moment is A
ω
ν,g(u)/Wu,g.

Our algorithms obtain (1+ε)-estimates for absolute
power sums and thus for pure power sums with integral

4The work of [4] considers only Ballr decay functions, but
we show in [5] that summaries that can support Ballr decay
functions for arbitrary r ≥ 0 can support arbitrary decay
functions.

even values of ω (since for even powers M
ω
ν,g(u) ≡

A
ω
ν,g(u)).5

Central moments have particular significance – the
most important such moment is the variance. The
(weighted) variance of a set of values is defined as
V =

∑
i w(i)(fi − µ)2/W , where µ =

∑
i w(i)fi/W

is the (weighted) mean. The spatially-decaying central
moment is M

ω
µg(u),g(u)/Wu,g and the spatially-decaying

variance is thus M
2
µg(u),g(u)/Wu,g ≡ A

2
µg(u),g(u)/Wu,g,

where µg(u) =
∑

i wu,g(i)fi/Wu,g.
Moments are the ratio of the respective power

sum and Wu,g. Since we can efficiently approximate
Wu,g using an NH-summary, an approximation of the
numerator (the power sum) would yield approximation
of the respective moment. In particular, approximate
central, raw, absolute or pure moments can be obtained
from the respective approximate power sums (and vice
versa). In the sequel we will focus on power sums.

3 Foldings and predicates

We develop a technique to compute summaries for the
spatially-decaying power sums problem. We assume
(this assumption is addressed in Subsection 5.1) that
items have integral values in the range 0, . . . , R − 1.

Our algorithm defines a logarithmic number of
global predicates. All nodes apply each predicate to
their local items. For each predicate, the system then
produces NH-summaries at all nodes. As a result, each
node stores a logarithmic number of NH-summaries
(one for each predicate). We now provide a high-level
description of these predicates. We use mappings which
we refer to as foldings. Each folding excludes part of
[0, R) and maps remaining (included) values into a range
of the form [0, R/2ρj) for some j ≥ 0 and ρ ≥ 2. The
range of the folding is then partitioned uniformly into B
bins, where bin b (b = 0, . . . , B−1) contains values that

the folding maps to [b
B R/2ρj , (b+1)

B R/2ρj). Each bin in
each folding corresponds to a predicate. This predicate
is “1” for the ith item if and only if fi is included in
the folding and the image of fi under this mapping falls
in the corresponding bin. These NH-summaries allow
each node u to obtain, for each folding, each bin, and
each decay function g, an approximate decayed count of
the items with values that are mapped by the folding to
that bin. (For the special case of Ballr decay function,
we can obtain for each r, an approximate number of
items within the r-neighborhood of u that are mapped
by the folding to that bin.)

The value of B is set according to the desired
accuracy and communication tradeoffs. Recall that ρ is

5(1 + ε) approximate pure power sums with odd ω are as hard
as obtaining exact neighborhood counts [5, 7].

a parameter of our construction which is at least 2. We
also define S = 2ρ+1. We have a folding for each j from
0 to ρ−1 log2(R/B). For convenience of presentation we
assume that B/2(ρ+2) and ρ−1 log2(R/B) are integral.

����������
����������
����������
����������

����������
����������
����������
����������

S=2

R

ρ=2

FOLD 1/2,1,1

FOLD 1/2,1,0

FOLD 0,1,1

0
FOLD 0,1,0

����������
����������
����������
����������

����������
����������
����������
����������

Excluded points

Included points����
����
����
����

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

Figure 2: Included parts of the range [0, . . . , R) for
the foldings FOLD0,1,0, FOLD0,1,1, FOLD1/2,1,0 and
FOLD1/2,1,1 (ρ = 2, for simplicity shown with S = 2
although we assume in the analysis that S = 2ρ + 1).

We now define precisely the set of foldings that we
use. In addition to j ∈ {0, . . . , ρ−1 log2(R/B)}, each
folding FOLDc,j,s is specified by two more parameters:
s ∈ {0, . . . , S − 1}, and c ∈ {0, 1/2}. We explain the
role of these additional parameters next.

The folding mapping can be viewed as follows.
The interval [0, . . . R) is partitioned into consecutive
subintervals of size R/2ρj . The c ∈ {0, 1/2} determines
at what point the partition is started: if c = 0 the
subinterval boundaries start at 0 and if c = 1/2 the
boundaries start at R/2ρj+1 (“half” subinterval shift)
and end at R − R/2ρj+1.6 The domain of the folding
includes a subset of these subintervals that are spaced
exactly S subintervals apart (s determines which of
the S possible subsets of subintervals-spaced-S-apart is
included.) All included subintervals are then identified
(that is, a value fi in a subinterval [a1, a2] is mapped
to fi − a1). Hence, we obtain a mapping of the range
[0, R) to a range [0, R/2ρj).

Formally, we have that the domain of the mapping
is

FOLDc,j,s =

{
x |

⌊
(x − cR/2ρj+1)

R/2ρj

⌋
mod S = s

}
.

For x ∈ FOLDc,j,s we define the image as7

Fc,j,s(x) = (x − cR/2ρj+1) mod R/2ρj .

6So for c = 1/2 we don’t get exactly a partition of [0, R) but
of [R/2ρj+1, R − R/2ρj+1).

7We use the natural extension of the modulo operation for
nonnegative reals.

And the discretization to bins by

BINc,j,s(x) = bFc,j,s(x)B2ρj/Rc .

An illustration of a range, and different foldings with
the respective included items is provided in Figure 2.
An illustration of the folding mapping is provided in
Figure 3.

FOLD 0,1,0

0 R
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

Figure 3: Included parts of the range [0, . . . , R) for
the folding FOLD0,1,0 and the respective mapping of
these parts to [0, . . . , R/4). (ρ = 2, shown with S = 2
although we assume in the analysis that S = 2ρ + 1).

The reason for using two different partitions for
each j, s, with c = 0 and c = 1/2 is to obtain the
property that every subinterval of [0, R) that is of length
at most R/2ρj+1 lies within some subinterval of one
of the partitions. Formally, we say that an interval
[a, b] ⊂ [0, R) is intact by a folding FOLDc,j,s if all
points in the interval are included in FOLDc,j,s and the
folding preserves distances within points in the interval.
Equivalently, [a, b] is intact if [a, b] ⊂ FOLDc,j,s and
b−a = Fc,j,s(b)−Fc,j,s(a) . Observe that every interval
of the form [a, a + R/2ρj), where a mod R/2ρj+1 = 0,
is a maximal intact interval in some folding of the form
FOLD∗,j,∗. We thus have the following property:

Lemma 3.1. Any interval [a, b] ⊂ [0, R) such that b −
a ≤ R/2ρj+1 is contained in some maximal intact
subinterval in a folding of the form FOLD∗,j,∗.

Lemma 3.2. Consider a maximal intact interval [a, a+
R/2ρj) (a mod R/2ρj+1 = 0) of some FOLD∗,j,∗.
Consider a folding FOLDc,j−1,s such that [a, a+R/2ρj)

is intact in that folding, and let [d, d + R/2ρ(j−1)) ⊃
[a, a + R/2ρj) be a maximal intact subinterval of
FOLDc,j−1,s. Then,

{BINc,j−1,s(x)|x ∈ [a, a + R/2ρj)} ∩

{BINc,j−1,s(x)|x ∈ [d, d + R/2ρ(j−1)) \ [a, a + R/2ρj)} = ∅

(the set of bins that cover Fc,j−1,s([a, a + R/2ρj)), and
the set of bins that cover Fc,j−1,s([d, d + R/2ρ(j−1)) \
[a, a + R/2ρj)) are disjoint.)

Proof. Since [d, d + R/2ρ(j−1)) is a maximal in-
tact interval of some FOLD∗,j−1,∗ we have that
d mod R/2ρ(j−1)+1 = 0. It follows that (a −

d) mod R/2ρj+1 = 0 and that (a + R/2ρj −
d) mod R/2ρj+1 = 0. The bin partition partitions the
including interval into intervals of size (R/2ρ(j−1))/B.
It thus suffices to show that R/2ρj+1 is divisible by
(R/2ρ(j−1))/B. This in fact holds since

R/2ρj+1

(R/2ρ(j−1))/B
=

B2ρ(j−1)

2ρj+1
= B/2ρ+1 .

(The latter is clearly integral since we assumed that
B/2(ρ+2) is integral.)

The following is immediate from our definitions:

Lemma 3.3. Consider a maximal intact subinterval I
of some FOLD∗,j,∗. Then all points x ∈ [0, . . . , R) \ I
such that dist(x, I) ≤ (S − 1)R/2ρj are not included in
the folding.

Each node stores an NH-summary for each of the
B bins in each folding FOLDc,j,s for all c, j, s. Thus,
the communication and storage amount to computing
2BSρ−1 log2(R/B) NH-summaries.

Consider the viewpoint of some node u. We use the
notation

Bc,j,s(b, g) =
∑

{i|fi∈FOLDc,j,s∧BINc,j,s(fi)=b}

wu,g(i)

for the decaying count of items in the bth bin of
FOLDc,j,s. From the NH-summaries available at

our node u we can obtain estimates B̂c,j,s(b, g) for
Bc,j,s(b, g). (for all g(), foldings, and bins).

4 Computing power sums from summaries

Given ν, g(), and ω, we show how a node u can use
its locally-available estimates on B̂c,j,s(b, g) to estimate∑

i wu,g(i)|fi − ν|ω.
For each j ∈ {0, . . . , ρ−1 log2(R/B)} we define the

intervals

Ij = [max{ν−R/2ρ(j+1)+2, 0},min{ν+R/2ρ(j+1)+2, R}] .

Then for each j ∈ {0, . . . , ρ−1 log2(R/B)} the node
selects one folding of the form FOLD∗,j,∗ (denoted
FOLDcj ,j,sj

) as follows. For j = 0 it uses the folding
FOLD0,0,0 (for all ν). For j > 0 the node selects a fold-
ing FOLDcj ,j,sj

such that Ij−1 is intact. (Existence of
such a folding is guaranteed by Lemma 3.1.) We define
Ij−1 = [aj , aj +R/2ρj) be the maximum intact interval
of FOLDcj ,j,sj

which includes Ij−1. For convenience,

we define I−1 ≡ [0, . . . , R) and Iρ−1 log2(R/B) ≡ ∅. The
following lemma summarizes two properties of these in-
tervals that we need to establish correctness of the al-
gorithm.

Lemma 4.1. 1. Ij is contained in Ij−1 and therefore
is intact under FOLDcj ,j,sj

.

2. {BINcj ,j,sj
(x)|x ∈ Ij} ∧ {BINcj ,j,sj

(x)|x ∈ Ij−1 \

Ij} = ∅ . (Ij is “exactly covered” by the bin
partition of FOLDcj ,j,sj

.)

Proof. Ij is of size R/2ρ(j+1)+1, and Ij is of size

R/2ρ(j+1). Thus, |Ij | = 2|Ij |. Since ν is the midpoint
of Ij we have
Ij ⊆ [max{ν−3R/2ρ(j+1)+2, 0}, min{ν+3R/2ρ(j+1)+2, R}] ⊆ Ij−1 .

(the latter holds since 3 ≤ 2ρ.) The second property
follows from Lemma 3.2.

Algorithm PowerSum(ν, w)

• M ← 0

• For j = 0, . . . , ρ−1(log2(R/B)) do as follows:

• For all b ∈ {0, . . . , B − 1} such that

bR/(B2ρj) ∈ [0, . . . , R/2ρj − 1) \ Fcj ,j,sj
(Ij)

(In words, for the bins of the range of Fcj ,j,sj
that

cover Fcj ,j,sj
(Ij−1 \ Ij).) do as follows:

• M ← M + B̂cj ,j,sj
(b, g)

∣∣∣ bR/2ρj

B − Fcj ,j,sj
(ν)

∣∣∣
ω

.

5 Correctness of algorithm PowerSum

Consider an iteration of PowerSum, and the respec-
tive folding FOLD(cj , j, sj). First note that items i
are classified as either included or excluded according to
whether they belong to FOLDcj ,j,sj

. We further clas-
sify included items into either internal or external as
follows. Items with value fi such that Fcj ,j,sj

(fi) ∈

Fcj ,j,sj
(Ij) are internal for FOLDcj ,j,sj

. Items such

that Fcj ,j,sj
(fi) ∈ Fcj ,j,sj

(Ij−1\Ij) (i.e., all other items)
are external for FOLDcj ,j,sj

. So any item is either in-
ternal, external, or excluded. For an iteration j and an
external item i, we refer to

wg(i)|Fcj ,j,sj
(fi) − Fcj ,j,sj

(ν)|ω

as the contribution of item i. These classifications are
useful as only external items “contribute” to M during
the jth iteration. We will use the following property to
bound the approximation error.

Lemma 5.1. Values in Ij−1 that are external for
FOLDcj ,j,sj

are excluded in FOLDcj+1,j+1,sj+1
.

Proof. Values in Ij−1 that are external for FOLDcj ,j,sj

are exactly those in Ij−1 \ Ij . So we have to show

that Ij−1 \ Ij is excluded by FOLDcj+1,j+1,sj+1
. From

Lemma 3.3, all values that are not in Ij and are of

distance at most (S − 1)R/2ρ(j+1) from Ij are excluded

under FOLDcj+1,j+1,sj+1
. Since Ij is of size R/2ρ(j+1)+1

and ν is the midpoint of Ij we have that all values that
are of distance at most

(S − 1)R/2ρ(j+1) + R/2ρ(j+1)+2 = (4S − 3)R/2ρ(j+1)+2

from ν and are not in Ij are excluded.
Since S ≥ 2ρ + 1 we obtain that (4S − 3) ≥ 4 · 2ρ

and thus

(4S − 3)R/2ρ(j+1)+2 ≥ R/2ρj .

Recall now that the interval Ij−1 is of size R/2ρj and
contains ν, thus it must be the case that all points in
Ij−1 \ Ij are excluded by FOLDcj+1,j+1,sj+1

.

internal
external

range of FOLD *, j+1,*

−1

FOLD *, j,*

�����������
�����������
�����������
�����������

I j

I

ν

j

I j

��

Figure 4: A folding selected according to some ν (B =
16, ρ = 2, and thus B2−(ρ+2) = 1). The figure
shows the value ν, Ij−1 (the maximal intact interval
in FOLDcj ,j,sj

) along with the histogram partition to
B = 16 bins. The figure also shows the interval Ij

(which is 1-bin wide around ν), and Ij (the maximal
intact interval in FOLDcj+1,j+1,sj+1

that contains Ij).

As should be Ij ⊂ Ij ⊂ Ij−1 and Ij aligns with the
bin partition induced on Ij−1. The figure also shows
the ranges of values that are classified as internal and
external.

We conclude the correctness proof with the follow-
ing two lemma. Let

Tj =
∑

i external in
FOLDcj,j,sj

w(i)|Fcj ,j,sj (fi) − Fcj ,j,sj (ν)|ω

be the non-discretized contribution during iteration j.

Lemma 5.2. The total contribution made to M during

iteration j is a (1 + β)(1± 2ρ+2

B)ω-approximation of the
quantity Tj, where (1 + β) is our error in the decaying
sum estimates.

Proof. Observe that only bins of external items and
all bins with external items contribute to our esti-
mate among the bins of FOLDcj ,j,sj

. Thus, the er-
ror stems from two reasons, first we have the weight

of each such bin only up to (1 + β) accuracy and sec-
ond for item in a bin we sum up not the exact differ-
ence |Fcj ,j,sj

(fi)−Fcj ,j,sj
(ν)| but this difference where

Fcj ,j,sj
(fi) is rounded to a bin boundary. The first com-

ponent of the error clearly contribute a factor of 1 + β
to our overall error.

We next bound the error introduced by rounding to
bins. For j = ρ−1 log2 R/B the range of FOLDcj ,j,sj

has B values and the histogram captures exact values,
thus the contribution is precise. Otherwise, since item
i is external, i 6∈ Ij and therefore FOLDcj ,j,sj

(fi) −

FOLDcj ,j,sj
(ν) ≥ R/2ρ(j+1)+2; Rounding to bin bound-

aries gives an additive error term of (R/2ρj)/B in our
knowledge of FOLDcj ,j,sj

(fi). Thus, the relative er-
ror we get in |Fcj ,j,sj

(fi) − Fcj ,j,sj
(ν)|ω is bounded by

(1 ± 2ρ+2/B)ω.

Lemma 5.3.
∑

j Tj is an
(
1 + 2−ωρ+2ω/(1 − 2−ρω)

)
-

approximation of
∑

i w(i)|fi − ν|ω.

Proof. We now consider the contribution of each item
i to

∑
j Tj (that is, the sum, over j where i is external

in FOLDcj ,j,sj
, of the contribution of i to Tj .) For

each item i, we define J(i) ∈ {0, . . . , ρ−1 log2(R/B)} be
such that fi ∈ IJ(i)−1 \ IJ(i). Recall that an item i is
external in the jth iteration if and only if i is included
in FOLDcj ,j,sj

and

Fcj ,j,sj
(fi) ∈ Fcj ,j,sj

(Ij−1 \ Ij) .

In particular an item i is external in the fold
FOLDcJ(i),J(i),sJ(i)

. Moreover, since the intervals Ij are
nested, iteration J(i) is the first iteration in which the
item i is external. Note also that the interval between
fi and ν is intact in iteration J(i) and is not intact in
subsequent iterations.

Each item i contributes in several iterations. The
first iteration it contributes in is iteration J(i). Since
the interval between fi and ν is intact in iteration
J(i), the contribution of i in iteration J(i) is exactly
w(i)|(fi − ν)|ω. We next argue that its contributions in
subsequent iterations are at most some constant fraction
of w(i)|(fi − ν)|ω.

It follows from the definition of the intervals Ij

that the contribution of i at iteration J(i) is at least
w(i)(R/2ρ(J(i)+1)+2)ω. Lemma 5.1 states that external
items in an iteration are excluded in the next iteration.
Thus, an item i does not contribute in iteration J(i)+1.
In every iteration j ≥ J(i) + 2 the contribution of i is
at most w(i)(R/2ρj)ω (since the size of the range of
FOLD(∗, j, ∗) is R/2ρj). Since the upper bound on
the contribution of i in each iteration j ≥ J(i) + 2
decreases by a factor of 2−ρω we obtain that sum of
the contribution of i in all these iterations together is

at most

w(i)(R/2ρ(J(i)+2))ω(1 + 2−ρω + (2−ρω)2 + · · ·)

≤ w(i)(R/2ρ(J(i)+2))ω/(1 − 2−ρω) .

Therefore the relative error contributed by the
contribution of i in iterations j ≥ J(i) + 2 is at most

(R/2ρ(J(i)+2))ω/(1 − 2−ρω)

(R/2ρ(J(i)+1)+2)ω
= 2−ωρ+2ω/(1 − 2−ρω) .

Combining the two lemmas, the total approxima-
tion factor is

(1 + β)(1 + 2ρ+2/B)ω(1 + 2(2−ρ)ω/(1 − 2−ρω)) .

Assume we are interested in summaries that are good
for a certain ε and ω ∈ [ωa, ωb]. The second part of
the approximation factor (contributed by Lemma 5.3)
is decreasing with ω, thus we shall choose ρ > 2ω−1

a

large enough such that 21+(2−ρ)ωa ≤ ε. The first part of
the approximation factor (contributed by Lemma 5.2)
is increasing with ω. By choosing a sufficeintly large B
we can have (1 + 2ρ+2/B)ωb ≤ (1 + ε).

5.1 When values are unrestricted

Our presentation assumed that an upper bound
R on the maximum value M is known to all nodes.
This assumption can be dropped by using the sum S
of all values in the system. Then we can use R = S
(The sum S is at most nM , and thus log S ≤ log n +
log M .) Alternatively, we can perform log(Mn/S) count
computations, where the ith computation counts the
number of values that are larger than (S/n)2i. As a
result, we obtain an estimate on M within a factor of 2.

Another natural question is whether we can remove
the dependence on R (and allow for exponentially large
range of values.) A simple construction (that mimics
one given for spatially-decaying sums [5]) shows that
the dependence is inherent.

6 Central moments

We now show how approximate values of M
ω
µ,g for even

integral ω ≥ 2 can be retrieved from the summaries.
For brevity, since clear from context, we omit the decay
function g from the subscripts.

The challenge in approximating A
ω
µ is that µ is not

known to us. It can be approximated within a relative
error using the sum and count aggregates, but a relative-
error estimate on µ is not sufficient for obtaining a
relative-error estimate on A

ω
µ .

We start with some definitions and lemmas.

One-sided power sum about ν is a weighted sum
of all values that are larger (or smaller) than ν.
That is, A

ω,+
ν =

∑
i|fi>ν w(i)|fi − ν|ω or A

ω,−
ν =∑

i|fi≤ν w(i)|fi − ν|ω. Absolute power sums and pure
power sums with even ω can be expressed as the sum
of the two one-sided sums A

ω
ν = A

ω,+
ν + A

ω,−
ν whereas

the pure power sums with od ω are the difference
M

ω
ν = A

ω,+
ν − A

ω,−
ν .

Lemma 6.1. A slight modification of algorithm Power-
Sum allows us to obtain approximate values for each
one-sided sum within an additive error term of εAω

ν .

Proof. The modification amounts to simply consider-
ing a subset of the bins that cover only the part of
Fcj ,j,sj

(Ij−1 \ Ij) that is larger (for fi > ν) or smaller

(for fi ≤ ν) than Fcj ,j,sj
(Ij). Observe that this is the

same additive error we obtained when approximating
the sum A

ω
ν =

∑
i w(i)|fi − ν|ω, only that it does not

necessarily translate into a small relative error in the
one-sided case.

Corollary 6.1. For each ν and ω ∈ [ωa, ωb], M
ω
ν can

be estimated from the summaries to within an additive
term of εAω

ν .

Proof. M
ω
ν is a sum or difference of two one-sided sums.

Each one-sided sum can be estimated to within an
additive term of (ε/2)Aω

ν . Thus, their sum or difference
can be estimated to within an additive term of εAω

ν .

An important ingredient we need is obtaining a
value ν, such that the absolute ω-power sum about ν is
within some constant factor of the respective absolute
central power sum. That is, A

ω
ν = O(Aω

µ). It is easy to
see that an approximate (with relative error) mean does
not necessarily possess this property, but fortunately,
(as proved in the following lemma) an approximate
median will do. Folklore knowledge is that a random
value (drawn according to the weights w(i)) has a
constant probability of being an approximate median,
and this probability can be arbitrarily increased by
selecting the median of a constant number of random
samples. An efficient algorithm for obtaining such
spatially-decaying random samples is given in [5].

Lemma 6.2. Let m be such that
∑

i|fi≤m w(i) ≥ cW

and
∑

i|fi≥m w(i) ≥ cW that is, the weight of items
with value that is at most m is at least cW , and the
weight of items with value that is at least m is at least
cW .) Then

A
ω
m

A
ω
µ

≤ 2ω(1 − c)/c .

Proof. Assume wlog that µ > m. Consider now items
and their contributions to the power sums A

ω
m and A

ω
µ .

All the values that are larger than m + 2(µ − m) have
the property that their contribution to A

ω
m is at most

2ω times their contribution to A
ω
µ . We next consider

items with value at most m. Since they are closer
to m than to µ, their contribution to A

ω
m is smaller

than their contribution to A
ω
µ . The total contribution

of these items to A
ω
µ is at least cW |µ − m|ω. Thus

A
ω
µ ≥ cW |µ − m|ω. We next consider values in the

interval (m,m + 2(µ − m)]. Since the total weight of
items with values at most m is at least cW , the weight
of items with values in the interval (m,m+2(µ−m)] is
at most (1 − c)W . So the contribution of the items in
(m,m+2(µ−m)] to A

ω
m is at most 2ω(1−c)W |µ−m|ω.

It follows that A
ω
m/A

ω
µ ≤ max{2ω, 2ω(1−c)/c} ≤ 2ω(1−

c)/c (note that we always have c ≤ 1/2).

We will need the following inequalities:

Lemma 6.3. For any set of integers ij ≥ 1 (j = 1, . . . n)
we have

ΠjA
ij

ν ≤ Wn−1
A

∑
j

ij

ν

Proof. We apply Chebyshev’s integral inequality ([9]
page 1092) which states that for any set of nonnegative,
integrable, monotone (all non-decreasing or all non-
increasing) functions h1(x), . . . hn(x) we have

Πn
j=1

∫ b

a

hj(x)dx ≤ (b − a)n−1

∫ b

a

(Πn
j=1hj(x))dx .

The claim will follow by applying this inequality
with the following parameters: Let W =

∑
w(i) as

defined earlier and assume wlog that |fi−ν| are ordered
by magnitude. Let the step function hj(x) be defined
on the interval [0,W] as follows, hj(x) = |fi − ν|ij for

x ∈
[∑

k<i w(k),
∑

k≤i w(k)
)
. Note that it follows from

our ordering assumption that the functions hj() are non-
decreasing, as needed for the statement of the inequality.

It is well known that (using the Binomial transform)
each central moment can be expressed as a sum of
powers over raw moments about any value (see [10],
page 146):

M
ω
µ

W
=

ω∑

k=0

(
ω
k

)
(−1)ω−k(

M
1
ν

W
)ω−k M

k
ν

W
.(6.3)

In terms of power sums we obtain

M
ω
µ = W−ω+1(−1)ω(1 − ω)(M1

ν)ω

+

ω∑

k=2

W−(ω−k)

(
ω
k

)
(−1)ω−k(M1

ν)ω−k
M

k
ν .(6.4)

In particular,

M
2
µ = −(M1

ν)2/W + M
2
ν

M
4
µ = M

4
ν − 3(M1

ν)4/W 3 − 4M
3
νM

1
ν/W + 6M

2
ν(M1

ν)2/W 2 .

We let ν be an approximate median m as in Lemma 6.2.
We estimate the central moment through the polyno-
mial sum of raw moments about ν = m (Equ. 6.4), by

plugging in, for each M
i
m, our estimated quantity M̂

i
m

and for W , the (1 ± ε)-approximate Ŵ .

Lemma 6.4. The additive error we obtain in our esti-
mate is O(εAω

µ).

Proof. The polynomial sum (Equ. 6.4) has a constant
number of terms, where each term in the sum has the
form of a constant times W−(ω−k)

M
k
m(M1

m)ω−k (for
ω ≥ k ≥ 1), it thus suffices to bound by O(εAω

µ) the error
introduced by the approximation of each such term. In
fact, using Lemma 6.2, it suffices to bound the error of
each term by O(εAω

m).
Consider the error in a single term.
∣∣∣Ŵ−(ω−k)

M̂
k
m(M̂1

m)ω−k − W−(ω−k)
M

k
m(M1

m)ω−k

∣∣∣(6.5)

≤ (1 + 2εω)W−(ω−k)
∣∣∣M̂k

m(M̂1
m)ω−k − M

k
m(M1

m)ω−k

∣∣∣ .

(using |Ŵ − W | ≤ εW and assuming ε ¿ ω−1). We

bound the difference
∣∣∣M̂k

m(M̂1
m)ω−k − M

k
m(M1

m)ω−k

∣∣∣ . De-

note ∆k
m ≡ M̂

k
m − M

k
m. The difference can be rewritten

as (Mk
m + ∆k

m)(M1
m + ∆1

m)ω−k − M
k
m(M1

m)ω−k. If we ex-
pand this expression the term M

k
m(M1

m)ω−k cancels out
and we obtain a polynomial P (Mk

m,M1
m,∆k

m,∆1
m) that

consists of a positive linear combination of products of
M

k
m, M

1
m, ∆k

m, and ∆1
m. Recall now that |Mi

m| ≤ A
i
m

and that |∆i
m| = |M̂i

m − M
i
m| ≤ εAi

m (for all i) (from
Corollary 6.1). Therefore, if we replace each appearance
of M

i
m by A

i
m and each ∆i

m by εAi
m we can only increase

the absolute value of this polynomial, thus

P (Ak
m,A1

m, εAk
m, εA1

m) ≥ |P (Mk
m,M1

m,∆k
m,∆1

m)| .

We next observe that (from the definition of the multi-
variate polynomial P ())

P (Ak
m,A1

m, εAk
m, εA1

m)

= (Ak
m + εAk

m)(A1
m + εA1

m)ω−k − A
k
m(A1

m)ω−k

= ((1 + ε)ω−k+1 − 1)Ak
m(A1

m)ω−k .

Using Lemma 6.3, we obtain that the difference is at
most

≤ ((1 + ε)ω − 1)Aω
mWω−k .

To summarize, we have that the error (Expression 6.5)
is bounded by (1+2ωε)((1+ε)ω−1)Aω

m ≤ 2ωεAω
m (since

ε ¿ ω−1)

7 Extensions

We point out some extensions of our results.

7.1 Beyond power sums Using our (1 + ε)-
approximate absolute power sums we can also approx-
imate any fixed expression that constitutes of powers,
products, ratios, and positive linear combination of A

ωj

νj
.

We next discuss approximating the sum
∑

i w(i)h(fi−a)
for more general functions h(). By examining where
properties of the h() entered the analysis, we obtain
that our basic technique, with polylogarithmic size sum-
maries, can be extended to any function h() that is in-
creasing and bounded below and above by polynomials
(or by slightly super and sub-polynomials functions).

7.2 Higher dimensions We now consider the case
when the item values fi = (fi1, . . . , fid) are vectors
in Rd. The query points are ν = (ν1, . . . , νd) ∈
Rd. The aggregate functions are defined by constants
p1, . . . , pd > 0 and p > 0 (from a fixed range) and are

||fi − ν|| =

d∑

j=1

|fij − νj |
pj

p−1

.

(in particular, this generalizes Lp norms). We are
interested in summaries that would yield approximate
values of

∑
i w(i)||fi − ν||).8 We sketch the extension

of our d = 1 construction to d > 1. The size of the
summaries is polylogarithmic in the number of items
but the dependence on the dimension d is exponential.
Each of our d-dimensional foldings maps the domain
into a smaller d-dimensional range cube. The widths
(edge-lengths) of these range cubes are exponentially
decreasing. For each width we use (2S)d different
foldings. For each possible (out of 2d) selection of
different zero or half tile-width shifts we consider a
partition into sub-cubes according to the width. For
each partition, we derive Sd foldings, where each folding
includes a subset of the sub-cubes that are spaced S sub-
cubes apart. Each folding then maps all included sub-
cubes into a range cube of the respective width. The
range cube of each folding is then partitioned uniformly
into Bd sub-cubes (bins), and each bin corresponds to
a predicate. We thus use O((2BS)d log R) predicates.

7.3 k-medians We next consider summaries that for
any set of points ν1, . . . , νk, obtain an approximate
value of F (ν1, . . . , νk) =

∑
i w(i)mink

j=1 ||fi − νj ||.
This is relevant for computing the k-median defined as

8For each such “norm” it is interesting to consider the median
arg minν

∑
i
w(i)||fi − ν||. Since our summaries can obtain an

estimate for any ν, they can be used to estimate this median.

arg minν1,...,νk
F (ν1, . . . , νk). We can extend our tech-

niques to perform this task with polynomial dependence
on k. Due to space limitation we defer the details to the
full version. The k-median problem on data streams
had been considered by Charikar, O’Callaghan, Panig-
raphy [3] who gave a polylogarithmic storage algorithm
with linear dependence on k for any metric space. The
problem on sliding windows was considered by [2] and
left open the existence of polylogarithmic space algo-
rithms. Our result is not directly comparable: On one
hand, spatially-decaying aggregation generalizes slid-
ing windows on data streams and non-decaying data
streams. On the other hand, we solve a more restricted
problem and address only fixed values of d.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. of the 2002 ACM Symp. on Principles of
Database Systems (PODS 2002). ACM, 2002.

[2] B. Babcock, M. Datar, R. Motwani, and
L. O’Callaghan. Maintaining variance and k-medians
in data stream windows. In Proc. of the 2002 ACM
Symp. on Principles of Database Systems (PODS
2003). ACM, 2003.

[3] M. Charikar, L. O’Callaghan, and R. Panigraphy.
Better streaming algorithms for clustering problems.
In Proc. 35th Annual ACM Symposium on Theory of
Computing, pages 30–39. ACM, 2003.

[4] E. Cohen. Size-estimation framework with applications
to transitive closure and reachability. J. Comput.
System Sci., 55:441–453, 1997.

[5] E. Cohen and H. Kaplan. Spatially-decaying aggrega-
tion over a network: model and algorithms. In prepa-
ration, 2003.

[6] E. Cohen and M. Strauss. Maintaining time-decaying
stream aggregates. In Proc. of the 2003 ACM Symp. on
Principles of Database Systems (PODS 2003). ACM,
2003.

[7] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows.
SIAM J. Comput., 31(6):1794–1813, 2002.

[8] P. B. Gibbons and S. Tirthapura. Distributed streams
algorithms for sliding windows. In Proc. of the 14th
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 63–72. ACM, 2002.

[9] I. A. Gradshteyn and I. M. Ryzhik. Tables of Integrals,
Series, and products. Academic Press, San Diego, CA,
6 edition, 2000.

[10] A. Papoulis. Probability, Random Variables, and
Stochastic Processes. McGraw-Hill Book Company,
New York, second edition, 1984.

