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Abstract

The Fibonacci heap was devised to provide an especially efficient implementation of Dijk-

stra’s shortest path algorithm. Although asyptotically efficient, it is not as fast in practice as

other heap implementations. Expanding on ideas of Høyer, we describe three heap implementa-

tions (two versions of thin heaps and one of thick heaps) that have the same amortized efficiency

as Fibonacci heaps but need less space and promise better practical performance. As part of

our development, we fill in a gap in Høyer’s analysis.
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1 Introduction

A heap (or priority queue) is an abstract data structure consisting of a set of items, each with a

real-valued key, supporting the following operations:

create: Return a new, empty heap.

insert(x, h): Return the heap formed by inserting item x, with predefined key, into heap h.

find-min(h): Return an item in heap h of minimum key.

delete-min(h): Return the heap formed by deleting the item find-min(h) from h.

meld(h1, h2): Return the heap formed by taking the union of the item-disjoint heaps h1 and h2.

decrease-key(d, x, h): Decrease the key of item x in heap h by subtracting the non-negative real

number d.

delete(x, h): Return the heap formed by deleting item x from heap h.

We assume that any given item is in at most one heap at a time and that the operations are

allowed to destructively modify their input heaps. In stating bounds, we denote by n the number

of items in the heap or heaps input to an operation. We assume a random-access machine [2]

or pointer machine [5, 32] model of computation, so that a memory access takes constant time,

and we restrict our attention to data structures that use binary comparisons of keys to make

decisions. For heap implementations in a hierarchical memory model (in which memory accesses

do not necessarily take constant time), see for example various recent papers on so-called cache-

oblivious data structures [3, 8, 9]. For heap implementations that use bit manipulation of keys, see

[19, 35]. Finally, we assume that in the case of the operations decrease-key(d, x, h) and delete(x,

h), the position of item x in heap h is known. Without this assumption, if there are arbitrary

meld operations a disjoint set data structure must be maintained to keep track of the partition of

items into heaps. The paper [22] addresses the effect on the problem of removing this assumption.

Finally, we are interested primarily in amortized efficiency [34], although we make some comments

about worst-case efficiency.

Since one can sort by doing n insertions into an initially empty heap followed by n delete-

min operations, either insert or delete must have an Ω(log n) amortized running time. Many

implementations of heaps [6, 7, 12, 17, 18, 36] achieve a worst-case or amortized O(log n) time

bound for all the heap operations. One such structure of particular note is the binomial queue of

Vuillemin [36], which represents heaps as collections of item-disjoint heap-ordered trees. Binomial
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queues support all the heap operations in O(log n) worst-case time and are quite efficient in practice

[10]. Fredman and Tarjan [18] invented a relaxation of binomial queues called Fibonacci heaps that

support create, insert, find-min, meld, and decrease-key in O(1) amortized time, and delete-min and

delete in O(log n) amortized time. Fibonacci heaps give an efficient implementation of Dijkstra’s

algorithm and speed up algorithms for undirected and directed minimum spanning trees [18, 20].

Although theoretically efficient in the amortized sense, Fibonacci heaps are not efficient in the

worst case, nor are they as fast or as space-efficient in practice as other heap implementations. A

straightforward implementation of Fibonacci heaps needs four pointers per node: a parent pointer,

left and right sibling pointers, and a first (leftmost) child pointer. One would prefer an imple-

mentation needing only three (or less) pointers per node. More recent work has addressed these

issues, among others. Fredman, et al. [17] introduced pairing heaps, a self-adjusting variant of

Fibonacci heaps. Pairing heaps support all the heap operations in O(log n) amortized time. They

were conjectured to support decrease-key in O(1) amortized time, but recent work shows that the

amortized time of decrease key is O(22
√

log log n) [27] but Ω(log log n) [15]. Nevertheless, pairing

heaps perform quite well in practice [29]. Driscoll et al. [12] proposed two forms of relaxed heaps,

which like Fibonacci heaps are variants of binomial heaps. Both data structures give a processor-

efficient parallel implementation of Dijkstra’s shortest path algorithm. Rank relaxed heaps have

the same amortized time bounds as Fibonacci heaps. Run relaxed heaps support create, find-min,

and decrease-key in O(1) worst-case time, and delete-min, delete, and meld in O(log n) worst-case

time. Brodal [7], improving on earlier work [6], obtained a (very complicated) heap implementation

with the same worst-case time bounds as run relaxed heaps but with the worst-case time bound

for meld improved to O(1). Elmasry improved the bound on comparisons for Fibonacci heaps by a

constant factor [13] and examined [14] versions of pairing heaps, skew heaps [28], and skew-pairing

heaps [16] that use multiway linking instead of binary linking. Fat heaps [23] are an earlier data

structure that uses a similar idea. Takaoka [30, 31] used another form of multiway linking in his

2-3 heaps [31] and trinomial heaps [30].

Although the structures mentioned above improve on Fibonacci heaps in various ways, only

pairing heaps are as simple conceptually as Fibonacci heaps, but pairing heaps are less-efficient

theoretically. Our goal in this paper is to explore variants of Fibonacci heaps that use less space

and are likely to be more efficient in practice, but that retain the theoretical amortized performance
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of Fiobonacci heaps. Interesting work along these lines was done by Peterson [26] and Høyer [21].

They both represented a heap by a half-ordered binary tree instead of a heap-ordered forest. The

two representations are equivalent; the standard mapping [24] between rooted forests and binary

trees maps heap order to half order, as Høyer notes. Peterson’s structure is based on half-ordered

AVL-trees [1]; Høyer investigates structures related to half-ordered red-black trees [4, 25, 33]. The

simplest of these structures are Høyer’s one-step heaps.

Our development proceeds independently of Peterson’s and Høyer’s. We start with the obser-

vation that the extra pointer in Fibonacci heaps is the parent pointer, which is needed because of

the way decrease-key operations work. A decrease-key operation can cause a node and its subtree

to be cut from its parent, and can further result in a sequence of cascading cuts, in which each of

a sequence of ancestors is cut from its parent. We consider implementing decrease-key in a way

that takes advantage of the ordering of siblings in a heap-ordered tree representing a heap: instead

of proceeding from a child to its parent, we proceed from a node to its left sibling, proceeding to

its parent only if it has no left sibling. With such a method we need parent pointers only for first

children, saving a pointer per node. In Section 2 we describe thin heaps, a variant of Fibonacci

heaps that use this idea. An early version of this section appeared in a technical report [23]. In

Section 3 we describe an alternative implementation of decrease-key for thin heaps that does only

one cut per decrease-key (but has an extra subcase). We also describe a related structure, thick

heaps. Thick heaps turn out to be isomorphic to Høyer’s one-step heaps by the heap-ordered forest

to half-ordered tree mapping. In the process of our development we fill in a gap in Høyer’s analysis;

we also find that Høyer allows more flexibility in the definition of his structure than can in fact

occur. We conclude in Section 4 with some variants and extensions. We intend our work to provide

not only new variants of Høyer’s structure but additional insights and a clear, concise exposition.

2 Thin heaps

We define binomial trees inductively, as follows. A binomial tree of rank 0 is a single node. For

any positive integer k, a binomial tree of rank k consists of two binomial trees of rank k − 1 linked

so that the root of one becomes the first child of the root of the other. (See Figure 1.) A binomial

tree of rank k contains exactly 2k nodes, and its root has exactly k children.

Every tree in a thin heap is a binomial tree, each of whose nodes may be missing its first child
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Figure 1: Binomial Trees.

and the subtree rooted there. More formally, a thin tree is an ordered tree, each of whose nodes

has a non-negative integer rank , with the following three properties.

(1) The children of a node with k children have ranks k − 1, k − 2, . . ., 0, from first to last.

(2) A node with k children has rank k or k + 1. We call the node normal in the former case and

thin in the latter case.

(3) The root is normal.

The rank of a thin tree is the rank of its root. A thin tree all of whose nodes are normal is

a binomial tree, and vice-versa. Analogously to binomial trees, if we link two thin trees of equal

rank by making the root of one tree the new first child of the root of the other and adding one to

the rank of the single remaining root, then the result is a thin tree. Thin trees have the same size

bound as the trees in Fibonacci heaps, given by the following lemma, whose proof is more direct

than that for Fibonacci heaps.

Lemma 1. A node with k children in a thin tree has at least Fk+1 ≥ φk descendants, including

itself, where Fk is the kth Fibonacci number, defined by F0 = 1, F1 = 1, Fk = Fk−2 + Fk−1 for

k ≥ 2, and φ = (1 +
√

5)/2 is the golden ratio.

Proof. The inequality Fk+1 ≥ φk is well-known [24]. We prove by induction on k that a node with

k children in a thin tree has at least Fk+1 descendants. This is obvious for k = 0, 1. Suppose k ≥ 2,

let x be a node with k children in a thin tree, and consider the subtree rooted at x, which is itself a

thin tree. Cutting the link between x and its first child and decreasing the rank of x by one results

in two thin trees, one whose root x has k − 1 children and the other whose root has k − 1 or k − 2

children, by (1) and (2). By the induction hypothesis, the original number of descendants of x is

at least Fk + min{Fk, Fk−1} ≥ Fk+1.

A heap-ordered tree is a rooted tree each of whose nodes has a real-valued key, satisfying heap

order: no child has key smaller than that of its parent. A thin heap is a set of node-disjoint
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heap-ordered thin trees whose nodes are the heap items. Maintenance of the following data allows

efficient performance of the heap operations on thin heaps:

(a) a singly-linked circular list of the tree roots, with a root of minimum key first;

(b) for each node, a doubly-linked list of its children;

(c) for each first child, its parent;

(d) for each node, its rank.

To maintain this data, an integer (the rank) and three pointers per node suffice: one to the

first child; one to the right sibling, or next root if the node is a root; one to the left sibling, or

parent if the node is a first child. This representation supports constant-time linking of two thin

trees given their roots, as well as constant-time tests of whether a node is thin, whether a node is

a root, and whether a node is a first child: a node is thin iff its rank is two more than that of its

first child, a root iff its left sibling/parent pointer is null, and a first child iff it is the first child of

the node indicated by its left sibling/parent pointer. One could also mark nodes as being thin or

not; although this is redundant information, storing it explicitly will speed up testing for thinness.

We perform create, insert , find-min, meld , delete-min, and delete on thin heaps exactly as on

Fibonacci heaps. Specifically, to perform create, return a null pointer. To perform insert(x, h),

make a new thin tree with the single node x, and insert x into the root list of h, in second or

first position depending on whether its key is larger than that of the old first root or not. Return

the modified heap. To perform find-min(h), return the first root of h. To perform meld(h1, h2),

combine the root lists of h1 and h2 into a single list, whose first root is the first root of h1 or the

first root of h2, whichever has smaller key, breaking a tie arbitrarily. Return the new heap.

To perform delete-min(h), remove from h the first root of h, say x, and make each child of x

normal if it is not by reducing its rank by one. Then combine the list of children of x with the list

of roots of h other than x, and repeat the following linking step until it no longer applies: link two

trees of equal rank by making the root of larger key the new first child of the root of smaller key

(breaking a tie arbitrarily) and increasing the rank of the new root by one. Once there are no two

trees of equal rank, form a list of the remaining roots, choosing a root of minimum key to be the

first on the list. Return the modified heap. One can find links to perform in O(1) time per link by

using a temporary array indexed by rank to store tree roots. See [18]. Alternatively, one can avoid

the use of random-access memory and implement delete-min (and all the other operations) on a
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pointer machine by having each node of rank k point to a global rank node for rank k, and having

the rank node for k point to the rank nodes for k + 1 and k − 1. During a delete-min each rank

node points to a root of the corresponding rank, or to null.

Perform a delete(x, h) as delete-min(decrease-key(∞, x, h)).

The implementation of the last heap operation, decrease-key, differs from its implementation

on Fibonacci heaps. A decrease-key on a Fibonacci heap can cause a sequence of cascading cuts, in

which successive links along a path of ancestors are cut. A decrease-key on a thin tree can cause a

sequence of cuts, but only of first children; between such cuts, rank reduction can occur, and the

sequence can end with a restructuring step in which a child becomes a sibling of its parent.

Specifically, to perform decrease-key(d, x, h) on a thin heap, begin by subtracting d from the

key of x. If x is a first child whose key remains no less than that of its parent, the decrease-key is

done. Otherwise, if x is a root, complete the decrease-key by making x the first root of h if its key

is now smaller than the previous minimum. If, on the other hand, x is not a root, let y be the left

sibling of x, or the parent if it is a first child. Cut the link between x and its parent by removing

x from the list of children containing it, making it a new tree root. Make x normal if it is not, and

add x to the list of roots, in first or second position depending on whether its key is smallest or

not.

Cutting at x may violate (1), (2), or (3) at y. Repeat the following repair step, which repairs

the violation at y but may create a new violation at the left sibling or parent of y, until there is no

new violation. (See Figure 2.) Then return the modified heap.

Repair Step

Case 1. Violation of (1): node y has rank two greater than that of its next sibling, or has rank 1

and no next sibling.

Case 1a. Node y is thin. Reduce the rank of y by one, repairing the violation and making y

normal. Replace y by its left sibling, or by its parent if it is a first child, and check for

a violation at the new y.

Case 1b. Node y is normal. Remove the first child of y, say w, and insert w after y in the

list of children containing y. This makes node y thin but repairs the violation without

creating a new violation.
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Case 2. Violation of (2): node y has rank three greater than that of its first child, or has rank

two and no children. Decrease the rank of y by two, repairing the violation and making y

normal. Let z be the left sibling of y, or its parent if y is a first child. Remove y from the

list of children containing it, and add y to the root list in the second position. Replace y by

z and check for a violation at the new y.

Case 3. Violation of (3): node y is a thin root. Make y normal by decreasing its rank by one.

Case 1a

r

Case 2

Case 1b

r r

r−1

r
y

y v

r−2

r−2

y

r−2

r−1

v
r−2

r−2r−1

vwy

r−3

r−2

y
(root)

r−3

r−2
w

y v

Figure 2: Nonroot repair step for thin heaps. In Cases 1a and 1b, node v is the right sibling (if it

exists) of node y.

It is straightforward to verify that decrease-key produces a valid thin heap. Note that a node

loses at most one child during a decrease-key , which means that a root, which is initially normal,

can become thin and violate (3), but can never violate (2). This means that node y in Case 2 is

always a nonroot.
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The amortized analysis of thin heaps is virtually the same as the analysis of Fibonacci heaps,

with thin nodes in thin heaps taking the place of marked nodes in Fibonacci heaps [18]. We use

the potential function technique [34]. Assign to each possible collection of node-disjoint thin heaps

a non-negative integer potential equal to the number of trees plus twice the number of thin nodes.

Define the amortized time of a heap operation to be its actual time plus the net increase in potential

caused by the operation. Then the total actual time of an arbitrary sequence of heap operations,

starting with no heaps, is at most the sum of the amortized times of the operations [34].

Both the actual and the amortized times of find-min, insert, and meld are O(1): an insertion

increases the number of trees and hence the potential by one; the other operations do not change

the potential. If we charge one unit of time for each linking step, the amortized time of a delete-min

operation is at most a constant times the maximum node rank, because each linking step reduces

the potential by one and the remaining time spent in delete-min is bounded by a constant times

the maximum rank. By Lemma 1, the maximum rank in an n-node thin heap is at most logφ n,

which means that the amortized time of delete-min is O(log n).

To analyze decrease-key, let us charge one unit of time for each repair step. Each repair step

except the last makes a thin node normal and may create a new tree, for a potential drop of one.

The initial cut and the last repair step take O(1) time and increase the potential by at most three

(at most one for the cut and two for the repair step), resulting in an overall amortized time of

O(1) for decrease-key. The amortized time of delete on an n-node heap is O(log n), since it is a

decrease-key followed by a delete-min.

Thus we obtain the following theorem:

Theorem 2. Beginning with no thin heaps and performing an arbitrary sequence of heap operations,

if we charge each delete-min and delete on an n-node heap O(log n) amortized time and each other

operation O(1) amortized time, then the total time is at most the total amortized time.

The worst-case time of a decrease-key operation on an n-node thin heap is O(log n), because

each successive violation occurs at a node of higher rank. In contrast, a single decrease-key on an

n-node Fibonacci heap can take Ω(n) time, as one can show by modifying the solution to exercise

20.4-1 on page 496 of [11].
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3 From thin heaps to thick heaps

As on a Fibonacci heap, a decrease-key operation on a thin heap can in the worst case take more

than one cut. By modifying Case 2 of decrease-key , however, we can avoid all but the first cut, the

one at the node whose key decreases. Specifically, we replace Case 2 by the following variant (see

Figure 3):

Case 2′. Violation of (2): node y has rank three greater than that of its first child, or has rank

two and no children. Let w be the right sibling of node y.

Case 2′a. Node w is normal. Increase the rank of w by one, decrease the rank of y by one,

and swap y and w in the list of children containing them. This makes both y and w thin

and repairs the violation without creating a new violation.

Case 2′b. Node w is thin. Let z be the left sibling of y, or its parent if y has no left sibling.

If y has key no less than that of w, remove y from the list of children containing it and

make it the new first child of w; decrease the rank of y by two.

If, on the other hand, y has key less than that of w, remove w from the list of

children and make it the new first child of y; decrease the ranks of both w and y by one.

(In either case, both y and w become normal.) Finally, replace y by z and check for a

violation at the new y.

As with the original implementation, it is straightforward to verify that this implementation of

decrease-key produces a valid thin heap. The amortized analysis is similar, except that a smaller

potential function suffices. Specifically, we define the potential of a collection of thin heaps to be

the number of trees plus the number of thin nodes. The only non-terminating cases in decrease-key ,

Case 1a and Case 2′b, reduce the potential by one and two respectively. The rest of the analysis is

the same as in Section 2. Thus we obtain Theorem 2 for thin heaps with the alternative decrease-key

implementation.

We can also try to improve thin heaps by reducing the number of children of each node. We

can in fact do this by replacing property (2) with the following alternative:

(2′) A node with k children has rank k or k−1. We call the node normal in the first case and thick

in the latter case.
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Figure 3: Alternative repair step for thin heaps. The outcome in Case 2′b depends on which of y

and w has smaller key.
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We call a tree with node ranks that satisfy (1), (2′), and (3) a thick tree. For thick trees the

following improvement of Lemma 1 holds:

Lemma 3. A node with k children in a thick tree has at least 2k descendants including itself.

Proof. We prove the lemma by induction on k. The lemma is clearly true for k = 0. Suppose k ≥ 1,

let x be a node with k children in a thick tree, and consider the subtree rooted at x, which is itself

a thick tree. Cutting the link between x and its first child and decreasing the rank of x by one

results in two thick trees, one whose root x has k − 1 children and the other whose root, say y, has

k or k− 1 children. If y has k children we obtain a smaller thick tree whose root has k− 1 children

by cutting the link between y and its first child. Thus the original subtree rooted at x consists of

at least two disjoint trees with roots having k − 1 children, plus possibly additional nodes. By the

induction hypothesis the original subtree rooted at x contains at least 2k−1 + 2k−1 = 2k nodes.

A thick heap is a set of node-disjoint heap-ordered thick trees whose nodes are the heap items.

We can implement all the heap operations except decrease-key on thick heaps exactly as on thin

heaps. The implementation of decrease-key is similar to the alternative implementation for thin

heaps, with the analogs of Cases 1a and 1b, as well as those of Cases 2′a and 2′b, switched.

Specifically, perform decrease-key on a thick heap exactly as on a thin heap, but use the following

repair step (see Figure 4):

Repair Step for Thick Heaps

Case 1′′. Violation of (1): node y has rank two greater than that of its next sibling, or has rank

1 and no next sibling.

Case 1′′a. Node y is normal. Reduce the rank of y by one, repairing the violation and

making y thick. Replace y by its left sibling, or by its parent if it is a first child, and

check for a violation at the new y.

Case 1′′b. Node y is thick. Remove the first child of y, say w, decrease the rank of y by one,

and insert w before y in the list of children containing y. This leaves y thick and repairs

the violation without creating a new violation.

Case 2′′. Violation of (2′): node y has rank two greater than that of its first child, or has rank one

and no children. Decrease the rank of y by one, making it normal. If y is a root, the repair
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is complete. Otherwise, let w be the right sibling of y and apply the appropriate one of the

following two cases:

Case 2′′a. Node w is thick. Increase the rank of w by one and swap y and w in the list of

children containing them. This makes both y and w normal and repairs the violation

without creating a new violation.

Case 2′′b. Node w is normal. Let z be the left sibling of y, or its parent if it has no left

sibling. If y has key no less than that of w, remove y from the list of children containing

it and make it a new first child of w. (Node w becomes thick.) If, on the other hand, y

has key less than that of w, remove w from the list of children containing it and make

it a new first child of y. (Node y becomes thick.) Finally, replace y by z and check for

a violation at the new y.

The correctness of decrease-key is easy to establish. Note that a violation of (3) can occur only

if the violating root violates (2′) as well. Thus the analog of Case (3) is part of case 2′′. More

interesting is the amortized analysis of thick heaps. In thin heaps, thin nodes are bad in that they

can cause expensive decrease-key operations. In thick heaps, normal (nonroot) nodes are bad in the

same way; thick nodes are good. Our potential function for thick heaps is twice the number of trees

plus the number of nonroot normal nodes. With this definition of the potential, the amortized time

of a link (in a delete-min) is zero if we charge it an actual time of one; the link reduces the number

of trees by one (decreases the potential by two) but increases the number of nonroot normal nodes

by one (increases the potential by one). Each of the non-terminating cases in decrease-key (1′′a

and 2′′b) converts a previously normal node to thick, decreasing the potential by one; hence the

amortized time to apply the case is zero if we charge it an actual time of one. The remainder of

the analysis is exactly as for thin heaps, and thus we obtain Theorem 2 for thick heaps. As with

thin heaps, the worst-case time of a decrease-key on an n-node thick heap is O(log n), because each

successive repair step is on a node of higher rank.

As noted in Section 1, thick heaps are isomorphic to Høyer’s one-step heaps by the heap-ordered-

forest to half-ordered-tree mapping. In addition to this representational difference, our presentation

differs from Høyer’s in three ways. First, Høyer relaxes property (2′) to allow a node to have any

rank no greater than its number of children. In fact, all the operations create only normal and

thick nodes; Høyer’s relaxation adds no generality. Second, Høyer adds to his data structure what
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key.
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he calls a tree list , which has the effect of reducing the worst-case time for a delete-min from Θ(n)

to O(log n), while increasing the worst-case time for a meld from O(1) to Θ(log n). The tree list

is a variant of an idea introduced by Driscoll et al. [12] and is related to the idea of a redudant

counter, used later by Brodal [6, 7] and Kaplan et al. [22]. We discuss the use of a tree list briefly in

Section 4. Finally, Høyer’s amortized analysis of one-step heaps has a lacuna; he does not account

for the creation of nonroot normal nodes by links. The analysis above fills this gap.

The implementation of decrease-key on thick heaps is analogous to the alternative implemen-

tation on thin heaps. It is natural to consider an implementation analogous to the original one on

thin heaps. We obtain such an implementation by making the following substitution for case 2′′:

Case 2′′′. Violation of (2′): node y has rank two greater than that of its first child, or has rank

two and no children. Decrease the rank of y by one, making y normal. If y is not a root,

proceed exactly as in Case 2, removing y from its list of children, adding it to the root list,

and checking for a new violation at the old left sibling of y, or at its old parent if it had no

left sibling.

Perhaps surprisingly, thick heaps with this implementation of decrease-key are asymptotically

less efficient. To obtain an expensive sequence of operations, do 2k + 1 insertions followed by one

delete-min, resulting in a thick heap that is a Bk tree with all nodes normal. Then repeat the

following sequence of operations any number of times: do k decrease-key operations on the deepest

nodes of rank zero, followed by a single insert and a single delete-min. This sequence takes Θ(k2)

time and reproduces a Bk tree with all nodes normal. The amortized cost per decrease-key is

Θ(k) = Θ(log n).

4 Variants and Extentions

All the variants and extensions discussed here apply equally to both versions of thin heaps and to

thick heaps, and also to other heap structures presented by Høyer and similar structures as well.

We can reduce the number of pointers per node from three to two at the cost of a small constant

factor in running time. Brown [10], pp. 306-308 describes how to do this for binomial queues; the

same idea works for thin or thick heaps. For example, each node can point to its right sibling, or

next root if it is a root; and to its parent if it is a first child, or to the first child of its left sibling
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if it is not a root and not a first child, or to the first child of its previous root if it is a root. (See

Figure 5.) With this representation, there is no easy way to test whether a node is a root. To deal

with this, we use an extra bit to mark the roots.

Figure 5: Two pointer-per-node representation of a heap. The heap consists of three binomial trees,

a B3, a B1, and a B2. This representation is essentially the reverse of Brown’s “structure K”.

Gabow et al. [20] gave an application of heaps to the problem of finding minimum spanning

trees in directed graphs that requires an additional heap operation, that of moving a node x, along

with all of its descendants, from one heap to another. This operation is only allowed if x does

not have minimum key in its heap. Gabow et al. [20] describe how to perform this operation on a

Fibonacci heap in O(1) amortized time; their method also works on thin or thick heaps. A move

is just like a decrease-key operation, except that the tree with root x is moved to the new heap.

On thin and thick heaps the worst-case time of delete-min is O(n). We can reduce this to

O(log n) without affecting the amortized time bounds of any of the operations, as follows. Keep

track of the number of trees and the number of nodes in each heap. Whenever the number of

trees in an n-node heap exceeds 2 logφ n for thin heaps or 2 log n for thick heaps, do a cleanup by

repeatedly linking trees of equal rank until there is at most one tree per rank. Such a cleanup takes

zero amortized time, because the O(log n) actual time is paid for by the drop in potential caused

by the links. If cleanups are done, the amortized time of all the heap operations remains the same;

the worst-case times are O(log n) for all operations except find-min, which remains O(1).
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A refinement of the cleanup idea preserves the O(log n) worst-case time for delete-min, meld ,

and decrease-key , while reducing the worst-case time for insert back to O(1). This is Høyer’s tree

list method: maintain, for each heap, a list of pairs of trees of equal rank, plus at most one “odd”

tree per rank. When adding a new tree by an insert or a decrease-key , link two paired trees, if there

are any. This guarantees that the number of trees is O(log n). To obtain an O(1) amortized time

bound for meld , one must add O(log n) to the potential of a n-node heap; this pays for combining

the tree lists during the meld of two heaps. A drawback of this method is that each heap requires an

array of trees, one per rank; there is no obvious way to implement this idea on a pointer machine.
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