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ABSTRACT
A Bottom-k sketch is a summary of a set of items with nonnega-
tive weights that supports approximate query processing. A sketch
is obtained by associating with each item in a ground set an in-
dependent random rank drawn from a probability distribution that
depends on the weight of the item and including the k items with
smallest rank value.

Bottom-k sketches are an alternative to k-mins sketches [9], which
consist of the k minimum ranked items in k independent rank as-
signments, and of min-hash [5] sketches, where hash functions
replace random rank assignments. Sketches support approximate
aggregations, including weight and selectivity of a subpopulation.
Coordinated sketches of multiple subsets over the same ground
set support subset-relation queries such as Jaccard similarity or
the weight of the union. All-distances sketches are applicable for
datasets where items lie in some metric space such as data streams
(time) or networks. These sketches compactly encode the respec-
tive plain sketches of all neighborhoods of a location. These sketches
support queries posed over time windows or neighborhoods and
time/spatially decaying aggregates.

An important advantage of bottom-k sketches, established in
a line of recent work, is much tighter estimators for several ba-
sic aggregates. To materialize this benefit, we must adapt tra-
ditional k-mins applications to use bottom-k sketches. We pro-
pose all-distances bottom-k sketches and develop and analyze data
structures that incrementally construct bottom-k sketches and all-
distances bottom-k sketches.

Another advantage of bottom-k sketches is that when the data is
represented explicitly, they can be obtained much more efficiently
than k-mins sketches. We show that k-mins sketches can be de-
rived from respective bottom-k sketches, which enables the use of
bottom-k sketches with off-the-shelf k-mins estimators. (In fact,
we obtain tighter estimators since each bottom-k sketch is a distri-
bution over k-mins sketches).
Categories and Subject Descriptors: E.2 Data Storage Represen-
tations; G.3: probabilistic algorithms; E.1 Data Structures
General Terms: Algorithms, Measurement, Performance, Theory
Keywords: all-distances sketches, data streams, bottom-k sketches
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1. INTRODUCTION
Sketching or sampling is an extremely useful tool for storage and

queries on massive data sets. Sketches allow us to process approxi-
mate queries on the original data sets while occupying a fraction of
the storage space required for the full data set and using a fraction
of the computation resources required for the exact answer. The
value of a sketching method depends on the efficiency of its imple-
mentation, its versatility in terms of the operations supported, and
the quality of the estimates obtained.

Bottom-k and k-mins sketches are summaries of a set of items
with positive weights. k-mins sketches (The min-rank method [9])
are obtained by assigning independent random ranks to items where
the distribution used for each item depends on the weight of the
item. We retain the minimum rank of an item in the set. This
is repeated with k independent rank assignments for some integer
k ≥ 1 and we obtain a k-vector of independent minimum ranks
and k independent weighted samples. Bottom-k sketches are an
emerging alternative to k-mins sketches. Bottom-k sketches are
constructed using a single rank assignment. The bottom-k sketch
of a subset contains the k items with smallest ranks in the subset.
Bottom-k sketches were mentioned, without analysis, in [9, 22].

The sketch supports approximate query processing over the orig-
inal data set and subpopulations of this dataset. Basic aggrega-
tions include the weight of the set or the selectivity of a subpop-
ulation (subset) of the set and derived aggregations include ap-
proximate quantiles, average weight, and variance and higher mo-
ments [10]. The sketch of a set is a weighted random sample.
When used with exponentially distributed ranks, bottom-k sketches
are a weighted sample without replacement (WS-sketches) whereas
k-mins sketches are a weighted sample with replacement (WSR-
sketches).

In applications where there are multiple subsets that are defined
over the same ground set of items, a sketch is produced for each
subset. The sketches of different subsets are “coordinated,” sharing
the same rank assignments to the items of the ground set, and sup-
port queries over subset relations, such as the weight of the union
or intersection, their weight ratio, and resemblance or Jaccard sim-
ilarity coefficient. A useful property of “coordinated” sketches is
that the sketch of a union can be computed from the sketches of
the subsets. Therefore, given sketches of subsets, we can perform
aggregations on unions of subsets.

Example of an application with multiple subsets is when items
are associated with nodes of a directed graph and we compute k-
mins sketches for the reachability set of each node. These sketches
can be computed in Õ(km) time (and storage) whereas an explicit
representation of the subsets requires O(mn) time [9]. Applica-
tions include maintaining a sketch of influencing events for each
process in a computer system [15], when a process A affects pro-
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cess B, the new sketch of B becomes the sketch of the union; and
using the property that the sketches reduce the approximate sum
problem to that of finding a minimum, k-mins sketches were used
for aggregations on gossip networks [21].

Other applications with multiple subsets where sketches support
fast computation of subset relations are near-duplicate detection for
Web pages [5] (a sketch is produced for each Web page), study of
similar Web sites [2], mining of association rules [22] from mar-
ket basket data, and eliminating redundant network traffic [23]. In
these applications, a variant termed min-hash sketches substitutes
random rank assignments with random hash functions (families of
min-wise independent hash functions or ε-min-wise functions [5,
6]). With random hash functions, the rank assignment of an item
depends on the item identifier, and it has the property that all copies
of the same item across different subsets obtain the same rank,
without additional book keeping or coordination between all oc-
currences of each item. This allows for efficient aggregations over
distinct occurrences (see [19]) and supports subset-relation queries.

Bottom-k sketches encode more information than k-mins sketches.
(Intuitively, sampling without replacement is more informative than
sampling with replacement.) A line of recent work showed that
bottom-k sketches are superior to k-mins sketches in terms of es-
timate quality. Estimators for subpopulation weight using priority
ranks (PRI-sketches) were provided in [1, 24] and estimators for
general families of rank functions were provided in [11, 12]. The
improvement in estimate quality is significant on weight distribu-
tions and values of k, such that items are likely to be sampled mul-
tiple times in a k-sample drawn with replacement, such as skewed
Zipf-like distributions that often arise in practice. For subset re-
lations such as the weight of the intersection or union, bottom-k
sketches improve over k-mins sketches even when weights are uni-
form [11, 12]: Carefully designed estimators are applied to the
combined bottom-k sketches, which reveal more members of the
union and intersection than two corresponding k-mins sketches.

Our contributions
We facilitate the use of bottom-k sketches by developing and ana-
lyzing data structures that construct these sketches. Our results al-
low applications that use k-mins sketches to use the superior bottom-
k sketches. An inherent difference we had to tackle is that k-mins
sketches are obtained using k independent rank functions, which
allows for k independent copies of the same simple data structure
to be used whereas bottom-k entries are dependent.

Sketches are constructed incrementally as items are processed.
The sketch is manipulated through two basic operations: A test op-
eration which tests if the sketch has to be updated, and an update
operation which inserts the new item if the sketch indeed has to be
updated. We make this distinction since test operations can be per-
formed much more efficiently than update operations. The number
of update operations depends on the order in which items are pro-
cessed and on the weight distribution of the data. The number of
test operations is typically larger than the number of updates. The
extent in which it is larger, however, highly depends on the appli-
cation.

We distinguish between applications with explicit representa-
tion [3, 2, 22, 23] or implicit representation [9, 13, 15] of the data.
In applications with an explicit representation, item-subset pairs are
provided explicitly. The dataset could be distributed, presented as a
data stream, or in external memory, but the pairs are explicitly pro-
vided and are all processed to produce the sketches. In applications
with implicit representation, the subsets are specified as neighbor-
hoods in a graph or some metric space. With explicit representa-
tion, the number of test operations is much larger than the number

of update operations. In Section 3 we analyze the number of test
and update operations and how it depends on the way the data is
presented and on the distribution of the item weights.

All-distances sketches are a generalization of plain sketches that
are used when the underlying dataset has items associated with lo-
cations in some metric space, and subsets are specified by neighbor-
hoods of a location. All-distances k-mins sketches were used for
data streams (where aggregation is over windows of elapsed time to
the present time) [14], the Euclidean plane (where we are presented
with a query point and distance) [13, 20], a graph (the query is a
node and distance) [9], or distributed “spatial aggregation” over a
network [9, 13]. An all-distances sketch is a compact encoding of
the plain sketches of all neighborhoods of a certain location q. For
a given distance d, the sketch for the d-neighborhood of the loca-
tion can be constructed from the all-distances sketch. All-distances
sketches also support time-decaying and spatially-decaying aggre-
gates using arbitrary decay functions [14, 13]. In Section 4 we
define bottom-k all-distances sketches and present efficient data
structures for maintaining both all-distances k-mins sketches and
all-distances bottom-k sketches. We analyze the number of oper-
ations required to construct all-distances sketches under different
arrival orders of the items.

In Section 6 we provide a method to derive WSR-sketches (k-
mins with exponential ranks) from WS-sketches (bottom-k with ex-
ponential ranks). This mimicking process provides a general method
of applying estimators designed for WSR-sketches to WS-sketches.
This process enables us to use bottom-k sketches in applications
(such as those with explicit representation of the data) where they
can be obtained much more efficiently than k-mins sketches and
use readily available WSR-sketches estimators. In fact, since each
WS-sketch corresponds to a distribution over WSR-sketches, we
obtain estimators with smaller variance than the underlying WSR-
sketches estimators. This reduction also shows that WS-sketches
are strictly superior to WSR-sketches. We provide examples of ap-
plications of the mimicking process.

2. PRELIMINARIES
Let I be a ground set of items, where item i ∈ I has weight

w(i) ≥ 0. A rank assignment maps each item i to a random rank
r(i). The ranks of items are drawn independently using a family of
distributions fw (w ≥ 0), where the rank of an item with weight
w(i) is drawn according to fw(i).

We use random rank assignments to obtain sketches of subsets as
follows. For a subset J of items and a rank assignment r we define
B1(r, J) = arg minj∈J r(j), to be the item in J with smallest
rank according to r. For i ∈ {1, . . . , |J |}, we define Bi(r, J) to
be the item in J with ith smallest rank according to r and ri(J) ≡
r(Bi(r, J)) to be the ith smallest rank value in J according to r.

Definition 2.1. k-mins sketches are produced from k independent
rank assignments, r(1), . . . , r(k). The k-mins sketch of a subset J

is the k-vector (r
(1)
1 (J), r

(2)
1 (J), . . . , r

(k)
1 (J)).

To support some queries, we may need to include with each entry
an identifier or some other attributes such as the weight of the items
B1(r

(j), J) (j = 1, . . . , k).

Definition 2.2. Bottom-k sketches are produced from a single rank
assignment r. The bottom-k sketch s(r, J) of the subset J is a list of
entries (ri(J), w(Bi(r, J))) for i = 1, . . . , k. The list is ordered
by rank, from smallest to largest.

The bottom-k sketch of a subset is therefore a list with up to k
entries. The size of the list is the minimum of k and the number
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of items in the subset. For a single item i (a subset of size 1), the
bottom-k sketch is a list with a single entry (r1(J), w(B1(r, J))).
To support queries, in addition to the weight, entries in the sketch
may include an identifier and attribute values of items Bi(r, J) (i =
1, . . . , k).

Bottom-k and k-mins sketches have the following useful prop-
erty: The sketch of a union of two sets can be generated from the
sketches of the two sets. Let J and H be two subsets. For any
rank assignment r, r1(J ∪ H) = min{r1(J), r1(H)}. There-
fore, for k-mins sketches we have (r

(1)
1 (J ∪ H), . . . , r

(k)
1 (J ∪

H)) = (min{r(1)
1 (J), r

(1)
1 (H)}, . . . , min{r(k)

1 (J), r
(k)
1 (H)}) .

For bottom-k sketches, the k smallest ranks in the union J ∪H are
contained in the union of the sets of the k-smallest ranks in each of
J and H . That is, s(r, J ∪H) ⊂ s(r, J)∪ s(r,H). Therefore, the
bottom-k sketch of J ∪ H can be computed by taking the entries
with k smallest ranks in the combined sketches of J and H .

To support sketch-based set operations and queries, we need to
store the rank values of items. To perform sketch-based queries
on a single subset, however, we do not need all rank values. With
bottom-k sketches, it is sufficient to store the (k + 1)st smallest
rank value, rk+1: We (re)draw random rank values for each item i
in the sketch using fw(i) conditioned on the rank being smaller than
rk+1. This is just like (re)drawing a random bottom-k sketch from
the probability subspace where the minimum rank of items not in
the sketch is equal to rk+1 and all items in the sketch have ranks
smaller than rk+1.

Beyond reduced storage, this observation often enables us to ob-
tain tighter estimators. The unbiased rank conditioning estimator
for subpopulation weight [11, 12] is applied to the value rk+1 and
the weights of the items in the (unordered) sketch. In some cases,
however, it is easier to derive estimator that is applied to the or-
dered sketch with rank values (the mimicking process in Section 6
is applied to an ordered bottom-k sketch). In this case, instead of
applying an estimator to the original sketch and rank values, we
take its expectation over re-drawn sketches or its average over mul-
tiple draws (if the expectation is hard to compute). This results
in an estimator with at most the same variance and often smaller
variance. Correctness follows from a basic property of variances:

Lemma 2.3. Let a1 and a2 be two random variables over Ω. Sup-
pose there is a partition of Ω such that the value of a2 on each part
is equal to the expectation of a1 on that part. Then VAR(a2) ≤
VAR(a1).

The choice of which family of random rank functions to use mat-
ters only when items are weighted. Otherwise, sketches produced
using one rank function can be transformed to any other rank func-
tion.1

WS-sketches and WSR-sketches. A convenient choice for the rank
function fw is an exponential distribution with parameter w [9].
The density function of this distribution is fw(x) = we

−wx, and
its cumulative distribution function is Fw(x) = 1 − e

−wx. We
refer to k-mins sketches with these ranks as WSR-sketches and to
bottom-k sketches with these ranks as WS-sketches.

The minimum rank r1(J) of an item in a subset J ⊂ I is ex-
ponentially distributed with parameter w(J) =

P

i∈J
w(i). This

follows from the fact that the minimum of random variables each
drawn from an exponential distribution is also an exponentially dis-
tributed random variable with parameter equal to the sum of the
parameters of these distributions. The item with the minimum rank

1We assume to simplify the analysis that all random values are dis-
tinct.

B1(r, J) is a weighted random sample from J : The probability that
an item i ∈ J is the minimum rank item is w(i)/w(J).

Therefore we can conclude that a WSR-sketch of size k of a
subset J is a weighted random sample of size k, drawn with re-
placement from J (hence the term WSR-sketches). The ranks of
these items is a set of k independent samples from an exponen-
tial distribution with parameter w(J). Hence, if the weight w(J)
is provided and we do not use subset-relation queries rank values
are redundant. If w(J) is not provided, the rank values can be
used in unbiased estimators for both w(J) and the inverse weight
1/w(J) [9].2

On the other hand, the items in a WS-sketch are samples drawn
without replacement from J :

Lemma 2.4. A WS-sketch of size k of a subset J is a sample of size
k drawn without replacement from J .

PROOF. The probability that item i ∈ J is B1(r, J) is w(i)/w(J).
Conditioned on the bottom-j ranked items in J being i1, . . . , ij ,
Bj+1(r, J) is i ∈ J \ {i1, . . . , ij} with probability w(i)/(w(J)−
Pj

h=1 w(ih)).

If the weight w(J) is provided and we do not use the sketches
for subset-relation queries it suffices to store the unordered set of
items in s(r, J). This information allows us to draw at random
a bottom-k sketch from the probability subspace that contains all
sketches where the set of the bottom-k ranked items is s(r, J).
PRI-sketches. With priority ranks [18, 1] the rank value of an item
with weight w is selected uniformly at random from [0, 1/w]. This
is the equivalent to choosing rank value r/w, where r ∈ U [0, 1]
is selected from the uniform distribution on the interval [0, 1]. It is
well known that if r ∈ U [0, 1] then − ln(r)/w is an exponential
random variable with parameter w. Therefore exponential ranks
correspond to using rank values − ln r/w where r ∈ U [0, 1].
Choice of a rank function. The appeal of PRI-sketches is esti-
mators that (nearly) minimizes

P

i∈I
VAR(w̃(i)) [24]. More pre-

cisely, Szegedy showed that the sum of per-item variances using
PRI-sketches of size k is no larger than the smallest sum of vari-
ances attainable by an estimator that uses sketches with average
size k − 1. 3

WS-sketches offer several other distinct advantages. First, they
support unbiased estimators for selectivity (subpopulation fraction);
Second, the estimators for selectivity and for subpopulation weight
when the weight of the set is known (as in data streams), feature
negative covariances between different items. Therefore, selectiv-
ity and weight estimators for larger subpopulations are much tighter
than with the known estimator for PRI-sketches [12].

Unbiased subpopulation weight estimators exist for bottom-k
sketches obtained using arbitrary rank functions [12]. These es-
timators are useful when we want to obtain good estimators with
respect to multiple weight functions (eg, for IP flows datasets we
are interested in count of distinct flows and total bandwidth).

3. MAINTAINING SKETCHES
Sketches are produced for each subset of interest in a collection

of subsets over a ground set of items. The algorithms for con-
structing sketches are application-dependent, but on a high level,
2Estimators for the inverse-weight are useful for obtaining unbi-
ased estimates for quantities where the weight appears in the de-
nominator. These include weight ratio of two different subsets, set
resemblance of two subsets, and average weight of a subset.
3Szegedy’s proof applies only to estimators based on adjusted
weight assignments. It also does not apply to estimators on the
weight of subpopulations.
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sketches are constructed using an incremental process, where a cur-
rent sketch is maintained for each subset of interest, and the sketch
is updated when a new information (item, or item and rank value)
is presented.

We identify two operations on the current sketch, a test opera-
tion that checks whether incorporating the new information causes
a modification of the current sketch and an update operation, which
is a modification of the current sketch. We make the distinction
between test and update because as a general rule, applications re-
quire more tests than updates, and in some applications, updates
are costlier than tests.

We consider the time bounds of constructing k-mins and bottom-
k sketches for two representative classes of applications. We show
that when subsets are represented explicitly (each occurrence of an
item in a subset is specified), it is much more efficient to construct
bottom-k sketches. This point for uniform weights, was already
noted in [4, 22]. We review it and extend the analysis for weighted
items. For implicit representation of the subsets, via a graph, we
show that the time bounds for generating the two types of sketches
are comparable.

3.1 Explicit representation of subsets
Examples of applications with explicit specification are [3, 2, 22,

23]. Among these are market-basket data, Web duplicate analysis
and more.

To construct a k-mins sketch for a subset, we maintain a current
sketch (m1, . . . , mk) of the smallest rank value observed so far
for each of the k rank functions (along with attributes of the items
with smallest rank). Initially, mj = +∞ for (j = 1, . . . , k). When
an item i is processed we compute r(1)(i), r(2)(i), . . . , r(k)(i). We
then update the sketch so that mj ← min{mj , r

(j)(i)}. Therefore,
the processing time for each occurrence of an item in a subset is
Θ(k) (it is Θ(k) time for both the test and update operations).

To construct a bottom-k sketch, we use a current sketch that con-
tains the k smallest rank values observed so far m1 < m2 · · · <
mk as a sorted list. When an item i is processed, we compute r(i),
which is compared to mk (test operation). If r(i) < mk, the rank
value mk (and corresponding item) is deleted from the list and r(i)
is inserted (update operation). A test operation takes O(1) time and
an update takes O(log k) time.

Therefore, the time bound for generating a sketch for a sub-
set of size s is O(sk) for a k-mins sketch and O(s log k) for a
bottom-k sketch. We next show that for uniform weights the ex-
pected number of update operations while constructing a bottom-k
sketch of a set of size s is O(k log s). This implies a better bound
of O(s + k log s log k) on the expected running time to generate a
bottom-k sketch.

Lemma 3.1. If items have uniform weights then the expected num-
ber of updates to a bottom-k sketch of a set of size s is ≤ k ln s.

PROOF. A presented item triggers an update of the current sketch
if and only if it has one of the bottom-k ranks among items pre-
sented so far. If j items were presented so far, the probability of
that happening is min{1, k/j}. Summing over all positions in the
presentation order we obtain that the expected number of updates
is at most

Ps

j=1 k/j ≈ k ln s.

For weighted items we consider two cases. First is the case
where items are presented in an order determined by a random per-
mutation.

Lemma 3.2. If items are presented in random order then the ex-
pected number of updates to a bottom-k sketch of a set of size s is
≤ k ln s.

PROOF. Fix the rank assignment. The probability that the jth
item in the presentation order has one of the kth smallest ranks of
the first j items is min{1, k/j}. Continue as in the proof of Lemma
3.1.

From Lemma 3.2 it follows that if items are weighted and are
presented in random order, the bottom-k sketch is constructed in
O(s + k log k log s) expected time.

To bound the number of updates when items are presented in an
arbitrary order we need the rank assignment to define a “close” to
random permutation of the items if weights are, say, within a factor
of two from each other. This will hold if the rank functions satisfy
the following property.

Definition 3.3. A family of rank functions is c-moderate if for any
w > 0, and 0 < w′ ≤ 2w, there is probability at least 1

c
such

that an item drawn according to fw′ has a larger rank than an item
drawn according to fw .

If the family of rank functions is c-moderate for some constant
c and the weights of all items are within a factor of two from each
other then the probability that a rank of a particular item, say i, is
among the k-smallest ranks is at most c k

j
, where j is the number of

items.4 One can check that exponential ranks are 3-moderate and
priority ranks are 4-moderate.

Lemma 3.4. If items are weighted and presented in arbitrary (worst-
case) order, and the family of rank functions is c-moderate for some
constant c, then the expected number of updates of the bottom-k
sketch of a set of size s is O(k log(maxi w(i)/ mini w(i)) log s).

PROOF. Consider a partition of the items into

dlog(max
i

w(i)/ min
i

w(i))e

groups according to the weight, so that items of weight

[2i min
i

w(i), 2i+1 min
i

w(i)]

are in the same group. We bound the number of updates within
one group. From the fact that the rank assignment is c-moderate
it follows that the probability of the jth presented item in a group
to be within the bottom-k items presented so far from its group is
at most ck/j, and hence, the expected number of updates within a
group is at most ck ln s. The statement of the lemma follows by
summing over all groups.

From Lemma 3.4 it follows that if weighted items are presented
in arbitrary order, and the set of rank functions is c-moderate for
some constant c, then we build the bottom-k sketch in
O(s + k log(maxi w(i)/ mini w(i)) log s log k) expected time.

3.2 Graph representation of subsets
In some applications, items and locations are embedded in a

graph or a metric space and subsets correspond to all items in a
certain neighborhood or the reachability set of a node [9, 13, 15].
The computation of the sketches is performed concurrently for all
subsets, with items and ranks being propagated in a controlled way
such that an item is tested for a subset only if it is “fairly likely” to
occur in the sketch of the subset and the number of test operations
is much smaller than with an explicit representation.
4To see that, replace item i by bcc duplicates, consider a random
permutation of the new set of items and the probability that one of
the duplicates is among the bottom-k. This probability is smaller
than c k

j
and larger than the probability that item i is among the

bottom k.
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We review the computation of sketches for reachability sets of
nodes in a graph [9]. In this application each node is an item.
Each node computes the sketch of its reachability set. Rank values
(and associated information) are propagating using a graph traver-
sal method such as breadth-first or depth-first search. When a rank
value does not result in an update at a node, the propagation of the
rank value is halted at that node. Therefore, the number of test op-
erations is at most (m/n) times the number of update operations,
where m is the number of edges and n the number of nodes.

For k-mins sketches, each item and a rank value associated with
it are propagated separately (therefore, k truncated traversals are
performed for each item). If, within each rank assignment, items
are propagated in increasing rank order, then the combined num-
ber of updates for all subsets is n. Therefore, the total number of
updates, for all k rank assignments and subsets is O(kn) and the
number of tests (and total time) is O(km) [9].

Bottom-k sketches are computed by propagating each item and
its associated rank using a truncated graph traversal (note that in
contrast to k-mins sketches, one traversal is performed for each
item). The current sketch at a node is updated when an item arrives
and its rank value is smaller than the kth smallest current rank at the
node. The traversal is halted at nodes where the item did not result
in an update of the current sketch. When items are presented in
increasing rank order, then items can only be appended to bottom-k
sketches and it is never necessary to remove an item. Therefore, the
total number of updates is O(kn) and the total number of tests (and
total time) is O(km). These bounds are the same as the bounds
obtained for k-mins sketches.

Arbitrary order. When items are not presented ordered by their
ranks [13], the number of update operations increases. Similarly to
Lemma 3.1 and Lemma 3.4 we prove that

Lemma 3.5. Suppose we maintain the minimum rank in a subset
of size s. Then

• if items have uniform weights and presented in a fixed but
arbitrary order or if items are weighted and presented in a
random order, the expected number of updates to the mini-
mum rank is ≤ ln s.

• if items are weighted and presented in a fixed but arbitrary
order and the family of rank functions is c-moderate, the ex-
pected number of updates is
O(log(maxi w(i)/ mini w(i)) log s).

It follows that the total number of updates when computing k-
mins sketches of all reachability sets is O(kn log n) for uniform
weights and weighted items presented in random order and
O(kn log(maxi w(i)/ mini w(i)) log n) for weighted items pre-
sented in arbitrary order. We perform a test or update in O(1) time
and the number of tests is at most m/n times the number of up-
dates. Therefore, the total time is m/n times the number of up-
dates.

The number of updates for bottom-k sketches is given in Lem-
mas 3.1,3.2, and 3.4. Each update takes O(log k) time, and a test
takes O(1) time. The number of tests is m/n times the number
of updates. Therefore, the total time is O(log k + m/n) times the
number of updates given in each of these lemmas.

4. ALL-DISTANCES SKETCHES
An all-distances sketch is an encoding of plain sketches of all

neighborhoods of a certain location q. For a given distance d, the
sketch for the d-neighborhood of the location can be retrieved from
the all-distances sketch.

We review k-mins all-distances sketches and introduce bottom-
k all-distances sketches. We consider the size of the all-distances
sketches, its construction time, and the time it takes to retrieve the
sketch of a particular distance. We consider incremental construc-
tion, where current all-distances sketches are maintained and up-
dated upon the arrival of new information (item, distance, rank).
The operations we consider are test that determines if the current
sketch needs to be modified when new information arrives, update
of the current sketch, and a distance query issued to the final sketch.
The distance query retrieves from the all-distances sketch the plain
sketch for the neighborhood of the location q specified by the query
distance.

We show that the expected size of the representation of the all-
distances bottom-k sketch matches that of the k-mins sketch. When
subsets are represented explicitly, the computation time of the all-
distances bottom-k sketches is about factor of k faster than that of
the all-distances k-mins sketches. When subsets are represented
via a graph, the construction times are comparable.

All-distances k-mins sketches: We review all-distances k-mins
sketches. Consider a single rank assignment. An MV/D list of a
location q (Minimum Value/Distance List) encodes the minimum
rank in any neighborhood (query distance) of q in a compact way.
It is a list of triples where each triple contains an item e, its rank,
and its distance from q. An item e is in the MV/D list of q if there
is no item with smaller rank closer to q. The MV/D list is sorted in
increasing distance and decreasing rank order. For a query distance
d, the smallest rank of an item in the MV/D list of q of distance at
most d from q is the item of smallest rank in the subset of items in
the d-neighborhood of q. The expected size of the list depends on
the rank function and on the weight distribution of the items.

Lemma 4.1. The size of an MV/D list of n weighted items from a
location q is bounded as follows:

1. When weights are uniform, the expected size is O(log n) [9].

2. If weights are arbitrary but items are assigned to locations
at random then the expected size over assignments of items
to locations, and over rank assignments is O(log n).

3. If items have arbitrary weights and placed in arbitrary lo-
cations and ranks are assigned using a c-moderate family of
rank functions for some constant c, then the expected size is
O(log(maxi w(i)/ mini w(i)) log n).

PROOF. Fix the rank assignment. Order the locations in increas-
ing distance from q. The assignment of items to location defines a
random permutation of the ranks. Therefore, the probability that
the rank value in location j is smaller than the rank values in all
closer locations (and therefore the item occurs on the MV/D list) is
1/j. By summing over all positions, we obtain that the expected
size of the MV/D list is

Pn

j=1 1/j ≈ ln n.

If the relation of the weights and the locations of items is ar-
bitrary, the expected size of the MV/D lists depends on the loca-
tion of items: If item weights are decreasing with distance then the
expected size of the MV/D list is smaller and if item weights are
increasing with distances, then the expected size is larger (can be
linear in the worst case). The worst-case size of the MV/D list,
however, can be bounded by the weight distribution of the items.
The proof of the following lemma is similar to that of Lemma 3.4.

Lemma 4.2. If items have arbitrary weights and placed in arbi-
trary locations and ranks are assigned using a c-moderate family
of rank functions for some constant c, the expected size of the MV/D
list is O(log(maxi w(i)/ mini w(i)) log n).
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PROOF. Let w1 = mini w(i). Consider a partition of the items
so that all items with weight in [w12

i, w12
i+1) are in group i,

for i = 0, blog2(maxi w(i)/ mini w(i))c. By the property of c-
moderate rank functions, the expected number of items from each
group that appear on the MV/D list is logarithmic in its size. There-
fore, the total expected number of items on the MV/D list is bounded
by

2 ln n(1 + ln(max
i

w(i)/ min
i

w(i))) .

The MV/D list can be constructed incrementally: When pre-
sented with a new item, its rank, and distance, the list is updated
only if the new item has smaller rank than all items on the list that
have the same or smaller distance. If items are presented in order of
increasing rank, (or increasing (distance,rank) in lexicographic or-
der), then items are never removed from the list during updates [9].
Other orders of presenting items were analyzed in [13]. We sum-
marize and extend these results in the following lemma.

Lemma 4.3. Assume that we construct an MV/D list of a location
q, and there are n weighted items. Then,

1. When items are presented in random order and there are uni-
form weights, the expected number of updates is O(log2 n)
[13].

2. If items are assigned to locations at random, the expected
number of updates to the MV/D list, over assignments of
items to locations, rank assignments, and presentation order
of items is O(log2 n).

3. If ranks are assigned using a c-moderate family of rank func-
tions for some constant c, then the expected number of up-
dates to the MV/D list, over rank assignments, and presenta-
tion order of items is O(log(maxi w(i)/ mini w(i)) log2 n) .

All-distances bottom-k sketches: An all-distances bottom-k
sketch encodes the bottom-k items in a neighborhood defined by
any query distance from a location q. The all-distances bottom-k
sketch is a data structure that generalizes a single MV/D list. An
item i, its rank value r(i), and distance d(i) are represented in the
sketch if and only if the item has one of the bottom-k ranks in the
d(i)-neighborhood of the location.

It is convenient to think of the all-distances bottom-k sketch as
a list of lists arranged by increasing distance. For each distance
d where the set of bottom-k items within distance d changes, we
record the list of bottom-k items within this distance. This list is
valid until the next distance for which there is a change.

The list of lists representation, however, is not storage efficient,
since all but one item are repeated in two consecutive lists. This
sketch can be more compactly represented if we only record the
changes to the list. In Section 5 we discuss compact representations
for an all-distances bottom-k sketch that require storage propor-
tional to the number of distances where the bottom-k set changes.

We bound the number of distances for which the bottom-k list
changes. These bounds imply that the storage for an all-distances
bottom-k sketch is comparable to the storage for k MV/D lists in
an all-distances k-mins sketch.

Lemma 4.4. Consider an all-distances bottom-k sketch for n items
of a location q. We bound the expected number of distances from q
where the set of bottom-k items changes.

1. For uniform weights, the expected number of distances is
O(k log n).

2. For a set of items with arbitrary weights that are randomly
assigned to locations the expected number of distances (over
assignments of items to locations, and over rank assignments)
is O(k log n).

3. If items have arbitrary weights and placed in arbitrary lo-
cations and ranks are assigned using a c-moderate family of
rank functions for some constant c, the expected number of
distances is O(k log(maxi w(i)/ mini w(i)) log n).

PROOF. Order the items by increasing distance from q. Let d(j)
be the distance of the jth item in this order from q. The jth item
is in the bottom-k set of items within distance d(j) from q if it is
one of the k-smallest items among the j closest items to q. Since
weights are uniform, the ranks define a random permutation of the
items which is independent of the their distances to q. So the jth
item is among the smallest k with probability min{k/j, 1}. Sum-
ming over all items we obtain that the expected number of items
which are among the kth smallest items within their distance from
q is at most

X

j

k

j
≈ k ln n

As in Lemma 3.1, and 3.4 for weighted items we can show the
following.

Lemma 4.5. 1. For a set of items with arbitrary weights and
a set of locations, the expected number of distances from a
location q where the set of bottom-k items changes, over as-
signments of items to locations, and over rank assignments
is O(k log n).

2. If items have arbitrary weights and placed in arbitrary lo-
cations and ranks are assigned using a c-moderate family of
rank functions for some constant c, the expected number of
distances from a location q where the set of bottom-k items
changes is O(k log(maxi w(i)/ mini w(i)) log n).

If items are presented in order of increasing distances from q
we can obtain a bottom-k list for the current distance, from the
bottom-k list of the previous distance by doing an insertion and
a deletion. Similarly, if items arrive sorted by rank value, then the
number of updates to the bottom-k sketch is proportional to the size
(number of breakpoint distances) of the sketch. We can also bound
the number of updates performed if items arrive in a random order.

Lemma 4.6. Consider the expected number of updates that is per-
formed in an incremental construction of an all-distances bottom-k
sketch of a location q when items are presented in a random order
(the order is a random permutation)

1. When item weights are uniform, the expected number of up-
dates is O(k log2 n).

2. When items have arbitrary weights, the expected number of
updates over assignments of weights to locations, over rank
assignments, and arrival order, is O(k log2 n).

3. When items have arbitrary weights, and the family of rank
functions is c-moderate, the expectation over rank assign-
ments and arrival orders of the number of updates is
O(k log(maxi w(i)/ mini w(i)) log2 n).

PROOF. Consider uniform weights (Part 1). An item would re-
sult in an update if at the time it is presented, it has one of the
k smallest ranks amongst items already presented that are at least
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as close to q. Consider the jth closest item to q. It has proba-
bility 1/j of having the ith rank among all items that are at least
as close to the location. We now calculate the probability that
the item results in an update given that it has the ith rank. Con-
sider the i − 1 items that have smaller ranks and are at least as
close. The probability that at most k − 1 of them are presented
before our item is that of being in one of the first k positions in
a random permutation of i items, which is min{k/i, 1}. We ob-
tain that the expected number of updates for the jth closest item is
Pj

i=1 min{k/i, 1}/j ≤ (1/j)
Pj

i=1 k/i ≈ (k/j) ln j. summing
over all n items, we obtain that the expected number of updates is

≤
n

X

j=1

(k/j) ln j ≤ k ln2 n .

The proof of Part 2 and Part 3 follows by an argument as for
Lemma 3.1, and Lemma 3.4.

As in the case of a single sketch in Section 3 the number of test
operations depends on the representation of the subsets. If this rep-
resentation is explicit then since k-mins sketch consists of k in-
dependent MV/D lists the number of tests required for a k-mins
sketch is by a factor of k larger than for a bottom-k sketch. In a
graph representation, the number of tests is at most (m/n) times
the number of updates for both kinds of sketches. In Section 5 we
discuss representations of sketches that allow efficient implemen-
tations of test and update operations.

5. REPRESENTATIONS OF SKETCHES
We consider possible representations for k-mins sketches and

bottom-k sketches. We are interested in bounding the size of the
data structure that encodes the sketch, and the time required to in-
crementally construct the sketch when items are presented in sorted
or other orders. For all-distances sketches we also consider the time
it takes to find the sketch for a particular query distance.

Representation of an MV/D list: An efficient data structure for an
MV/D list construction and querying was not explicitly discussed
in earlier works. If items arrive sorted, by increasing rank value
or increasing distance, we represent an MV/D list sorted by in-
creasing distances (and decreasing ranks), as a binary search tree.
With this representation we can support distance queries in ex-
pected O(log M) time, where M is the expected size of the list.

If items do not arrive in a sorted order, we represent the cur-
rent MV/D list as a dynamic binary search tree. Test operations
then require expected O(log M) time. An update is performed in
O(log M) expected amortized time: Each item requires an inser-
tion to the tree if it has the smallest rank within its distance from
the query location, and possibly a series of deletions of items which
are further away from the query location and of larger rank. Since
each item can be deleted at most once, we can charge each deletion
to the respective insertion.

The all-distances k-mins sketches consists of k independent MV/D
lists, one for each rank assignment. Therefore, for any query dis-
tance, we can obtain the min-rank sketch over the items that lie
within that distance in O(k log M) time, by searching indepen-
dently in each of the k lists. The query time can be improved to
O(k+log M) using fractional cascading [7]. Using fractional cas-
cading, we perform a binary search only on one list and use links
between items to find the position in the next list is O(1) time.

Another approach to obtain a O(k + log M) bound per query is
to use an interval tree or a segment tree (See e.g. [16]) to represent
the kM intervals defined by consecutive points on the same list.
We can then do stabbing queries to find the k intervals of a query

distance, which correspond to the min-rank in that neighborhood in
each of the k rank functions.

Constructing and querying the bottom-k sketch: A natural rep-
resentation for a single bottom-k sketch is a list of the items sorted
by increasing ranks represented as a search tree, as mentioned in
Section 3. However for all-distances bottom-k sketch one needs
to be more careful so that the size of the representation would be
proportional to the number of distances where the list changes as
mentioned in Section 4. We suggest possible efficient representa-
tions for an all-distances bottom-k sketch.

Ordered insertion of items: When items are presented in an
order related to their distances or ranks, we can use the following
data structures.

If items are presented in order of increasing distances from q
we can obtain a bottom-k list for the current distance, from the
bottom-k list of the previous distance by doing an insertion and a
deletion. If we use a persistent list [17] to represented each bottom-
k list, then we can update a bottom-k list to obtain the next one in
O(k) time while consuming only O(1) space. We can reduce the
update time to O(log k) by using persistent search trees instead of
persistent lists, the space required per operation is still O(1).

We can also construct the bottom-k all-distances sketch if items
are presented in order of increasing ranks so that it takes space pro-
portional to the number of updates. We construct the first list after
the k items with smallest ranks are presented. This list is associ-
ated with the distance of the item among these k which is furthest
from the query location q. When the next item arrives, say item
j, if item j is closer to q than any of the already seen items, we
construct a new bottom k list L. Assume that the previous list L′

which we constructed was associated with distance d > d(j). We
construct L from L′ by deleting from L′ the item at distance d from
q and adding item j instead. The distance associated with L is the
distance of the furthest item in L from q. Using persistent lists or
persistent search trees to represent the bottom-k lists we construct
all lists in space which is proportional to the number of updates.
The update time is O(k) with persistent lists and O(log k) with
persistent trees (we keep the items in each list sorted by increasing
distances from q).

Insertion of items in arbitrary order: To support arbitrary in-
sertion order, we can think of the all-distances bottom-k sketch as
a set of intervals on a line. Each item corresponds to an interval
over the range of distances in which it is a bottom-k item. Let D be
the current set of intervals. A query is a point stabbing query, the
bottom-k list consists of the set of intervals in D intersecting the
query point.

When a new item z arrives at distance d we should figure out
if the sketch should be updated. Let I1 = [d1, d2) be the interval
spanning distance d with the largest rank. We should update the
sketch if the rank of z is smaller than the rank of the item corre-
sponding to I1. We update the sketch as follows. We replace I1

with I ′
1 = [d1, d). Then we find the interval I2 = [d2, d3) with

largest rank at distance d2. If the rank of I2 is larger than the rank
of z we delete I2, and we continue in the same way finding for
i > 2 the interval Ii of largest rank at distance di, and deleting Ii if
the rank of the corresponding item is larger than the rank of z. Let
dj be the right endpoint of the last interval which we deleted. We
insert the interval [d, dj) corresponding to item z. Since each inter-
val is inserted and deleted once the total number of insertions and
deletions of intervals is proportional to the number of intervals. An
interval I may split many time. However, each split of I is associ-
ated with a newly inserted interval immediately following I . Since
each inserted interval may cause at most one split the total number
of splits is also proportional to the total number of intervals.
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To support these interval operations, we can maintain the inter-
vals either in a dynamic interval tree or in a dynamic segment tree
[8]. Let M denote the number of intervals in the tree. A dynamic
interval tree takes O(M) space, and using it we can report the k
intervals stabbed at a particular distance in O(log(M) log(k) +
k) time. We can update an interval tree in O(log(M) log(k))
amortized time. A dynamic segment tree requires O(M log M)
space and supports queries in O(log(M) + k) time and updates in
O(log(M) log(k)) amortized time.

By a standard modification to an interval tree in which we store
at every secondary node the item of maximum rank in its subtree we
can find the interval of maximum rank stabbed by a query distance
in O(log(M) log(k)) time. Similarly, by maintaining at each node
of a segment tree the maximum rank interval that it contains we
can find the maximum rank interval stabbed by a query distance
in O(log(M)) time. This allows us to test if the bottom-k sketch
changes when a new item arrives in polylogarithmic time. (This
is in contrast with O(k log(n)) time for k independent MV/D lists
that form a k-mins all distances sketch.)

6. MIMICKED SAMPLING WITH REPLACE-
MENT

We present a randomized procedure that uses a WS-sketch (weighted
sampling without replacement until k items are obtained) to emu-
late weighted sampling with replacement. Using this process, we
can derive a size-k WSR-sketch from a size-k WS-sketch. By mim-
icking we mean that the probability to obtain a particular sketch by
first obtaining a WS-sketch and then applying the procedure is the
same as when directly obtaining a WSR-sketch.

The process is described as generating a sequence of items (and
rank values). The process is randomized and therefore every WS-
sketch b corresponds to a distribution M(b) over such sequences.
If we stop the process after k samples, we obtain a WSR-sketch.
We can use a different stopping rule and continue until the (k +
1) distinct item is sampled. We refer to a weighted sample with
replacement with this stopping rule as a WSRD-sketch. The WSRD-
sketch contains the same set of items as the WS-sketch but also has
a count for each item that corresponds to the number of times the
item is sampled until the process is stopped.

Mimicking allows us to apply an estimator ν designed for WSR-
sketches or WSRD-sketches to WS-sketches. A WS-sketch estimator
can be obtained by drawing a mimicked sketch s ∈M(b) using this
process and returning ν(s). This estimator is equivalent to using
the estimator ν on WSR or WSRD-sketches.

The estimator ν′(b) = E(ν(s)|s ∈ M(b)) has lower variance
(a consequence of Lemma 2.3). It can be approximated 5 by taking
average of ν(s) over multiple draws of s ∈M(b).

Lower variance estimator (another consequence of Lemma 2.3)
is obtained by considering the subspace L(b) of WS-sketches with
the same subset of items as b and if w(J) is not provided and
the same rank value rk+1. L(b) is an equivalence relation that
defines a partition of the sample space. The estimator ν ′′(b) =
E(ν′(b′)|b′ ∈ L(b)) can be approximated by averaging ν(b′) over
multiple draws of b′ ∈ L(b).

We first provide a mimicking process when the total weight w(I)
of the ground set is known. Let i1, . . . , ik be the items in the WS-
sketch b, ordered by increasing ranks. The first item in the mim-
icked sample is i1. We then select i1 with probability w(i1)/w(I)
and i2 otherwise, and repeat this until we have k samples or until
i2 is selected. In phase j, after outputting at least one sample of
each of i1, . . . , ij , we select i` with probability w(i`)/w(I) (for
5This “approximation” preserves unbiasedness.

1 ≤ ` ≤ j) and ij+1 otherwise. Each phase can be simulated ef-
ficiently using the geometric distribution to determine the number
of samples until the “next” item from b is sampled and the multi-
nomial distribution to determine the number of times each item is
sampled.

We now provide a mimicking procedure when w(I) is not known.
The procedure is applied to an ordered sketch where all items have
rank values.

We use properties of the exponential distribution and the ranks
of the items in the WS-sketch. We first establish few lemmas about
the distribution of the differences between the ranks of the items in
a WS-sketch. The first lemma follows from the memoryless nature
of the exponential distribution.

Lemma 6.1. Consider a subspace of rank assignments where the
order of the items according to rank values is fixed, say i1, . . . , in,
and the rank values of the first j items are fixed. Let r(ij+1) be
the random variable that is the (j + 1)st smallest rank. The condi-
tional distribution of r(ij+1)−r(ij) is exponential with parameter
Pn

h=j+1 w(ih).

PROOF. Since rank values of different items are independent,
the probability density for the event: items i1, . . . , ij have the bottom-
j ranks with the values r(i1) < · · · < r(ij) and items ij+1, . . . , in
having the next n − j smallest ranks in that order is the product
p1p2 where

p1 = w(i1) exp(−r(i1)w(i1))w(i2) exp(−r(i2)w(i2))

· · ·w(ij) exp(−r(ij)w(ij))

(probability density that the items i1, . . . , ij have the rank values
r(i1), . . . , r(ij)) and

p2 =

Z

∞

r(ij )

w(ij+1) exp(−xj+1w(ij+1))

·

Z

∞

xj+1

w(ij+2) exp(−xj+2w(ij+2))

· · ·

Z

∞

xn−1

w(in) exp(−xnw(in))dxn · · · dxj+2dxj+1 .

is the probability density that items ij+1, . . . , in have rank values
in that order and all larger than r(ij). Performing the integration,
we obtain that

p2 = p3 exp(−r(ij)
n

X

h=j+1

w(ih)) ,

where

p3 =
w(ij+1)

Pn

h=j+1 w(ih)

w(ij+2)
Pn

h=j+2 w(ih)
· · · w(in−1)

w(in−1) + w(in)
.

(p3 is the probability that the rank values of items ij+1, . . . , in
are in that order and exp(−r(ij)(

Pn

h=j+1 w(ih))) is the proba-
bility that the minimum rank among ij+1, . . . , in is at least r(ij).)
Therefore, the probability density is

p1p2 = p1p3 exp

0

@−r(ij)
n

X

h=j+1

w(ih)

1

A . (1)

We next calculate the probability density for the following event:
items i1, . . . , in have increasing ranks, the bottom-j ranks are equal
to r(i1) < . . . < r(ij), and the (j +1)st rank has value r(ij)+ d.
It follows from independence of the rank values that the probability
density is
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p1w(ij+1) exp (−(r(ij) + d)w(ij+1))
Z

∞

r(ij )+d

w(ij+2) exp (−xj+2w(ij+2))

· · ·

Z

∞

xn−1

w(in) exp(−xnw(in))dxn · · · dxj+2

= p1w(ij+1) exp (−(r(ij) + d)w(ij+1))

exp

0

@

−(r(ij) + d)
n

X

h=j+2

w(ih)

1

A

w(ij+2)
P

n
h=j+2 w(ih)

· · ·

w(in−1)

w(in−1) + w(in)

= p1

0

@

n
X

h=j+1

w(ih)

1

A exp

0

@

−(r(ij) + d)

n
X

h=j+1

w(ih)

1

A

w(ij+1)
P

n
h=j+1 w(ih)

w(ij+2)
P

n
h=j+2 w(ih)

· · ·

w(in−1)

w(in−1) + w(in)

= p1p3 exp

0

@

−r(ij)

n
X

h=j+1

w(ih)

1

A

0

@

n
X

h=j+1

w(ih)

1

A exp

0

@

−d

n
X

h=j+1

w(ih)

1

A . (2)

The density function of the conditional probability distribution
in the statement of the lemma equals to the ratio of Eq. (2) and
Eq. (1). This ratio is

0

@

n
X

h=j+1

w(ih)

1

A exp

0

@−d
n

X

h=j+1

w(ih)

1

A ,

which is the probability density of the exponential distribution with
parameter

Pn

h=j+1 w(ih) at d.

In the following corollary we relax the conditioning of Lemma 6.1
to what we need.

Corollary 6.2. Consider a probability subspace of rank assign-
ments such that the permutation of the first k items as determined
by the rank order is fixed to be i1, i2, i3, . . . , ik. Let r(i1) <
r(i2) < · · · < r(ik) < r(ik+1) be the random variables that
are the smallest k + 1 ranks. The rank differences r(i1), r(i2) −
r(i1), . . . , r(ik+1)−r(ik) are independent random variables, where
r(ij)−r(ij−1) (j = 1, . . . , k+1) is exponentially distributed with
parameter w(J)−Pj−1

`=1 w(i`). (we formally define r(i0) ≡ 0.)

The WS-sketch provides the k-prefix of the random permutation
defined by the ranks. By Corollary 6.2 the rank differences r(ij)−
r(ij−1) are k independent samples where the jth sample is from an
exponential distribution with parameter w(J) −Pj−1

h=1 w(ih), for
i = 1, . . . , k. The following lemma (which states a basic property
of the exponential distribution) allows us to transform an exponen-
tially distributed random variable drawn with parameter A − a,
where A ≥ 0 is not known but a (A ≥ a ≥ 0) is known, to an
exponentially distributed random variable with parameter A.

Lemma 6.3. Let a be an exponentially distributed random vari-
able with parameter A. Let r be an independent exponentially dis-
tributed random variable with parameter B−A (for some B > A).
Then the random variable min{a, r} is exponentially distributed
with parameter B.

Let i1, . . . , ik be the items in the sketch in increasing rank order.

• The first entry of the mimicked sketch contains the item i1
with rank value r(i1).

• Suppose items i1, . . . , ij (j ≥ 1) are drawn (at least once).
The next entry is obtained as follows:

– We draw exponentially distributed values r′
j,` from dis-

tributions with parameters w(i`) (for 1 ≤ ` < j).

– If min1≤`<j r′j,i > r(ij)− r(ij−1) we use the item ij
with rank value r(ij)− r(ij−1).

– Otherwise, let m = arg min1≤`<j r′j,` and use the
item im and the rank value r′

j,m.

When implementing this process, we can use a geometric ran-
dom variable (with parameter equal to the probability that an ex-
ponential random variable with parameter

Pj

h=1 w(ih) is at most
r(ij) − r(ij−1)) to determine the number of draws until another
distinct items is sampled and multinomial random variables to de-
termine the number of items each item is sampled.

The following lemma summarizes the basic property of this ran-
domized process. Its correctness follows from Corollary 6.2 and
Lemma 6.3.

Lemma 6.4. The mimicked sketches have the following property:
For a subset J , the following two processes yield the same distri-
bution over sketches.

1. Draw items using weighted sampling with replacement and
assign independent rank values from an exponential distri-
bution with parameter w(J) until: k samples are obtained
(for mimicked WSR-sketches) or the (k +1)st distinct item is
sampled (for mimicked WSRD-sketches).

2. Generate a single rank assignment, derive a WS-sketch b of
size k and draw a mimicked sketch from M(b) as above.

6.1 Weight estimation
Consider a set J ⊂ I and a WS-sketch b of size k. Let i1, i2, . . . , ik

be the items in b and r(i1) < · · · < r(ik) be their rank values. We
consider the problem of estimating w(J) from the sketch b. If the
cardinality of the set J is at most |J | < k then the WS-sketch con-
tains all the elements of the subset (and we can determine this) and
we can compute w(J) =

P

w(ij). When |J | ≥ k, we apply the
estimator to the mimicked sketch.

The ranks in a WSR-sketch are k independent exponentially dis-
tributed random variables with parameter w(J). This property was
used in [9] to obtain sketch-based estimators for w(J): If v1, . . . , vk

are independent and exponentially distributed with parameter w(J)
then k−1

P

k
h=1

vh
is an unbiased estimator of w(J) with standard de-

viation equal to w(J)/
√

k − 2 and average (absolute value of the)

relative error approximately
p

2/(π(k − 2)) [9].
Pk

h=1 vh

k
is an

unbiased estimator of 1/w(J) with standard deviation 1/(
√

kw(J)).
The WSRD mimicking process produces ` ≥ k independent ran-

dom variables v1, . . . , v`. The number ` ≥ k is a random variable
that is independent of the values. It is not hard to see that if k > 1,

`−1
P

`
h=1

vh
is an unbiased estimator of w(J) and if k > 2, its stan-

dard deviation is at most w(J)/
√

k − 2. Similarly,
P`

h=1 vh

`
is

an unbiased estimator of 1/w(J) with standard deviations at most
1/(
√

kw(J)).
Figure 1 shows the (absolute) relative error of different estima-

tors, averaged over 1000 runs. Bottom-k estimators performs better
than the k-mins WSR-sketches estimator. There tailored bottom-k
estimators are derived in [11, 12] (exponential ranks) and [1] (pri-
ority ranks).
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Figure 1: Average relative error of estimators on item weights
for 1000 items drawn from Pareto distributions with α = 0.9
and α = 1.3. The estimators shown are the plain k-mins (WSR-
sketches), the k-mins averaged (on WS-sketch b, averaged over
M(b) but not over L(b)), and some tailored bottom-k estima-
tors.

6.2 Selectivity
The Selectivity of a subpopulation J ′ ⊂ J is w(J ′)/w(J), that

is, the weighted fraction of the J ′ items included in J .
An important application of selectivity is computing the resem-

blance of two subsets, defined as w(A∩B)/w(A∪B) from their
sketches[5]. (Resemblance generalizes the binary Jaccard coeffi-
cient). The resemblance is the selectivity of items in A ∩ B that
are included in A ∪B: The sketch of A ∪B can be obtained from
the sketches of A and B (for both k-mins and bottom-k sketches).
For each item in the sketch of A ∪ B we can determine if it is a
member of A and of B (it is a member in A if it is in the sketch of
A and symmetrically for B) and hence if it is a member of A ∩B.
Mimicked sketches do not support subset relations, and therefore,
when applying WSR or WSRD estimators we have to first compute
the WS-sketch of the union and obtain a mimicked sketch of the
union.

When items have uniform weights, an unbiased estimate of se-
lectivity (and resemblance) can be obtained as follows. Using k-
mins sketches, the estimator is the fraction of entries in the sketch
that contain members of the subpopulation (for resemblance the
fraction of identical entries in the sketches of A and B) [9, 5]. Us-
ing bottom-k sketches, the estimator is the fraction of items in the
sketch that are members of the subpopulation (fraction of items in
the sketch of A ∪ B that are in A ∩ B) [4, 22]. The k-mins se-
lectivity estimator carries over for weighted data [13]: The fraction
of entries that are members of the subpopulation is an unbiased se-
lectivity estimator. We provide a simple example that demonstrates
that this estimator is biased for bottom-k sketches when items are
weighted. Consider a set of four items (i1, i2, i3, i4) with weights
(4, 1, 1, 1) and estimating the selectivity of {i1}. (For resemblance,
consider the subsets {i1, i2, i3} and {i1, i4} – the union contains
all four items and the intersection contains only {i1}.) The selec-
tivity is 4/7. Consider k = 2. The probability that i1 appears
(first or second) in the sketch is 4/7 + (3/7) ∗ (4/6) = 6/7 in
that case, the respective fraction is 4/5 (since the other item in the
sketch has weight 1). Otherwise, i1 does not appear in the sketch
and the fraction is zero. Therefore, the expectation of the fraction
is (6/7)(4/5) > 4/7. If we use the fraction of entries instead of
fraction of weights, we obtain 3/7 < 4/7.

When the weight w(J) is not provided, (for resemblance, we do
not have the weight w(A ∪ B) even if we have w(A) and w(B)),
unbiased estimators for selectivity from WS-sketches do not fol-
low from existing unbiased estimators for subpopulation size [1,
12]. Fortunately, unbiased selectivity (and resemblance) estimators
can be obtained using mimicked sketches. An unbiased selectiv-
ity estimator for WSR-sketches (and also for WSRD-sketches [12])
is the fraction of samples where the item is a member of the sub-

population. A WS-estimator is obtained by taking the expectation
of this estimator over mimicked sketches. This is the only method
we are aware of to obtain unbiased estimators of selectivity and re-
semblance from WS-sketches that have variance that is at most that
obtained through a WSR-sketch.
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