
Finding Path Minima in Incremental Unrooted Trees∗

Haim Kaplan † Nira Shafrir ∗

February 25, 2008

Abstract

Consider a dynamic forest of unrooted trees over a set of n vertices which we update by link
operations: Each link operation adds a new edge adjacent to vertices in two different trees. Every
edge in the forest has a weight associated with it, and at any time we want to be able to answer
a path-min query which returns that edge of minimum weight along the path between two given
vertices.

For the case where the weights are integers we give an algorithm that performs n − 1 link
operations and m pathmin queries in O(n + mα(m,n)) time. This extends well known results of
Tarjan [11] and Yao [12] to a more general dynamic setting at the cost of restricting the weights
to be integers. Using our data structure we get an optimal data structure for a restricted version
of the mergeable trees problem [9].

We also suggest a simpler data structures for the case where trees are rooted and the link
operation always adds an edge between the root of one tree and an arbitrary vertex of another
tree.

∗This work is partially supported by United States - Israel Binational Science Foundation, project number 2006204.
†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Tel Aviv, Israel.

{haimk,shafrirn}@post.tau.ac.il

1

1 Introduction

The incremental path minima problem in rooted trees is defined as follows. Let F be a forest of rooted
trees with n vertices. Each edge e has an integer weight w(e). We have to support the following
operations on the forest.

• make-tree(v): Create a new tree consisting of the singleton node v.

• link(u, v, c). We assume that u ∈ T 1, v ∈ T 2, v is the root of T 2, and T 1 6= T 2. Replace the
trees T 1 and T 2, by the tree that is created by adding the edge e = (u, v) with w(e) = c.

• path-min(u, v): If u and v belong to the same tree, return the edge of minimum weight on the
unique path between u and v. Otherwise, return null.

We give an algorithm that supports n − 1 link operations and m path-min queries in O(n +
mα(m, n)) time where α(m, n) is the inverse of Ackermann’s function. Alstrup and Holm [2] claimed
this result without describing the data structure.

The incremental path minima problem in unrooted trees is defined analogously as follows. Let F
be a forest of unrooted trees. Each edge e has an integer weight w(e). The operations make-tree
and path-min are defined as for rooted trees. We change the link(u, v, c) operation and remove the
requirement that u is a root. That is we only require that u ∈ T 1, v ∈ T 2, and T 1 6= T 2. The
operation replaces the trees T 1 and T 2 by the tree that is created by adding the edge e = (u, v) with
w(e) = c. This data type is more general in the sense that it allows link between any two vertices
that are not in the same tree. Our main result is a data structure with the same time bounds for
this unrooted version of the problem.

Our data structures are based on two main components. The first component is incremental
trees. Incremental trees support add-leaf and add-root operations and path-min queries in O(1)
time. They are based on a similar structure of Alstrup and Holm [2] for the level ancestor problem.
We restrict the weights to be integers so we can use q-heaps [5] to construct incremental trees. We
assume the RAM model of computation with word size b so that a weight of an edge fits into a single
word. We also make sure that b ≥ log n where n is the number of vertices in our forest.

The second component is a recursive decomposition of trees suggested by Gabow [7]. Gabow
used this scheme to answer m nearest common ancestor (nca) queries on rooted trees while allowing
links in O(n+mα(m, n)) time. This recursive structure supports all links in O(n+m) time and each
query in O(α(m, n)) time. Gabow also used a similar technique to solve the list splitting problem
[6]. A similar recursion is also used in the union-find data structure of [10].

The recursive scheme at high level is as follows. A tree T is partitioned into clusters each of
which is a subtree of T . Each cluster is represented as an incremental tree. We then contract each
cluster and represent the resulting tree recursively. The depth of the recursion is O(α(m, n)).

These two components alone are not sufficient. Even for the rooted problem subtle issues arise as
of how to organize the information so that we only spend a constant time per level of the recursion
when we answer a query. In the rooted version of the problem there is a natural root for each cluster
and we maintain information on paths to this root. When such a root does not exist it is not clear
anymore on which path to maintain information. To fully grasp our new ideas one has to go into a
quite deep technical discussion after getting familiar with the two basic components we mentioned
above. To help the reader we try to expose some of these ideas through a somewhat less formal
discussion in Section 2.

Our application for the incremental path minima problem in unrooted trees is an optimal algo-
rithm for a restricted version of the mergeable trees problem [9]. The mergeable trees problem is

1

defined as follows. Let F be a forest of rooted trees. Each node v has a unique weight w(v). Each
S ∈ F is a heap ordered tree so that w(v) ≥ w(p(v)). The data structure supports the following
operations.

• merge(u, v). Let u ∈ S1, v ∈ S2, (S1 may be equal to S2.) Create a new tree S in which
the path from u to the root of S1 is merged with the path of v to the root of S2, in a way that
preserves heap order. Specifically, let u = u1, · · · , ur be the nodes on the path from u to the root
of S1, and let v = v1, · · · , vk be the nodes on the path from v to the root of S2. In the new tree
S, the nodes u1, · · · , ur, v1, · · · , vk are on the same path sorted by their weights, such that the node
with the smallest weight is the root, the second node in the sorted list is its child and so on. In case
S1 6= S2 we call the merge an external-merge and otherwise we call it an internal-merge.

• nca(u, v): If u and v belong to the same tree return the nearest common ancestor of u and v.
Otherwise, returns null.

Let n be the number of nodes in the forest. Georgiadis et al [9] gave an algorithm with amortized
time of O(log2 n) per operation that also supports cut operation and parent operations, where cut(v)
removes the edge between v and its parent splitting the tree into two trees, and parent(v) returns
the parent of v in T . They also gave an algorithm that supports all operations except cut in O(log n)
amortized time.

We define the path minima problem in unrooted trees to be the data structure that supports the
operations of the incremental path minima problem in unrooted trees and in addition supports the
operation cut(e) operation, that removes the edge e from the tree splitting it into two trees.

Recently, Georgiadis et al [8] reduced the mergeable tree problem without cuts to the path minima
problem in unrooted trees.1 They maintained a forest F ′ of trees. Each tree T ∈ F is represented by
a tree T ′ ∈ F ′ containing the same vertices. An external-merge(u, v) is implemented by performing
link(u, v). An internal-merge(u, v) is implemented as follows. Let x =pathmin(u, v). Let q be the
vertex preceding x on the path between u and v. We perform cut((q, x)) and link(u, v).

Georgiadis et al used this reduction to get a simpler implementation of mergeable trees that
supports merges and nca queries in O(log n) worst-case or amortized time. If we do not allow
internal merges, then using this reduction and our data structure for the incremental path minima
problem in unrooted trees, we get a data structure that supports n − 1 external merges and m nca
queries (where the weights are integers), in O(n + mα(m, n)) time. This is particularly interesting
since it matches the lower bound for the problem, see [9].

Related results. Yao [12] and Alon and Schieber [1] (See also [3]) solved the following static
problem. Let T be a tree with n nodes each associated with an element of a semigroup (S, ◦). We
want to preprocess the tree to answer queries of the form: Given two vertices u and v what is the
product (◦) of the element of S associated with the vertices on the path from u to v. Yao and Alon
and Schieber show how to preprocess the tree in linear time so that we can answer each query in
O(α(n)) (where α(n) is yet another version of an inverse to Ackermann’s function). As a special
case we can use their data structure for a static version of our problem in which there is a single tree
given in advance which we want to preprocess for path-min queries.

Tarjan [11] in his seminal paper used path compression to solve a restricted version of the problem
on rooted trees. In Tarjan’s version link(v,w,c) is defined only if both v and w are roots of their trees,
and path-min queries are restricted to paths from a given vertex to the root. Tarjan also considered
an arbitrary semigroup. This special case has numerous applications, one of which is to verify that
a given tree is a minimum spanning tree.

1In their version of the problem, the weights are associated with vertices instead of edges, and the query returns
the vertex of minimum weight instead of the edge of minimum weight. Also, the weights are not necessarily integers.

2

Both algorithms mentioned above, when applied to computing path minima queries, work in the
comparison model and need not assume that keys are integers.

The outline of the rest of the paper. In Section 2 we describe our key ideas at a high level
focusing on the difference between the rooted and the unrooted problems. In Section 3 we give a
description of the incremental trees used to perform add-leaf and add-root and min query in O(1)
time. In Section 4 we give the data structure for incremental path minima in rooted trees problem
that performs n− 1 link and m pathmin queries in O(n+m)α(m, n)). In Appendix A, we show how
to change the data structure for rooted trees so it performs n − 1 link and m pathmin queries in
O(n+mα(m, n)). In Section 5 we give a simple but not optimal data structure for incremental path
minima in unrooted trees problem that supports n− 1 link m pathmin queries in O(n + mα2(m, n))
time. Last, in Section 6, we describe the data structure for incremental path minima in unrooted
trees problem that supports n − 1 link m pathmin queries in O(n + mα(m, n)) time.

2 Highlights of the data structure

In this section we try to give a high level intuition of the differences between the rooted problem
and the unrooted problem. This shows where the difficulties are, and the ideas that we introduce to
cope with them. We focus on the query operation.

We avoid formal definitions at this point but recall that each of our trees is partitioned into
clusters. Each cluster is a connected subtree which we represent as an incremental tree. The clusters
are contracted, and the contracted tree is again partitioned into clusters that are represented as
incremental trees, and so on. See Figure 1(A).

For a vertex x ∈ T , we denote by Ck(x) the cluster of level k that contains it. Levels of clusters
decrease with our recursion so the nodes of a cluster of level k are clusters of level k+1. In particular
if Ck(x) is not a top-level cluster then Ck+1(x) is one of its nodes, and if Ck contains the vertices x
and y of T then Ck(x) = Ck(y) = Ck.

Let (x, y), x, y ∈ T , be the edge of T that connects between the clusters Ck+1(x) and Ck+1(y)
in a cluster Ck. What would be the weight of this edge when we consider it as an edge of Ck ? To
define this weight we must root Ck as a subtree of T even if the original tree is unrooted. Then if
say Ck+1(x) is the parent of Ck+1(y) the weight of (x, y) is the minimum weight of an edge on the
path from y to the root of Ck+1(x) that is induced by the orientation of Ck.

When T is rooted then the root of each cluster is naturally defined. See Figure 1(A). In unrooted
trees we can designate an arbitrary vertex to be a root. But to maintain such a root we will have
to change directions of many edges during a link. On the other hand we still want the clusters to
be rooted so that we can define the weight of each edge in a cluster. A key idea is to exploit the
freedom that we have, and allow each cluster to be independently oriented, see Figure 1(B).

The query pathmin(x, y) for both rooted and unrooted trees works roughly as follows. We find
the highest level k such that Ck(x) = Ck(y). Let Ck = Ck(x) = Ck(y). (For an illustration see
vertices x and y in Figure 1(A) and Figure 1(B). In these figures we assume that k + 2 = ℓ, and
all the clusters of level k + 1 in are in the same cluster of level k). By the definition of Ck we have
that the clusters Ck+1(x) and Ck+1(y) are different nodes in Ck. Let Ck+1 be the nearest common
ancestor of Ck+1(x) and Ck+1(y) in Ck, (Ck+1 = Ck+1(a) in the Figures). For simplicity assume that
Ck+1 6= Ck+1(y), and Ck+1 6= Ck+1(x).

Let (xr, x
′′), xr, x

′′ ∈ T , be the edge between Ck+1(x) to its parent cluster in Ck where xr ∈
Ck+1(x). Similarly, let (yr, y

′′), yr, y
′′ ∈ T , be the edge between Ck+1(y) to its parent cluster in Ck.

Let Ck+1(x1) be the cluster that precedes Ck+1 on the path from Ck+1(x) to Ck+1 and let (x1, x̂) be

3

the edge between the cluster Ck+1(x1) to Ck+1. Similarly, let Ck+1(y1) be the cluster that precedes
Ck+1 on the path from Ck+1(y) to Ck+1 and let (y1, ŷ) be the edge between the cluster Ck+1(y1) to
Ck+1. The query path consists of the following parts. (1) from x to xr in Ck+1(x); (2) from xr to
x1; (3) the edge (x1, x̂) ; (4) from x̂ to ŷ in Ck+1; (5) The edge (ŷ, y1); (6) from y1 to yr; and (7)
from yr to y.

Ck+2(a)

Ck+1(a)

a
b

g

y1

t

y′′

k

x′′

Ck+1(x)

e′

x

Ck+1(y)

y

(A)

j

xr yr

x̂

ŷ

x1

u

Ck+2(a)(B)

Ck+1(a)

a
b

d

h

e′′

p

ŷ

k

x′′ e′

j

g

x1

y1

y′′

Ck+1(y)

x̂

t

yr

u

v

q w

y

xr

x

Ck+1(x)

Figure 1: In both figures we assume here that k + 2 = ℓ, and that the small circles are the vertices
of T . (A) The recursive structure for a rooted tree. Medium circles are clusters of Tk+2. Large
circles are clusters of Tk+1. Edges of level k + 2 are contained inside clusters of level k + 2, (edges
such as (a, b) (x̂, g) and so on). The edges (b, g) and (k, j) are of level k + 1. The edges (xr, x

′′),
(yr, y

′′), (x1, x̂) and (y1, ŷ) are of level k. Let e′ = (xr, x
′′). The weight of e′(k) is the is the edge of

minimum weight on the path from xr to x1. (B) The recursive structure in unrooted trees. Each
cluster is oriented independently. We have that r(Ck+2(a)) = t(Ck+2(a)) = a, r(Ck+2(g)) = g, and
t(Ck+2(g)) = h. Let e′ = (xr, x

′′). The weight of e′(k) is the minimum weight of an edge on the path
from xr to x1. The weight of e′(k + 1) is the minimum weight of an edge on the path from xr to j.
Let e′′ = (h, b). The weight of e′′(k + 1) is the minimum weight of an edge on the path from h to a
in T .

We find the minimum on part (2) and part (6) by a query to the incremental tree of the cluster
Ck. We find the minimum on part (4) recursively. Since Ck+1(x̂) = Ck+1(ŷ) = Ck+1 the depth of
this recursion is O(α(m, n)).

The way we find the minimum on parts (1) and (7) is different in the rooted and the unrooted
data structures. In the rooted structure we use the fact that xr is the root vertex of the cluster

4

Ck+1(x). This special case of finding the minimum from a vertex to the root of a cluster is easier
and takes O(α(m, n)) time.

If the trees are unrooted, (see Figure 1(B)), then xr is not necessarily the root vertex of the
cluster Ck+1(x) and yr is not necessarily the root vertex of the cluster Ck+1(y). This makes the
query slightly more difficult. We suggest two solutions. In the simple data structure of Section 5,
we find the minimum on parts (1) and (7) again using recursion. This additional recursion degrades
the running time of a query to O(α(m, n)2).

In Section 6, we show how to reduce the query time in unrooted trees to O(α(m, n)) by storing
more information. The idea is as follows. Let y, and yr be the vertices in the description of the
query above such that Ck+1(y) = Ck+1(yr) and recall that we have to speed up parts (1) and (7) of
the query.

For each cluster of level k + 2 contained in Ck+1(y), we store with the edge (yr, y
′′) the edge of

minimum weight on the path from yr to this cluster. More generally, for each edge (u, v) such that
Ck+1(v) 6= Ck+1(u), we maintain the edge of minimum weight on the path from u to each cluster
of level k + 2 in Ck+1(u). Using this information we find the edge of minimum weight on the path
between y and yr in O(α(m, n)) time as follow. Assume that y and yr are contained in different
clusters of level k + 2, (the case where both of them are contained in the same cluster is simpler).
Let (w, q), be the edge that connects Ck+2(y) to the next cluster on the path between Ck+2(y) to
Ck+2(yr) in Ck+1(y), (See figure 1(B)). So we have that Ck+2(w) = Ck+2(y) 6= Ck+2(q). The path
from yr to y is composed of the path from yr to q, the edge (q, w) and the path from w to y. We find
the edge of minimum weight on the path from yr to q using the information we maintain for the edge
(yr, y

′′). We find the edge of minimum weight on the path from w to y in Ck+2(y) by performing
a recursive call on the cluster Ck+2(y), that in turn will use the information maintain for the edge
(w, q). This query costs O(α(m, n)) time, and reduces the total query time to O(α(m, n)).

To save this additional information we change the recursive structure of Gabow. In the recursive
structure of Gabow each cluster of level k contained Ω(f(k)) clusters of level k + 1, where f(k) is
some function that ensures that the depth of the recursion is O(α(m, n)). We also restrict the size
of a cluster from above. To support this additional restriction we had to change the implementation
of both link and query.

3 Incremental trees and partial incremental trees

Our building blocks are incremental trees. An incremental tree is a data structure to maintain a
rooted tree T , with an integer weight on each vertex, such that the following operations are supported
in O(1) time.

add-leaf(v,w,c): Add a new leaf v with parent w to T . The weight of the edge (v, w) is c.

add-root(v,c): Add a new root v to T . The old root of T , say r, becomes a child of v and the
weight of the edge (r, v) is c.

min(v,w): Returns the edge of minimum weight on the path from v to w.

change-weight(v,c): v must be a leaf. Changes the weight of the edge between v and its parent
to c.

Our incremental trees also support nearest common ancestor (nca) queries in constant time. If the
data structure does not support the add root operation then we call it a partial incremental tree.

5

The implementation of partial incremental trees is based on a data structure for the level ancestor
problem of Alstrup and Holm [2]. The data structure uses O(n) space where n is the size of T . To
implement nca queries, we use the data structure of Gabow [7] that supports nca queries and add-leaf
operations in constant amortized time, or the data structure of Cole and Hariharan [4] that supports
these operations in worst case constant time.

Alstrup and Holm first describe a data structure which they call the macro algorithm that requires
O(n log n) space but already answers a query in O(1) time. In their final structure which requires
only O(n) space, they apply the macro algorithm to a tree TM , consisting of a particular subset
of O(n/ log n) nodes called the macro nodes. In addition they maintain a partition of T into micro
trees, each of size O(log n), and a set of tables for each micro tree.

3.1 The macro algorithm

This algorithm supports min query in O(1) time, add-leaf in O(log n) time, and requires O(n log n)
space, where n is the size of the tree T .

We denote by d(v) the depth of a vertex v. That is if v is the root then d(v) = 0. Otherwise,
d(v) = d(p(v)) + 1. Let s(v) be the size of the subtree rooted at v.

We define the rank of a vertex v, denoted by r(v), to be the maximum integer i such that s(v) ≥ 2i

and 2i|d(v), where b|a means that there is an integer k such that a = kb. The rank of the root is
⌊log n⌋. It is easy to verify that the number of nodes with rank at least i is O(n

2i).

For each vertex v which is not the root we save the following tables. For 1 ≤ x ≤ 2r(v),
levelanc1[v][x] = y, where y is the ancestor of v whose depth is d(v)−x, and levelanc2[v][x] contains
the edge of minimum weight on the path between v and levelanc1[v][x]. For 0 ≤ i ≤ ⌊log(d(v))⌋,
jump1[v][i] contains the deepest proper ancestor of v whose depth is divisible by 2i, and jump2[v][i]
contains the edge of minimum weight on the path from v to jump1[v][i]. The space used to store all
these tables is O(n log n).

We now describe the query min(u, v). Let z =nca(u, v). We find the edge of minimum weight on
the path between u and z, and the edge of minimum weight on the path between v and z and return
the smallest among these two edges. We now show how to compute the edge of minimum weight
between u and z. If d(u) − d(z) ≤ 1, then the computation is trivial. Assume that d(u) − d(z) > 1.
Let i ≥ 1 be the largest such that d(u) − d(z) ≥ 2i. Let d(z) ≤ k < d(u) be the smallest such that
2i−1|k and k − d(z) ≤ 2i−1, then we have that d(u) − k ≥ 2i−1. Let y be the ancestor of u at depth
k. Then, 2i−1|d(y). The vertex y has at least d(u) − d(y) ≥ 2i−1 descendants. So r(y) ≥ i − 1. The
algorithm uses jump1 to find y, and jump2 to find the edge of minimum weight on the path between
u and y. Finally, since r(y) ≥ i − 1, entry d(y)− d(z) exists in levelanc2[y] and contains the edge of
minimum weight on the path between y and z. The algorithm is as follows. We initialize a to be u
and min-edge to be a dummy edge whose weight is infinity.

while d(a) − d(z) > 2i−1 {
Let f = jump2[a][i − 1]
If w(f) ≤ w(min-edge)

min-edge = f
a = jump1[a][i − 1]

}
Return the edge of minimum weight among min-edge and levelanc2[a][d(a) − d(z)].

At the end of the loop a = y and levelanc1[a][d(a) − d(z)] = z. It is easy to see that there are
less than 4 iterations of the loop and hence the query time is O(1).

6

We define an alternative query operation min′(u, d) that returns a pair (q, f), where q is the
ancestor of u of depth d and f is the edge of minimum weight on the path between u and q. Our
query algorithm can be easily adapted to answer this type of query as well.

We now describe the add-leaf operation. When we add a leaf v, then r(v) = 0 and the tables are
empty. We update jump1[v][i] and jump2[v][i] for 0 ≤ i ≤ ⌊log(d(v))⌋, in O(⌊log(d(v))⌋) time using
the values of the corresponding tables of the parent of v. That is, if 2i|d(p(v)), then jump1[v][i] = p(v)
and jump2[v][i] = (v, p(v)). Otherwise, jump1[v][i] = jump1[p(v)][i], and jump2[v][i] contains the
edge of minimum weight among jump2[p(v)][i] and (v, p(v)). Notice that jump1[u][i] and jump2[u][i]
for u 6= v do not change.

We may need to double the tables levelanc1[u] levelanc2[u] for ancestors u of v whose rank has
increased due to the addition of v. Alstrup and Holm [2] showed that the only vertices whose rank
may have increased are the vertices in jump1[v][i], for 0 ≤ i ≤ ⌊log(d(v))⌋. Instead of doubling
the tables of such vertices when their rank increases, each time we add a leaf v we add one entry
to levelanc1[u] and to levelanc2[u], if u = jump1[v][i], and |levelanc1[u]| < 2i. By the time rank
of u increases levelanc1[u] and levelanc2[u] contain the correct number of entries. It is easy to
see that the storage required is still O(n log n). Given levelanc1[v][x], levelanc2[v][x] we update
levelanc1[v][x+1], levelanc2[v][x+1] in O(1) time as follows. If x = 0, then levelanc1[v][x+1] = p(v)
and levelanc2[v][x + 1] = (v, p(v)). Otherwise, we set levelanc1[v][x + 1] = p(levelanc1[v][x]). The
value of levelanc2[v][x+1] is the edge of minimum weight among levelanc2[v][x] and the edge between
levelanc1[v][x] to its parent. Clearly it takes O(log n) time to add a leaf.

Our macro tree does not support change-weight operation. In the implementation of the final
structure (see Section 3.3), we use a macro tree to represent a subtree of the original tree T . This
subtree consists only of internal nodes of T (nodes of rank greater than 0), and since change-weight
is defined only for leaves of T , we do not need to change the weight of a macro node.

3.2 The micro algorithm

The size of a micro tree is O(log log n). The implementation of micro trees uses q-heaps [5]. For
a given n, each q-heap maintains a set of size O(log1/4 n) using a pre-computed table of size O(n)
which is common for all heaps. A q-heap supports insertions and deletions of elements and rank
queries in O(1) time. A rank query with a value a to a q-heap returns the number of values in the
heap that are is smaller than a.

Let T be a micro tree. We maintain a q-heap [5] for T . We also keep for each tree T an
identifier I(T). We assign to each vertex v ∈ T a number n(v) which is the number of vertices in
T just after adding v into T . To simplify the notation we assume n(v) = v. The identifier I(T)
is the concatenation of the pairs (p(v), rank(w((v, p(v)))) for all vertices v other than the root, in
increasing order of their insertion times. Since each of the components of a pair is an integer between
1 to log log n, we use 2 log log log n bits to code the value of each pair. The total space to code the
values of all pairs of T is 2 log log n log log log n < 1

2 log n. Thus I(T) fits into a single word, and
there are at most

√
n possible values for I(T). Notice that if I(T1) = I(T2) then the minT1(a, b) =

minT2(a, b), and we say that T1 is equivalent to T2. By the observation above, there are at most√
n equivalence classes of trees. We can find a canonical tree of each class by looking at all possible

values of I(T).
In the preprocessing phase, we build all canonical trees and store for each tree T and each

pair of nodes u and v in T , the edge of minimum weight on the path between u and v. We store
this information in a table whose keys are the identifier of T , u and v. We also construct in the
preprocessing phase for each canonical tree T ′ two tables A and B. In A we have an entry A[v][i]

7

for each v ∈ T ′ and 1 ≤ i ≤ |T ′|+ 1. The value stored in A[v][i] is the identifier of the new tree that
we get if we add to T ′ a vertex u as a child of v with rank((u, v)) = i. The table B is stored in order
to perform change-weight efficiently. We have an entry B[v][i] for each leaf v ∈ T ′, and 1 ≤ i ≤ |T ′|,
that contains the identifier of the new tree that we get if we change the rank of (v, p(v)) to i and shift
all other ranks accordingly. By the arguments above, the total space used to save this information
is o(n).

It is easy to see that given this information we can perform a query on a micro tree in O(1) time
by extracting this information from the tables of the tree whose identifier is I(T).

We implement the operation add-leaf(v, p(v), c) on a micro tree T as follows. Let e = (v, p(v)).
We assign v the number |T |+ 1. We add w(e) to the q-heap of T . We perform the query rank(w(e))
on the q-heap and get the number of edges in T whose weight is smaller than w(e). This operation
changed the ranks of edges in T thus I(T) has changed. We use the value of A[p(v)][rank(e)] of the
table associated with I(T) to get the new identifier of T .

We now describe the implementation of change-weight(v, c). Let v be a leaf. Let e = (v, p(v)).
To update the micro tree, we simply delete w(e) from the q-heap. We set w(e) = c and insert c into
the q-heap. We perform the query rank(c) on the q-heap and get the new rank of e, let i be the new
rank of e. We update I(T) using the value of B[v][i] of the tree whose identifier is I(T).

3.3 Combining the macro algorithm and the micro algorithm

We combine the macro algorithm and the micro algorithm to reduce the memory size and the running
time of add leaf. Let r0 = ⌊log log n − 1⌋. Let M = 2r0 . Then, 1

4 log n < M ≤ 1
2 log n. A macro

node is a vertex v ∈ T such that r(v) ≥ r0. There are at most n/2r0 macro nodes in T . It is easy
to see that if s(v), d(v) ≥ M , then there is a macro node among the first M ancestors to v. We
save for each node v the value jumpM1[v] that contains the first proper ancestor of v whose depth is
divisible by M . We have that first proper ancestor of v which is a macro node is either jumpM1[v]
or jumpM1[jumpM1[v]]. We also define jumpM2[v] to be the edge of minimum weight on the path
between v and jumpM1[v].

Let TM be the macro tree whose nodes are all macro nodes of T . Then |TM | = O(n/ log n), and
we can use the macro algorithm on it using O(n) space. Let y be a node in TM and let z be the
parent of y in TM . Let e be the edge of minimum weight on the path between y and z in T . Then,
the weight of the edge (y, z) in TM is the weight of e. We also save a pointer from (y, z) to e.

We also divide the nodes of T into small trees of size at most M . We will later describe how these
small trees are maintained. The small trees use linear space and support all operations in O(1) time.
Let µ be such small tree. We denote by root(µ) the root of the tree µ. We have that if |µ| < M
then all the descendants of root(µ) are contained in µ. Let µ(v) denote the small tree containing v.
It follows that if µ(parent(root(µ(v)))) exists then |µ(parent(root(µ(v))))| = M . We keep for each
small tree µ the tables levelancM1[µ] and levelancM2[µ], of size |µ|. The value of levelancM1[µ][i],
1 ≤ i ≤ |µ| is the ancestor of root(µ) of depth d(root(µ)) − i. The value of levelancM2[µ][i], is the
edge of minimum weight on the path from root(µ) to levelancM1[µ][i]. It is easy to see that the total
space used to store these tables is O(n).

We now describe the implementation of a query. We assume that we can perform min queries on
the macro trees and on the small trees in O(1) time. Assume we want to find the edge of minimum
weight on the path between u and v. By the description of the macro algorithm, using the nca
query we can reduce this problem to the problem of finding the edge of minimum weight on the path
between u and z where z is an ancestor of u.

Notice that the distance in the original tree T between any macro node and its parent is ex-

8

actly M . Let x be the first proper ancestor of u which is a macro node, then x = jumpM1[u] or
x =jumpM1[jumpM1[u]]. Let y be the last macro node on the path between u to z. If d(x)−d(z) < 0,
then there are no macro nodes on the path from u to z and we set y = u. Otherwise, we find the
edge f of minimum weight between u and x in O(1) time using the values of jump2M[u] and possibly

of jumpM2[jumpM1[u]]. The depth of y in TM is d = ⌊d(x)−d(z)
M ⌋. If d > 0 then y 6= x. We use the

query min’(x, d) of the macro tree to find the pair (f ′, y). The edge f ′ is the edge in TM of minimum
weight on the path from x to y. We extract from f ′ the edge e′ in T of minimum weight on the path
from x to y. We set f to be the edge of minimum weight among f and e′.

We now we need to find the edge of minimum weight on the path from y to z. We have that
d(y) − d(z) ≤ M . We do this as follows.

1. Let µ(y) be the small tree containing y. If d(root(µ(y))) ≤ d(z), then z is contained in µ(y)
and we return the edge of minimum weight among f and edge returned by the query min(y, z)
on the small tree µ(y).

2. Otherwise, z is not in µ(y). Let q = p(root(µ(y))). We update f to be the edge of minimum
weight among f and the edge returned by the query min(y, root(µ(y))) on the small tree µ(y)
and the edge (root(µ(y)), q). Let µ(q) be the small tree containing q. If d(root(µ(q))) ≤ d(z),
then z is contained in µ(q) and we return the edge of minimum weight among f and the edge
returned by the query min(q, z) on the small tree µ(q).

3. Otherwise, z is not in µ(q). Update f to be the edge of minimum weight among f and the
edge returned by the query min(q, root(µ(q))) on the small tree µ(q). By the observation
above, |µ(q)| = M . We also have that d(q) − d(z) ≤ M . Thus entry d(q) − d(z) exists in
levelancM2[µ(q)]. We return the edge of minimum weight among f and levelancM2[µ(q)][d(q)−
d(z)].

We now describe the implementation of add-leaf(v, w, c). If |µ(w)| = M , v becomes the root of a
new small tree and we set levelancM1[µ(v)][1] = w, levelancM2[µ(v)][1] = (v, w). Otherwise, we add
v to the small tree µ(w) in O(1) time. We also add entry |µ(v)| = j to levelancM1 and to levelancM2
as follows. Let levelancM1[j − 1] = z. We set levelancM1[j] = p(z). We set levelancM2[j] to be the
edge of minimum weight among levelancM2[j − 1] and (z, p(z)).

We update jumpM1[v] and jumpM2[v] in O(1) time as follows. If M |d(p(v)), then jumpM1[v] =
p(v), and jumpM2[v] = (v, p(v)). Otherwise, jumpM1[v] = jumpM1[p(v)], and we set jumpM2[v] to
be the edge minimum weight among jumpM2[p(v)] and (v, p(v)). We may need to add y = jumpM1[v]
to the macro tree TM , if s(y) has increased to 2M . We can do it in O(log n) time as described in the
implementation of add-leaf of the macro tree. Since |TM | ≤ n/ log n, this yields an amortized cost
of O(1) time per such an insert. Alstrup and Holm showed that by doing in each add-leaf a constant
number of operations we can actually do it O(1) worst case time.

We now describe the implementation of change-weight(v, c). Let v be a leaf of T , then since
r(v) = 0, v is not a macro node. We update jumpM2[v] as in the previous operation. If v is the root
of small tree µ, then |µ| = 1 and we do nothing. Otherwise, We call change-weight(v, c) on the small
tree containing v, (see below).

We now describe the implementation of the small trees. Alstrup and Holm [2], implemented in
their level ancestor algorithm, each small tree as a micro tree. Their micro trees were of size O(log n).
We however, can not use micro trees of size O(log n) since our micro trees use the q-heaps [5] data
structure. The size of the q-heap used for a micro tree T ′ is |T ′|. Given a set of n elements, the

9

maximum allowed size for a q-heap is O(log1/4 n). Thus our micro trees have to be no larger than
O(log1/4 n).

We add another layer to the algorithm and implement a small tree using the macro algorithm
and micro trees. Let r′0 be ⌊log log log n − 1⌋. Let m = 2r′0 . Then, 1

4 log log n < m ≤ 1
2 log log n. A

macro node of a small tree T ′ is a vertex v ∈ T ′ such that r(v) ≥ r′0. There are at most |T ′|/2r′0

macro nodes in T ′. Let Tm be the macro tree whose nodes are all macro nodes of T ′. Then
|Tm| = O(|T ′|/ log log n) and the space required for Tm is O(|T ′|). We also divide the nodes of T ′

into trees of size at most m < log log n implemented as micro trees. It is easy to see the with this
implementation we support all operations in O(1) time and use O(n) space. Specifically, change-
weight(v, c) is supported by updating jumpm2[v] in O(1) time as described above, and by calling
change-weight(v, c) on the micro tree containing v.

3.4 The implementation of add-root

Last, we describe how to implement incremental trees, that is how to support also the add-root
operation in constant time. Each incremental tree is built of a path of nodes which we call the root
path. We implement the root path as a partial incremental tree. Each node v on the root path is
the root of a partial incremental tree. An add-root operation on an incremental tree is implemented
by adding a leaf to the root path thereby extending the path by another node. The new node is the
root of the incremental tree. Other operations are implemented by constant number of operations
on the appropriate partial incremental trees.

4 A data structure for rooted trees

We use the following definition of Ackermann’s function

A(i, 1) = 2 i ≥ 1
A(1, j) = 2j j ≥ 1
A(i, j) = A(i − 1, A(i, j − 1)) i, j ≥ 2

and the inverse functions

a(i, n) = min{j | A(i, j) ≥ n}
α(m, n) = min{i | A(i, ⌈m/n⌉) ≥ n} m, n ≥ 1 .

Assume for now that we know the number of operations m ahead of time2 and let ℓ = α(m, n).
We denote a tree in our forest of rooted trees by T . We denote by p(v) the parent of a node v, and
by |T | the number of vertices in T .

Our forest is represented using a recursive family of data structures. At the top level each tree
T in the forest is a member of the data structure Dℓ. Each tree in Dℓ is classified to a universe.
There are a(ℓ, n) universes 0, · · · , a(ℓ, n)− 1 in Dℓ. The size of the tree T determines its universe as
follows. If |T | < 4 then T is in universe 0. Otherwise, if 2A(ℓ, i) ≤ |T | < 2A(ℓ, i + 1) then T is in
universe i. (Note that 2A(ℓ, 1) = 4.)

Let T be in universe i > 0. The vertices of T are partitioned into clusters. Each cluster is a
subtree of T that contains at least 2A(ℓ, i) vertices. Let T ′ be the tree obtained from T by contracting
each cluster into a single node. The tree T ′ is represented using the data structure Dℓ−1 which is

2If m is not known ahead of time then we can globally rebuild the structure when m = 2n, and subsequently every
time m is doubled. This does not affect the time bounds.

10

defined analogously. The last data structure in this recurrence is D1. In D1 each tree consists of a
single cluster (so the tree with this cluster contracted is a singleton which is not represented using a
recursive structure).

In the data structure Dj we have a(j, n) universes 0, · · · , a(j, n) − 1. Let H be a tree in Dj . If
|H| < 4 then H is in universe 0 and otherwise if 2A(j, i) ≤ |H| < 2A(j, i+1) then H is in universe i.
If H is in universe i > 0 then the vertices of H are partitioned into clusters. Each cluster is a subtree
of H that contains at least 2A(j, i) vertices. The tree H ′ obtained by contracting each cluster, is
represented using the data structure Dj−1.

Consider a tree T in our forest. The tree T is a member of Dℓ. If |T | ≥ 4 then a tree T ′, obtained
from T by contracting its clusters, is in Dℓ−1. Similarly, if |T ′| ≥ 4 then a tree T ′′ obtained by
contracting clusters of T ′, is a member of Dℓ−2 and so on. We can also think of T ′′ as obtained
from T by contracting even larger subtrees (each such subtree is a cluster of T ′ which is a cluster of
clusters of T). When thinking of T as a member of Dℓ we denote it by Tℓ. We denote by Tℓ−1, the
tree T ′ corresponding to T in Dℓ−1. In general we denote by Tj the tree corresponding to T in Dj .
For j < ℓ, the tree Tj contains all the edges of T that connect two clusters of Tj+1. See Figure 1(A).

We also use the following definitions. Let v be a vertex in T . We define Cℓ+1(v) = v. We denote
by Cℓ(v) the cluster in Tℓ that contains v. The cluster Cℓ(v) is a subtree of T . We define recursively
Cj(v) for j < ℓ to be the cluster of Tj that contains Cj+1(v).

One can think of Cj(v) as a subtree of T by substituting the subtrees of T corresponding to all
clusters Cj+1(w) contained in Cj(v). We also refer to Cj(v) as a node of Tj−1.

For j ≤ ℓ + 1, we define r(Cj(v)) to be the root of the subtree of T that Cj(v) represents.
Let e = (x, y) ∈ T = Tℓ and let j be the smallest level such that Cj+1(x) 6= Cj+1(y). We define
the level of e to be j and denote it by level(e) = j. A copy of the edge e appears in each Ti, for
j ≤ i ≤ ℓ. We denote by e(i) the copy of e that appears in Ti. The edge e is contracted into the
cluster Cj(x) = Cj(y) in Tj , and therefore does not exist in Ti, for any i < j. We sometimes use e
when in fact we refer to e(j); the context will make clear which edge we refer to.

The next lemma proves that for a tree T ,
∑ℓ

j=1 |Tj | = O(|T |).

Lemma 4.1 Let |T | = k.
∑ℓ

j=1 |Tj | = O(k).

Proof: The claim follows since by definition, |Tj | < 1
2 |Tj+1|, for any j < ℓ, and |Tℓ| = k 2

For each tree T in our forest and for every level j such that Tj exists, we maintain Tj . In addition,
the node representing the cluster Cj has a pointer to r(Cj), a pointer to the cluster of level j + 1
which is the root of Cj , and a pointer to the cluster of level j − 1 containing Cj , if it exists. The
edge representing a copy e(j) of the edge e, has a pointer to e.

Let e = (u, v) ∈ T such that level(e) = j and assume v = p(u). We store with e a list L(e) of size
at most ℓ− j +1. Each element in this list is a pair that contains a level i, and the edge of minimum
weight on the path from u to r(Ci+1(v)). The pairs are sorted by decreasing levels. The first element
of L(e) is the pair (ℓ, e), and for level j ≤ k < ℓ we have a pair in L(e) if r(Ck+1(v)) 6= r(Ck+2(v)).
We represent L(e) as a doubly linked list with pointers to its first and last entry.

Consider a copy e(k) of e in Tk for some j ≤ k ≤ ℓ. Let k′ be the smallest level which is not
smaller than k for which there is a pair (k′, f) in L(e). The weight of e(k), denoted by w(e(k)), is
equal to the weight of f . Lemma 4.1 implies that the total space used to store the lists L(e) is linear.
Figure 1(A) illustrates this recursive structure.

Let Cj , j ≤ ℓ, be a cluster of Tj . We represent Cj as an incremental tree whose nodes are clusters
of Tj+1. We keep a pointer from Cj to the incremental tree that represents it. We also sometimes
refer to Cj as the incremental tree itself. Let e = (u, v) be an edge of level j. Then, e(j) is contained

11

in a cluster Cj(u) = Cj(v), and in the incremental tree representing it. The weight of e(j) in this
incremental tree is w(e(j)). If T is in universe 0, (|T | < 4), we think of T as a single cluster C and
represent C as an incremental tree.

4.1 The implementation of a path-min query

Assume that x and y are two vertices in the same tree T and let Pxy be the path from x to y
in T . We want to find the edge of minimum weight on Pxy. Let k be the largest level for which
Ck(y) = Ck(x)3. We define a recursive procedure pathmink(x, y, ex, ey), where either ex or ey may
be null. If ex = (x′, x) is not null, then ex is an edge incident to x which is of level < k and we have
a pointer to the pair in L(ex) associated with level k. Moreover, x is the parent of x′. Similarly, if
ey = (y′, y) is not null, then ey is an edge incident to y which is of level < k and we have a pointer
to the pair in L(ey) associated with level k and y is the parent of y′. If ex is not null, let a = x′

otherwise let a = x. Similarly, if ey is not null, let b = y′, otherwise let b = y. The procedure
pathmink(x, y, ex, ey) finds the edge of minimum weight on Pab.

We first assume that both ex = (x′, x) and ey = (y′, y) exist. We will relax these assumption later.
The procedure pathmink(x, y, ex, ey) works as follows. The base case is when k = ℓ. In this case we
perform minCℓ(x)(x, y) and get the edge f of minimum weight on Pxy. We return the edge of minimum
weight among {ex, ey, f}. So assume now that k < ℓ. If Ck+1(x) = Ck+1(y) then we advance in
L(ex) and in L(ey) at most one step to the pair associated with level k +1, and return the answer of
pathmink+1(x, y, ex, ey). If Ck+1(x) 6= Ck+1(y) then we find Ck+1(z) = ncaCk(x)(Ck+1(x), Ck+1(y))
and perform one of the following cases.

Case 1: Ck+1(z) 6= Ck+1(x) and Ck+1(z) 6= Ck+1(y). Let Ck+1(x1) be the node in Ck(x) on
the path from Ck+1(x) to Ck+1(z) that precedes Ck+1(z), and assume that x1 = r(Ck+1(x1)). Let
Ck+1(y1) be the node in Ck(x) on the path from Ck+1(y) to Ck+1(z) that precedes Ck+1(z), and
assume that y1 = r(Ck+1(y1)). Let x̂ be the parent of x1 in T . Note that x̂ ∈ Ck+1(z) and the edge
(x1, x̂) is of level k. Similarly, let ŷ be the parent of y1 in T . Note that ŷ ∈ Ck+1(z) and the edge
(y1, ŷ) is of level k. The path Px′y′ splits into five disjoint parts: (a) from x′ to r(Ck+1(x)), (b) from
r(Ck+1(x)), to x1, (c) from x1 to y1, (d) from y1 to r(Ck+1(y)), (e) from r(Ck+1(y)) to y′.

The minimum edge on part (a) is stored with the pair of L(ex) associated with level k. We find
the minimum edge on part (b) by a minCk(x)(Ck+1(x), Ck+1(x1)) query. We find the minimum edges
on parts (d) and (e) symmetrically. Finally to find the minimum edge on part (c) we recursively
perform pathmink+1(x̂, ŷ, (x1, x̂), (y1, ŷ)). Since (x1, x̂) is of level k the last or the next to last pair in
L((x1, x̂)) is the pair associated with level k +1 so we can access it in O(1) time. The situation with
respect to (y1, ŷ) is analogous. We return the edge of smallest weight among the minimum weight
edges in each of the five parts.

Case 2: Ck+1(z) = Ck+1(x) and Ck+1(z) 6= Ck+1(y). Let Ck+1(y1) be the node in Ck(x) on
the path from Ck+1(y) to Ck+1(z) that precedes Ck+1(z), and assume that y1 = r(Ck+1(y1)). Let
ŷ = p(y1). Here we split Px′y′ into three parts: (a) from x′ to y1, (b) from y1 to r(Ck+1(y)), (c) from
r(Ck+1(y)) to y′.

We find the minimum edge on parts (b) and (c) as we did in the previous case. We advance at
most one step in L(ex) to the pair associated with level k + 1 and we find the minimum edge on
part (a) by performing pathmink+1(x, ŷ, ex, (y1, ŷ)). As in the previous case the pair associated with

3The level k always exists, since there exists a level j such that Tj is in universe 0. The tree Tj consists of a single
cluster Cj = Cj(x) = Cj(y)

12

level k + 1 in L((y1, ŷ)) is either the last or the next to last. We return the edge of smallest weight
among the minimum weight edges in each of the three parts.

Case 3: Ck+1(z) = Ck+1(y), and Ck+1(z) 6= Ck+1(x). This case is symmetric to the previous
case.

If ex is null and we perform Case 1 or Case 3, then we compute the minimum on the path from
x to r(Ck+1(x)) by another procedure which we call min-root .

The procedure min-root(x, k) finds the edge of minimum weight on the path between a vertex x
and r(Ck(x)) as follows. Let b = r(Ck(x)). If k = ℓ return the result of the query minCk(x)(x, b).
If Ck+1(x) = Ck+1(b) perform min-root(x, k + 1). Otherwise, Ck+1(x) 6= Ck+1(b), and we perform
minCk(x)(Ck+1(x), Ck+1(b)), and get in O(1) time the edge f1 of minimum weight on the path between
r(Ck+1(x)) to b. We also perform min-root(x, k + 1) to find the edge f2 of minimum weight on the
path between x and r(Ck+1(x)). We return the edge of smaller weight among f1 and f2.

We answer the pathmin query by finding the maximum level k such that Ck(x) = Ck(y) and
calling pathmink(x, y, null, null).

It is clear that min-root runs in O(ℓ − k) time. Notice that if ex is not null when we call
pathmink(x, y, ex, ey), then it would not be null also in the recursive call invoked by this pathmin.
It follows that while performing pathmink(x, y, null, null), we call twice to min-root with level at
least k + 1, and other than these two calls it takes O(1) time per level between k and ℓ. So pathmin
at level k also takes O(ℓ − k) time.

4.2 Link of rooted trees

Let x be a vertex in a tree T 1
ℓ and let y be the root of T 2

ℓ . The operation linkℓ(x, y) combines T 1
ℓ and

T 2
ℓ to a new tree Tℓ by adding the edge e = (x, y) and making x the parent of y. When combining T 1

ℓ

and T 2
ℓ we also have to combine T 1

ℓ−1 and T 2
ℓ−1 etc. Therefore the implementation of link is recursive:

We define the recursive operation linkj(Cj+1(x), Cj+1(y)) where Cj+1(x) is a node in T 1
j and Cj+1(y)

is the root of T 2
j . The operation linkj(Cj+1(x), Cj+1(y)) combines T 1

j and T 2
j by making Cj+1(x)

the parent of Cj+1(y) in the resulting tree Tj .
Let q1 be the universe of T 1

j and let q2 be the universe of T 2
j . To perform linkj(Cj+1(x), Cj+1(y))

we perform the appropriate of the following four cases.

Case 1: |T 1
j | + |T 2

j | ≥ 2A(j,max{q1, q2} + 1). Create a new tree Tj in universe max{q1, q2} + 1

containing a single, initially empty, cluster C. Traverse T 1
j top down and insert all nodes of T 1

j to
C by performing add-leaf operations. Then insert Cj+1(y) as a child of Cj+1(x) into C by another
add-leaf operation which adds e(j) to the new cluster. Finally insert all the nodes of T 2

j into C,
top-down by performing add-leaf operations.

For the add-leaf operation that inserts Cj+1(y) as a child of Cj+1(x) we have to compute the
value of e(j). If j = ℓ we create the list L(e) and add to it the pair (ℓ, e), and the weight of e(j) in
C is the weight of e. Assume that j < ℓ. We compute the value associated with e(j) as follows. Let
x′ = r(Cj+1(x)). If x′ = r(Cj+2(x)) then we are done since the value of e(j) is the same as the value
of e(j + 1). Otherwise, we add a pair with level j to L(e). The value of e(j) is the edge of minimum
weight on the path between y and x′. We find this value as follows.

Since x′ 6= r(Cj+2(x)) it follows that Cj+2(x) 6= Cj+2(x
′). Let f1 be the edge of T of minimum

weight on the path between y to r(Cj+2(x)). Let f2 be the edge of T of minimum weight on the
path between r(Ck+2(x)) to x′. The smaller among the weights of f1 and f2 is the weight of e(j)
and the corresponding edge should be in the new pair of level j added to L(e). We find f1 in the

13

last pair currently in L(e). We find f2 by performing min(Cj+2(x), Cj+2(x
′)) query in Cj+1(x). It

follows that the new entry in L(e) is computed in O(1) time.
Each edge f such that f(j) is either in T 1

j or T 2
j becomes an edge of Tj . The weight of f(j) does

not change and the level of f becomes j. We discard any elements of L(f) that refer to levels < j.

Case 2: q1 > q2. We traverse the clusters of T 2
j top down starting from Cj+1(y) inserting them

one by one to Cj(x) by performing add-leaf operations to Cj(x).
We start by inserting Cj+1(y) as a child of Cj+1(x). The edge connecting these two clusters is

e(j). We compute its weight and update L(e) exactly as in Case 1.
The partition of T 2

j into clusters of levels ≤ j is discarded. Each edge f(j) of T 2
j becomes an edge

of Tj . The weight of f(j) does not change and the level of f becomes j. We discard any elements of
L(f) that refer to levels < j.

Case 3: q1 < q2. We would like to add all nodes in T 1
j to the cluster Cj(y). We can add the

nodes along the path from Cj+1(x) to the root of T 1
j by performing an add-root operation on each of

these nodes bottom-up. Then we can add all other nodes of T 1
j by performing add-leaf operations.

We need to be careful however since an add-root operation to Cj(y) changes the root of Cj(y) and
thereby may change the weight (and the corresponding edge) of any edge e′(j − 1) incident to Cj(y),
see Figure 2. This requires modifications to L(e′) and the incremental trees containing these edges.
Similarly, for any level k < j the root of Ck(y) changes and thereby the weight (and the corresponding
edge) of any edge e′(k − 1) incident to Ck(y).

To define the actions which we take in this case we distinguish the following kind of cluster: Let
Ck be a cluster of level k, and let Ck+1 be the cluster of level k + 1 which is the root of Ck. The
cluster Ck is called an unary root cluster , if Ck+1 is the last node on the root path (See Section 3.4),
of the incremental tree representing Ck, and the partial incremental tree rooted by Ck+1 does not
contain any other vertex except Ck+1. See Figure 3.

Subcase 3.1: For every q < j the cluster Cq(y) is an unary root cluster. We compute
the value of e(j) as in Case 1 and update L(e) if this value is different from the value of e(j + 1).
Let f1 denote the edge which determines the weight of e(j). Recall that f1 is the edge of minimum
weight on the path from y to r(Cj+1(x)).

We use the weight of f1 to insert the cluster Cj+1(x) (and the edge e(j)) into Cj(y) by an add
root operation.

For every q < j we update L(f) for the edge f = (z, w) such that level(f) = q, and f(q) is the
single edge in the incremental tree Cq(y), that is incident to Cq+1(y) (= Cq+1(z)) in Cq(y) (= Cq(w))
as follows. Let f2 be the edge in the last pair of L(f) and let t be the level of the last pair in L(f).
By definition f2 is the edge of minimum weight along the path from w to y in T . If t ≥ j then we
add a pair to L(f). This pair contains the edge of minimum weight among f1 and f2, and its level
is j − 1. If t < j, then we delete the last pair of L(f) and insert instead a pair with the edge of
minimum weight among f1 and f2 and level t.

Subcase 3.2: For some k′ < j the cluster Ck′(y) is not an unary root cluster. Let k < j
be smallest level such that the cluster Ck(y) is not an unary root cluster.

We compute the edge f1 whose weight is the weight of e(j) as in Case 1 and update L(e) if this
value is different from the value of e(j + 1).

Now instead of inserting Cj+1(x) into Cj(y) we create a new cluster at level j consisting only
of the single node Cj+1(x). This cluster becomes Cj(x). Similarly, if k < j − 1 then for each level
q, k < q < j we create a new singleton cluster, Cq(x) at level q containing Cq+1(x). Finally we
insert the cluster Ck+1(x) into Ck(y) by performing an add-root operation. The level of e becomes
k (rather than j in Subcase 3.1). However since r(Cq(x)) is the same for any k ≤ q ≤ j then we do

14

Cj−1(z)

Cj+1(y)

Cj+1(x)

Cj(b)

Cj(y)

Cj(a)

Cj−1(y)

Figure 2: If we add Cj+1(x) as the root cluster of Cj(y), then we will have to update the weight
of all edges that are incident to Ck(y), k ≤ j. In this example, the weight of edge going out from
Cj(a) to Cj(y), the weight of the edge going out from Cj(b) to Cj(y) and weight of the edge going
from Cj−1(z) to Cj−1(y) will change. Therefore we distinguish between unary root clusters and non
unary root clusters in Case 3.

Black nodes are the clusters on the root−path

Ck+1

Ck

Figure 3: Ck is an unary root cluster. If we perform add-root in Tj , j ≥ k+1, we only have to update
the weight of one edge of level k, the edge incident to Ck+1.

15

not need to further modify L(e). The edge e(k) is inserted into Ck(y), and has the same weight as
of the edge f1.

For every q ≤ k − 1 we update L(f) for the edge f = (z, w) such that f(q) is the single edge in
Cq(y), incident to Cq+1(y). We perform these updates as in Subcase 3.1.

In both Subcase 3.1 and Subcase 3.2 after combining Cj+1(x) and T 2
j we have to combine the

rest of T 1
j with T 2

j . Let Cj(x) be the cluster at the root of T 2
j . (This cluster is either Cj(y) with

Cj+1(x) as the root if Subcase 3.1 has been performed, or a cluster containing a single node Cj+1(x)
if Subcase 3.2 has been performed.) We traverse the path from Cj+1(x) to the root of T 1

j . Let
Cj+1(z) be a node on this path and let f be the edge connecting it to its predecessor on this path.
We insert Cj+1(z) and f to Cj(x) by an add-root operation. After the add-root operation the edge
f is of level j. So we delete items from L(f) associated with levels smaller than j.

Following these operations, for all q < j, Cq(x) is an unary root cluster. For every q < j we
now update L(f) for the edge f = (z, w) such that f(q) is the single edge in Cq(x) incident to
Cq+1(x) = Cq+1(z). This is done in a way similar to the way we updated the lists of these edges in
Subcase 3.1. Let f ′ be the edge of minimum weight on the path from r(Cj+1(x)) to the root node of
T 1. We compute f ′ while doing the add root operations in the previous paragraph: it is the edge of
smallest weight among the edges that determine the weight of the edges e′(j) that are inserted into
Cj(x) by the add root operations. Let f2 be the edge in the last pair of L(f) and let t be the level
of the last pair in L(f). Then, f2 contains the edge of minimum weight on the path between w and
r(Cj+1(x)). We update the last pair of L(f) as follows. If t ≥ j then we add a pair to L(f). This
pair contains the edge of minimum weight among f ′ and f2, and its level is j − 1. If t < j, then we
delete the last pair of L(f) and insert instead a pair with the edge of minimum weight among f ′ and
f2 and level t.

Finally, we insert all other clusters in T 1
j to Cj(x). We insert these clusters top-down starting

from the clusters that were hanging off of the path from Cj+1(x) to the root of T 1
j . Let Cj+1(z) be

such a cluster and let f be the edge connecting it to its parent in T 1
j we insert Cj+1(z) and f into

Cj(x) by an add-leaf operation. We add the leaf as a child of the old parent of Cj+1(z) in T 1
j . The

edge f after the link is of level j so we delete elements from L(f) associated with levels smaller than
j.

Let Cq(x), for q < j be an unary root cluster. Let the edge f = (z, w) be such that f(q) is the
single edge in Cq(x) incident to Cq+1(x) = Cq+1(z). If the weight of f(q) changes, then in addition to
updating L(f) we also have to change the weight associated with f(q) in the incremental tree Cq(x).
The cluster Cq(x) is an unary root cluster so the node Cq+1(x) is a leaf in the partially incremental
tree that represents the root path of Cq(x), and f(q) is the edge incident to this leaf. We update the
weight of f(q) as specified in Section 3 where we showed that we can update the weight of the edge
incident to a leaf in a partially incremental tree in O(1) time. It is easy to see that we update the
weight of such edge f(q) at most twice per level q during the link operation. The first update is after
we perform add root to Cj+1(x), and the second update is after we perform add root to all other
cluster nodes of T 1

j+1 on the path from Cj+1(x) to the root of T 1
j+1. It follows that these updates

add only a constant factor to our running time.

Case 4: q1 = q2. Create Tj by adding e(j) and making Cj+1(y) a child of Cj+1(x). Recursively
perform linkj−1(Cj(x), Cj(y)) combining T 1

j−1 and T 2
j−1.

If the value of e(j) is different than the value of e(j + 1) then we have to add an item to L(e).
We compute the value associated with e(j) as in Case 1.

To establish the correctness of our implementation of link we claim that Case 4 cannot occur
when linking two trees of level 1 (i.e. when j = 1). Let q1 be the universe of T 1

1 , and let q2 be the

16

universe of T 2
1 . By the definition of the link if q1 6= q2 we perform either Case 2 or Case 3. If q1 = q2

then |T 1
1 |, |T 2

1 | ≥ A(1, q1) = 2q1 . So |T 1
1 | + |T 2

1 | ≥ 2q1+1 = 2A(1, max{q1, q2} + 1) and we perform
Case 1.

Case 3 of our implementation of link creates small clusters, therefore it is not obvious why Lemma
4.1 still holds. So we classify clusters into two kinds. For each v ∈ T , Cℓ+1(v) = v is considered a
good cluster. Let Tk be in universe i > 0. A cluster Ck(v) ∈ Tk is considered good if it contains at
least 2A(k, i) good clusters of level k + 1. The cluster Ck(v) is called bad otherwise. We change the
definition of |Tj | to be the number of vertices in Tj that correspond to good clusters of level j + 1.
Then Lemma 4.1 holds with respect to this new definition of the size of a tree. We will show that
the number of bad clusters is not larger than the number of good clusters.

For our analysis to work we change the definition of a universe and say that Tj is in universe i
if the number of good clusters of level j + 1 that are contained in Tj is in [2A(k, i), 2A(k, i + 1)). In
Case 1 of the implementation of link we compute |T 1

j | and |T 2
j | according to the new definition of

|Tj |.

4.3 Analysis

The next lemma proves that in each tree Tk the number of bad clusters of level k is smaller than the
number of good clusters of level k.

Lemma 4.2 Let T be a tree. For each k such that Tk−1 exists, the number of good clusters of level
k is greater than the number of bad clusters of level k.

Proof: Let T be a tree in the forest and let u be the root of T . Let gk be the number of good
clusters of level k, and let bk be the number of bad clusters of level k in T . We prove that one of the
following holds for each tree Tk.

1. The size of Tk is smaller than 4 (that is Tk is in universe 0), so bk = gk = 0.

2. If for each i < k such that Ci(u) exists, Ci(u) is an unary root cluster, then bk + 1 ≤ gk.
Otherwise, if there exists i < k such that Ci(u) is not an unary root cluster, then bk + 2 ≤ gk.

We prove our claim by induction on the sequence of link operations. The claim trivially holds if
|T | < 4 since in this case bℓ = gℓ = 0.

Consider a link between T 1 and T 2 that creates the tree T by adding the edge (x, y) with x ∈ T 1

and y ∈ T 2. Let g1
k be the number of good clusters of level k of T 1, and let b1

k be the number of bad
clusters of level k of T 1. Similarly, let g2

k be the number of good clusters of level k of T 2, and let b2
k

be the number of bad clusters of level k of T 2. By the induction hypothesis b1
k < g1

k and b2
k < g2

k.
Let gk and bk be the number of good and bad clusters of level k, respectively, in the resulting tree
T , and let u be the root of T .

Assume that for each k > j Case 4 of linkk(Ck+1(x), Ck+1(y)) was performed, and for k = j one
of the other cases was performed. Let T 1

j be in universe q1 and T 2
j be in universe q2.

Suppose that Case 1 of the link was performed by linkj(Cj+1(x), Cj+1(y)) so |T 1
j | + |T 2

j | ≥
2A(j, max{q1, q2}+ 1). Then we create a new tree Tj in universe max{q1, q2}+ 1 containing a single
cluster C and we insert all nodes of T 1

j and of T 2
j into C. The cluster C is good since it contains at

least 2A(j, max{q1, q2} + 1) good clusters of level j + 1. The tree T has no bad clusters of level j,
so bj + 1 = gj as required. Since for i < j, Ci(u) does not exist the claim follows for i ≤ j. For each
j < k ≤ ℓ, gk = g1

k + g2
k and bk = b1

k + b2
k. Thus we get that bk + 2 ≤ gk, and the claim follows.

17

Suppose that Case 2 of the link was performed by linkj(Cj+1(x), Cj+1(y)). Then, as in the
previous case for each j < k ≤ ℓ, gk = g1

k +g2
k and bk = b1

k + b2
k and we get that bk +2 ≤ gk. Consider

now level k = j. In this level we inserted all cluster nodes of level j + 1 of T 2 into Cj(x), since we
did not decrease the number of good cluster nodes of level j + 1 that are contained in Cj(x), Cj(x)
can not change from a good cluster to a bad cluster. All other cluster nodes of level j of T are the
same as in T 1. Thus we get that gj ≥ g1

j and bj ≤ b1
j . A similar argument shows that for each k < j

we have that gk ≥ g1
k and bk ≤ b1

k. Since the induction hypothesis was true for clusters of level k ≤ j
of T 1, it also holds for clusters of level k ≤ j of T .

Suppose that Case 3 of the link was performed by linkj(Cj+1(x), Cj+1(y)). Then, as in the
previous case for each j < k ≤ ℓ, gk = g1

k + g2
k and bk = b1

k + b2
k and we get that bk + 2 ≤ gk.

Suppose we performed Subcase 3.1. Then for each q < j, Cq(y) is an unary root cluster of T 2,
and by the induction hypothesis b2

k + 1 ≤ g2
k, for k ≤ j. As in the previous case, we have that for

each k ≤ j, gk ≥ g2
k and bk ≤ b2

k. Thus by the induction hypothesis we get that b2
k + 1 ≤ g2

k, for
k ≤ j. The structure of Tq for q < j is the same as the structure of T 2

q , thus we have that Cq(y), for
q < j is an unary root cluster of T and the claim follows for k ≤ j as well.

Suppose we performed Subcase 3.2. Let q < j be the smallest level such that Cq(y) is not an
unary root cluster. By the induction hypothesis, we have that for each q < k ≤ ℓ, b2

k + 2 ≤ g2
k. For

each q < k ≤ j, we create one new bad cluster in Tk. Thus we get that bk ≤ b2
k + 1, gk ≥ g2

k, and so
bk + 1 ≤ gk, for q < k ≤ j. The induction hypothesis holds, since following the link, we have that
for each k′ < j, Ck′(u) = Ck′(x) is an unary root cluster of T .

For k < q, Ck(y) is an unary root cluster of T 2, so by the induction hypothesis b2
k + 1 ≤ g2

k for
k ≤ q. In T , for k ≤ q, we have that, bk ≤ b2

k, and gk ≥ g2
k, and so bk + 1 ≤ gk. The induction

hypothesis holds since for each k ≤ q, Ck(u) = Ck(x) is an unary root cluster of T . 2

We now show that the total cost of all link operations is O(n(a(ℓ, n)+ ℓ)) = O(nℓ+m). Consider
first a single link operation that adds the edge (x, y). Let j be the smallest level for which we perform
linkj(Cj+1(x), Cj+1(y)). Each of the calls linkk(Cj+1(x), Cj+1(y)) for k > j performs Case 4 and
therefore takes O(1) time. Consider the time it takes to perform linkj(Cj+1(x), Cj+1(y)) excluding
the add-root and add-leaf operations. In case linkj(Cj+1(x), Cj+1(y)) performs Case 1 or Case 2 then
it clearly takes O(1) time. In case linkj(Cj+1(x), Cj+1(y)) performs Case 3 then it has to update the
weight of up to j edges incident to roots of unary root clusters. Since it takes O(1) time to update
each such edge linkj(Cj+1(x), Cj+1(y)) takes O(j) time. Summing up we obtain that the cost of the
link is O(ℓ).

We now show that the total cost of all add-root and add-leaf operations performed by the link
operations is O(na(ℓ, n)). Since each add-root and add-leaf moves a cluster into higher universe,
we need to bound the number of times a cluster can move from a tree in one universe to a tree in
a higher universe. For each level j we bound the number of times clusters of level j can change
universe. For j = ℓ + 1, this number is a(ℓ, n) = ⌈m/n⌉. Thus the cost of moving the nodes of level
ℓ + 1 into higher universe over all link operations is O(na(ℓ, n)) = O(m + n).

For level j ≤ ℓ we have the following Lemma that was proven by Gabow [7].

Lemma 4.3 Let T be a tree in our forest and let j be a level such that j < ℓ. Then the number of
universes that Tj can be in, provided that Tj+1 is in universe i, is A(j + 1, i).

Proof: By definition |Tj+1| < 2A(j+1, i+1). (Recall that |Tj+1| is the number of nodes corresponding
to good level-j + 2 clusters in Tj+1.) Since each good cluster of level j + 1 of T contains at least
2A(j + 1, i) good clusters of level j + 2 we obtain that |Tj | ≤ 2A(j + 1, i + 1)/2A(j + 1, i). Therefore

18

Tj must be in one of a(j, 2A(j + 1, i + 1)/2A(j + 1, i)) universes. The lemma follows from simple
properties of Ackermann’s function which imply that

a(j, 2A(j + 1, i + 1)/2A(j + 1, i)) ≤ a(j, A(j + 1, i + 1)) = a(j, A(j, A(j + 1, i))) = A(j + 1, i).

2

We now count the number of times the universe of the tree Tj containing a good cluster Cj+1

changes, summed over all levels and universes. By Lemma 4.2 this sum bounds the total number
of times the universe of the tree containing any cluster (good or bad) changes. In the following
discussion up to Lemma 4.4 we consider only good nodes.

If j = ℓ then Cℓ+1 is some real vertex v. Clearly the universe of the tree containing v may change
at most a(ℓ, n) = m/n + 1 times. If we sum over all n nodes we get that the total number of times
the universe of the tree containing a vertex v changes is m + n.

Now consider a cluster Cℓ in a tree of level ℓ. The cluster Cℓ is created when some link operation
at level ℓ performs Case 1. Let i be the universe of the tree of level ℓ containing Cℓ. Although the
tree of level ℓ containing Cℓ may change and the cluster Cℓ may grow, the universe of the tree of level
ℓ containing Cℓ is always i. So we can define the universe of a cluster of level ℓ to be the universe
of the tree containing it. The cluster Cℓ exists until some link operation of level ℓ decides to insert
the vertices of the tree containing Cℓ into some cluster of another tree of a larger universe in level ℓ.
Let Si be the set of clusters of level ℓ and of universe i in trees of level ℓ. Since each level-ℓ cluster of
universe i contains at least 2A(ℓ, i) nodes, and a node belongs to at most one such cluster throughout
the process, then |Si| ≤ n/2A(ℓ, i). By Lemma 4.3 the tree of level ℓ − 1 containing a node which
corresponds to a cluster of Si could be in one of A(ℓ, i) universes. So we get that the total number
of times the universe of a tree containing a node corresponding to a cluster of Si changes is at most
n/2. If we sum this over all 0 ≤ i ≤ a(ℓ, n) = m/n we get that the total number of times a cluster
of level ℓ changes its universe is (m + n)/2.

Consider now a cluster Cj+1 of level j + 1 ≤ ℓ and universe ij+1. For k ≥ j + 1, we define the
universe of level k of Cj+1 to be the universe ik of the tree Tk which gets contracted to the tree Tj

in which Cj+1 is a cluster. Note that throughout the lifetime of Cj+1, Tk may change by links, but
ik can not change. For a sequence of universes ij+1, . . . , iℓ of levels j + 1, . . . , ℓ we define Sij+1,...,iℓ

to be the set of clusters of level j + 1 of universe ik of level k for every j + 1 ≤ k ≤ ℓ. Since
each real vertex belongs to at most one cluster corresponding to a node of Sij+1,...,iℓ it follows that
|Sij+1,...,iℓ | ≤ n

2A(ℓ,iℓ)···2A(j+1,ij+1) . By Lemma 4.3 the level-j tree containing each cluster of Sij+1,...,iℓ

can be in one of A(j+1, ij+1) universes. Therefore the universe of a tree containing a node in Sij+1,...,iℓ

changes at most n
2A(ℓ,iℓ)···2A(j+2,ij+2)∗2 times. To sum over all sets Sij+1,...,iℓ note that by Lemma 4.3

the number of possible values ik can have given ik+1 is A(k + 1, ik+1) for every j + 1 ≤ k < ℓ. Thus,
if we also recall that the number of possible values for iℓ is m

n +1 we obtain that the number of times
a tree containing any cluster of level j + 1 can change its universe is (m + n)/2ℓ−j . The following
lemma summarizes what we have just proved.

Lemma 4.4 The number of times a cluster of level j moves from a tree in one universe to a tree in
a higher universe is O((m + n)/2ℓ−j).

By Lemma 4.4 if we sum the number of nodes which move from a tree of low universe to a tree
of higher universe over all levels we get that the total number of nodes which move from a tree of
low universe to a tree of higher universe is O(m + n). It follows from this that the total cost of all
link operations is O(m + nα(m, n)). Combining this with the analysis of a query in Section 4.1 we
get following theorem.

19

Theorem 4.1 The data structure presented in this section performs at most n link operations and
m path-min queries in O((m + n)α(m, n)) time.

5 An O(n + mα(m, n)2) data structure for unrooted trees

We use the recursive decomposition of Gabow [7] as in the previous algorithm together with incre-
mental trees. Here the incremental trees do not need to support the add-root operation. Each tree is
partitioned into clusters as before and we keep the notation where Cj(v) is the cluster which contains
v in Tj . The tree with its clusters contracted is represented recursively. Each cluster Ck of a tree
Tk is rooted at a certain node Ck+1 (which is a cluster of level k + 1). The cluster Ck+1 in turn is
rooted at some cluster Ck+2 etc. If we unravel this recursion all the way to its bottom we obtain a
vertex v of Tℓ which is the root of the cluster Ck when thinking of it as a subtree of T . We denote
this vertex by r(Ck). The cluster Ck as a rooted subtree of Tk is represented by an incremental tree.

Let Cj+1 be a node of the cluster Cj . Assume Cj+1 is not the root of Cj and let C ′
j+1 be the

parent of Cj+1 in Cj . Let e = (v, w) be the edge (of level j) such that e(j) connects Cj+1 to C ′
j+1 in

Cj , so Cj+1 = Cj+1(v) and C ′
j+1 = Cj+1(w). We define the j-root of Cj+1 to be the vertex v, and

denote it by t(Cj+1). This is the “root” of Cj+1 when considering it as a subtree of Cj . Notice that
t(Cj+1) need not be equal to r(Cj+1). If Cj+1 is the root of Cj then we define t(Cj+1) to be r(Cj+1).

As in Section 3 a node representing the cluster Cj has a pointer to the root of its subtree in T ,
to the cluster Cj+1 which is the root of Cj and to the cluster Cj−1 containing Cj if such a cluster
exists. Let e = (u, v) ∈ T be an edge of level j such that Cj+1(v) is the parent of Cj+1(u) in the
incremental tree Cj(v) (= Cj(u)). We store with e two lists Le(v) and Le(u). The list Le(v) is of
length exactly ℓ−j +1. Entry ℓ of Le(v) contains e. For level j ≤ k < ℓ entry k of Le(v) contains the
edge f of minimum weight on the path from u to t(Ck+1(v)) in T . The weight of e(k), w(e(k)), is
equal to the weight of f . If level(e) = j then e(j) is contained in a cluster Cj . The weight w(e(j)) is
also maintained by the incremental tree representing Cj . Similarly, entry ℓ of Le(u) contains e, and
for level j ≤ k < ℓ, entry k contains the edge of minimum weight on the path from v to t(Ck+1(u))
in T . Notice that since Cj+1(v) is the parent of Cj+1(u), then u = t(Cj+1(u)) and e is the value of
entry j in Le(u). Each list is represented as a doubly linked list with pointers to its first and last
entry. Lemma 4.1 implies that the total space used to store these lists is linear.

Figure 1(B) illustrates the data structure, and the weights of the edges in different levels.

5.1 The implementation of a path-min query

Our query algorithm is similar to the query algorithm of Section 4.1. Let Pxy be the path from x
to y. We define a recursive procedure pathmink(x, y, ex, ey) as in Section 4.1. We first assume that
both ex and ey exist. Let ex = (x′, x) and let ey = (y′, y).

The procedure pathmink(x, y, ex, ey) finds the minimum on Px′y′ under the assumptions that:
(1) Ck(y) = Ck(x), (2) the edge ex is of level < k (that is x′ /∈ Ck(x)), and we have a pointer to the
entry in Lex(x) associated with level k, and (3) the edge ey is of level < k (that is y′ /∈ Ck(y)), and
we have a pointer to the entry associated with level k in Ley(y).

The implementation of pathmink(x, y, ex, ey) is the same as described in Section 4.1. The main
difference of our algorithm here and the algorithm of Section 4.1 is when ex or ey are not available.

Let d = t(Ck+1(x)). In Section 4.1 we used the min-root algorithm to find the edge of minimum
weight on the path from x to d. Here we cannot use the min-root procedure since t(Ck+1(x)) may
not be the root of Ck+1(x) (recall that here each cluster is rooted independently of the higher level
clusters containing it).

20

Instead, if ex does not exist, we find the edge of minimum weight on the path from x to d as
follows. There exists an edge e′ = (d, q) of level k, between Ck+1(x) (= Ck+1(d)) and Ck+1(q) in
Ck(x), where q in on Pxy. We locate the entry in Le′(d) associated with level k + 1 and recursively
perform pathmink+1(x, d, null, e′).4 If ey does not exist and we have to find the minimum from y to
t(Ck+1(y)), then we do it similarly.

The complexity of pathmink is dominated by the number of recursive calls to pathmin. To bound
this number observe that: (1) Each call to pathmin in which ex (ey) does not exist makes at most a
single call to pathmin in which both edges exist and a single call to pathmin in which ex (ey) does
not exist. (2) A call to pathmin in which both ex and ey exist makes at most a single recursive call
to pathmin in which ex and ey exist.

¿From the first observation follows that there are O(ℓ − k) recursive calls to pathmin in which
ex does not exist, and at most O(ℓ − k) recursive calls to pathmin in which ey does not exist. This
together with the second observation imply that the total number of recursive calls initiated by
pathmink is O((ℓ − k)2).

5.2 The implementation of link

Let x be a vertex in a tree T 1
ℓ and let y be a vertex of T 2

ℓ . The operation linkℓ(x, y) combines T 1
ℓ

and T 2
ℓ by adding the edge e = (x, y). When combining T 1

ℓ and T 2
ℓ we also have to combine T 1

ℓ−1

and T 2
ℓ−1 etc. Therefore the implementation of link is recursive. We define the recursive operation

linkj(Cj+1(x), Cj+1(y)) where Cj+1(x) is a node in T 1
j and Cj+1(y) is a node in T 2

j . The operation

linkj(Cj+1(x), Cj+1(y)) combines T 1
j and T 2

j by adding the edge (x, y) to the resulting tree Tj . Let

q1 be the universe of T 1
j and let q2 be the universe of T 2

j . To perform linkj(Cj+1(x), Cj+1(y)) we
perform the appropriate of the following four cases.

Case 1: |T 1
j | + |T 2

j | ≥ 2A(j,max{q1, q2} + 1). Create a new tree Tj in universe max{q1, q2} + 1

containing a single, initially empty, cluster C. Traverse T 1
j top down and insert all nodes of T 1

j to
C by performing add-leaf operations. Then insert Cj+1(y) as a child of Cj+1(x) into C by another
add-leaf operation which adds e(j) to the new cluster. Finally insert all the nodes of T 2

j into C,
top-down by performing add-leaf operations.

To insert Cj+1(y) as a child of Cj+1(x) we have to compute the edges of Le(x) and Le(y) associated
with level j. The weight of the edge associated with level j in Le(x) is the weight of e(j) in the
incremental tree representing the new cluster.

Notice that the edge of level j in Le(y) is e. We now show how to update the edge of level j of
Le(x). If j = ℓ, then the edge of level ℓ of Le(x) is e. Otherwise, if j < ℓ, we have to find the edge
of minimum weight in T on the path from y to t(Cj+1(x)). Let b = t(Cj+1(x)). We do that by a
pathminj+1(x, b, null, null) query in T 1. Let f be the edge returned by this query. The edge of level
j of Le(x) is the edge of minimum weight among (x, y) and f .

Each edge f = (v, w) such that f(j) is either in T 1
j or in T 2

j becomes an edge of Tj . The level of
f becomes j and we discard any element of Lf (v) and Lf (w) of level < j.

Let f = (v, w) be an edge such that f(j) ∈ T 2
j . We have to update the edges of level j of Lf (v)

and Lf (w) since t(Cj+1(v)) and t(Cj+1(w)) may have changed in C. Assume Cj+1(v) is the parent
of Cj+1(w) in C. Then clearly w = t(Cj+1(w)) and therefore the edge of level j of Lf (w) is f . Let
b = t(Cj+1(v)). The edge of level j of Lf (v) should be the edge of minimum weight on the path from

4Notice that pathmink+1(x, d, null, e′) actually finds the edge of minimum weight on Pxq. The result remains correct
since q ∈ Pxy.

21

w to b in Cj+1(v). We find this edge by performing pathminj+1(w, b, null, null) on T 2. We perform
these updates to all edges of T 2

j while traversing it top-down.

Case 2: q1 > q2. We traverse the clusters of T 2
j top down starting from Cj+1(y) inserting them

one by one into Cj(x) by performing add-leaf operations to Cj(x). We start by inserting Cj+1(y)
as a child of Cj+1(x). The edge connecting these two clusters is e(j). We compute its weight and
update Le(x) and Le(y) exactly as in Case 1.

The partition of T 2
j into clusters of levels ≤ j is discarded. Let f = (v, w) be an edge such that

f(j) ∈ T 2
j . The level of f becomes j. We discard any elements of Lf (v) and Lf (w) of levels smaller

than j, and update the edge of level j in these lists exactly as in case 1.

Case 3: q1 < q2. This case is analogous to Case 2, with the roles of T 1
j and T 2

j switched.

Case 4: q1 = q2. Create Tj by adding e(j). Recursively perform linkj−1(Cj(x), Cj(y)) combining
T 1

j−1 and T 2
j−1. We update the edges of level j of Le(x) and Le(y) as in Case 1.

5.3 Analysis

We now show that the total cost of all link operations is O(n + m). Consider a link operation in
which we perform the non-recursive case (Case 1, 2, or 3) at level j, and for each level greater than
j we perform Case 4. We call such a link a level-j link.

At each level j ≤ k ≤ ℓ, we perform a query to discover the values of Le(x) and Le(y) associated
with level k. Each such query takes O((ℓ − k)2) time so the total cost of updating the lists Le(x)
and Le(y) is O((ℓ − j)3).

It is easy to verify that a level-j cluster contains at least 2ℓ−j vertices of T , (in fact it contains
a lot more). Therefore after the level-j link of T 1 and T 2, the resulting tree T satisfies |T | ≥
max{|T 1|, |T 2|} + 2ℓ−j . It follows that there could be at most n/2ℓ−j links at level j and the total
time it takes to update the lists Le(x) and Le(y) over all links is O((n/2ℓ−j)(ℓ − j)3) = O(n).

Assume now that at level j we performed Case 1 or Case 2. In these cases, the link at level j also
updates the elements of level j of Lf (v) and Lf (w) for each edge f = (v, w) such that f(j) ∈ T 2

j ,

using a query. Each such query takes O(ℓ−j)2 time. Since the universe of each node in T 2
j increases,

the number of queries is proportional to the number of nodes whose universe increases. By Lemma
4.4, over the entire process only O((m + n)/2ℓ−j) nodes of level j increase their universe. So the
total cost of moving level-j nodes from cluster to another cluster is O(((m + n)/2ℓ−j)(ℓ− j)2). If we
sum over j we get that the total cost of moving nodes between clusters is O(m + n). The analysis of
Case 3, is identical to the analysis of case 2, with the roles of T 1

j and T 2
j switched.

6 Improving the query time to O(α(m, n))

A pathmin query takes O(ℓ2) time in the data structures of Section 5 because we recursively find
the edge of minimum weight between x and t(Cj+1(x)) or between y and t(Cj+1(y)) for every level
j. This takes O(ℓ − j) time since we may have two recursive calls to pathminj+1 query, one call
with two edges, and one call with only one edge. To reduce the query time to O(ℓ) we change this
query algorithm to use more information which we maintain with the edges. With this additional
information we can answer a pathmin query with two edges in O(1) time, and the total query time
goes down to O(ℓ).

We first describe the data structure, and then, before going into the details of the operations,
we show how we can answer a pathmin query with two edges in O(1) time. Each cluster of Tk is

22

either a proper cluster or an improper cluster. When we construct the clusters of Tk, every improper
cluster must be a leaf (a node of degree one). To obtain Tk−1, we prune the improper clusters after
contracting the clusters of Tk. We also maintain the following. Let Ck be an improper cluster of
Tk, and let e = (a, b) be the edge such that e(k) is incident to Ck, and Ck = Ck(a). Then, Ck(b)
must be proper. Let Ck be an improper cluster as above. We redefine t(Ck+1(a)) to be a rather
than r(Ck+1(a)) as in Section 5. We also define t(Ck(a)) to be a. We also define all nodes (which
are clusters of level ℓ + 1) to be proper clusters. Note that |Tk−1| is equal to the number of proper
clusters of Tk.

Let e = (x, y) ∈ T = Tℓ. We define the level of an edge e as follows. Let j the smallest level such
that e appears in Tj . Then we define the level of e to be j and denote it by level(e) = j. A copy
of the edge e appears in each Ti, for j ≤ i ≤ ℓ. We denote by e(i) the copy of e that appears in Ti.
Let e = (x, y) ∈ T such that level(e) = j. The edge e(j) is either contained in Cj(x) = Cj(y), and
adjacent to Cj+1(x) and Cj+1(y), or e(j) connects the improper cluster Cj(x) to a proper cluster
Cj(y), and x = t(Cj+1(x)). In anycase, e(j) is adjacent to two proper clusters of level j +1, Cj+1(x)
and Cj+1(y). Assume that e(j) is an edge of the first type, that is e(j) is contained in the incremental
tree Cj(x) = Cj(y). Let Cj+1(y) be the parent of Cj+1(x) in Cj(x). As in Section 5 we define the
weight of e(j) in the incremental tree Cj(x) to be the minimum weight of a vertex on the path from
x to t(Cj+1(y)). Notice that unlike in Section 5, here we need the weight to be defined only for e(j),
where j = level(e).

Let e = (a, b). For each level(e) ≤ k < ℓ we maintain the following information associated with
e(k), which we denote by Inf(e(k)). Let Ck+2 6= Ck+2(a) be a node in the incremental tree Ck+1(a).
Let Ck+2(a) = C1

k+2, · · ·Cr
k+2 = Ck+2 be the path in Ck+1(a) from Ck+2(a) to Ck+2. Let (d, c) ∈ T

be the edge in Ck+1(a) between Cr−1
k+2 to Ck+2, where c ∈ Ck+1. We save for Ck+2 the edge in T of

minimum weight on the path between a to d. We save similar information with respect to the nodes
in Ck+1(b).

To store this information while using linear space, we need to impose an upper bound on the
maximum size of a cluster. On the other hand, we still have to ensure that each tree Tj does not
contain too many clusters of level j + 1. Therefore we maintain the following invariants. Let j ≤ ℓ,
and let Tj be in universe i.

1. Each cluster Cj contains up to 6A(j, i) nodes which correspond to clusters of level j + 1. In
Section 5 it contained ≥ 2A(j, i) nodes. Here, we don’t have such an explicit requirement, but
we have Invariant (2) instead.

2. By definition, the size of Tj−1 is the number of proper clusters of level j. We maintain the
invariant that |Tj−1| ≤ |Tj |/2A(j, i).

For an edge e = (a, b) of level j we have an array of size ℓ− j indexed by the integers ℓ−1, · · · , j.
Entry k of the array contains Inf(e(k)). Let Tk+1 be in universe h. We store the information of
Inf(e(k)) associated with nodes of Ck+1(a), in an array of size 6A(k + 1, h). By Invariant (1),
|Ck+1(a)| ≤ 6A(k + 1, h) so an array of this size is sufficient to store all the information regarding
the nodes in Ck+1(a). Entry i in that array corresponds to node numbered i in Ck+1(a). We use a
similar array to store the information regarding the nodes of level k+2 that are contained in Ck+1(b).

Let e = (x1, x̂) be the edge in Figure 1(B). Assume that Ck+2(a), Ck+2(g) and Ck+2(p) are
numbered 1, 2, and 3 respectively in Ck+1(a). Then, Inf(e(k)) associated with x̂ is as follows.
Inf(e(k))[1] contains the edge of minimum weight on the path from x̂ to h. Inf(e(k))[2] is empty,
and Inf(e(k))[3] contains the edge of minimum weight on the path from x̂ to d.

We now sketch we can answer a pathmin query with two edges in O(1) time. Consider pathmink(x, y, ex, ey),
and assume that both ex and ey, exist, and that Ck(x) = Ck(y) and that level(ex), level(ey) < k.

23

Using bit operations and some extra information that we save for each edge, we find in O(1) time the
smallest level j > k, such that Cj(x) 6= Cj(y). Notice that level(ex) and level(ey) ≤ j − 2. We now
show how to find the edge of minimum weight on the path from x to y in Cj−1(x). Let the path from
Cj(x) to Cj(y) consists of the nodes Cj(x) = C1

j , C2
j , · · ·Cr

j = Cj(y). Let the edge adjacent to Cr−1
j

and Cj(y) be (xr−1, xr) (note that xr may be different from y). We use Inf(ex(j − 2)) to extract
the edge of minimum weight on the path between x and xr−1. Let (x1, x2) be the edge adjacent to
Cj(x) and C2

j (note that x1 may be different from x). We use Inf(ey(j − 2)) to extract the edge of
minimum weight on the path between y and x2. It is easy to see that the edge of minimum weight on
the path from x to y is the edge of minimum weight among these two edges and the edge (xr−1, xr).

We will later show how to maintain Invariants (1) and (2) while performing links and queries.
Assume that these invariants hold. We prove in the next Lemma that the space used to store this
information remains linear.

Lemma 6.1 The total space used to save Inf(e(k)) for all edges e(k) in trees Tk and over all k is
O(n).

Proof: Let e(k) = (a, b) be an edge in Tk such that level(e) ≤ k < ℓ, adjacent to Ck+1(a) and
Ck+1(b). Assume that Tk+1 is in universe i. We save for e(k) two arrays each of size 6A(k + 1, i).
Let 2A(k + 1, i) ≤ x < 2A(k + 1, i + 1) be the number of nodes in Tk+1. By Invariant (2), there
are at most x/2A(k + 1, i) edges in Tk. So we get that the total space used by edges at level k is
O(x). Since the size of the trees Tk decreases by at least a factor of 2, we get that the total amount
of information saved is O(n). 2

Notice that by the construction, all the clusters of levels h, where h ≥ k + 1 that are contained
in Ck are proper clusters of level h, and this holds even if Ck is an improper tree of level k.

The outline of this Section is as follows. In Section 6.1 and in Section 6.2 we describe the
implementation of the query. In Section 6.3 we give the implementation of the link operation, and
finally in Section 6.4 we give the analysis of the data structure.

6.1 Finding the smallest uncommon cluster

Given two edges e = (x, a), and e′ = (y, d), x 6= y, of level < k such that Ck(x) = Ck(y). To make
our query work in O(ℓ) time, we want to find the smallest level j > k, such that Cj(x) 6= Cj(y) in
O(1) time.

To do this efficiently, we assume that the word size is O(log n), and that we can do bit operations
such as and, not, or, and xor, on words of size O(log n) in O(1) time.

We also maintain the following additional information.
• For an edge e = (a, b) of level j, we maintain an extendable array Ar(e) of size ℓ− j + 1, indexed
by j, · · · , ℓ. Entry k of Ar(e), j ≤ k ≤ ℓ, corresponds to level k, and contains a pointer to the node
Ck+1(a) and a pointer to the node Ck+1(b).
• We store a static table msb, such that msb[i] contains the index of the most significant bit in
binary representation of i for 1 ≤ i ≤ n.
• For each cluster Ck we number the nodes of level k+1 contained in Ck in ascending order starting
from 1. So each cluster Ck+1 ∈ Ck stores a number in the range {0, · · · , |Ck| − 1} which we call the
id of Ck+1.

Let T be such that Tℓ, · · · , Tk, k ≥ 1 exist, and Ti is in universe ji. We define startℓ(T) =
0, endℓ(T) = ⌈log(6A(ℓ, jℓ))⌉, and rangeℓ(T) = [startℓ(T), endℓ(T)]. For k < h < ℓ, we de-
fine starth(T) = endh+1(T) + 1, endh(T) = endh+1(T) + 1 + ⌈log(6A(h, jh))⌉, and rangeh(T) =
[starth(T) · · · , endh(T)].

24

• We store for each edge e = (a, b) such that level(e) = k an integer id(e, a) that for every k ≤ h ≤ ℓ
contains the id of Ch+1(a) within Ch(a) in the bits whose indices are in rangeh(T). We store an
integer id(e, b) that is defined analogously with respect to b.
• We store for T an extendable array L(T) of size

∑k
h=ℓ(⌈log(6A(h, jh))⌉) such that for every

x ∈ rangeh(T), L(T)[x] = h.
The next lemma shows that id(e, a) can fit into constant number of words. We therefore assume

below that it fits into a single computer word.

Lemma 6.2 Let e = (a, b) be an edge in T . Then the length of id(e, a) is O(log n) bits.

Proof: Let ℓ, · · · , k be the such that Tℓ, · · · , Tk exist. Let Ti be in universe ji. By Invariant (2) 1 ≤
|Tk| ≤ |T |

2A(ℓ,jℓ)·2A(ℓ−1,jℓ−1)···2A(k+1,jk+1) . So we get that 2A(ℓ, jℓ)·2A(ℓ−1, jℓ−1) · · · 2A(k+1, jk+1) ≤ |T |.
By taking logarithms of both size we see that

log(2A(ℓ, jℓ)) + log(2A(ℓ − 1, jℓ−1)) + · · · + log(2A(k + 1, jk+1)) ≤ log |T | ≤ log n . (1)

The space used to store id(e, a) is ⌈log(6A(ℓ, jℓ))⌉+⌈log(6A(ℓ−1, jℓ−1))⌉+ · · ·+⌈log 6A(k+1, jk+1)⌉
which since ℓ << log n is O(log n) by Equation (1). 2

Given two edges of level < k, e = (x, a), and e′ = (y, d), x 6= y, in a tree T such that Ck(x) =
Ck(y), we now show how to find the smallest level j > k, such that Cj(x) 6= Cj(y) in O(1) time.
We copy id(e, x) into a variable X and copy id(e′, y) into a variable Y . Using the appropriate bit
operations we zero the bits whose indices are in startk−1(T) · · · log n. So now both X and Y contain
information on levels k, · · · , ℓ. Notice that if j > k + 1 then since Ci(x) = Ci(y) for k + 1 ≤ i < j,
we have that X[r] = Y [r], for each r ∈ startj(T) · · · endk(T). But since Cj(x) 6= Cj(y), there exists
an index r in rangej−1(T) such that X[r] 6= Y [r].

Let W = X xor Y . By the observations above, the most significant bit of W which is 1 is
in rangej−1(T). We now use the pre-computed table msb to get z = msb[W]. We have that
startj−1(T) ≤ z ≤ endj−1(T) so L(T)[z] = j−1. We discovered that the id of Cj(x) is different from
the id of Cj(y) in Cj−1(x) = Cj−1(y), so Cj(x) 6= Cj(y). Now, using the arrays Ar(ex), and Ar(ey)
we find the nodes Cj(x), and Cj(y).

6.2 The implementation of path-min query

If x is contained in an improper cluster Cj(x), then x is not contained in any cluster of level j−1, so
it is possible that there is no k such that Ck(x) = Ck(y). This fact somewhat complicates our query
algorithm. We first assume that there exists an index k such that Ck(x) = Ck(y). We show that in
this case we can find the edge of minimum weight on Pxy in O(ℓ − j) time.

We follow the same approach as in Section 5.1 and describe the changes required in the procedure
pathmink(x, y, ex, ey). Recall that this procedure assumes that Ck(y) = Ck(x). The edge ex if exists
is an edge incident to x which is of level < k. Similarly, the edge ey if exists is an edge incident to y
which is of level < k. The pathmink procedure returns the edge of minimum weight on Pxy. In the
case where k = ℓ we perform minCℓ(x)(x, y) and return the answer of this query.

Consider the case where k < ℓ and both edges ex and ey exist. We use the algorithm of Section 6.1
to find the smallest level j > k such that Cj(x) 6= Cj(y) in O(1) time. Notice that level(ex) ≤ j − 2
and level(ey) < j − 2. The procedure in Section 6.1 returns the level j and pointers to Cj(x) and to
Cj(y). We now show how to find the edge of minimum weight on the path from x to y in Cj−1(x).
Let the path between Cj(x) to Cj(y) consists of the nodes Cj(x) = C1

j , C2
j , · · ·Cr

j = Cj(y). Let

the edge adjacent to Cr−1
j and Cj(y) be (xr−1, xr) (note that xr may be different from y). We use

25

Inf(ex(j − 2)) to extract the edge of minimum weight on the path between x and xr−1. Let (x1, x2)
be the edge adjacent to Cj(x) and C2

j (note that x1 may be different from x). We use Inf(ey(j−2))
to extract the edge of minimum weight on the path between y and x2. It is easy to see that the
edge of minimum weight on Pxy is the edge of minimum weight among these two edges and the edge
(xr−1, xr)

5. It is easy to see that in this case where both ex and ey exist pathmink takes O(1) time.
Assume now that k < ℓ and only ex exists. The case where only ey exists is symmetric. If

Ck+1(x) = Ck+1(y) then we call pathmink+1(x, y, ex, null). Otherwise, let Ck+1(x) = C1
k+1, C

2
k+1, · · · , Cr

k+1 =

Ck+1(y), be the path from Ck+1(x) to Ck+1(y) in Ck(x). Let (xr−1, xr) be the edge adjacent to Cr−1
k+1

and Ck+1(y). Recall that Inf(ex(k−1)) contains the edge f of minimum weight on the path between
x to xr−1. We recursively call pathmink+1(xr, y, (xr−1, xr), null). We return the edge of minimum
weight among f , (xr−1, xr) and the edge returned by the recursive call. It is easy to see that this
case of pathmink takes O(ℓ − k) time.

As in Section 5.1 we start the query by finding the largest level k such that Ck(x) = Ck(y). Since
k is maximal, we have that Ck+1(x) 6= Ck+1(y). Initially, we do not have the edges ex and ey. We
start by calling to pathmink(x, y, null, null). The procedure pathmink(x, y, null, null) works exactly
as in Section 5.1. That is, it consists of a constant number of min queries on the incremental tree
associated with the cluster Ck(x), at most one recursive call to pathmin in which both edges exist
and at most two recursive calls to the procedure pathmin in which only one edge exists. It is easy
to see that the running time of the algorithm is O(ℓ − k).

We now give the general algorithm. The main idea is that each time we reach an improper cluster
Cj(x) such that Cj(x) 6= Cj(y), we compute the edge of minimum weight on the path between x and
t(Cj(x)). Let w = t(Cj(x)). The cluster Cj(x) is improper so there is an edge between w and z such
that Cj(z) is proper. We then continue the query with z instead of x. If for some k < j, Ck(z) is
improper and we need to compute the edge of minimum weight on the path between z and the root
of Ck(z), we can do it in O(j − k) time using the information stored for the edge (w, z). We now
present the details.

We modify pathminj to handle improper clusters. To distinguish this algorithm from the pre-
vious one we denote it pathminj . It has the same parameters as pathminj . When we invoke

pathminj(x, y, ex, ey) then Cj+1(x) and Cj+1(y) are proper clusters. The edge ex if exists is incident
to x of level jx such that Cjx(x) is proper. Note that unlike the implementation of pathmin here
jx > j. A similar invariant holds for ey. pathminj(x, y, ex, ey) applies one of the following cases. At

the top level, to answer a query we invoke pathminℓ(x, y, null, null).

1. Cj(x) 6= Cj(y) and both Cj(x) and Cj(y) are proper. We call pathminj−1(x, y, ex, ey) and
return its result.

2. Cj(x) = Cj(y). We perform pathminj(x, y, null, null) (in O(ℓ − j + 1) time) and return the
result.

3. Cj(x) 6= Cj(y) and Cj(x) is improper and ex is null. Let a = t(Cj(x)) and let (a, z) be the edge
adjacent to Cj(x) and the proper cluster Cj(z). We perform pathminj(x, a, null, null) query
as described above to find the edge f of minimum weight between a and x in O(ℓ − j) time.
We recursively perform pathminj(z, y, (a, z), null) to find the edge f ′ of minimum weight on
the path from z to y. We return the edge of minimum weight among f , f ′, and (a, z).

5We need to consider the weight of (xr−1, xr) for the case where the path between Cj(x) to Cj(y) consists only of
the nodes Cj(x) and Cj(y)

26

4. Cj(x) 6= Cj(y) and Cj(x) is improper and ex is not null. Let j′ = level(ex) and notice that
since Cj′(x) is proper then j′ ≥ j +1. Let a = t(Cj(x)) and let (a, z) be the edge that connects
Cj(x) to the proper cluster Cj(z).

We first find the edge f of minimum weight on the path between x and a in O(j′ − j) time
as described below. Then we recursively find the edge f ′ of minimum weight between z and y
by recursively invoking pathminj(z, y, (a, z), null). We return the minimum among f , f ′ and
(a, z).

We find f as follows. If Cj+1(x) = Cj+1(a) we set b = a and e = (a, z). Otherwise,
Cj+1(x) 6= Cj+1(a), we perform minCj(x)(Cj+1(x), Cj+1(a)), and get the edge g of minimum
weight between a and t(Ck+1(x)) We set b = t(Cj+1(x)). Let (b, q) be the edge incident to
Cj+1(x) on Pba. We set e = (b, q). We maintain min to be the minimum edge on the part of
the path between x and a that we have already considered. So now we set min to be g and
continue to find the minimum on the path between x and b.

We do it by calling pathminj+1(x, b, null, e) with the following modifications. Recall that
pathminj+1(x, b, null, e) performs pathminj+2(x, b, null, e) if Cj+2(x) = Cj+2(b). If Cj+2(x) 6=
Cj+2(b), then pathminj+1(x, b, null, e) finds an edge f of minimum weight between b and some
vertex b′ where Cj+2(b

′) = Cj+2(x), such that there is an edge e′ of level j + 1 incident to b′,
and recursively performs pathminj+2(x, b′, null, e′). The first modification is that before each
recursive call we update min to be f if the weight of f is smaller than the weight of min.

The second modification is that we stop the recursion after O(j′−j) steps. At this point, we are
left to find the edge of minimum weight between x and some vertex b′′ in Cj′+1(x) = Cj′+1(b

′′).
If j′ = ℓ, then x = b′′ and we are done. Otherwise, we have an edge e′′ of level ≤ j′ adjacent
to b′′, and the edge ex of level j′ adjacent to x. Also min at this point is the edge of minimum
weight between b and b′′. We perform pathminj′+1(x, b′′, ex, e′′), and get the edge ê minimum
weight between x and b′′ in O(1) time. (Recall that the procedure pathmin costs O(1) if both
edges exist.) We set f to the edge minimum weight among min and ê.

5. Cj(y) 6= Cj(x) and Cj(y) is improper and ey is null. This case is similar to Case 3.

6. Cj(y) 6= Cj(x) and Cj(y) is improper and ey is not null. This case is similar to Case 4.

Clearly, for each j there are at most two steps that do not decrease j, in which the one of Cj(x)
and Cj(y) is improper, after these steps we have that both Cj(x) and Cj(y) are proper and we either
perform step (2) which terminates the process, or step (1) that decreases j by one. Thus pathminℓ

performs O(ℓ) recursive calls.
Step 2 is performed only once and takes O(ℓ) time. Step 1 takes O(1) time and is performed at

most O(ℓ) times. Step 3 and Step 5 are performed at most once and take O(ℓ) time. The cost of
step 4 for a certain level j is O(jx − j) where jx is the level of the edge ex. After Step 4 at level
j, the new ex is of level < j. Therefore the total time we spend executing Step 4 over all levels j
is O(ℓ). Similarly, the total time we spend executing Step 6 is O(ℓ). We conclude that the overall
running time of pathminℓ is O(ℓ).

6.3 The implementation of link

When we link T 1
j to T 2

j by adding the edge e = (x, y) we may encounter a problem if either Cj(x) or

Cj(y) is improper. In this case x or y do not exist in T 1
j−1 or T 2

j−1, respectively, so it is impossible

simply to link T 1
j−1 and T 2

j−1 by adding (x, y).

27

To define the link operation and for its analysis we need the following definitions. Let Ck be a
cluster of Tk, and assume that Tk is in universe i > 0. If |Ck| < 2A(k, i), then Ck is a small cluster .
If |Ck| ≥ 4A(k, i), then Ck is a full cluster . Otherwise, 2A(k, i) ≤ |Ck| < 4A(k, i), and we say that
Ck is a medium cluster . We will maintain the following additional invariants.

3. If Ck is an improper cluster, then Ck is a small cluster.

4. Let Ck be an improper cluster of level k. Let (w, z) be the single edge connecting it into a
proper cluster C ′

k of level k. Then, C ′
k is a full cluster. To be precise, |C ′

k| = 6A(k, i).

A link between improper clusters may create a proper small cluster. To maintain Invariant 2, we
will ensure that the number of proper small clusters of level k is always not larger than the number
of full clusters of level k. We now describe the link operation.

As in Section 5 the link starts by performing linkℓ(Cℓ+1(x), Cℓ+1(y)). Notice that both Cℓ+1(x),
and Cℓ+1(y) are proper clusters. In general before performing linkk(Ck+1(x), Ck+1(y)) both Ck+1(x)
and Ck+1(y) would be proper clusters.

Let q1 be the universe of T 1
k and let q2 be the universe of T 2

k . linkk(Ck+1(x), Ck+1(y)) performs
the appropriate of the following four cases.

Case 1: |T 1
k | + |T 2

k | ≥ 2A(k,max{q1, q2} + 1). Create a new tree Tk in universe max{q1, q2} + 1
containing a single, initially empty, cluster Ck. Traverse T 1

k top down and insert all nodes of T 1
k to

Ck by performing add-leaf operations. Then insert Ck+1(y) as a child of Ck+1(x) into C by another
add-leaf operation which adds e(k) to the new cluster. Finally insert all the nodes of T 2

k into C,
top-down by performing add-leaf operations. Since |T 1

k | < 2A(k, q1 + 1) and |T 2
k | < 2A(k, q2 + 1), we

have that |Tk| < 4A(k,max{q1, q2} + 1), so by inserting all nodes of T 1
k and T 2

k into a single cluster
C we do not violate Invariant (1).

We update the information of the edge e = (x, y). We compute the weight of e(k) as in Case
1 of Section 5.2. If k < ℓ, we also need to update Inf(e(k)). Let Ck+2 6= Ck+2(x) be a node in
the incremental tree Ck+1(x). Let Ck+2(x) = C1

k+2, · · ·Cr
k+2 = Ck+2 be the path in Ck+1(x) from

Ck+2(x) to Ck+2. Let (d, c) ∈ T be the edge in Ck+1(x) that is adjacent to Cr−1
k+2 and Ck+2 with

c ∈ Ck+2. We store in Inf(e(k)) for Ck+2(c) the edge in T of minimum weight on the path from
x to d. We find the edge by performing pathmin query on T 1 in O(ℓ − k) time. We store similar
information for the nodes contained in Ck+1(y), which we compute by performing the appropriate
queries on T 2. We add entry k to the array Ar of (x, y) that contains pointers to Ck+1(x) and to
Ck+1(y). We also update the part of id(e, a), and id(e, a) that corresponds to level k.

The direction of the edges of T 2
k may have changed (All edges are now directed towards Ck+1(y)),

we update the weight of the edges in T 2
k as in Case 1 of Section 5.2. For each edge f = (a, b) ∈ T 2

k ,
we update the part of id(f, a), and id(f, b) that corresponds to level k.

Each edge f such that f(k) is either in T 1
k or T 2

k becomes an edge of Tk. The level of f becomes
k. We discard any information of f that refers to levels < k. We set L(T) = L(T 1). We remove from
L(T) all entries that refer to levels smaller than k. We update the entries of L(T) that correspond
to level k appropriately. We discard L(T 2).

Case 2: q1 > q2. We use the following recursive insert procedure. Let e′ = (a, b). The procedure
insertk(Ck+1(a), Ck+1(b), e

′) inserts the cluster Ck+1(b) into Ck(a) by adding the edge e′(k). The
procedure assumes that Inf(e′(k)) has already been updated.

Assume that Tk is in universe i. If |Tk| = 2A(k, i + 1) − 1 then we increase the universe of Tk to
i + 1 and rebuild it as a single cluster containing Ck+1(a) and e′(k).

If |Ck(a)| < 6A(k, i) we add Ck+1(b) to Ck(a) as a child of Ck+1(a). We update the weight of e′(k),
id(e′, a), and id(e′, b) as in Case 1. If Ck(a) is a proper cluster, then for each edge f(k − 1) = (u, v)

28

such that Ck−1(u) = Ck−1(a), we need to add to Inf(f(k−1)) the edge of minimum weight between
u and a. We find it by performing pathmink(u, a, null, null) in O(ℓ − k) time.

If Ck(a) was an improper cluster and following the insertion |Ck(a)| = 2A(k, i) then we make
Ck(a) proper as follows. Let g = (w, z) be the edge adjacent to Cj(a) and Cj(z). We update
Inf(g(k − 1)) as described in Case 1, and perform insertk−1(Ck(z), Ck(a), g).

If |Ck(a)| = 6A(k, i), we create a new cluster node Ck(b). The cluster Ck(b) is an improper cluster
of level k. We add Ck+1(b) into Ck(b). In this case, b is the root of Ck(b) and the edge (a, b) is the
single edge connecting Ck(b) into a proper cluster Ck(a). It is easy to see that this insert procedure
maintains Invariant (1), (3) and (4).

Now we show how to implement Case 2 using the insert procedure. We update Inf(e(k)) as
in Case 1, and then insert Ck+1(y) into T 1

k by performing insertk(Ck+1(x), Ck+1(y), (x, y)). We
continue to insert all clusters of T 2

k into Ck(y) using the insert procedure. Notice that for all other
edges e′ 6= (x, y) of T 2

k that we insert to T 1
k we don’t need to recompute Inf(e′(k)).

The partition of T 2
k into clusters of levels ≤ k is discarded. Each edge f(j) of T 2

k becomes an
edge of Tk. We set L(T) = L(T 1), and we discard L(T 2).

Case 3: q1 < q2. This case is similar to Case 2.

Case 4: q1 = q2. We add the edge (x, y) into Tk as an edge that connects Ck+1(x) with Ck+1(y)
and update inf(e(k)), id(e, x) and id(e, y) as described in Case 1. If both Ck(x) and Ck(y) are
proper clusters of level k, we recursively call linkk−1(Ck(x), Ck(y)). If at least one of Ck(x), Ck(y) is
an improper cluster of level k we perform one of the following cases. Let i = q1 = q2.

1. The cluster Ck(x) is a proper cluster of T 1
k . The cluster Ck(y) is an improper cluster of T 2

k ,
and Ck(x) is not full (that is Ck(x) is a small or medium cluster). Let (w, z),∈ T 2 be the
edge that connects Ck(y) into the proper cluster Ck(z). We insert all clusters of level k + 1
of Ck(y) into Ck(x) using the insert procedure described in Case 2. Notice that the insert
procedure will indeed insert all of these clusters into Ck(x), since |Ck(x)| < 4A(k, i), and by
Invariant (3), |Ck(y)| < 2A(k, i). Notice that w now belongs to T 1

k , and z belongs to T 2
k and

(w, z) is the only edge that connects between these two trees of level k, Also remember that
level((w, z)) = k. We continue by recursively performing linkk−1(Ck(w), Ck(z)) to link T 1

k−1

and T 2
k−1. Since Case 1 of the link operation was not applicable, T 1

k remains in universe i. The
tree T 2

k also remains in universe i, since by Invariant (4), Ck(z) is a full cluster. Clearly this
transformation does not affect Ti, i > k.

2. The cluster Ck(x) is a proper cluster of T 1
k , the cluster Ck(y) is an improper cluster of T 2

k , and
Ck(x) is a full cluster. Let the edge (w, z) be as defined in Case 1. We make Ck(y) a proper
cluster by adding the edge f = (w, z) into T 2

k−1. That is, we update Inf(f(k−1)) as in Case 1,
and call insertk−1(Ck(z), Ck(y), (w, z)) to add Ck(y) into Ck−1(z) as a child of Ck(z) in T 2

k−1.
The cluster Ck(y) becomes a small proper cluster. We recursively call linkk−1(Ck(x), Ck(y)).

3. The cluster Ck(x) is an improper cluster of T 1
k , and the cluster Ck(y) is an improper cluster

of T 2
k . We make Ck(x) proper by adding it into T 1

k−1 as described in the previous case. We
add all the clusters contained in Ck(y) into Ck(x), using the insert procedure . Notice that the
insert procedure will indeed insert all these clusters into Ck(x), since prior to the operation,
|Ck(x)|, |Ck(y)| < 2A(k, i). Let (w, z) ∈ Ck(y) be the edge that connected Ck(y) into a proper
cluster Ck(z). Notice that now, w ∈ T 1 and z ∈ T 2, and (w, z) is the only edge of level k that
connects T 1 to T 2. We continue linking T 1 and T 2 by performing linkk−1(Ck(w), Ck(z)). Using
the same arguments as in Step (1), T 1

k and T 2
k both remain in universe i after these changes.

29

6.4 Correctness and analysis

We now show that the invariants hold after the link operation.

Lemma 6.3 Let T be the result of performing link between T1 and T2. If both T 1 and T 2 satisfy the
invariants the so does T .

Proof: Invariants (1), (3) and (4), clearly hold by the definition of the link. Let g(Tk) be the number
of full clusters of Tk, and let b(Tk) be the number of small proper clusters of Tk. To show that
Invariant (2) holds we first prove that either b(Tk) = g(Tk) = 0 or b(Tk) < g(Tk). The proof is by
induction on the link operations. Let T 1

k and T 2
k be two trees that we link and assume that T 1

k and
T 2

k satisfy the induction hypothesis.
In Cases 1, 2, and 3, we do not create any small proper cluster. So clearly if we perform one of

these three cases then the induction statement holds for Tk. In Case 4 if both Ck(x) and Ck(y) are
proper, or if we perform Subcase 1 then b(Tk) = b(T 1

k) + b(T 2
k), and g(Tk) = g(T 1

k) + g(T 2
k) so the

induction statement holds for Tk.
Assume that we perform Subcase 2 of Case 4. Since Ck(x) is a full cluster then by the induction

hypothesis g(T 1
k) > b(T 1

k). The cluster node Ck(y) is an improper cluster of level k, thus it is
adjacent to a proper cluster Ck(z). By Invariant (4), Ck(z) is a full cluster in T 2

k , and therefore
by the induction hypothesis g(T 2

k) > b(T 2
k). In this case we add Ck(y) as a small cluster into Tk.

Thus we get that g(Tk) = g(T 1
k) + g(T 2

k), and b(Tk) = b(T 1
k) + b(T 2

k) + 1, and therefore the induction
statement holds for Tk.

In Subcase 3 of Case 4 both Ck(x) and Ck(y) are improper. Therefore each of them is adjacent
to a full cluster and by the induction hypothesis g(T 2

k) > b(T 2
k) and g(T 1

k) > b(T 1
k). Since we add at

most one new small proper cluster to Tk the induction statement follows in this case as well.
By definition the number of nodes in Tk−1 is equal to the number of proper clusters of Tk. Let

p be the number of full clusters of Tk, let q be the number of small proper clusters of Tk, and
let r be the number medium clusters in Tk. We proved that p ≥ q. So it follows that |Tk| ≥
p4A(k, i) + q + r2A(k, i) ≥ p2A(k, i) + q2A(k, i) + r2A(k, i), and therefore we get that |Tk−1| =
p + q + r ≤ |Tk|/(2A(k, i)), and Invariant (2) holds. 2

We now show that the total cost of all link operations is O(na(ℓ, n)) = O(n + m). Suppose that
we perform link between T 1 and T 2. Let k be the level such that Case 1, 2, or 3 is performed at
level k. By the description of the link operation, for all levels j such that j > k, we performed the
following operations. We added an edge e(j) at level j. If at least one of the endpoints of e(j) is
in an improper cluster of level j we may have moved nodes from an improper cluster of level j to
another cluster of level j in Case 4. Assume that Tj , for j = 1, · · · , ℓ is in universe ij .

When adding e(j) we compute Inf(e(j)) which contains the edge of minimum weight on the
path to O(A(j + 1, ij+1)) proper nodes of level j + 2. It takes O(A(j + 1, ij+1)(ℓ − j)) time to
compute these edges. Similarly, When we insert a leaf Cj+2(b) into a proper cluster Cj+1(a), by
adding the edge (a, b) we update Inf(e(j)) for each edge e(j) = (x, y), such that Cj+1(x) = Cj+1(a),
and Cj+1(y) 6= Cj+1(a). We add to Inf(e(j)) the edge of minimum weight on the path from x to a
in T . We find this edge by performing pathmin(x, a, null, null) in O(ℓ − j) time.

Let e = (a, b) be an edge in Tj adjacent to Cj+1(a) and Cj+1(b). By the observations above, if
we charge e O(ℓ− j) time for each node that ever existed in Cj+1(a) or in Cj+1(b) then we cover the
cost of computing Inf(e(j)). By Invariant (1), |Cj+1(a)|, |Cj+1(b)| ≤ 6A(j + 1, ij+1) so we charge e
by O(A(j +1, ij+1)(ℓ− j)). We bound the total charges to edges of Tj , over all universes and over all
link operations. Let |Tj+1| be the number of nodes in Tj+1. By Invariant (2), the number of edges

30

in Tj is at most |Tj+1|/2A(j + 1, ij+1). Thus the total charge of the edges of Tj is

O(A(j + 1, ij+1)(ℓ − j)|Tj+1|/2A(j + 1, ij+1)) = O(|Tj+1|(ℓ − j)/2)

Since by Lemma 4.4, there are O(n+m
2ℓ−j) clusters of level j + 1, the total cost of adding edges to

level j is O((ℓ − j)m+n
2ℓ−j). The cost for all levels is O(m + n).6

Let e = (a, b) be an edge in Tj adjacent to Cj+1(a) and Cj+1(b). Assume that Cj+1(a) and
Cj+1(b) are both contained in the cluster Cj(a), and that Cj+1(a) is the parent of Cj+1(b) in Cj(a).
When we insert Cj+1(b) into Cj(a) we compute the weight of the edge (a, b) in Cj(a). This weight is
the minimum weight of an on the path between b to t(Cj+1(a)), and it can be computed in O(ℓ− j)
time by performing the pathmin query. If Cj(a) is an improper cluster, then we may need recalculate
the weight of e(j), if we perform later on Subcase 1 or Subcase 3 of Case 4 of the link, and transfer
all the clusters of Cj(a) into a proper cluster of level j. Clearly, this adds a constant factor to the
running time. By Lemma 4.4 there are O((m + n)/2ℓ−j) nodes at level j. So the total time required
to compute the weights of all edges of level j is O((m + n)(ℓ− j)/2ℓ−j), summing over all levels this
is O(m + n).

References

[1] Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries.

[2] Stephen Alstrup and Jacob Holm. Improved algorithms for finding level ancestors in dynamic trees. In
ICALP ’00: Proceedings of the 27th International Colloquium on Automata, Languages and Programming,
pages 73–84, London, UK, 2000. Springer-Verlag.

[3] Bernard Chazelle and Burton Rosenberg. The complexity of computing partial sums off-line. Int. J.
Comput. Geometry Appl., 1(1):33–45, 1991.

[4] Richard Cole and Ramesh Hariharan. Dynamic lca queries on trees. SIAM J. Comput., 34(4):894–923,
2005.

[5] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.

[6] Harold N. Gabow. A scaling algorithm for weighted matching on general graphs. In FOCS, pages 90–100,
1985.

[7] Harold N. Gabow. Data structures for weighted matching and nearest common ancestors with linking. In
SODA ’90: Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pages 434–443,
Philadelphia, PA, USA, 1990. Society for Industrial and Applied Mathematics.

[8] Loukas Georgiadis, Haim Kaplan, Nira Shafrir, Robert E. Tarjan, and Renato F. Werneck. Data structures
for mergeable trees (unpublished).

[9] Loukas Georgiadis, Robert E. Tarjan, and Renato F. Werneck. Design of data structures for mergeable
trees. In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm,
pages 394–403, New York, NY, USA, 2006. ACM Press.

[10] J. A. La Poutre;. New techniques for the union-find problem. In SODA ’90: Proceedings of the first annual
ACM-SIAM symposium on Discrete algorithms, pages 54–63, Philadelphia, PA, USA, 1990. Society for
Industrial and Applied Mathematics.

[11] Robert Endre Tarjan. Applications of path compression on balanced trees. J. ACM, 26(4):690–715, 1979.

[12] Andrew Chi-Chih Yao. Space-time tradeoff for answering range queries (extended abstract). In STOC,
pages 128–136. ACM, 1982.

6Notice that if Tj changes universe and the universes of Tj+1, · · ·Tℓ do not change there is no extra charge to the
edges in Tj , since it does not affect Inf(e(j)).

31

Appendix

A Improving the running time the data structure of Section 4 from

O((n + m)α(m, n)) to O(n + mα(m, n))

We now show how to improve the running time of the link operations from O(nα(m, n) + m) to
O(n + m). This will give us a total running time of O(n + mα(m, n)) for all operations.

Let x ∈ T 1, y ∈ T 2. Suppose that linkj(Cj+1(x), Cj+1(y)) performs Case 3. Notice that in this
case we may have to fix the weight of the edges in levels smaller than j. This adds O(j) to the running
time of a link. As shown in the analysis the total time it takes to perform all other operations is
O(n + m).

The following example illustrates that the updates in lower levels can increase the total running
time of all link operations to O(nℓ + m). Suppose our forests consists a tree T of size Θ(n) and of
Θ(n) singleton trees x1, · · · , xk, k < |T |. Let x0 be the root of T . Suppose that Tℓ is in universe
i > 1, and that 2|T | ≤ 2A(ℓ, i + 1). Assume that Tℓ, · · · , Tc exist where c is some constant, and
that Cj(x0), j < ℓ is an unary root cluster. Assume that we perform linkℓ(Cℓ+1(x1), Cℓ+1(x0))
between the singleton tree x1 and x0. Then, following the operation x1 is the new root of T . In this
case, the universe of Tℓ doesn’t change and case 3 of linkℓ(Cℓ+1(x1), Cℓ+1(x0)) is performed. Since
Cr(x0), r = ℓ − 1, · · · , k is an unary root cluster we have to update the weight of the single edge in
Cr(x0) that enters Cr+1(x0), this adds O(ℓ) time to the cost of the link operation. We can repeat
it and perform linkℓ(Cℓ+1(xj′+1), Cℓ+1(xj′)), 1 ≤ j′ < k. Each such link updates the edges of lower
levels at cost O(ℓ). since k = Θ(n), the total cost of all links is at least O(nℓ).

We do the following modifications in the link and in the path-min operations. For a tree T with
root u, we let κ(T) be the smallest level q such that Cq(u) is not an unary root cluster. If there
is no such level we set κ(T) = ℓ + 1. It is easy to see that we can maintain this information while
performing links, without increasing the asymptotic complexity of the link operation. The main
modification is that in add root operation we postpone some of the updates. The result of this is
that the weight of some of the edges may be incorrect.

We maintain the following invariants. Let u be the root of T .

1. For each level k < κ(T), Ck(u) is an unary root cluster. Let e = (a, b), Ck+1(a) = Ck+1(u), k <
κ(T) be the single edge in Ck(u), going into Ck+1(u). Then, the weight of e(j), j ≥ k may be
incorrect. The weight of all other edges is correct. Specifically, if level(e) ≥ κ(T), the weight
of e(k) for all k ≥ level(e) is correct.

2. Let k < ℓ −
√

ℓ. Let a be the parent of b in T . Let e = (a, b) be an edge of level j < k, and
assume that Ck+1(a) 6= Ck+1(u), then the weight of e(k′), k′ ≥ k is correct.

Invariant (1) implies the following two properties of our trees.

1. Let Ck be a cluster of level k such that Ck 6= Ck(u). Let e = (a, b) be an edge of level j ≥ k,
such that Ck(a) = Ck(b) = Ck, then the weight e(k′), k′ ≥ j is correct. That is, if Ck is not the
root cluster of Tk, then for all edges e that are contained in the subtree of T that Ck represents,
the weight of e(k′), k′ ≥ level(e) ≥ k is correct.

2. Let e = (a, b) be an edge of level k, such that Ck(a) = Ck(b) = Ck(u), and Ck+1(a), Ck+1(b) 6=
Ck+1(u) then the weight e(k′), k′ ≥ k is correct.

32

Invariant (1) implies that if e = (a, b), Ck+1(a) = Ck+1(u), k < κ(T) is the single edge in Ck(u),
going into Ck+1(u), then the weight of e(j), j ≥ k may be incorrect. As described below in the
implementation of the path-min query, this invariant is not enough to make the query work in O(ℓ)
time. So we added invariant (2). Invariant (2) implies that if for some k + 1 < j < ℓ −

√
ℓ,

Cj+1(a) 6= Cj+1(u), then the weight of e(j′), j′ ≥ j is correct.

The implementation of path-min. Assume that the invariants hold. We now describe the
changes in the path-min query. Suppose we want to perform the query pathminj(x, y, ex, ey), where
ex = (x′, x), ey = (y′, y). We find the largest level k such that Ck(x) = Ck(y). Notice that when
the recursive procedure pathmin performs a min query inside a cluster (steps 1(b), 1(d), 2(a)) it
does not use the value of the last edge on the path form x to the root or on the path from y to
the root. Thus, by properties (1) and (2) these queries use correct edge weights. However, when
pathminj(x, y, ex, ey) query uses an edge ex of level j′ < j to find the edge of minimum weight on
the path between a vertex x′ and r(Cj+1(x)), the weight associated with ex(j) may be incorrect,
since ex(j′) may be the single edge entering the root cluster of Cj′(x).

If ncaCj
(Cj+1(x), Cj+1(y)) = Cj+1(x), then case 2 of the min query is performed and the

pathmin procedure does not use the value associated with ej(x). So assume that Cj+1(x) 6=
ncaCj

(Cj+1(x), Cj+1(y)), thus Cj+1(x) 6= Cj+1(u). If j < ℓ−
√

ℓ, then by invariant (2) the weight of

ex(j) is correct. Thus if j < ℓ−
√

ℓ we use the weight of exj) to find the edge of minimum weight on
the path between x′ and r(Cj+1(x)) in O(1) time.

If j ≥ ℓ −
√

ℓ, the weight of ex(j) may be incorrect. All the edges that are contained in the
subtree represented by Cj+1(x) are of level at least j + 1. Notice that since Cj+1(x) is not the root
cluster of Cj(a), by property (1), the weight of all edges in Cj+1(a) is correct. So we can use the
min-root procedure to find the edge of minimum weight on the path between x and r(Cj+1(x)) in
O(ℓ− j) time and return the edge f of minimum weight among exa and f . Since j ≥ ℓ−

√
ℓ we will

use this procedure at most
√

ℓ times in a total cost of O(ℓ) time.
Notice that the procedure min-root(x, j + 1) is always performed on a cluster Cj+1(x) such that

Cj+1(x) is not the root cluster of Cj(x), thus by property (1), the weight of all of its edges is correct
and min-root can be performed as before.

The implementation of link. We describe the changes required in the implementation of the link
operation in Section 4.2. Consider a link operation that creates a tree T by adding an edge between
a vertex y, which is the root of T 2 and a vertex x ∈ T 1. Let u be the root of T 1. For an edge e ∈ T ,
we define the list L(e) and the weights of e(k) for levels k ≥ j in the incremental trees containing
them as the information associated with e.

Throughout the recursive links at decreasing levels we maintain the following invariant.

3. When we perform linkj(Cj+1(x), Cj+1(y)) then the information associated with each edge e ∈ T
of level > j is correct.

Suppose that linkj(Cj+1(x), Cj+1(y)) performs Case 4. If κ(T 1) ≤ j then by Invariant (1), the
information of edges e ∈ T 1 of level j is correct and we do not fix any edge of T 1. If κ(T 1) > j,
then Cj(u) is an unary root cluster. Let e = (a, b) be the single edge in Cj(u) that enters Cj+1(a) =
Cj+1(u). We fix the weight of e(k) for all k ≥ j and the list L(e), level by level, in order of decreasing
levels. When we fix the weight of e(k), e ∈ T 1 we assume that the weight of e(i) for every i > k is
correct. We find the edge of minimum weight on the path between a and r(Ck+1(a)) in O(1) time,
in the same manner as we find it for the new edge (x, y) added by the link (see Section 4.2). This
computation uses only the weight of e(k + 1) and information of edges in Ck+1(a) of level ≥ k + 1.

33

We may need to fix an edge incident to an unary root of T 2
j similarly. When we perform the recursive

call linkj−1(Cj(x), Cj(y)) then Invariant 3 clearly holds.
Suppose that linkj(Cj+1(x), Cj+1(y)) performs Case 1. By Invariant 3 the information associated

with all edges in T of level > j is correct so we can fix the information associated with edges of level
≤ j in T 1 and T 2. (Note that these edges are of level exactly j after the link.) We fix these edges in
order of decreasing levels as in Case 4. We set κ(T) to be the smallest level j such that Cj(u) is not
an unary root cluster, or to ℓ + 1 if there is no such level.

Suppose that linkj(Cj+1(x), Cj+1(y)) performs Case 2. In this case all edges of T 2 are of level
≥ j in T . By Invariant 3 the information associated with all edges in T of level > j is correct so we
can fix the information associated with every edge e ∈ T 2

j such that level(e) ≤ j as in Case 4.

Since clusters of T 1
j do not change their universe it may be too expensive to fix all edges of T 1

j . If

κ(T 1) ≤ j, then by Invariant (1), the information associated with edges e ∈ T 1 such that level(e) = j
is correct. So assume that κ(T 1) > j and let e = (a, b) be the single edge in Cj(u) that enters
Cj+1(a) = Cj+1(u) in T 1

j . We fix the information associated with e as in Case 4. This update works

correctly since by Invariant 3 the information associated with all edges in T 1 of level > j is correct.
We set κ(T) to be κ(T 1), unless κ(T 1) > j, Cj(x) = Cj(u), and after the link Cj(x) is not an unary
root cluster. In the latter case we set κ(T) to be j.

Suppose that linkj(Cj+1(x), Cj+1(y)) performs Case 3. Notice that all edges of T 1 are of level
at least j in T . We fix the information of all edges e ∈ T 1 such that level(e) ≤ j as in the previous
cases. As in Case 2, if κ(T 2) > j we fix the information associated with the edge of level j entering
the root of the unary root cluster Cj(y). We now have that the information associated with all edges
e ∈ T of level ≥ j is correct.

We also make the following changes in the implementation of Case 3 as follows. If κ(T 2) = k ≥ j,
then we perform Case 3.1. We add Cj+1(x) into Cj(y) and update the weight of the new edge (x, y)
associated with level j as described in Section 4.2. However, here, we do not update edges f such
that f(q) is the single edge entering the root of Cq(y) for q < j.

If κ(T 2) = k < j, then we perform Case 3.2. As described in Section 4.2, for every k < i ≤ j, we
add a new bad cluster Ci(x) into T 2

i containing the singleton node Ci+1(x). We also insert (via an
add-root operation) Ck+1(x) into Ck(y) making Ck(y) an unary root cluster. Here, for every i < k
we do not update edges f such that f(q) is the single edge entering the root of Ci(y).

In both cases after performing all add root and add-leaf operations as in Section 4.2, for each
i < j, Ci(x) is an unary root cluster. But unlike in the previous implementation, we do not update
the weight of the single edge incident to the root of Ci(x).

We set κ(T) = j unless κ(T 2) was larger than j and Cj(y) is still an unary root cluster after the
link. In the latter case we set κ(T) = κ(T 2).

Last, to ensure that Invariant (2) holds, we fix the weight of the following edges as well. Let
i = min{j, κ(T 2)}. If i ≤ ℓ −

√
ℓ, we fix all other edges e ∈ T 2 of level < i incident to unary root

clusters Ci(y) of T 2.

We now analyze the running time of our modified implementation of link. Consider a link that
performs Case 1, Case 2, or Case 3 at level j. This link performed Case 4 ℓ − j times, each time
fixing a single edge of T 1 and a single edge of T 2. Each such fix takes O(ℓ− j) time (since we recover
the weights associated with these edges in O(ℓ − j) levels, paying O(1) time per level). So the total
time spent fixing these edges while performing Case 4 is O((ℓ − j)2). We charge this time to the
link operation itself. Since we have at most n/2ℓ−j links at level j the total charges to such links is
O((n/2ℓ−j)(ℓ − j)2) = O(n).

When performing Case 1 we fix all edges of T 1
j and T 2

j . Each such fix takes O(ℓ− j) time so the

34

total time to fix all these edges is O((|T 1
j |+ |T 2

j |)(ℓ− j)). We charge this time to the nodes of T 1
j and

T 2
j which change their universe. By Lemma 4.4 the number of times a node of level j changes its

universe is O((m+n)/2ℓ−j). Thus the total charges to these nodes is O(((m+n)/2ℓ−j)(ℓ− j)). If we
sum this cost over all levels j, we get that the total charges for fixing edges in Case 1 is O(n + m).

When performing Case 2 we fix the edges of T 2
j each such fix takes O(ℓ− j) time. We charge this

cost to the nodes of T 2
j which increase their universe. As in the analysis of Case 1 the total charges

are O(m + n). We also fix at most one edge of T 1 of level j in O(ℓ− j) time. We charge this cost to
the link operation itself and as in the analysis of Case 1 the total charges of all links made by Case
2 is O(n).

When performing Case 3 we fix the edges of T 1
j each such fix takes O(ℓ− j) time. We charge this

cost to the nodes of T 1
j which increase their universe. As in the analysis of Case 1 the total charges

are O(m + n). If we perform Case 3.2 then we spend a constant time at each level from j down to
k = κ(T 2) adding a singleton bad cluster and inserting a cluster into Ck(y). This takes O(j−k) time
which we charge to the link operation which made Ck(y) not an unary root cluster. (The level in
which this link ended was k.) Since after the link Ck(y) is an unary root cluster each link operation
is charged once this way. The total charges to all links are O(n).

Finally if i = min{j, κ(T 2)} is smaller than ℓ−
√

ℓ we fix O(ℓ) additional edges. The time it takes
to fix these edges is O(ℓ2) which is O((ℓ − i)4) since i ≤ ℓ −

√
ℓ. If i = κ(T 2), we charge this cost to

the link operation at level i that made Ci(y) not an unary root cluster. Otherwise, we charge this
cost to the current link operation between x and y. Using similar arguments as in the analysis of
the previous cases the total charge for all link operations is O(n).

The next Lemma proves that T satisfies the invariants.

Lemma A.1 Assume that T 1 and T 2 satisfy invariants (1),· · · , (2), then the resulting tree T also
satisfies invariants (1),· · · , (2).

Proof: Let j be the smallest level for which we perform linkj(Cj+1(x), Cj+1(y)). If case 1 of the link
was performed by linkj(Cj+1(x), Cj+1(y)), then the weight of all edges is correct and the invariants
hold.

If case 2 of the link was performed by linkj(Cj+1(x), Cj+1(y)), then the weight of all edges of
level at least j is correct. We didn’t perform add root and thus didn’t add new edges whose weight
is incorrect, so it is easy to see that in this case invariants (1) and (2) hold for T .

Assume that case 3 of the link was performed by linkj(Cj+1(x), Cj+1(y)). If min{j, κ(T 2)} ≤
ℓ−

√
ℓ all edges of T have the correct weight and the invariants hold. Assume that min{j, κ(T 2)} >

ℓ −
√

ℓ. Clearly at the end of the operation κ(T) ≥ j, and for all k < j, Ck(u) is an unary root
cluster. We have that the weight of all edges e(k) ∈ Tk with level(e) ≥ j is correct. Specifically,
the weight of all edges e(k) ∈ Tk with level(e) ≥ κ(T) is correct. To show that invariant (1) holds
for T , we have to show that for each e = (a, b) ∈ T , with level(e) = k′ < j ≤ κ(T), if e(k′) is not
the single edge in Ck′(u) that enters Ck′+1(u), then the weight of e(k), k ≥ k′ is correct. Assume
that e = (a, b) is such an edge, then clearly, level(e) = k′ < j implies that e was an edge of T 2. If
Ck′+1(a), Ck′+1(b) 6= Ck′+1(y), then by invariant (1) the weight of e(k), k ≥ k′ was correct in T 2. It
is easy to see that the weight of e(k) hasn’t changed in T , and therefore the weight of e(k) is correct
in T as well. Assume w.l.o.g that Ck′+1(a) = Ck′+1(y), then if k′ ≥ κ(T 2), by invariant (1) the
weight of e(k), k ≥ k is correct in T 2. It is easy to see that Ck′+1(a) = Ck′+1(y) 6= Ck′+1(u), and thus
the weight of e(k) hasn’t changed in T and therefore it is correct in T as well. Last, assume that
Ck′+1(a) = Ck′+1(y), and that k′ < κ(T 2), in this case, we have that Ck′+1(a) = Ck′+1(y) = Ck′+1(u),

35

and e(k′) is the single edge in Ck′(u) that enters Ck′+1(u), in contradiction to our assumption. Thus
invariant (1) holds after the link operation.

We now show that invariant (2) holds. Let i < ℓ −
√

ℓ. Let e = (a, b) ∈ T be an edge of level
k′ ≤ i, such that a is the parent of b in T , and assume that Ci+1(a) 6= Ci+1(u), we need to show that
the weight of e(i′), i′ ≥ i in T is correct.

The inequalities k′ ≤ i < ℓ −
√

ℓ < min{j, κ(T 2)}, imply that e was an edge in T 2. The above
inequalities also imply that i + 1 < min{j, κ(T 2)}, and Ci+1(a) 6= Ci+1(u) = Ci+1(y). Thus, by
invariant (2), the weight of e(i′), i′ ≥ i was correct in T 2, and since it hasn’t changed in T , the weight
of e(i′) is correct in T as well. 2

36

	Introduction
	Highlights of the data structure
	Incremental trees and partial incremental trees
	The macro algorithm
	The micro algorithm
	Combining the macro algorithm and the micro algorithm
	The implementation of add-root

	A data structure for rooted trees
	The implementation of a path-min query
	Link of rooted trees
	Analysis

	An O(n+m(m,n)2) data structure for unrooted trees
	The implementation of a path-min query
	The implementation of link
	Analysis

	Improving the query time to O((m,n))
	Finding the smallest uncommon cluster
	The implementation of path-min query
	The implementation of link
	Correctness and analysis

	Improving the running time the data structure of Section 4 from O((n+m)(m,n)) to O(n+m(m,n))

