
Linear Data Structures for Fast Ray-Shooting amidst Convex

Polyhedra∗

Haim Kaplan† Natan Rubin‡ Micha Sharir§

Abstract

We consider the problem of ray shooting in a three-dimensional scene consisting of k (possibly
intersecting) convex polyhedra with a total of n facets. That is, we want to preprocess them into
a data structure, so that the first intersection point of a query ray and the given polyhedra can be
determined quickly. We describe data structures that require Õ(n · poly(k)) preprocessing time

and storage (where the Õ(·) notation hides polylogarithmic factors), and have polylogarithmic
query time, for several special instances of the problem. These include the case when the
ray origins are restricted to lie on a fixed line ℓ0, but the directions of the rays are arbitrary,
the more general case when the supporting lines of the rays pass through ℓ0, and the case of
rays orthogonal to some fixed line with arbitrary origins and orientations. We also present a
simpler solution for the case of vertical ray-shooting with arbitrary origins. In all cases, this is
a significant improvement over previously known techniques (which require Ω(n2) storage, even
when k ≪ n).

1 Introduction

The general ray-shooting problem can be defined as follows: Given a collection Γ of n objects in Rd,
preprocess Γ into a data structure so that one can quickly determine the first object in Γ intersected
by a query ray.

The ray-shooting problem has received much attention because of its applications in computer
graphics and other geometric problems. Generally, there is a tradeoff between query time and
storage (and preprocessing), where faster queries require more storage and preprocessing. In this
paper, we focus on the case of fast (polylogarithmic) query time, and seek to minimize the storage of
the data structures. For a more comprehensive review of the problem and its solutions, see [7, 15].
If Γ consists of arbitrary triangles in R3, the best known data structure is due to Pellegrini [14]; it
requires O(n4+ǫ) preprocessing and storage and has logarithmic query time.1 If Γ is the collection
of facets on the boundary of a convex polyhedron, then an optimal algorithm, with O(log n) query
time and O(n) storage, can be obtained using the hierarchical decomposition of Dobkin and Kirk-
patrick [12]. For the case where Γ consists of the boundary facets of k convex polyhedra, Agarwal

∗Work by Haim Kaplan and Natan Rubin has been supported by Grant 975/06 from the Israel Science Fund.
Work by Micha Sharir and Natan Rubin was partially supported by NSF Grant CCF-05-14079, by a grant from
the U.S.-Israeli Binational Science Foundation, by grant 155/05 from the Israel Science Fund, Israeli Academy of
Sciences, by a grant from the AFIRST French-Israeli program, and by the Hermann Minkowski–MINERVA Center
for Geometry at Tel Aviv University. A preliminary version of this paper appeared in Proc. 15th Annu. Europ.

Sympos. Alg. (2007), 287–298
†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: haimk@post.tau.ac.il
‡School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: rubinnat@post.tau.ac.il
§School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of Mathematical

Sciences, New York University, New York, NY 10012, USA. E-mail: michas@post.tau.ac.il
1As is customary, upper bounds of the form O(f(n) · nǫ) mean that the actual upper bound is Cǫf(n) · nǫ, which

holds for any ǫ > 0, where Cǫ is a constant the depends on ǫ, and generally tends to infinity as ǫ decreases to 0.

1



and Sharir [5] describe a solution having polylogarithmic query time and O(n2+ǫk2) storage, which
is an improvement over [14] (when k ≪ n). Still, this solution requires Ω(n2) storage, even for
small k, in contrast to the O(n) storage achieved in [12] for the case k = 1.

A wide range of special instances of the ray-shooting problem have been considered, where
restrictions are imposed either on the query rays or on the input polyhedra. The most popular are
the cases of C-oriented or fat input polyhedra, as well as the case of vertical ray-shooting (amidst
arbitrary convex polyhedra). Another case, studied by Bern et al. [9], involves rays whose origins
lie on a fixed straight line in R3. Unfortunately, all the known solutions to the restricted problems
mentioned above require Ω(n2) storage (or larger) to achieve polylogarithmic query time, even in
the case where the input consists of k convex polyhedra, where k is small relative to n. For example,
the recent algorithm of Aronov et al. [1], for the case of fat convex polyhedra, uses O(n2+ǫ) space
and preprocessing time. The algorithm of de Berg [7], for the case of vertical ray-shooting, uses
O(n2+ǫ + K) storage, where K is the total complexity of the arrangement of the input polyhedra,
which is known to be O(nk2); see also [15].

Our contribution. In this paper we focus on the case where the input consists of k convex
polyhedra with a total of n facets, and implicitly assume that k ≪ n. Our goal is to derive
algorithms with polylogarithmic query time, for which the storage that they require is (nearly)
linear in n. We achieve this in several useful special cases, where one case involves ray-shooting
with rays whose origins lie on a fixed line. We extend this solution for the case where the rays
lie on lines that pass through a fixed line, but their origins are arbitrary, and for the case of rays
orthogonal to a fixed line with arbitrary origins (and orientations). Finally, we present a simpler
solution for the case of vertical ray-shooting. The two main problems that we study have the
common property that the lines containing the query rays have only three degrees of freedom,
as opposed to the general case where the lines have four degrees of freedom. If we ignore the
issue of making the performance of the algorithm depend on k, there are solutions that require
O(n3+ǫ) storage and preprocessing, with polylogarithmic query time (e.g., a simple adaptation
of the technique of [4]). A plausible goal is thus to design algorithms whose storage is close to
O(nk2). However, as mentioned, no previous algorithm solves these problems with performance
that depends subquadratically on n, when k ≪ n.

In general, we have not yet met the above goal, and we “pay” more in terms of k to achieve
linear dependence on n. Specifically, in the case of ray-shooting with rays originating from a fixed
line ℓ0, where the input polyhedra may intersect each other, our solution uses Õ(nk5) storage and
preprocessing, and answers queries in polylogarithmic time. However, if the input polyhedra are
pairwise disjoint, the storage can be reduced to Õ(nk2). (As in the abstract, the notation Õ(·)
hides polylogarithmic factors.) Thus, in the latter case, we do achieve the goal mentioned above.
In the case involving rays orthogonal to a fixed line, our solution requires Õ(nk5) storage, Õ(nk6)
preprocessing time, and supports queries in polylogarithmic time. (Here we assume the general
model, where the polyhedra may intersect one another.) The latter problem is closely related to
the more general problem involving rays contained in lines which intersect a fixed line ℓ0, but whose
origins are arbitrary, which we also solve and obtain similar bounds for the query time, storage and
preprocessing costs. Our solution for the case of vertical ray-shooting (amidst possibly intersecting
convex polyhedra) answers queries in polylogarithmic time and requires only Õ(nk2) storage and
preprocessing time, which is close to the maximum complexity of an arrangement of k convex
polyhedra in R3.

We note that when k is large, e.g., k = Θ(n), our solutions, except for the case where we shoot
from a line and the given polyhedra are pairwise disjoint, and the case of vertical ray-shooting,
are inferior to those obtained earlier. For example, for ray-shooting from a fixed line with possibly
intersecting polyhedra, our solution requires Õ(n6) storage, as opposed to the O(n3+ǫ) storage used

2



by the general approach, as mentioned above. Nevertheless, for small values of k, our solutions
improve all the previous ones, and extrapolate nicely from the linear storage required for k = 1.
Thus we (partially) solve a major open problem posed in [5]. We note that the case of k ≪ n arises
frequently in practice. For example, this is the situation when shooting in a scene consisting of balls
or other more complex (convex) shapes, each approximated by a polyhedral surface consisting of
many triangles. In spite of the apparent suboptimal dependence on k (we know it to be suboptimal
only when k is large), we regard the results of the paper to be a first step towards achieving the
performance conjectured above, and leave the task of tightening the dependence on k to further
research.

Overview. We apply the following uniform approach to both problem instances. Denote by P
the set of input polyhedra. We define a parametric space S whose points represent lines containing
the query rays. In the case of ray-shooting from a line, or of ray-shooting along lines passing
through a fixed line, or of ray-shooting orthogonal to a fixed line, we have three degrees of freedom,
and we take S to be R3. Each polyhedron P ∈ P defines a two-dimensional surface σP in S, which
is the locus of all (points representing) lines that are tangent to P . The arrangement C(P) of the
surfaces σP yields a subdivision of S, each of whose cells C is a maximal connected relatively open
set of lines which stab the same subset PC of P. When the polyhedra of P are pairwise disjoint, the
order in which lines ℓ in any fixed cell C intersect the polyhedra of PC is the same for all ℓ ∈ C. Let
r be a query ray, let ℓr be the line containing r, and let C ⊂ S denote the cell of C(P) containing
the point representing ℓr. Now assume, without loss of generality, that ℓ0 is disjoint of the union of
P. Then there are at most two polyhedra, for each cell C of C(P), whose boundaries are first hit by
such rays r emanating from ℓ0 and contained in lines ℓ ∈ C. Thus, our query is easily answered by
locating the cell of C(P) containing ℓ and then by answering ray-shooting queries amidst at most
two polyhedra of P. In Section 2, we modify the analysis of Brönnimann et al. [10] to prove that the
complexity of C(P), for lines ℓr passing through a fixed line, is O(nk2). We use the persistent data
structure technique of [16] to search for the cell of C(P) containing ℓr. This results in an algorithm
for ray-shooting from a line into a collection of pairwise disjoint polyhedra, which requires Õ(nk2)
storage and preprocessing time, and supports queries in polylogarithmic time.

The above approach fails when the polyhedra of P may intersect each other, because the order
in which the polyhedra of PC are intersected by ℓr need not be fixed over ℓr ∈ C; see Figure 4(a)
for an illustration. To handle this difficulty, we refine the technique, by adding to P all pairwise
intersections between the polyhedra of P, obtaining a set Q, consisting of O(k2) polyhedra with
a total of O(nk) facets. Instead of C(P), we now consider the arrangement C(Q). Each cell C in
C(Q) is a maximal connected region of S such that all lines represented in C stab the same subset
QC of Q. In the case of ray-shooting from a fixed line, we can use essentially the same spatial data
structure as in the case of disjoint polyhedra, constructed over C(Q) instead of over C(P), to locate
the cell of C(Q) containing a query line ℓr. Now the structure requires Õ(nk · (k2)2) = Õ(nk5)
storage and preprocessing, and still supports queries in polylogarithmic time; see Section 3. In the
case of ray-shooting with rays orthogonal to a fixed line, we proceed in a similar manner, but the
preprocessing time is now Õ(nk6), due to the auxiliary structures stored with each cell C ∈ C(Q);
see Section 4.

Let C be a cell in C(Q). Since P ⊆ Q, C(Q) is a refinement of C(P). Therefore, the set
PC of polyhedra stabbed by any line represented in C is well defined. Let P and Q be any pair
of polyhedra in PC . If P ∩ Q does not belong to QC , that is, P ∩ Q is not intersected by lines
represented in C, then P and Q are intersected in the same order by all lines ℓ represented in C.
This induces a partial order ≺C on the polyhedra of P, consisting of all pairs (P, Q) as above, with
P hit before Q along lines in C. Clearly, Ξ ⊆ PC is an antichain with respect to ≺C if and only
if, for all P and Q in Ξ, the polyhedron P ∩ Q is in QC . The one-dimensional Helly theorem then

3



implies that the polyhedron
⋂

Ξ (the intersection of all of the polyhedra in Ξ) (a) is nonempty, and
(b) is intersected by all lines represented in C.

Using parametric search, the ray-shooting problem reduces to testing a query segment for in-
tersection with P; see also [3]. The latter problem can be solved, for segments contained in lines
represented in C, using a small number of ray-shooting queries amidst polyhedra of the form

⋂

Ξ,
where Ξ is a maximal antichain with respect to ≺C . Organizing the data to facilitate efficient im-
plementation of these ray shootings requires several additional technical steps, which are detailed
in the relevant sections below. Overall, we obtain the performance bounds mentioned earlier.

The paper is organized as follows. In Section 2 we describe the solution for ray-shooting from a
fixed line ℓ0 amidst disjoint polyhedra. In Section 3 we describe the extra machinery used to handle
intersecting polyhedra. Then, in Section 4 we apply the same approach (with a few modifications)
to solve the ray-shooting problem involving rays with arbitrary origins but contained in lines which
intersect ℓ0. We show a simple reduction from the ray-shooting problem involving rays orthogonal
to a fixed line with arbitrary origins amidst (possibly intersecting) polyhedra, to the latter problem.
We also briefly outline a relatively simple solution for the vertical ray-shooting problem (amidst
possibly intersecting polyhedra).

Preliminaries. We briefly describe some of the techniques used in this paper.

Fully dynamic point-location in monotone planar subdivisions. In [16], Preparata and Tamassia
describe a data structure for point-location in a dynamic monotone planar subdivision. In addition
to point location queries, it supports the following set of update operations (where it is assumed
that the map remains monotone after each update).

• Insert(v1, v2, r; e, r1, r2): inserts an edge e between vertices v1 and v2 inside region r, which
is decomposed into regions r1 and r2 to the left and to the right of e, respectively.

• Delete(v1, v2, e, r1, r2; r): removes an edge e between vertices v1 and v2, and merges, into
a common region r, the two regions r1 and r2 formerly to the left and to the right of e,
respectively.

• Expand(v, r1, r2; v1, v2, e): expands vertex v into two vertices v1 and v2 connected by edge e,
which has regions r1 and r2 to the left and to the right, respectively.

• Contract(v1, v2, e; v): contracts edge e between vertices v1 and v2 into a single vertex v.

The data structure in [16] supports each of these operations in O(log2 n) time, where n is the (maxi-
mal) complexity of the subdivision. We assume that a point location query can detect situations
where the query point lies on an edge or at a vertex, and, if so, returns the corresponding feature
of the planar map.

Using persistence, we can extend this data structure to answer point location queries in an xy-
monotone subdivision C of R3. For that we have to be able to sweep R3 with a plane orthogonal to
the y-axis, while maintaining the cross-section of C with the sweep plane in a planar point location
data structure as above. We need to be able to keep track of toplogical changes in the cross-section,
and, when such a change occurs, to update the planar point location data structure using the update
operations listed above. The resulting (static) data structure in R3 requires O(N log2 N) storage
and preprocessing, and answers point-location queries in O(log2 N) time, where N is the number
of updates to the planar point location data structure over the entire sweeping process. For more
details see [16].

Tangent lines in an arrangement of polyhedra. Let P be a set of k polyhedra in R3, and let ℓ0 be a
fixed line. A support vertex of a line ℓ is a vertex v of a polyhedron P ∈ P, so that v lies on ℓ (and

4



ℓ does not meet the interior of P ). A support edge of a line ℓ is an edge e of a polyhedron P ∈ P,
so that e intersects ℓ at its relative interior (and ℓ does not meet the interior of P ).2

Let S be a set of edges and vertices (possibly including ℓ0). A line ℓ is a transversal of S if ℓ
intersects every element of S. Line ℓ is an isolated transversal of S if it is a transversal of S and
it cannot be moved continuously while remaining a transversal of S. A set S of edges and vertices
admits an isolated transversal if there is an isolated transversal ℓ of S.

Let ℓ 6= ℓ0 be an isolated transversal through ℓ0, and let S be the respective minimal set of
relatively open edges and vertices, chosen from some of the polyhedra, such that ℓ is an isolated
transversal to S ∪ {ℓ0}. Let T be the respective set of polyhedra of P which contain an element of
S (on their boundary). Let Π be the plane containing ℓ and ℓ0. We say that ℓ is a generic isolated
transversal of S through ℓ0 if, for each P ∈ T , ℓ is tangent to P ∩Π in Π. In particular, ℓ is tangent
to each polyhedron in T .

Brönnimann et al. [10] have proved that there are O(n2k2) minimal sets of relatively open edges
and vertices, chosen from some of the polyhedra, which admit an isolated transversal that is tangent
to these polyhedra. This bound is a consequence of the following main theorem of [10].

Theorem 1.1. Let P , Q and R be three convex polyhedra in R3, having p, q and r facets, respec-
tively, and let ℓ0 be an arbitrary line. There are O(p + q + r) minimal sets of relatively open edges
and vertices, chosen from some of these three polyhedra, which admit a generic isolated transversal
through ℓ0.

Clearly, the number of such transversals, over all triples of polyhedra, is O(nk2). They can be
computed in O(nk2 log n) time, as described in [10]. Repeating the analysis for each of the O(n)
lines that contain edges of the polyhedra (and applying some additional arguments), the bound
O(n2k2) follows.

Parametric search. Our most general ray-shooting scheme in Sections 3 and 4 is based on the
parametric searching technique of Agarwal and Matoušek [3]. In this technique we build a data
structure for solving segment intersection detection queries, each asking whether a query segment
s intersects (the boundary of) any polyhedron of P. Given a ray ρ, we replace it by the segment
o1o2, where o1 is the origin of ρ and o2 is the first (unknown) intersection point between ρ and the
given polyhedra. Since we do not know o2, we feed into our data structure a generic, unspecified
input o2. As we will see below, each decision step of the detection algorithm, which depends on o2,
is easy to implement generically. The cost of a ray-shooting query is thus quadratic in the cost of
a segment-intersection query. As we will show, the cost of the latter query is polylogarithmic, so
this technique answers ray-shooting queries in polylogarithmic time as well.

2 Ray-Shooting from a Line: Disjoint Polyhedra

In this section we present an algorithm for the case where we shoot from a fixed line ℓ0, and the
input consists of pairwise-disjoint polyhedra. Our approach somewhat resembles that of [10]. We
parameterize the set of planes containing ℓ0 by fixing one such plane Π0 in an arbitrary manner,
and by defining Πt, for 0 ≤ t < π, to be the plane obtained by rotating Π0 around ℓ0, in some
direction, by angle t.

We represent a line ℓ passing through ℓ0 by the pair (t(ℓ), Dt(ℓ)), where t(ℓ) is such that Πt(ℓ)

contains ℓ, and Dt(ℓ) is the point dual to ℓ in Πt(ℓ). For convenience, we choose Dt(·) to be a planar
duality transform which excludes points corresponding to lines parallel to ℓ0. That is, if we choose
in Πt a coordinate frame in which ℓ0 is the y-axis and the origin is a fixed point on ℓ0, then the

2A line ℓ can also support a polyhedron P by overlapping a facet of P . In this case ℓ has two distinct support
vertices and/or edges of P .

5



duality maps each point (ξ, η) to the line y = ξx− η and vice versa. As above, we denote by S the
resulting 3-dimensional parametric space of lines.

We use the arrangement C(P) defined in the introduction, and recall that each cell C of C(P)
is a maximal connected region in S, such that all lines in C stab the same subset of P. For a cell
C ∈ C(P), we denote by PC ⊆ P the set of the polyhedra stabbed by the lines in C. Clearly,
the polyhedra of PC are intersected in the same order by all lines in C (this follows by a simple
continuity argument, using the fact that C is connected). This allows us to reduce ray-shooting
queries with rays emanating from ℓ0 to point location queries in C(P), in the manner explained in
the introduction.

Without loss of generality we assume that the interiors of all the polyhedra in P are disjoint
from ℓ0. Otherwise, we can cut each of the polyhedra, whose interior is intersected by ℓ0, into two
sub-polyhedra, by some plane through ℓ0. This will not affect the asymptotic complexity of the
solution, nor its correctness.

This allows us, for each cell C, to order the polyhedra in PC , and the line ℓ0, according to their
intersections with a line ℓ ∈ C, where the order is independent of ℓ. In fact, it suffices to store, for
each C ∈ C(P), the two polyhedra of PC that are adjacent to ℓ0 in this order. We denote these
polyhedra by P+

C and P−
C .

Next we describe how to construct the point location data structure over C(P), and how to
compute P+

C and P−
C , as defined above, for each C ∈ C(P).

Point location in C(P). Consider a plane Πt, for some fixed value of the rotation angle t.
For each polyhedron P ∈ P, let Pt denote the intersection polygon P ∩ Πt, and let Pt = {Pt | P ∈
P, Pt 6= ∅} be the set of all resulting (non-empty) polygons. For each polygon Pt ∈ Pt we denote
by U(Pt) (resp., L(Pt)) the upper (resp., lower) envelope of all the lines dual to the vertices of Pt

in the plane Πt. The following observation is elementary.

Observation: Let ℓ be a line contained in Πt, and let Dt(ℓ) be the point dual to ℓ in the dual
plane. Then ℓ does not intersect P if and only if Dt(ℓ) lies above U(Pt) or below L(Pt). Points on
U(Pt) and L(Pt), are dual to lines tangent to Pt (and, therefore, also to P ). (See Figure 1 for an
illustration.)

In other words, the cross section of the surface σP of all tangents to P within Πt consists of the
union of U(Pt) and L(Pt). We denote by A∗

t the arrangement of the curves {L(Pt),U(Pt)}Pt∈Pt , all
of which are monotone, piecewise-linear, and unbounded. Clearly, A∗

t is a cross-section of C(P) at
the chosen value of t. Hence, for each cell C ∈ C(P), the intersection of C with the surface t(ℓ) = t
consists of one or several connected cells in A∗

t . Conversely, each connected cell in A∗
t corresponds

to maximal connected sets of lines passing through ℓ0, such that all lines in the same region stab
the same subset of P (in the same order).3

We will use the persistent approach of [16] for point-location in C(P) (see the review in the
introduction). Specifically, we maintain A∗

t , as t varies continuously from 0 to π, in a dynamic planar
point location data structure for monotone subdivisions, and we update this structure persistently
at each t where there is a topological change in A∗

t . Persistence allows us to store all the resulting
instances of the data structure in a compact manner for answering queries efficiently.

A∗
t changes topologically either when a single envelope undergoes a combinatorial change, or

when an intersection point of two envelopes lies at a vertex of one of them, or when three envelopes
meet at a common point. We keep track of these topological and combinatorial changes of A∗

t , and
update the corresponding point location data structure. We can use the four special operations
to manipulate the data structure for dynamic point-location in a planar monotone subdivision, as
reviewed in the introduction.

3We regard the polyhedra P ∈ P as closed, so tangency of a line to some P also counts as intersection. This
requires some (routine) care in handling lower-dimensional faces of A∗

t , which we omit.

6



Πt
ℓ

ℓ0 Pt

Qt

Q

P U(Pt)

Dt(ℓ)
L(Qt)U(Qt)

L(Pt)

Figure 1: ℓ is a common tangent of Pt and Qt in the primal plane Πt (left). The dual arrangement A∗
t

(right); Dt(ℓ) is an intersection of two lines, which are dual to the support vertices of ℓ in Πt.

We assume, for simplicity, general position of the given polyhedra. In particular, we assume
that each isolated transversal through ℓ0 passes through exactly three edges, or through a vertex
and an edge, of the given polyhedra, and that no edge of any polyhedron is coplanar with ℓ0 or
with a facet of another polyhedron.

Handling the critical events depends on their type, and proceeds as follows.

(i) A polyhedron P ∈ P is first intersected by the rotating plane Πt at time t = t∗. By the general
position assumption, Πt∗ meets P at a single vertex v. In Πt∗ both envelopes U(Pt∗) and L(Pt∗)
are the single line λ dual to v.

The new edges that emerge in the planar embedding of A∗
t , at time t∗, are determined as follows.

First, we intersect each polyhedron Qt that appears in A∗
t immediately before time t∗, with Πt∗ , and

then compute the corresponding envelopes U(Qt∗) and L(Qt∗). We trace the intersection points of
λ with each envelope and sort them along λ. Clearly, this way we spend a total of O(n log n) time
to find the sequence e1, e2, . . . , em, ordered from left to right, of the m ≤ k + 1 new edges (along
λ) inserted to A∗

t∗ , at time t∗. Using the current version of the point-location structure (which
is consistent with A∗

t , for t < t∗ arbitrary close to t∗), we can locate in A∗
t the edges containing

the endpoints of the newly inserted edges. We split each such edge, by applying an Expand(·)
operation on one of its endpoints. Similarly, we find for each edge ei, the region ri in A∗

t containing
it. We then apply Insert(·) operations to insert the newly created edges into the point location
data structure of A∗

t . By inserting an edge ei, for 1 ≤ i ≤ m, we split the region ri, into a pair of
new regions r′i and r′′i above and below ei, respectively. In A∗

t∗ the regions r′i and r′′i belong to the
cross section of the same cell of C(P) as ri in A∗

t for t < t∗.4

As we rotate further “into” P , the lines forming the envelopes are dual to the vertices of Pt

that lie on the edges of P emanating from v. Assume t > t∗ is arbitrary close to t∗, then U(Pt) and
L(Pt) almost coincide with λ. (For an illustration, see Figure 2). Let hv be the degree of v in P .
We compute the envelopes U(Pt) and L(Pt) in O(hv log hv) time, where hv is the number of edges
of P incident to v.

We then insert U(Pt) and L(Pt) (instead of λ) into A∗
t as follows. We traverse the edges ei,

for 1 ≤ i ≤ m, of λ in A∗
t from left to right. We replace each such edge ei by two monotone

chains of edges, one is a sequence of edges of U(Pt) that replaces ei, and the other is a sequence
of edges of L(Pt) that replaces ei. To actually perform the insertion, we first replicate the m − 1

4We maintain the labels of the regions in A∗
t , for 0 ≤ t < π, in a Union-Find data structure, such that at the end

of the sweep the labels of all regions associated with a particular cell of C(P) are in the same set. Here we insert r′i
and r′′i into the same set containing ri. This Union-Find structure allows us to identify all cells of C(P) and to map
regions of A∗

t to the cells they belong to.

7



endpoints5 of the edges e1, . . . , em on λ using Expand(·) operations, and insert a copy e′i of each
edge ei immediately above it, for every 1 ≤ i ≤ m. The insertion of e′i, for 1 ≤ i ≤ m, splits the
region r′i adjacent to ei, into two regions, the upper of which, which belongs to a cross section of
the same cell as r′i, is also given the label r′i. The lower region is given a new name. We then
apply a sequence of Expand(·) operations on the endpoints of e′i and ei, to insert the vertices of
U(Pt) and L(Pt) into A∗

t , respectively. Clearly, all this takes, in addition to the cost O(hv log hv) of
constructing U(Pt) and L(Pt), O((hv + k) log2 n) time, where the cost is dominated by O(hv + k)
updates of the dynamic point location structure.

Lt(P ) Ut(P )
λ

Figure 2: For t > t∗ close enough to t∗, the envelopes U(Pt), L(Pt) are very close to λ.

Since there are at most k events of type (i), the total cost of processing them is thus O(nk log2 n).

(ii) A polyhedron P ∈ P leaves the rotating plane at time t = t∗. These events are handled in a
symmetric manner to those of type (i). Here we have to delete the edges of the envelopes U(Pt∗)
and L(Pt∗) from A∗

t , using the Contract(·) and Delete(·) operations on the point location structure.
The total cost of processing events of type (ii) is thus also O(nk log2 n).

(iii) Πt passes, at time t∗, through a vertex v of some P ∈ P, which is not extreme in the rotation
order. As t sweeps past t∗, a sequence of vertices of Pt that correspond to the “backward” edges,
incident to v and intersected by Πt immediately before t∗, is replaced by a sequence of new vertices
that correspond to the “forward” edges of P incident to v. Let h−

v and h+
v be the “backward”

(resp., “forward”) degree of v in P (with respect to the chosen sweep direction).
In between, at t = t∗, the envelopes, U(Pt) and L(Pt), degenerate so that their edges that lie

on lines dual to the intersections of “backward” edges, incident to v, with Πt become collinear and
lie on the line, λ, dual to v, at t = t∗.6 We compute these edges of U(Pt) ∪ L(Pt) in a brute-force
manner, in O(h−

v log h−
v ) time. Since λ has O(k) intersections with the other envelopes U(Qt∗) and

L(Qt∗), it takes O((k + h−
v ) log2 n) time to trace the degenerating edges of U(Pt) and L(Pt) in A∗

t

(by querying the point location structure of A∗
t ). We have thus found O(h−

v + k) edges in A∗
t that

become collinear, as t tends to t∗.
We remove each vertex of U(Pt) (resp., L(Pt)), which becomes redundant at time t∗, from the

point-location structure in A∗
t , by applying a single Contract(·) operation on one of its incident

edges. (By the general position assumption, there are two such edges, both on U(Pt) or both on
L(Pt).) Clearly, this takes O(h−

v log2 n) time.
Symmetrically, as v leaves Πt, a segment of U(Pt) (resp., L(Pt)), which is contained in λ, splits

into a sequence of edges (that become collinear as t > t∗ tends to t∗). We compute it in O(h+
v log h+

v )

5The edges e1 and em are unbounded edges (rays) having a single endpoint.
6If v is a silhouette vertex of Pt (with respect to the direction orthogonal to ℓ0) and therefore belongs to both the

“upper” and the “lower” hulls of P , then each of the envelopes U(Pt) and L(Pt) contains a connected sequence of
edges merging into a segment of λ. Otherwise, this happens only on one of the envelopes U(Pt) or L(Pt).

8



time, and then apply O(h+
v ) Expand(·) operations, to insert the new vertices of U(Pt) (resp., L(Pt))

into the point-location structure. Clearly, this takes a total of O(h+
v log2 n) time.

To recap, we spend a total of O((h+
v + h−

v + k) log2 n) at each event of this type. Since the sum
of the vertex degrees, over all polyhedra vertices, is O(n), we spend O(nk log2 n) time at all the
events of type (iii).

(iv) There is a pair of polyhedra P , Q, such that an intersection between two respective envelopes,
say L(Pt) and U(Qt), coincides with a vertex of, say L(Pt), at time t = t∗. See Figure 3.

U(Qt)

L(Pt)
v

e1

e2e

L(Pt)

U(Qt)

v

e1

e2e

ℓ0

P

Q

Qt

Pt

Πt

Dt(v)

Figure 3: An edge e of U(Qt) coincides with a vertex v of L(Pt). v is dual to a line Dt(v) which is
tangent to P and Q at a facet and an edge, respectively.

Let e be the edge of U(Qt) incident to the intersection point, let v be the corresponding vertex
of L(Pt), and let e1 and e2 be the two edges incident to v on L(Pt). Assume that the values of t∗,
e, e1, e2 and v are already known to us. (We describe how to get them shortly.) We query the
point location data-structure A∗

t for t right before t∗ with v and e ∩ e1, to determine the features
of A∗

t involved in this event.
We distinguish between two possible cases. Consider the case where e intersects e1 in A∗

t for
t < t∗ right before t∗, and e intersects e2 for t > t∗ right after t∗. We update the point location
structure by first contracting an edge of A∗

t which connects v to the intersection of e1 and e. This
gives us the point location data structure for A∗

t∗ . Then we expand the vertex v so that the newly
created edge connects the intersection of e2 and e with v to obtain the data structure for A∗

t where
t > t∗. See Figure 3 (left).

Now consider the case when e intersects both e1 and e2 immediately before time t∗, and does
not intersect e1 and e2 immediately after time t∗ (or vice versa). Consider A∗

t immediately before
time t∗. We delete the edge between e1 ∩ e and e2 ∩ e. The new region created by this deletion is
given the same name as for the region on the side of the deleted edge which is opposite to v. In
addition we contract the edge connecting v with e1 ∩ e and the edge connecting v with e2 ∩ e. Now
the point location data structure stores A∗

t∗ Clearly, A∗
t∗ contains four regions adjacent to v: one

9



region on one side of e and three regions on the other side. Let the latter regions be r1, r2, and r3,
ordered in counter-clockwise order around v. To modify the point location data structure so that
it represents A∗

t for t right after t∗, we expand v into two vertices v1 and v2, so that the new edge
is incident to r1 and r3, v1 incident to two pieces of e and v2 is incident to e1 and e2. Subsequently
we delete the newly created edge, thereby merging r1 and r3 into a new region r.7 We also contract
one of the two edges incident to v1. If e does not intersect e1 or e2 immediately before time t∗, and
intersects both of them immediately afterwards, we act symmetrically. See Figure 3 (right).

Thus, knowing t∗, v, e, e1, and e2, we spend O(log2 n) time on each event of this type.
To find these quantities, we note that, at t∗, L(Pt∗) and U(Qt∗) intersect at v. So at t∗, v is

dual to a line Dt∗(v) tangent to both polyhedra and to ℓ0. The line containing e is dual to an
intersection point of an edge of P with Πt∗ , so Dt∗(v) is tangent to that edge. Similarly, Dt∗(v) is
tangent to a pair of adjacent edges of Q, corresponding to e1 and e2, so Dt∗(v) is tangent to the
facet of Q bounded by e1 and e2. Hence, Dt∗(v) is tangent (in Πt∗) to Pt∗ and Qt∗ at a vertex and
at an edge, respectively. In other words, Dt∗(v) passes through ℓ0, and is tangent to P at one edge
and to Q at two edges, both lying on a common facet. It then follows that this set of supports
admits a generic isolated transversal through ℓ0 and is minimal with this property. We can thus
use the algorithm of [10] (see also Theorem 1.1) to find all the O(nk2) minimal sets of polyhedra
vertices and edges that admit an isolated transversal of this kind, in time O(nk2 log n). This gives
us the list of critical events of type (iv), and associates, with each such event, the corresponding
values of t∗, v, e, e1, and e2.

(v) There is a triple of polyhedra P , Q, R, such that some corresponding triple of envelopes, say
U(Pt), U(Qt) and U(Rt) intersect at a single point q at time t = t∗. As in the previous case,
knowing the edges of U(Pt), U(Qt) and U(Rt) involved in the intersection, we can update the point
location structure at each event of type (v), in O(log2 n) time, by a constant number of operations.
We leave it to the reader to verify the details.

Clearly, the intersection point v is tangent (in Πt∗) to each one of Pt∗ , Qt∗ and Rt∗ at a respective
vertex. Equivalently, v is dual to a common tangent line ℓ to P , Q and R, which passes through ℓ0

and is supported by an edge on each of these polyhedra. The set of support edges for Dt∗(v) admits
a generic isolated transversal through ℓ0 and is minimal with this property. By Theorem 1.1, there
is a total of O(nk2) such sets of edges. They can be computed, using the algorithm of [10], in
O(nk2 log n) time, and this gives us an enumeration of the events of type (v), and also associates
with each event the edges of the corresponding envelopes that become concurrent.

In summary, plugging all these into the machinery of [16], we have:

Theorem 2.1. Let P be a set of k convex polyhedra with a total of n facets, let ℓ0 be a fixed line,
and let C(P) be the corresponding cell decomposition of the parametric space S, as defined above.
We can construct, in O(nk2 log2 n) time, a data structure which supports point location queries in
C(P) in O(log2 n) time, and requires O(nk2 log2 n) storage.

Note that this theorem does not require the input polyhedra to be disjoint. We will apply it
also in Section 3, in contexts involving intersecting polyhedra.

We say that a pair of cells C, C ′ ∈ C(P) are neighbors if C ′ can be reached from C by crossing
a single 2-surface σP (as defined in the introduction), for some P ∈ P. To compute, for each cell
C ∈ C(P), the pair of polyhedra P+

C and P−
C “nearest” to ℓ0, we note that the list of polyhedra in

PC ∪{ℓ0}, ordered according to their intersections with lines ℓ ∈ C, changes in at most one position
as we pass between neighboring cells of C(P) (across a common lower-dimensional face in C(P)). In

7When this happens we unite the sets containing r1 and r3 in our union-find data structure and we insert r to the
resulting set as they all represent the same cell of C(P).

10



each such change we either insert a new polyhedron P into the list, or remove a polyhedron from
this list. We maintain the lists in a persistent search tree, as follows.

During the sweep algorithm of Theorem 2.1, we construct the adjacency graph on the three-
dimensional cells of C(P). We detect that a pair of cells C and C ′ are adjacent, when their
cross-sections, say Ct and C ′

t, become adjacent for the first time in A∗
t . This can only happen when

we insert an edge e which separates Ct and C ′
t in A∗

t . Let P ∈ P be the polyhedron for which e
lies in either L(Pt) or U(Pt). Then C can be reached from C ′ across σP . So each time we insert a
new edge e into A∗

t we store the tuple (ℓ, P ) where ℓ is a line (represented by a point in A∗
t ) in the

interior of e, and P is as above. After we have completed the construction of the point-location
structure for C(P) (and we know all its cells which are represented as sets in our Union-Find data
structure), we scan the list of all the previously stored tuples (ℓ, P ). For each tuple (ℓ, P ), we find
a pair of cells C and C ′ containing ℓ on their boundary, and connect them by an edge (if they are
not already connected). We also store the values of P and ℓ with the corresponding edge. Clearly,
the construction takes O(nk2 log2 n) time.

We next claim that the adjacency graph of the three-dimensional cells of C(P) is connected.
Indeed, by the general position assumption, the intersection of every pair of curves σP and σQ,
of points representing tangents to polyhedra P ∈ P and Q ∈ P, respectively, is a (possibly dis-
connected) one-dimensional curve in S. Accordingly, the intersection of every triple of curves σP ,
σQ, and σR, is a set of points in S. Hence, every three-dimensional cell can be reached across a
two-dimensional face.

We then traverse the above adjacency graph in breadth-first fashion, and when we move from a
cell C to an adjacent cell C ′, we construct PC′ by updating PC in a persistent manner. To obtain
PC′ from PC we have to insert or delete a polyhedron (we always know what action to take).

To insert P into the ordered list PC ∪ {ℓ0}, we perfrom a binary search along the line ℓ on the
common boundary of C and C ′, which is stored with the edge connecting them. The binary search
may require O(log k) ray-shooting queries at individual polyhedra of PC and P . Deletions are done
symmetrically. Thus, passing from one cell of C(P) to another takes O(log2 n) time. It follows that
we need O(nk2 log2 n) extra storage and preprocessing time to persistently store the lists PC , over
all cells C ∈ C(P).

Theorem 2.2. Let P be a set of k pairwise disjoint convex polyhedra in R3 with a total of n facets,
and let ℓ0 be a fixed line. Then we can construct, in O(nk2 log2 n) time, a data structure of size
O(nk2 log2 n), which supports ray-shooting queries from ℓ0 in O(log2 n) time per query.

So far, we have assumed general position of P. In Section 3, we will apply this machinery in a
degenerate situation, where the set of input polyhedra is Q = P ∪ {P ∩ Q | P, Q ∈ P}. Hence, a
generic isolated transversal that emanates from ℓ0 can meet more than three edges or vertices of
polyhedra, and the polyhedra can have any number of collinear or coplanar vertices and edges. The
algorithms of Theorem 2.1, and of Theorem 2.2 also work in degenerate settings, by introducing
routine (but tedious) modifications needed for handling degenerate vertices, edges and faces of C(P)
(which may now be contained in any number of envelopes of the form U(Pt) or L(Pt)); for more
details see [8]. In these cases, although multiple topological changes happen at the same time t,
they are ordered consistently, by the above modification, so as to enable us to process one event at
a time.8

As one can easily verify, we still spend O(nk log2 n) time to process (topology changes caused by)
events of types (i)-(iii). Each of the remaining events is uniquely charged to a minimal (constant-

8Multiple simultaneous sweep events may induce degenerate features in the cross-section A∗
t∗ , at a critical time

t∗. When we process topology events at t∗ we first create the data structure of A∗
t∗ and only then create the data

structure of A∗
t , for t > t∗. That is, each event is split into two parts, one contains the changes required at time t∗

and the other contains the changes for t > t∗. We perform the first part of all events first and only then the second
part of the events.

11



size) set S of relatively open edges or vertices, of the input polyhedra which admits a generic isolated
transversal through ℓ0. Since a single line may now be an isolated transversal to any number of edges
and vertices of the input polyhedra, it might yield multiple sweep events of type (iv)-(v), which
occur simultaneously. Fortunately, Theorem 1.1, also holds in degenerate settings. This implies
that the O(nk2) bound on the number of events of type (iv)-(v) still holds. A consistently ordered
list of those events can be computed in O(nk2 log n) time, by carefully applying the algorithm
of [10]. We process all these events in O(nk2 log2 n) time.

3 Ray-Shooting from a Line: Handling Intersecting Polyhedra

The data structure. The solution described in the previous section fails for the case of intersecting
polyhedra because lines which belong to the same cell C may intersect the boundaries of the
polyhedra of PC in different orders (see Figure 4 (a)). In this section we consider this case, and
derive a solution which is less efficient, but still nearly linear in n.

ℓ0
ℓ

(a)

ℓ
ℓ0

Q P

P ∩ Q

(b)

Figure 4: The case of intersecting polyhedra. (a) As we rotate ℓ, the first polyhedron boundary
intersected by ℓ changes Θ(n) times. (b) P ≺C Q, for the cell C containing ℓ; the polyhedron P ∩ Q
is not in QC .

As described in Section 1, we use parametric search, in the style of [3], to reduce the problem to
segment intersection detection. Specifically, the problem is reduced to testing a segment s = o1o2,
such that o1 is on ℓ0, for intersection with the boundaries of the polyhedra of P. We begin with
the following trivial observation.

Observation: Let P be a set of convex polyhedra, let A denote the arrangement of their bound-
aries, and let s be a segment. If the endpoints of s belong to distinct cells of A then s intersects
the boundary of a polyhedron of P.

The first ingredient of our algorithm is thus a data structure for point-location in A. For
example, we can use the structure described in [16]. We note, though, that A is not xy-monotone,
as required in [16]. Nevertheless, we can replace each polyhedron P ∈ P by two semi-unbounded
polyhedra P+, P−, where P+ (resp., P−) consists of all the points that lie in P or above (resp.,
below) it. We obtain 2k convex polyhedra, still with a total of O(n) facets, whose arrangement is
xy-monotone, and is in fact a refinement of A. Thus, locating a point in the new arrangement, using
the algorithm in [16], gives us the cell of A that contains it. The complexity of the (extended) A is
O(nk2)—an easy and well known fact (see, e.g., [2]). Hence, the resulting data structure requires
O(nk2 log2 n) storage and preprocessing, and answers point-location queries in O(log2 n) time.

The more difficult part is to test whether s intersects the boundary of a polyhedron of P when
the endpoints of s belong to the same cell of A. In this case, it is sufficient to test s for intersection
with the polyhedra of P which do not contain o1. Indeed, if s intersects a polyhedron P containing
o1 then the other endpoint o2 is outside P , and, therefore, o1 and o2 belong to different cells of A.

As in the previous section, we cut each of the polyhedra, whose interior is intersected by ℓ0,

12



into two sub-polyhedra, by some plane through ℓ0, and leave the other polyhedra unchanged. The
polyhedra of P may now contain artificial facets, tangent to ℓ0. Since we are interested in testing
s for intersection with non-artificial faces of polyhedra of P, the artificial faces will require special
treatment throughout the intersection-testing algorithm.9

We replace P with the set Q = {P∩Q | P, Q ∈ P}; note that the original polyhedra of P are also

in Q. The new set contains O(k2) convex polyhedra of total complexity O
(

∑

P,Q∈P(nP + nQ)
)

=

O(nk), where nP is the number of facets of polyhedron P . As above, let C(Q) denote the 3-
dimensional arrangement in S defined by the surfaces of tangents to the polyhedra in Q.

We construct a point location structure over C(Q) as we did for C(P) in Section 2. Each cell
C ∈ C(Q) is a maximal connected region with the property that all lines in C stab the same
subset of polyhedra of Q, which we denote by QC . This point location data structure supports
queries in O(log2(nk)) = O(log2 n) time, and requires O(nk ·(k2)2 log2(nk)) = O(nk5 log2 n) storage
and preprocessing time. The following is an obvious but crucial observation, which justifies the
introduction of Q.

Observation: Let C be a cell of C(Q), and let ℓ be a line in C. For any pair of distinct polyhedra
P, Q ∈ PC , the segments P ∩ ℓ and Q ∩ ℓ intersect if and only if P ∩ Q is in QC .

We consider a query ray in a line ℓ to be positive if it is contained in the halfplane of Πt(ℓ) which
lies to the right of ℓ0 (in an appropriate coordinate frame, as described above). We focus below
on the case of positive rays, since negative rays can be handled in a fully symmetric manner. We
denote by ℓ+ the positive ray (emanating from ℓ0) contained in the line ℓ. For a cell C ∈ C(Q), we
denote by P+

C ⊆ P the subset of polyhedra of P intersected (in a nonartificial face) by ℓ+, for any
line ℓ in C. Since we have assumed that no polyhedron of P intersects ℓ0, this property is indeed
independent of the choice of ℓ in C.

We define Front(C) to be the set of all polyhedra P ∈ P+
C for which there exists a line ℓ in C,

such that an endpoint of P ∩ ℓ is the closest to ℓ0, among all such boundary points along ℓ. That
is, Front(C) consists of all polyhedra that are first intersected by positive rays ℓ+, for ℓ ∈ C.

We define a strict partial order ≺C on the polyhedra of PC , as follows. For P, Q ∈ PC , we say
that P ≺C Q if P ∩ Q /∈ QC (the polyhedron P ∩ Q is not stabbed by any line in C), and the
segment P ∩ ℓ appears before Q∩ ℓ along ℓ, for any line ℓ in C. See Figure 4 (b) for an illustration.
In this section we only use the restriction of ≺C to the polyhedra of P+

C .

Lemma 3.1. The order P ≺C Q (a) is well defined and is independent of the choice of ℓ in C,
and (b) is indeed a strict partial order.

Proof. Let P, Q ∈ PC be a pair of polyhedra such that P ∩ Q /∈ QC . Since P ∩ Q is not stabbed
by any line in C, the segments P ∩ ℓ and Q∩ ℓ are disjoint for all lines ℓ in C. A simple continuity
argument, which exploits the connectivity of C, the fact that continuous motion in C corresponds
to continuous motion of the line in 3-space, and the fact that no point of C represents a line parallel
to ℓ0, implies that this order of P ∩ ℓ and Q ∩ ℓ is the same for all lines ℓ in C.

This establishes part (a), from which part (b) is immediate.

Recall that a subset T ⊆ PC is called an antichain of ≺C if any two distinct polyhedra P, Q ∈ T
are unrelated under ≺C ; T is called a maximal antichain if no (proper) superset of T is an antichain.

Lemma 3.2. A (non-empty) subset T ⊆ PC is an antichain under ≺C if and only if every line ℓ
in C intersects the polyhedron

⋂

T =
⋂

P∈T P .

9Note that the arrangement A, and the point-location structure in A, are still defined with respect to the original
set of polyhedra.

13



Proof. Let T be an antichain under ≺C . For any P, Q ∈ T , the polyhedra P and Q are unrelated
under ≺C , so P ∩Q ∈ QC . Therefore, for every line ℓ in C, the segments P ∩ ℓ and Q∩ ℓ intersect.
Hence, by the one-dimensional Helly theorem,

⋂

P∈T (P ∩ ℓ) = (
⋂

T ) ∩ ℓ is not empty, for every
ℓ ∈ C.

To prove the converse statement, let T be a subset of PC such that
⋂

T is stabbed by every
line in C. In particular, for any pair of polyhedra P and Q in T , the polyhedron P ∩Q is stabbed
by every line in C. Thus, P and Q are unrelated under ≺C .

We define Front(C) ⊆ PC to be the set of all minimal polyhedra under ≺C . It is easy to see
that Front(C) ⊆ Front(C). (A proper inclusion is possible—see Figure 5 (a).) Since Front(C) is
a maximal antichain under ≺C , we obtain the following corollary.

Corollary 3.3. Assume P+
C 6= ∅. Then Front(C) 6= ∅, and every line in C intersects the polyhedron

⋂

Front(C).

See Figure 5 (a) for an illustration.

ℓ

P5

P1

ℓ0

P3

P4

(a)

P2

ℓ0

⋂

Front(C)

q

(b)

ℓ+

o2

o1

P

⋂

Front(C)

(c)

P

o1 = q

o2

ℓ0
ℓ+

Figure 5: (a) Illustrating Front(C), for the cell C containing ℓ. We have Front(C) = {P1, P2} and
Front(C) = {P1, P2, P3}. The maximal antichains are {P1, P2, P3} and {P4, P5}. (b) Testing o1o2,
where o2 ∈ o1q, for intersection with polyhedra boundaries (case (i)). (c) Testing o1o2, where o2 ∈ o1q,
for intersection with polyhedra boundaries (case (ii)).

For each cell C we store a pointer to a data structure which supports ray-shooting queries at
the polyhedron

⋂

Front(C) with positive rays contained in lines ℓ ∈ C. We present the details
about this structure, and the analysis of its storage and construction cost, later in this section.

Answering Segment Intersection Detection Queries.

14



Lemma 3.4. Let ℓ be a line through ℓ0, let ℓ+ be the positive ray of ℓ with origin o1 ∈ ℓ0 not
contained in any (non-artificial) facet on the boundary of any polyhedron of P, and let C be the cell
of C(Q) that contains ℓ. Assume P+

C 6= ∅. Let q be the first intersection of ℓ+ with
⋂

Front(C).
(i) If q 6= o1 then, for all points o2 in the segment o1q of ℓ+, the segment s = o1o2 intersects a
(non-artificial) facet on the boundary of some polyhedron of P if and only if o1 and o2 belong to
distinct cells of A. (ii) If q = o1 then the above property holds for all points o2 ∈ ℓ+.

See Figure 5 (b and c) for an illustration. Note that, by Corollary 3.3, ℓ+ intersects
⋂

Front(C).
We have q = o1 if and only if all the polyhedra in Front(C) contain artificial facets (all of which
contain o1); see Figure 5 (c) for an illustration.

Proof. If o1 and o2 belong to distinct cells of A, then s clearly intersects the boundary of some
polyhedron of P. For the converse statement, assume that s intersects a non-artificial facet on the
boundary of some polyhedron P of P, at some point w, and take P to be that polyhedron for which
w is closest to o1 (if there is more than one such polyhedra, take P to be any of these polyhedra).
Suppose first that w is an entry point into P . In this case, it is easily checked that P ∈ Front(C),
and thus q 6= o1. Moreover, as we follow ℓ+ from w to q we cannot exit P , for then we would have
also exited

⋂

Front(C), contradicting the definition of q. Hence, o2, which clearly belongs to wq,
lies in P , while o1 lies outside P , so o1 and o2 lie in distinct cells of A.

Suppose next that w is an exit point from P . In this case, each of the polyhedra in Front(C)
has an artificial facet containing o1. Since o2 clearly lies beyond w, o2 lies outside P while o1 lies
inside P (before splitting it by an artificial facet). Hence, they again lie in distinct cells of A.

Note that in both cases if o2 = w then then o2 resides in a lower dimensional cell different from
the cell of o1.

Now we are ready to describe our query algorithm which tests, for a query segment s = o1o2

contained in some positive ray ℓ+ with origin o1 ∈ ℓ0, whether s intersects a (non-artificial) facet
on the boundary of some polyhedron of P. First, we test if o1 is contained in a (non-artificial) facet
of some polyhedron of P using the data structure for point location in A, and report intersection if
the answer is positive. Then we query the spatial point location structure of C(Q) to find the cell
C which contains the line ℓ containing s. If P+

C is empty then we return and report no intersection.

Otherwise, we perform a ray-shooting query at
⋂

Front(C) to find the first intersection point q
of ℓ+ with the boundary of

⋂

Front(C). If q 6= o1, and o2 appears along ℓ+ after q, we report
intersection and finish. Otherwise (i.e., either q 6= o1 and o2 precedes q, or q = o1 and o2 is
arbitrary), we search the data structure for point location in A with o2 to test whether o1 and o2

belong to different cells of A. We report intersection if and only if the answer is positive. The
correctness of this procedure follows from Lemma 3.4.

Query Time and Storage. For any collection of polyhedra P ′ ⊆ P, and a face f of A, we say
that f is good for P ′ if P ′ is the set of all (closed) polyhedra in P that contain f .

Lemma 3.5. Let C be a cell of C(Q). If a line ℓ in C intersects f ∈ A, and f is on ∂(
⋂

Front(C)),
then f is good for Front(C).

Proof. Since f is on ∂(
⋂

Front(C)), it is clear that every polyhedron in Front(C) contains f .
Conversely, let P be a polyhedron that contains f . We claim that P is minimal in P+

C under ≺C ,

and therefore P ∈ Front(C). Indeed, if P is not minimal under ≺C , then there exists Q ∈ Front(C)
such that Q ≺C P . It follows that Q ∩ ℓ is disjoint from P ∩ ℓ, but this contradicts the fact that f
is on ∂(

⋂

Front(C)).

Therefore, it suffices to solve, for each cell C, the ray-shooting problem only amidst the faces f
of A that lie on the boundary of

⋂

Front(C) and are good for Front(C). See Figure 6(a) for an
illustration.

15



(a)

R

P

Q

ℓ0

ℓ

(b)

R

P

Q

ℓ0

ℓ

Figure 6: (a) For the cell C which contains ℓ,
⋂

Front(C) = P ∩ Q (shaded). The bold facets f are
not good for Front(C), because f is contained in a polyhedron R which is not in Front(C). Since R
is not in PC , f is not stabbed by lines in C. (b) The polyhedron G(Front(C)) (shaded) is bounded by
affine extensions of the facets of

⋂

Front(C) which are good for Front(C) (whose boundary is drawn
bold).

Let f be a facet of A, and put Pf to be the set of polyhedra containing f . Equivalently, Pf is
the unique set of polyhedra P ′ such that f is good for P ′. Assume Pf is not empty. Let hf be the
plane containing f , and let h+

f be the halfspace bounded by hf and containing
⋂

Pf . For a subset

P ′ of P, we define G(P ′) to be the polyhedron obtained by intersecting the halfspaces h+
f , over all

good faces f for P ′. Note that
⋂

P ′ ⊆ G(P ′), and that every good face for P ′ lies on ∂G(P ′). In
particular, we have the following property. (See Figure 6 (b) for an illustration.)

Lemma 3.6. Let C be a cell in C(P), let ℓ be a line in C, and let ℓ+ be the positive ray of ℓ,
as defined above. Then the intersection of ℓ+ with

⋂

Front(C) and the intersection of ℓ+ with
G(Front(C)) are identical.

Proof. We show that the first intersection point of ℓ+ with
⋂

Front(C) and G(Front(C)) is the
same. By Lemma 3.5, ℓ+ first hits

⋂

Front(C) at a point q contained in a facet f of A which
is good for Front(C). As just noted, f is contained in the boundary of G(Front(C)), which is
easily seen to imply that ℓ+ first hits G(Front(C)) at q. A symmetric argument shows that the
last intersection point of ℓ+ with

⋂

Front(C) and G(Front(C)) is the same.

For the correctness of the data structure of this section, it suffices that the first intersection
point of ℓ+ with

⋂

Front(C) and G(Front(C)) is the same, but the data structure in Section 4
requires Lemma 3.6 in its more general form.

For each cell C ∈ C(Q), we construct a data structure which supports ray-shooting queries
at G(Front(C)). If implemented as in [12], the structure uses storage linear in the complexity of
G(Front(C)), and can answer queries in O(log n) time. With each cell C ∈ C(Q) we store a pointer
to the ray-shooting structure at G(Front(C)). As each face of A is good for exactly one subset
Pf of polyhedra, the total storage and preprocessing required for all these auxiliary ray-shooting
data-structures is O(nk2) and O(nk2 log n), respectively.

Hence, the resulting data structure uses O(nk5 log2 n) storage (the major part of which is
consumed by the point location structure in the decomposition C(Q)), and supports segment inter-
section detection queries in O(log2 n) time.

16



Ray shooting via parametric searching. We next apply the parametric searching technique
to turn the segment intersection detection procedure to one that actually performs ray shooting.
Let o1 ∈ ℓ0 be the origin of the positive query ray ℓ+. We first locate o1 in the arrangement A and
return o1 as an answer to the query if o1 belongs to a (non-artificial) facet on the boundary of some
polyhedron of P. Otherwise, we find the cell C of C(Q) containing the line ℓ which supports ℓ+.
If P+

C = ∅, ℓ+ does not intersect any polyhedra boundary. Otherwise, we shoot along ℓ to find the

first point q at which ℓ+ intersects G(Front(C)), in O(log n) time. We note that if o1 6= q then the
actual answer to the ray-shooting query must lie in the segment o1q of ℓ+. So far, no parametric
searching is involved.

We now perform parametrically the last part of the segment intersection detection procedure,
in which we test whether o1 and o2 (which is the unknown answer to the ray shooting query) are in
the same cell of A (we note that if q 6= o1 then the point o2 necessarily precedes or coincides with
q). We use the algorithm of Preparata and Tamassia generically with the (unknown) query point
o2.

The tests performed by the Preparata-Tamassia algorithm are of the following kinds: (i) Com-
paring the z-coordinate of o2 with some critical z-value (at which the topology of the cross-section
of A changes); (ii) Comparing the y-coordinate of o2 with that of a vertex of the planar cross-section
of A containing o2 (this vertex lies on an edge e of A); (iii) Testing which side of an edge of the
cross-section contains o2 (this edge is contained in some faces f of A). Each of these tests is easy
to implement generically: In case (i) we find the point o′ ∈ ℓ+ which has the tested z-value; in
case (ii) we find the point o′ ∈ ℓ+ whose y and z-coordinates coincide with those of a point on e;
and in case (iii) we find the point o′ ∈ ℓ+ at which ℓ+ intersects the plane containing f . In either
of these cases we resolve the comparison by deciding whether or not o2 precedes o′ on ℓ+, that
is, whether or not o1o

′ intersects any polyhedron boundary. Recall that the segment intersection
detection routine can also detect the case where o′ is the first intersection of ℓ+ with a polyhedron
boundary. If this is the case, we stop right away and output o′. One can easily check that if q = o1

then the generic procedure will either decide that ℓ+ does not intersect any polyhedra10 or reach
a comparison whose critical value o′ is indeed the output to our ray-shooting query. Similarly, if
q 6= o1 then the generic procedure will also reach a comparison, whose critical value o′, is the output
to our ray-shooting query (in this case o′ could be q).

This parametric part, which dominates the running time, takes O(log4 n) time, since we answer
each of the O(log2 n) comparisons in the generic execution of this procedure in O(log2 n) time.

Preprocessing. The only nontrivial part of the preprocessing is the construction of the ray-
shooting structures at the polyhedra G(Front(C)), for all the cells C ∈ C(Q).

First, for each face f of A, we compute the subset Pf ⊆ P, which is done by testing, for each
polyhedron P ∈ P, whether P contains some fixed point pf ∈ f . Since the complexity of A is
O(nk2), this can be done in O(nk3 log n) total time11. We represent each subset Pf by a bit-vector
in {0, 1}k that has 1 in position j if and only if the jth polyhedron is in Pf . Next, we collect the
faces f having the same set Pf . This can be done by sorting the O(nk2) k-long bit-vectors Pf ,
in time O(nk3 log n). We construct for each of the resulting equivalence classes T a ray-shooting
structure on the polyhedron G(T ). Clearly, given a bit-vector representing T , the corresponding
ray-shooting data structure amidst

⋂

T can be found in O(k log n) time.
To supply each cell C ∈ C(Q) with a pointer to the ray-shooting structure corresponding to

G(Front(C)), we proceed as follows. As in Section 2, we assume without loss of generality, general
position of the input set of polyhedra P. We say that a pair of cells C, C ′ ∈ C(P) are neighbors
if C ′ can be reached from a point in C by crossing a single two-dimensional surface σR, for some
R ∈ Q. Recall that C(Q) is a refinement of C(P), and fix a cell C̃ ∈ C(P). We claim that the

10This happens when Front(C) is unbounded and contains ℓ+.
11This can be improved, by a more careful traversal of A, but it will not affect the overall running time.

17



adjacency graph of all three-dimensional cells in the restriction of C(Q) to C̃ is connected. Indeed,
let R be a polyhedron of Q, and let σR be the corresponding surface of lines tangent to R. Pick a
point p which belongs to the intersection of σR with the relative interior of C̃. Since p is contained
in the relative interior of C̃ ∈ C(P), the line ℓ represented by p is not tangent to any P ∈ P. Hence,
there is a pair of polyhedra P, Q ∈ P such that R = P ∩ Q, and ℓ is tangent to R at the common
intersection of the boundaries of P and Q. Thus, restricted to the interior of C̃, the surfaces σR, for
R ∈ Q are in general position, and the corresponding adjacency graph is connected. Moreover, the
algorithm of Theorem 2.2 can be easily modified to construct such a graph, for each C̃ ∈ C(P), in
O(nk5 log2 n) total time (in addition to the time required to constructed the cell-location structure
in C(Q)).

Let C and C ′ be a pair of adjacent three-dimensional cells in C(Q) which are contained in
C̃ ∈ C(P) as above. That is, C and C ′ are connected across a common face of the surface σR, for
R ∈ Q. Hence, there is a unique pair of polyhedra P and Q such that {R} = {P ∩Q} = QC△QC′ .
Therefore, (P, Q) is the only pair of polyhedra that are related under ≺C and are unrelated under
≺C′ or vice versa. Thus in C we have, say, P ≺C Q, so Q is not in Front(C). Since all other pairs
do not change their status in ≺, the only possible change from Front(C) to Front(C ′) is that Q
may be added to the latter set, which is the case if and only if the following property holds. Let ℓ
be a line on the common boundary between C and C ′, and let q be the singleton point in P ∩Q∩ ℓ.
Then Q is added to Front(C ′) if and only if q ∈

⋂

Front(C); see Figure 7 (a). In other words, we
have argued12 that |Front(C)△Front(C ′)| ≤ 1.

Let C̃ be a cell of C(P). We pick a representative cell C0 ∈ C(Q) contained in C̃, and compute
Front(C0) in a brute-force manner, by picking a line ℓ ∈ C and computing, for each P ∈ PC , the
segment P ∩ ℓ, (using two ray-shooting queries at P ). Then Front(C) consists of every P which
is minimal in the relation ≺C , which we compute using the segments P ∩ ℓ. We next search, in
O(k log n) time, the table of equivalence classes, with the bit-vector corresponding to Front(C).

Next we trace the previously constructed adjacency structure of C(Q) within C̃ in breadth-
first fashion, say, and find all the cells C ∈ C(Q) contained in C̃. Recall that the algorithm of
Theorem 2.2, that we use, also computes, for each pair of adjacent cells C and C ′, a line ℓ and
a polyhedron R. Here R is the polyhedron in Q such that C and C ′ are connected across a two-
dimensional face of C(Q) contained in σR, and ℓ is a line on the common boundary of C and C ′. For
each newly encountered cell C ′, reached via a previous cell C, we thus have the corresponding pair
P, Q ∈ P such that {R} = {P ∩ Q} = QC△QC′ . We can now compute Front(C ′) from Front(C)
as follows. We use the line ℓ on the common boundary of C and C ′, compute P ∩ ℓ and Q ∩ ℓ,
obtain their common endpoint q, verify that, say, P ∩ ℓ precedes Q ∩ ℓ along ℓ, and test whether
q ∈

⋂

Front(C ′). If so, Front(C ′) is obtained by either adding or removing Q from Front(C) (and
we know which action to take); otherwise Front(C) = Front(C ′).

To facilitate the transition from Front(C) to Front(C ′), we extend a table on the equivalence
classes T that is constructed at the preliminary stage, as follows. For each class T and each
polyhedron P we store a pointer to T ′ = T △{P}. Since there are O(nk2) classes, each represented
as a k-long bit-vector, this takes a total of O(nk4 log k) time, and O(nk3) storage, well within the
overall performance bounds of the algorithm. This completes the preprocessing stage.

To bound the total preprocessing time, we note that the brute force method for finding Front(C)
takes O(k log n) time and is applied to O(nk2) representatives of cells in C(P). Also observe that in
our traversal of C(Q), over all cells C̃ ∈ C(P), we make a total of O(nk5) transitions, by the upper
bound on the overall complexity of C(Q). Each such transition takes O(log n) time. We similarly
handle lower-dimensional cells of C(Q) and C(P). In summary, we have:

12This is not the case when we cross between different cells of C(P); then the change in Front(C) may be quite
substantial.

18



Theorem 3.7. Let P be a set of k possibly intersecting convex polyhedra with a total of n facets,
and let ℓ0 be a fixed line in R3. Then we can construct a data structure supporting ray-shooting
queries with rays emanating from ℓ0, in O(log4 n) time per query. The structure uses O(nk5 log2 n)
storage and preprocessing time.

ℓ0

(a)

P ∩ Q

⋂

Front(C)

QP

ℓ2

ℓ
ℓ1

P1

P2

ℓ

P6

P5
P4

q
o2

o1

ℓ0

(b)

P3

Figure 7: (a) Updating Front(C). The lines ℓ1 and ℓ2 belong to C and C ′, respectively. The line ℓ is
on the common boundary of C and C ′. (b) Shooting rays contained in lines through ℓ0. For the cell C
containing ℓ, we have ΞC

1 = {P1, P2}, ΞC
2 = {P2, P3, P4}, and ΞC

3 = {P2, P5, P6} (the corresponding
polyhedra

⋂

ΞC
1 ,

⋂

ΞC
2 ,

⋂

ΞC
3 are shaded).

4 Extensions

In this section we consider several extensions of the preceding algorithm. First, we remove the
assumption that the query rays originate on a fixed line ℓ0. Now they are only required to be
contained in lines intersecting ℓ0. The next extension is to ray-shooting with rays orthogonal to a
fixed line. Finally, we briefly describe a simple solution for vertical ray-shooting amidst k possibly
intersecting convex polyhedra.

4.1 Ray-shooting involving rays contained in lines intersecting ℓ0.

We use the notations of Section 3. Fix a cell C of C(Q), and let ΞC
1 , . . . ,ΞC

tC
be the maximal

antichains under ≺C . Observe that for any pair of indices 1 ≤ i < j ≤ tC , lines represented in

C do not intersect the polyhedron
(
⋂

ΞC
i

)

∩
(

⋂

ΞC
j

)

. To see this, consider the set of polyhedra

Ξ = ΞC
i ∪ ΞC

j . By the maximality of the antichains ΞC
i , ΞC

j , it follows that Ξ is not an antichain
under ≺C . Thus Ξ contains two polyhedra Q1, Q2 satisfying Q1 ≺C Q2, which implies that Q1∩Q2

is not intersected by any line in C. Since
⋂

Ξ is contained in Q1 ∩ Q2, the claim follows.
We can thus define the ≺C relation also between the polyhedra of the form

⋂

ΞC
i , over the

maximal antichains ΞC
i . The preceding argument implies that this is a total order, which we

assume to be
⋂

ΞC
1 ≺C

⋂

ΞC
2 · · · ≺C

⋂

ΞC
tC

.
Observe that each polyhedron P ∈ PC belongs to maximal antichains in a contiguous interval of

this list. Otherwise, there is a triple of indices 1 ≤ i < j < h ≤ tC and a polyhedron P ∈ PC , such
that P ∈ ΞC

i , P ∈ ΞC
h , but P is not in ΞC

j . By the maximality condition,
⋂

ΞC
i ⊆ P,

⋂

ΞC
h ⊆ P , but

⋂

ΞC
j * P . Since all lines in C intersect

⋂

ΞC
i ,

⋂

ΞC
j , and

⋂

ΞC
h in the same order, this contradicts

the convexity of P . It then follows that tC = O(k).

19



For each cell C in C(Q) and index 1 ≤ i ≤ tC , we maintain a data structure which supports
ray-shooting queries at the polyhedron

⋂

ΞC
i . In addition, we construct and store a data structure

which supports point location in the spatial arrangement A = A(P) of the polyhedra of P; see
Section 3.

Ray Shooting. As above, we use parametric search, and therefore given a segment s = o1o2,
contained in a line passing through ℓ0, we need to determine whether s intersects the boundary of
any polyhedron in P. Extending the analysis in Lemma 3.4, we have:

Lemma 4.1. Let ℓ be a line through ℓ0, let ρ be a positive ray contained in ℓ which emanates from
some point o1 ∈ ℓ not contained in the boundary of any polyhedron of P. Let C be the cell of C(Q)
that contains ℓ, and let q be the first intersection of ρ with the boundary of some polyhedron

⋂

ΞC
i ,

for 1 ≤ i ≤ tC .13 Then, for all points o2 in the (closed) segment o1q of ρ, the segment s = o1o2

intersects the boundary of some polyhedron of P if and only if o1 and o2 belong to distinct cells of
A.

For an illustration, see Figure 7(b). Shooting with negative rays is analogous so we discuss only
positive rays.

Proof. Clearly, if o1 and o2 belong to distinct cells of A then o1o2 intersects the boundary of a
polyhedron of P. For the converse implication, let P ∈ P be the first polyhedron that s intersects
(i.e., the polyhedron whose boundary intersects s at a point closest to o1). If one of the endpoints
o1, o2 lies inside P then the other endpoint must lie outside P , so o1 and o2 belong to distinct
cells of A. (We exclude the case where both o1 and o2 lie on the boundary of the same polyhedron
of P.) Thus, assume that both o1 and o2 lie outside P , so they must lie on different sides of the
interval ℓ∩ P . By the discussion preceding the lemma, P participates in one or several anti-chains
ΞC

i . Pick any such anti-chain ΞC
i . By Lemma 3.2, ℓ intersects

⋂

ΞC
i , and since

⋂

ΞC
i ⊆ P , it follows

that o1 and o2 lie on different sides of the interval ℓ ∩
⋂

ΞC
i , and thus s intersects

⋂

ΞC
i . But this

contradicts the choice of q, and the fact that o2 belongs to the segment o1q.

We now describe our query algorithm which tests, for a query segment s = o1o2 contained
in a line passing through ℓ0, whether s intersects a (non-artificial) facet on the boundary of some
polyhedron of P. First, we query the point location structure in A, with the point o1, to test whether
o1 belongs to the boundary of some polyhedron of P and report intersection, if the answer is positive.
We next query the spatial point location structure of C(Q) to find the cell C which contains the line
ℓ containing s. Then we run a binary search over the sorted list

⋂

ΞC
1 ≺C

⋂

ΞC
2 ≺C · · · ≺C

⋂

ΞC
tC

with o1. This takes O(log tC) = O(log k) steps, in each step of the search we test, for some
1 ≤ i ≤ tC , on which side of the polyhedron

⋂

ΞC
i the point o1 lies, or whether it is contained

in
⋂

ΞC
i . Each of these steps is a ray shooting query at a convex polyhedron, which can be

accomplished with logarithmic query time and linear storage. If o1 lies to the right of all polyhedra
⋂

ΞC
i , for 1 ≤ i ≤ tC , we set q equal to infinity. Otherwise, we perform a ray-shooting query at

the polyhedron
⋂

ΞC
i which either contains o1 or lies immediately to the right of o1 along ℓ, to find

q, the first intersection of ρ with the boundary of a polyhedron
⋂

ΞC
i , for some 1 ≤ i ≤ tC . If o2

appears along ρ after q, we report intersection and stop. Otherwise, we query the data structure
for point location in A, with the point o2, to test whether o1 and o2 belong to different cells of
A, and report intersection if and only if the answer is positive. The correctness of this procedure
follows from Lemma 4.1.

13If ρ does not intersect the boundary of any polyhedron
T

ΞC
j , for 1 ≤ j ≤ tC , we say q is at infinity. (This

happens, for instance, if ρ intersects the boundary of some polyhedron of ΞC
tC

but does not intersect ∩ΞC
tC

.) In such
cases, the segment o1q is equal to ρ.

20



Query Time and Storage Complexity. Clearly, the query time for segment intersection de-
tection is O(log n log k + log2 n) = O(log2 n) so a ray-shooting query takes O(log4 n) time, using
parametric search, in a manner similar to that described in Section 3. That is, we first compute
q explicitly, without any parametric search, since it is independent of o2 (the only generic part of
the input). This takes O(log2 n) time, as described above. Then we search for the actual answer
o2 to the ray-shooting query, within the segment o1q of ρ, by parametrically locating o2 in the
arrangement A, as above. By the argument preceding Theorem 3.7, this requires O(log4 n) time.

Consider next the storage complexity. As noted above, the point location data structure for C(Q)
requires O(nk5 log2 n) storage (and preprocessing). To bound the storage needed for ray shooting
structures amidst polyhedra

⋂

ΞC
j we need the following lemma, which is an easy generalization of

Lemma 3.5.

Lemma 4.2. Let T be a maximal antichain under ≺C . If ℓ ∈ C intersects f ∈ A, such that f is
on ∂(

⋂

T ), then f is good for T .

Proof. We have to prove that Pf = T . Since f is on ∂(
⋂

T ), it is clear that every polyhedron in
T contains f . Conversely, let P be a polyhedron that contains f . We claim that P is unrelated to
all the polyhedra in T under ≺C . Indeed, if there is Q ∈ T such that P ≺C Q (or vice versa), then
P ∩Q is not stabbed by any line of C. However, f is intersected by ℓ ∈ C and f belongs to P ∩Q,
a contradiction. Since T is a maximal antichain, P belongs to T .

To efficiently store the ray-shooting structures for the polyhedra
⋂

ΞC
1 ,

⋂

ΞC
2 , . . .

⋂

ΞC
tC

, over all
cells C ∈ C(Q), we apply the approach of Section 3. That is, for each face f of A, we compute
Pf ⊆ P. Then we partition the collection of faces into corresponding equivalence classes, and, for
each equivalence class T we construct a ray-shooting structure amidst the polyhedron G(T ). For
each T ⊆ P and each cell C ∈ C(Q) such that ΞC

i = T , for some 1 ≤ i ≤ tC , we store with C a
pointer to the ray-shooting structure at G(T ). By Lemma 4.2, ray shooting at G(T ) is equivalent
to ray shooting at

⋂

ΞC
j , for rays on lines belonging to the cell C. Thus, the correctness analysis of

Section 3 readily extends to the case at hand. As is easily checked, all the auxiliary ray-shooting
structures require O(nk2) overall storage (and O(nk2 log n) preprocessing).

Preprocessing. To complete the description of the preprocessing algorithm we need to show how
to compute for each cell C ∈ C(Q) and each 1 ≤ i ≤ tC , the corresponding list of pointers to the
ray-shooting data structures at G(ΞC

1 ), G(ΞC
2 ), . . ., G(ΞC

tC
).

We use an algorithm similar to the one used in Section 3. Here is a brief description of the
required modifications. Recall that C(Q) is a refinement of C(P). For each cell C̃ ∈ C(P), the cells
C of C(Q) contained in it, form a connected cluster. We pick any representative cell C ∈ C(Q)
such that C ⊆ C̃, and construct the list ΞC

1 , ΞC
2 , . . . ,ΞC

tC
in a brute-force manner, using O(k) ray-

shooting queries at the polyhedra of P. This takes O(k2 log k) time per cell of C(P), for a total of
O(nk4 log n) time. For each set ΞC

i , we locate the ray-shooting structure at G(ΞC
i ), in O(k log n)

time, by searching the table of equivalence classes used by algorithm of Theorem 3.7, with a k-bit
vector. This takes a total of O(k2 log n) time per each representative cell C̃. Thus, we spend a
total of O(nk4 log n) time (over the O(nk2) representative cells C ∈ C(Q)).

It suffices to describe, given two adjacent cells C and C ′ in C(Q) with the same PC , how to
obtain the list of ray-shooting structures at G(ΞC′

1 ), G(ΞC′

2 ), . . ., G(ΞC′

tC
), from the corresponding

list of C. We can assume, as above, that the symmetric difference between QC and QC′ consists of
a single intersection polyhedron P ∩ Q, where P, Q ∈ P.

Suppose first that P ∩ Q ∈ QC′ \ QC and P ≺C Q. Then there is an adjacent pair ΞC
i ,

ΞC
i+1 of maximal antichains, such that P ∈ ΞC

i , and Q ∈ ΞC
i+1. The index i can be found by

binary search. We then have to insert between ΞC
i and ΞC

i+1 a maximal antichain of the form

Ξ = (ΞC
i ∩ΞC

i+1)∪{P, Q}. This antichain is constructed in a brute-force manner in time O(k log n),

21



using O(k) ray-shooting queries against the polyhedra of P. Then we find the ray-shooting structure
against G(Ξ) in O(k log n) time, by searching the above table of equivalence classes with a k-bit
vector. In addition, one or both of ΞC

i , ΞC
i+1 may become non-maximal under inclusion and should

be removed. This can also be easily checked without increasing the running time of the algorithm.
When P ∩Q ∈ QC \QC′ , we act symmetrically. Thus, the construction takes a total of O(nk6 log n)
time.

The lists of pointers to the ray-shooting structures at G(ΞC
1 ), G(ΞC

2 ), . . ., G(ΞC
tC

) are updated
in a persistent manner, without increasing the total storage required by the data-structure. The
following theorem summarizes the result which we obtained.

Theorem 4.3. Let P be a set of k possibly intersecting convex polyhedra in R3 with a total of
n facets. Then we can construct, in O(nk6 log n) time, a data structure of size O(nk5 log2 n),
that supports ray-shooting queries involving rays which are contained in lines intersecting ℓ0, in
O(log4 n) time per ray.

4.2 Ray-shooting with rays orthogonal to a fixed line.

Without loss of generality, assume the query rays are orthogonal to the z-axis. This problem can be
considered as a special case of ray-shooting involving rays which are contained in lines intersecting
ℓ0. Indeed, we can place ℓ0 at infinity, such that any plane which is parallel to the xy-plane contains
ℓ0. The algorithm of Theorem 3.7 can be symbolically modified to handle this degenerate placement
of ℓ0; for similar analysis see [8]. We thus obtain.

Theorem 4.4. Let P be a set of k convex polyhedra in R3 having a total of n facets. Then we can
construct, in O(nk6 log n) time, a data structure of size O(nk5 log2 n), which supports ray-shooting
queries involving rays orthogonal to the z-axis, in O(log4 n) time per query.

4.3 Vertical Ray-Shooting.

We describe an efficient data structure for vertical ray-shooting, in a collection P of k possibly
intersecting polyhedra with a total of n facets.

For each polyhedron P ∈ P, we raise unbounded vertical walls from the silhouette edges of P
(namely, those edges e, for which the vertical plane containing e is tangent to P ). These walls bound
an infinite vertical prism which we denote by P⊥. Let A⊥ = A⊥(P) be the resulting arrangement
of P

⋃

{P⊥ | P ∈ P}. Clearly, A⊥ is xy-monotone and has complexity O(nk2). We construct
a point location structure in A⊥, as described in [16], which requires O(nk2 log2 n) storage and
preprocessing time, and answers queries in O(log2 n) time.

For each cell a of A⊥, we project its top boundary onto the xy-plane, and preprocess each of the
resulting planar maps for efficient point location. Altogether, these structures use O(nk2) storage
and O(nk2 log n) preprocessing time, and a query in any of them takes O(log n) time. To answer
a vertical ray shooting query with a ray emanating upwards (say) from some point o, we locate o
in A⊥, and then locate the xy-projection of o in the xy-projection of the top boundary of the cell
containing o. This identifies the first polyhedron boundary hit by the query ray. The query time
is O(log2 n).

Theorem 4.5. Let P be a set of k possibly intersecting convex polyhedra in R3 with a total of n
facets. Then we can construct, in O(nk2 log2 n) time, a data structure of size O(nk2 log2 n), which
supports vertical ray-shooting queries in O(log2 n) time.

22



5 Conclusion

We have considered several restricted instances of the ray-shooting problem amidst a set of k convex
polyhedra in R3 with a total of n facets. We proposed data structures which require storage that is
near-linear in n (and polynomial in k), and answer queries in polylogarithmic time. Our approach
was based on decomposing the three-dimensional parametric space of the lines containing rays of
the restricted class under consideration, and on using the point location structure of Preparata
and Tamassia [16]. However, arbitrary lines in R3 have four degrees of freedom and are usually
represented as points in R4 (or on the quadric Plücker surface in oriented projective 5-space).
Moreover, the complexity of the decomposition of the four-dimensional space of lines in R3 into
maximal connected regions, such that all lines in the same region stab the same subset of P, is
known to be Θ(n2k2); see [10]. Thus the approach of this paper does not seem directly applicable
to the case of general ray-shooting, and leaves the problem of closing the gap between the bounds
for k = 1 and for arbitrary k ≪ n as still open. In addition, we have not seriously attempted to
reduce the dependence of the performance of our data structures on k. This too is an open problem
for future research.

Finally, we have only considered the case when we want the query time to be polylogarithmic,
and seek to optimize the storage and preprocessing costs. At the other end of the tradeoff, we
want the storage to be nearly linear in n, and seek to optimize the query time. In the cases under
consideration, the general techniques yield query time close to O(n2/3). It would be interesting to
refine this bound to make it depend also on k.

Acknowledgements We thank the anonymous referee for valuable suggestions that helped us
to improve the presentation.

References

[1] B. Aronov, M. de Berg and C. Gray, Ray shooting and intersection searching amidst fat convex
polyhedra in 3-space, Proc. 22nd Annu. ACM Sympos. Comput. Geom. (2006), 88–94.

[2] B. Aronov, M. Sharir and B. Tagansky, The union of convex polyhedra in three dimensions,
SIAM J. Comput. 26 (1997), 1670–1688.

[3] P. K. Agarwal and J. Matoušek, Ray shooting and parametric search, SIAM J. Comput. 22
(1993), 794–806.

[4] P. K. Agarwal and J. Matoušek, Range searching with semialgebraic sets, Discrete Comput.
Geom. 11 (1994), 393–418.

[5] P. K. Agarwal and M. Sharir, Ray shooting amidst convex polyhedra and polyhedral terrains
in three dimensions, SIAM J. Comput. 25 (1996), 100–116.

[6] B. Aronov, M. Pellegrini and M. Sharir, On the zone of a surface in a hyperplane arrangement,
Discrete Comput. Geom. 9 (1993), 177–186.

[7] M. de Berg, Ray Shooting, Depth Orders and Hidden Surface Removal, volume 703 of Lect.
Notes in Comput. Sci., Springer-Verlag, Berlin, 1993.

[8] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry:
Algorithms and Applications, 2nd Edition, Springer Verlag, Heidelberg, 2000.

23



[9] M. Bern, D. P. Dobkin, D. Eppstein, and R. Grossman, Visibility with a moving point of view,
Algorithmica 11 (1994), 360–378.

[10] H. Brönnimann, O. Devillers, V. Dujmovic, H. Everett, M. Glisse, X. Goaoc, S. Lazard, H.-S.
Na and S. Whitesides, Lines and free line segments tangent to arbitrary three-dimensional convex
polyhedra, SIAM J. Comput. 37 (2007), 522–551.

[11] R. Cole and M. Sharir, Visibility problems for polyhedral terrains, J. Symb. Comput. 7 (1989),
11–30.

[12] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra: a
unified approach, Proc. 17th Int. Colloq. Automata Languages and Programming (1991), 400–413.

[13] J. Matoušek, Lectures on Discrete Geometry, Springer-Verlag New York, 2002.

[14] M. Pellegrini, Ray shooting on triangles in 3-space, Algorithmica 9 (1993), 471–494.

[15] M. Pellegrini, Ray shooting and lines in space, in Handbook of Discrete and Computational
Geometry, 2nd edition, J. E. Goodman and J. O’Rourke (eds.), Chapman & Hall/CRC Press,
Boca Raton, FL, 839–856, 2004.

[16] F. P. Preparata and R. Tamassia, Efficient point location in a convex spatial cell complex,
SIAM J. Comput. 21 (1992), 267–280.

24


