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ABSTRACT
Summaries of massive data sets support approximate query
processing over the original data. A basic aggregate over a
set of records is the weight of subpopulations specified as a
predicate over records’ attributes. Bottom-k sketches are a
powerful summarization format of weighted items that in-
cludes priority sampling [22], and the classic weighted sam-
pling without replacement. They can be computed effi-
ciently for many representations of the data including dis-
tributed databases and data streams and support coordi-
nated and all-distances sketches.

We derive novel unbiased estimators and confidence bounds
for subpopulation weight. Our rank conditioning (RC) es-
timator is applicable when the total weight of the sketched
set cannot be computed by the summarization algorithm
without a significant use of additional resources (such as for
sketches of network neighborhoods) and the tighter subset
conditioning (SC) estimator that is applicable when the to-
tal weight is available (sketches of data streams).

Our estimators are derived using clever applications of the
Horvitz-Thompson estimator (that is not directly applicable
to bottom-k sketches). We develop efficient computational
methods and conduct performance evaluation using a range
of synthetic and real data sets. We demonstrate considerable
benefits of the SC estimator on larger subpopulations (over
all other estimators); of the RC estimator (over existing
estimators for weighted sampling without replacement); and
of our confidence bounds (over all previous approaches).

1. INTRODUCTION
Consider a weighted set (I,w) where I is a set of records,

and w is a weight function assigning a weight w(i) ≥ 0 for
each i ∈ I. A basic aggregate over such sets is subpopulation
weight. A subpopulation weight query specifies a subpopu-
lation J ⊂ I as a predicate on the values of the attributes
of the records in I. The result of the query is w(J), the
sum of the weights of records in J . This aggregate can be
used to estimate other aggregates over subpopulations such
as selectivity (w(J)/w(I)), variance, and higher moments of
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{w(i) | i ∈ J} [11].
We study probabilistic summarization algorithms, pro-

ducing a small sketch of the original data, from which we can
answer subpopulation weight queries approximately. The
use of sketches speeds up query processing and addresses
storage limitations when the original dataset can not be
stored, is distributed, or resides on a slower media.

In order to support subpopulation selection with arbitrary
predicates, the summary must retain content of some indi-
vidual records so we can determine for each record in the
sketch whether it satisfies the predicate. Two such meth-
ods are k-mins and bottom-k sketches. Bottom-k sketches
are obtained by assigning a rank, r(i), to each record i ∈ I
that is independently drawn for each i from a distribution
that depends on w(i). The bottom-k sketch contains the
k records with smallest ranks [6, 29, 4, 2, 23, 15]. The
distribution of the sketches is determined by the family of
distributions that is used to draw the ranks. If we draw
r(i) from an exponential distribution with parameter w(i)
then we obtain sketches that are distributed as if we draw
records without replacement with probability proportional
to their weights (see e.g. [15]). We denote sampling without
replacement with probability proportional to weight by ws,
and we call a bottom-k sketch with exponential ranks a ws

sketch.
To obtain a k-mins sketch [6] we also assign independent

random ranks to records (again, the distribution of r(i) de-
pends on w(i)). The record of smallest rank is selected, and
this is repeated k times, using k independent rank assign-
ments. When we draw r(i) from an exponential distribution
with parameter w(i) then k-mins sketches are equivalent to
weighted sampling with replacement of k records. We denote
sampling with replacement with probability proportional to
weight by wsr, and we call a k-mins sketch with exponential
ranks a wsr sketch.

Subpopulation weight query is a general primitive with
numerous applications. A concrete example is queries over
the set of all IP flows going through a router during some
time period. Flow records are collected at IP routers by
tools such as Cisco’s NetFlow [31] (now emerging as an IETF
standard). Each flow record contains the source and desti-
nation IP addresses, port and protocol numbers, and the
number of packets and bytes of the flow. A router can pro-
duce a bottom-k sketch of the flows that it collects during
a time period, before moving the raw data to external stor-
age or discarding it. A network manager can then use the
sketches from a single router or from multiple routers to
answer various subpopulation queries. For example, esti-



mate “the bandwidth used for an application such as p2p
or Web traffic” or “the bandwidth destined to a specified
Autonomous System.” The ability to answer such queries is
critical for improving network performance, and for anomaly
detection.

Bottom-k and k-mins sketches can be used to summarize
a single weighted set or to summarize multiple sets that are
defined over the same universe of items. When we summa-
rize multiple sets we want the sketches of different sets to be
defined using the same rank assignment to the items. That
is, if two sets A and B contain some item x, the same rank
value for x is used to compute the sketches of both A and
B. We call sketches of multiple sets that share the rank
assignment coordinated sketches.

A very useful feature of coordinated sketches is that they
support subpopulation queries where the selection predicate
includes conditions on sets’ memberships. In particular we
can estimate sizes of (selected subpopulations) of intersec-
tions and unions of sets. On our example of IP flow records,
consider multiple routers and a sketch of the set of flows
through each router. We can approximate queries like “How
many flows to a particular destination pass through a par-
ticular subset of the routers”. Since a particular flow can
go through multiple routers, the use of coordinated sketches
is critical for obtaining good estimates. Additional appli-
cation domains of subpopulation queries over coordinated
bottom-k sketches include document-features and market-
basket datasets [4, 6, 29, 2].

Bottom-k sketches are also used in applications where the
subsets are defined implicitly as neighborhoods in a metric
space. An example of such an application is a peer to peer
network where each node has a database of songs that it is
sharing with the other peers. Each peer maintains a bottom-
k sketch of the union of the sets of songs of all peers within
a certain distance (e.g. hops) from it. If it keeps such sketch
for every distance then the collection of these sketches is
called an all distances sketch. It turns out that coordinated
all distances sketches for all peers (and all neighborhoods)
can be computed efficiently and stored compactly [6, 14,
15]. The peer can use this sketch to find out how many
songs of a particular singer there are in close peers, how
many songs of a particular genre are in the entire network
etc. These coordinated sketches also support predicates with
membership conditions such as “the number of songs by the
Beatles that are both at a distance at most ρ1 from peer v
and at a distance at most ρ2 from peer w.” Subpopulation
queries over all-distances sketches facilitate decaying aggre-
gation [27, 12], kernel density estimators [33], and typicality
estimation [26].

Predicates with membership conditions over coordinated
bottom-k sketches of multiple sets are processed by first
computing the bottom-k sketch of the union of the rele-
vant sets from their individual sketches. For each included
item in the union sketch we can determine membership in-
formation in each set and view it as attribute values of the
item. Therefore, the complex selection predicate over multi-
ple sets can be handled as a plain attribute-based selection
predicate over a sketch of a single set (the union) and es-
timators and confidence bounds applicable to a bottom-k
sketch of a single set can be applied. 1

1In a followup work [16], we extend the estimators devel-
oped here to tighter estimators that directly work with the

Our results. We develop accurate estimators and confi-
dence intervals for subpopulation weight queries for bottom-
k sketches and in particular for ws sketches.

Our estimators are of two kinds.
(1) Estimators that are based on the Maximum Likelihood
(ML) principle. While biased, ws ML estimators can be
computed efficiently and perform well in practice.
(2) Estimators that generalize the basic Horvitz-Thompson
(HT) estimator [25].

The HT estimator assigns to each included record i an
adjusted weight a(i) equals to w(i) divided by the proba-
bility that i is included in a sketch. Clearly, the expected
adjusted weight of record i equals w(i). The estimate of
a subpopulation is the sum of the adjusted weights of the
records in the sketch that belong to the subpopulation and
is easily computed from the sketch by applying the selection
predicate to included records. This is clearly unbiased.

The HT estimator minimizes the per-record variance of
the adjusted weight for the particular distribution over sketches.
The HT estimator, however, cannot be computed for bottom-
k sketches, since the probability that a record is included in
a sketch cannot be determined from the information avail-
able in the sketch alone [32, 34]. Our variant, which we refer
to as HT on a partitioned sample space (HTp), overcomes
this hurdle by applying the HT estimator on a partition of
the sample space such that inclusion probability of records
can be computed in each subspace. We believe that this
technique of generalizing the HT estimator may be useful
in other contexts. As an indication for this we point out
that our derivation generalizes and simplifies one for prior-
ity sampling [22] and reveals general principles.

We derive two HT-based estimators. One (rank-conditioning
(RC)) is suitable to use when the total weight of the sketched
set is not known, and a tighter estimator (subset-conditioning
(SC)) to be used when the total weight of the sketched set is
known. Our RC estimator generalizes priority sampling, the
best known estimator prior to this work. The SC estimator
that uses the total weight is much tighter for larger sub-
populations than any known estimator based on a sketching
method that supports coordinated sketches.

From basic properties of the variance of a sum of ran-
dom variables follows that the variance of our estimate of
a particular subpopulation J is equal to

P

i∈J var[a(i)] +
P

i6=j,i,j∈J
cov[a(i), a(j)], where cov[a(i), a(j)] is the co-

variance of the adjusted weights of records i and j. For
all RC estimators (and priority sampling), the covariances
of different records are 0. Our SC estimator, however, has
negative covariances of different records. Moreover, the sum
of covariances is minimized. This guarantees that the vari-
ance of our estimator for any subpopulation is no larger and
generally much smaller than the sum of the variances of the
adjusted weights of the individual records of the subpopula-
tion. This important property boosts accuracy, in particular
for large subpopulations.

Confidence intervals are critical for many applications.
We derive confidence bounds (tailored to applications where
the total weight is or is not provided) and develop methods
to efficiently compute them. We compare our confidence
bounds with previous approaches (a bound for priority sam-
pling [37] and known wsr estimators) and show that our
confidence intervals are about 1/2 the width of the best pre-
viously known with any summarization method.

original set of sketches.



2. RELATED WORK
In [15] we initiated a comparison between bottom-k and

k-mins sketches. The focus there was on quantifying the re-
sources (storage, communication) required to produce these
sketches. We distinguished between explicit and implicit
representations of the data. Explicit representations list the
occurrence of each record in each set which we sketch. These
include a data stream of the items in a single set or item-set
pairs if we sketch many sets (for example, item-basket asso-
ciations in a market basket data, links in web pages, features
in documents [5, 3, 29, 35, 2]). Bottom-k sketches can be
computed much more efficiently than k-mins sketches when
the data is represented explicitly [4, 29, 15].

Implicit representations are those where we summarize
multiple sets that are specified succinctly: In the peer to
peer network described above, all sketched sets are implic-
itly represented as neighborhoods in the network. (See also
[6, 19, 18, 28, 27, 14].) In these applications, the summa-
rization algorithm is applied to the succinct representation
(the network itself in this example).

We also considered in [15] the information content in the
sketches. We showed how to probabilistically draw a k-
mins sketch from a bottom-k sketch, when using exponen-
tial ranks. The distribution induced on k-mins sketch is the
same as if we were drawing them directly to begin with, us-
ing multiple rank functions. We called this process mimick-
ing k-mins sketches from bottom-k sketches. Mimicking k-
mins sketches from bottom-k sketches allows to apply simple
estimators for k-mins sketches to bottom-k sketches. This,
however, does not fully utilize the information in bottom-
k sketches. In this paper we derive confidence bounds and
tighter estimators that fully exploit the information in bottom-
k sketches.

Beyond computation issues, the distinction between data
representations is also important for estimation. In partic-
ular, we can see why it is important to develop estimators
and confidence intervals for subpopulation weight queries for
both scenarios, when the total weight is or is not available.
With explicit representation, the summarization algorithm
can compute the total weight of the records without a signif-
icant processing or communication overhead. With implicit
representation, the total weight of each subset is not readily
available. For example, in our p2p application computing
the exact total weight of every neighborhood is much more
resource consuming than obtaining all sketches. Even with
explicit representation, the total weight of a union of subsets
can not be retrieved from their sketches and weights. There-
fore, total weight is not available when processing complex
queries involving multiple subsets (such as, in our exam-
ple, the total bandwidth to a destination through multiple
routers).

A dominant estimator for subpopulation weight to date
is based on priority sampling [22]. This estimator emerged
as a clever modification of threshold sampling [21] so that a
fixed size sample is produced. Estimators based on priority
sampling perform similarly to estimators based on threshold
sampling, and are better than estimators based on wsr.
Priority sampling was also shown to minimize the sum of
per-record variances [36]. We denote priority sampling by
pri, and a sketch which it produces by a pri sketch.

Priority sampling, however, was not compared to weighted
sampling without replacement, since unbiased estimators for
the latter were not known. It turns out that a pri sketch is a

bottom-k sketch for a different family of rank functions. Our
general framework for bottom-k sketches places both prior-
ity sampling and weighted sampling without replacement
within a unified framework. In particular, we generalize the
work of [22], and gives a simpler proof that their estimator
for pri sketches is unbiased.

Our evaluation of the estimators for ws sketches and pri

sketches show that their performance is similar when the
total weight is not provided. We make a strong case for ws

sketches by showing that 1) the confidence intervals which
we develop for ws sketches are much tighter (about half
the width) than confidence intervals known for pri sketches
[37], and by 2) developing estimators for ws sketches that
use the total weight whose variance is 1/3 of the variance of
pri sketches. Another advantage of ws sketches is that they
can often be computed more efficiently than pri sketches.

Motivated by the work we present here, a summarization
scheme which minimizes the sum of variances of sets of any
fixed size has been developed [9]. This scheme is applica-
ble for a summary of a single set and is not a bottom-k
sketch. In particular, it does not support coordinated and
all-distances sketches.

An orthogonal line of recent research is on algorithms
for sketching unaggregated data [24, 20], where each item
may be broken into many different pieces, each with its own
weight. The sum of the weights of the pieces is equal to the
weight of the item. As an example think of an IP flow broken
into its individual packets. The problem is to get a sketch of
the dataset for subpopulation queries without preaggregat-
ing the data which may require substantial resources. The
papers [8, 7] study several estimators for this setup, some
particularly appropriate for routers’ architectures. A more
recent work [10] applies the recent sampling technique of [9]
to unaggregated data.

Last, we mention a vast literature on survey sampling
that studies wsr (PPSWR Probability Proportional to Size
With Replacement), ws (PPSWOR - PPS Without Replace-
ment) and threshold sampling (related to IPPS - Inclusion
Probability Proportion to Size), see e.g. [32, 34]. Never-
theless, our estimators and confidence intervals are original.
Furthermore, we address important database issues such as
efficient computation of sketches, and coordinated sketches,
on massive datasets; efficient query processing; support for
general subpopulation selection queries; and more.

A poster with a very preliminary sketch of the ideas we
develop here has appeared in [13]. This paper (together with
the appendix) supersedes the technical report [17].

3. PRELIMINARIES
Let (I,w) be a weighted set. A rank assignment r maps

each item i to a random rank r(i). The ranks of items
are drawn independently using a family of distributions fw
(w ≥ 0), where the rank of an item with weight w(i) is drawn
from fw(i).

2 For a subset J of items and a rank assignment
r, we denote by ij the item of jth largest rank in J . We also
define r(J) = r(i1) to be the smallest rank in J according
to r.

A k-mins sketch of a set J is the vector

(r(1)(J), r(2)(J), . . . , r(k)(J))

2We assume that we use enough bits to represent the ranks
such that no two items obtain the same rank.



where r(1), . . . , r(k) are k independent rank assignments. For
some applications we store with r(`)(J), 1 ≤ ` ≤ k, ad-
ditional attributes of the corresponding item such as its
weight.

A bottom-k sketch is produced from a single rank assign-
ment r. It is the list of the k pairs (r(ij), w(ij)), 1 ≤ j ≤ k,
sorted by increasing rank together with r(ik+1). Depending
on the application we may store with the sketch additional
attributes of the items that attain the k smallest ranks. (If
|J | < k then the sketch contains only |J | pairs.) We often
abbreviate r(ik+1) to rk+1.

Bottom-k sketches must include the items’ weights but
can omit all rank values except rk+1. The reason is that us-
ing the weights of the items with k smallest ranks and rk+1,
we can redraw the rank value of an item with weight w
from the density function fw(x)/Fw(rk+1) for 0 ≤ x ≤ rk+1

and 0 elsewhere. Here Fw(x) is the cumulative distribution
function of fw . This is equivalent to redrawing a rank as-
signment from the subspace of the probability space of rank
assignments where rk+1 and the set of the k smallest items
is fixed. Redrawing ranks can also be viewed as redrawing a
particular ordered set of bottom-k items from this subspace.
Moreover, as we shall see in Section 6, if w(J) is provided
and we use ws sketches, we can redraw all rank values (there
is no need to retain rk+1). Redrawing all ranks is equivalent
to obtaining a rank assignment from the probability sub-
space where the subset of items with k smallest ranks is the
same. These properties are not only important for limiting
storage requirements for the sketch but as we shall see, also
facilitate the derivation of tighter estimators.

ws sketches. Clearly, the choice of which family of random
rank functions to use matters only when items are weighted.
Rank functions fw with some useful properties are exponen-
tial distributions with parameter w [6]. The density function
of this distribution is fw(x) = we−wx, and its cumulative
distribution function is Fw(x) = 1 − e−wx. Since the mini-
mum of independent exponentially distributed random vari-
ables is exponentially distributed with parameter equal to
the sum of the parameters of these distributions it follows
that r(J) for a subset J is exponentially distributed with pa-
rameter w(J) =

P

i∈J
w(i). Cohen [6] used this property to

obtain unbiased low-variance estimators for both the weight
and the inverse weight of a set J using a k-mins sketch of
J .3

With exponential ranks the item with the minimum rank
r(J) is a weighted random sample from J : The probability
that an item i ∈ J is the item of minimum rank is w(i)/w(J).
Therefore, a k-mins sketch of a subset J corresponds to a
weighted random sample of size k, drawn with replace-
ment from J . We call k-mins sketch using exponential ranks
a wsr sketch. On the other hand, a bottom-k sketch of a
subset J with exponential ranks corresponds to a weighted
k-sample drawn without replacement from J [15]. We
call such a sketch a ws sketch.

The following property of exponentially-distributed ranks
is a consequence of the memoryless nature of the exponential
distribution.

Lemma 3.1. [15] Consider a probability subspace of rank

3Estimators for the inverse-weight are useful for obtaining
unbiased estimates for quantities where the weight appears
in the denominator such as the weight ratio of two different
subsets.

assignments over J where the k items of smallest ranks are
i1, . . . , ik in increasing rank order. The rank differences
r1(J), r2(J) − r1(J), . . . , rk+1(J) − rk(J) are independent
random variables, where rj(J)−rj−1(J) (j = 1, . . . , k+1) is

exponentially distributed with parameter w(J)−Pj−1
`=1 w(i`).

(we formally define r0(J) ≡ 0.)

ws sketches can often be computed more efficiently than
other bottom-k sketches. Computing a bottom-k sketch on
unaggregated data (each item appears in multiple “pieces”)
generally requires pre-aggregating the data, so that we have
a list of all items and their weight, which is a costly opera-
tion when the data is distributed or in external memory. A
key property of exponential ranks is that we can obtain a
rank value for an item by computing independently a rank
value for each piece, based on the weight of the piece. The
rank value of the item is the minimum rank value of its
pieces. The ws sketch can therefore be computed in two
O(k) communication rounds over distributed data or in two
linear passes using O(k) memory: The first pass identifies
the k items with smallest rank values. The second pass is
used to add up the weights of the pieces of each of these k
items.

Computing a Bottom-k sketch requires processing of each
item. When items are partitioned such that we have the
weight of each part, ws sketches can be computed while
processing only a fraction of the items. A key property is
that the minimum rank value over a set of items depends
only on the sum of the weights of the items. Using this
property, we can quickly determine which parts contribute
to the sketch and eliminate chunks of items that belong to
other parts.

The same property is also useful when sketches are com-
puted online over a stream [23]. Bottom-k sketches are pro-
duced using a priority queue that maintains the k + 1 items
with smallest ranks. We draw a rank for each item and up-
date the queue if this rank is smaller than the largest rank in
the queue. With ws sketches, we can simply draw directly
from a distribution the accumulated weight of items that
can be “skipped” before we obtain an item with a smaller
rank value than the largest rank in the queue. The stream
algorithm simply adds up the weight of items until it reaches
one that is incorporated in the sketch.

pri sketches. With priority ranks [22, 1] the rank value of
an item with weight w is selected uniformly at random from
[0, 1/w]. This is equivalent to choosing a rank value r/w,
where r ∈ U [0, 1], the uniform distribution on the interval
[0, 1]. It is well known that if r ∈ U [0, 1] then − ln(r)/w is
an exponential random variable with parameter w. There-
fore, in contrast with priority ranks, exponential ranks cor-
respond to using rank values − ln r/w where r ∈ U [0, 1].

pri sketches are of interest because one can derive from
them an estimator that (nearly) minimizes the sum of per-
item variances:

P

i∈I
var[a(i)] [36]. More precisely, Szegedy

showed that the sum of per-item variances using pri sketches
of size k is no larger than the smallest sum of per-item vari-
ances attainable by an estimator that uses sketches with
average size k − 1.4

Review of weight estimators for wsr sketches. Recall
that for a subset J , the rank values in the k-mins sketch
4Szegedy’s proof applies only to estimators based on ad-
justed weight assignments.



r1(J), . . . , rk(J) are k independent samples from an expo-
nential distribution with parameter w(J). The quantity

k−1
P

k
h=1

rh(J)
is an unbiased estimator of w(J). The standard

deviation of this estimator is equal to w(J)/
√

k − 2 and the

average relative error is approximately
p

2/(π(k − 2)) [6].

The quantity k
P

k
h=1

rh(J)
is the maximum likelihood estima-

tor of w(J). This estimator is a factor of k/(k − 1) larger
than the unbiased estimator. Hence, it is obviously biased,
and the bias is equal to w(J)/(k − 1). Since the standard

deviation is about (1/
√

k)w(J), the bias is not significant

when k � 1. The quantity
Pk

h=1 rh(J)

k
is an unbiased esti-

mator of the inverse weight 1/w(J). The standard deviation

of this estimate is 1/(
√

kw(J)).

4. MAXIMUM LIKELIHOOD ESTIMATORS
We apply the Maximum Likelihood (ML) principle to de-

rive ws ML estimators. These estimators are applicable to
ws sketches as our derivation exploits special properties of
the exponential distribution used to produce these sketches.
We show the derivation of an estimator for the total weight
of the sketched set. Using the same technique in a slightly
more subtle way we obtain similar estimators for the weight
of a subpopulation when we do not know the total weight
and when we do know the total weight. These derivations
can be found in Appendix A.

Consider a set I and its bottom-k sketch s. Recall that
i1, i2, . . . , ik are the items in s ordered by increasing ranks.
(We assume that |k| < |I| as otherwise w(I) is just the sum
of the weights of the items in the sketch.)

Consider the rank differences, r(i1), r(i2)−r(i1), . . . , r(ik+1)−
r(ik). From Lemma 3.1, they are independent exponentially
distributed random variables in the appropriate subspace.
The joint probability density function of this set of differ-
ences is therefore the product of the density functions

w(I) exp(−w(I)r(i1))(w(I)− s1) exp(−(w(I)− s1)(r(i2)− r(i1))) · · ·

where s` =
P`

j=1 w(ij). Think about this probability den-

sity as a function of w(I). The maximum likelihood estimate
for w(I) is the value that maximizes this function. To find
the maximum, take the natural logarithm (for simplifica-
tion) of the expression and look at the value which makes
the derivative zero. We obtain that the maximum likelihood
estimator w̃(I) is the solution of the equation

k
X

i=0

1

w̃(I) − si

= r(ik+1) . (1)

The left hand side is a monotone function, and the equa-
tion can be solved by a binary search on the range [sk +
1/r(ik+1), sk + (k + 1)/r(ik+1)].

5. ADJUSTED WEIGHTS
In this section we introduce variants of the Horvitz-Thompson

(HT) estimator [25]. Proofs can be found in Appendix B.
The idea here is to assign a positive adjusted weight a(i)

to each item in the sample, such that if we also set a(i) = 0
when i is not sampled then E[a(i)] = w(i). (The expectation
is over the draw of the sample. Once the sample is deter-
mined the assignment of a(i) is usually deterministic.) We
call a sample together with the adjusted weights an adjusted
weight summary (AW-summary) of the weighted set (I, w).

An AW-summarization algorithm is a probabilistic algo-
rithm that inputs a weighted set (I,w) and returns an AW-
summary of (I,w). An AW-summarization algorithm for
(I, w) provides unbiased estimators for the weight of I and
for the weight of subsets of I since by linearity of expec-
tation, for any H ⊆ I, the sum

P

i∈H
a(i) is an unbiased

estimator of w(H). Notice that if there is another weight
function h defined over I then

P

i∈H h(i)a(i)/w(i) is an un-
biased estimator of h(J) for any J ⊆ I.

Let Ω be the probability space of rank assignments over
I. Each r ∈ Ω has a sketch s(r) associated with it. Sup-
pose that given s(r) we can compute the probability Pr{i ∈
s(r) | r ∈ Ω} for all i ∈ s(r) (since I is a finite set, these
probabilities are strictly positive for all i ∈ s(r)). Then
we can make s(r) into an AW-summary using the Horvitz-
Thompson (HT) estimator [25] which assigns to each i ∈
s(r) the adjusted weight

a(i) =
w(i)

Pr{i ∈ s(r) | r ∈ Ω} .

It is well known and easy to see that these adjusted weights
are unbiased and have minimal variance for each item for
the particular distribution over the sketches that is derived
from Ω.

HT on a partitioned sample space (HTp) is a method
to derive adjusted weights when we cannot determine Pr{i ∈
s(r) | s(r) ∈ Ω} from the sketch s(r) alone. For example if
s(r) is a bottom-k sketch, then the probability Pr{i ∈ s(r) |
r ∈ Ω} depends on all the weights w(i) for i ∈ I.

For each item i we partition Ω into subsets P i
1 , P i

2 . . .. This
partition satisfies the following two requirements: (1) Given
a sketch s(r), we can determine the set P i

j containing r,

and (2) For every set P i
j we can compute the conditional

probability pi
j = Pr{i ∈ s(r) | r ∈ P i

j }.
For each i ∈ s(r), we identify the set P i

j containing r and

use the adjusted weight a(i) = w(i)/pi
j (which is the HT

adjusted weight in P i
j ).5 The expected adjusted weight of

each item i within each subspace of the partition is w(i) and
therefore its expected adjusted weight over Ω is w(i).

Rank Conditioning (RC) adjusted weights for bottom-
k sketches are HTp adjusted weights where the partition
P i

1 , . . . , P i
` which we use is based on rank conditioning. For

each possible rank value r we have a set P i
r containing all

rank assignments in which the kth rank assigned to an item
other than i is r. (If i ∈ s(r) then this is the (k + 1)st
smallest rank and otherwise its the kth smallest rank.)

The probability that i is included in a bottom-k sketch
given that the rank assignment is from P i

r is the probability
that its rank value is smaller than r. For ws sketches, this
probability is equal to 1 − exp(−w(i)r). Assume s(r) con-
tains i1, . . . , ik and that the (k + 1)st smallest rank is rk+1.

Then for item ij , the rank assignment belongs to P
ij
rk+1 ,

and therefore the adjusted weight of ij is
w(ij )

1−exp(−w(ij )rk+1)
.

The pri RC adjusted weight for an item ij (obtained by a
tailored derivation in [1]), is max{w(ij), 1/rk+1}.

Variance of RC adjusted weights
5In fact all we need is the probability pi

j . In some cases

we can compute it from some parameters of P i
j , without

identifying P i
j precisely.



Lemma 5.1. Consider RC adjusted weights and two items
i, j. Then, cov[a(i), a(j)] = 0 (The covariance of the ad-
justed weight of i and the adjusted weight of j is zero.)

As mentioned in the introduction from simple properties of
the variance of a sum of random variables we have that

var[a(J)] =
X

i∈J

var[a(i)] +
X

i6=j,i,j∈J

cov[a(i), a(j)] .

This implies for RC adjusted weights the following corollary
of Lemma 5.1.

Corollary 5.2. For a subset J ⊂ I,

var[a(J)] =
X

j∈J

var[a(j)] .

Therefore, with RC adjusted weights, the variance of the
weight estimate of a subpopulation is equal to the sum of
the per-item variances, just like when items are selected in-
dependently. This Corollary, combined with Szegedy’s re-
sult [36], shows that when we have a choice of a family of
rank functions, pri weights are the best rank functions to
use when using RC adjusted weights.

Selecting a partition. The variance of the adjusted weight
a(i) obtained using HTp depends on the particular partition
in the following way.

Lemma 5.3. Consider two partitions of the sample space,
such that one partition is a refinement of the other, and
the AW-summaries obtained by applying HTp using these
partitions. For each i ∈ I, the variance of a(i) using the
coarser partition is at most that of the finer partition.

It follows from Lemma 5.3 that when applying HTp, it is
desirable to use the coarsest partition for which we can com-
pute the probability pi

j from the information in the sketch.
In particular a partition that includes a single component
minimizes the variance of a(i) (This is the HT estimator).
The RC partition yields the same adjusted weights as con-
ditioning on the rank values of all items in I \ i, so it is in
a sense also the finest partition we can work with. It turns
out that when the total weight w(I) is available we can use
a coarser partition.

6. USING THE TOTAL WEIGHT
When the total weight is available we can use HTp esti-

mators defined using a coarser partition of the sample space
than the one used by the RC estimator. The subset con-
ditioning estimator (SC), which we present in this section,
partitions the space of rank assignment by the set of the
k − 1 items of smallest rank among all items other than
i, in order to compute the adjusted weight of i. That is,
we will show that knowing the total weight, it is possible
to compute the probability that i is included in the sketch
in the subspace of rank assignments where the set of k − 1
smallest-ranked items other than i is fixed. A related esti-
mator which also condition on the order of the ranks of these
k − 1 smallest-ranked items is called the prefix conditioning
estimator and is presented in Appendix C. By Lemma 5.3
subset conditioning is better than prefix conditioning and
rank conditioning in terms of per-item variances. A side
benefit of these estimators is that they do not need rk+1

and thereby require one less sample.

The SC estimator has the following two important prop-
erties that RC does not have. The adjusted weights of dif-
ferent items have negative covariances, and var[a(I)] = 0.
Two alternative ways to say this are that the sum of the
adjusted weights equals the total weight of the set and the
sum of the covariances of different items is “as negative as
possible” and is equal to the negative of the sum of the vari-
ances of the individual items. These properties imply that
the variance of the estimator on a subset is smaller than the
sum of the variances of the individual items in the subset.

We now define the SC estimator precisely. In Appendix D
we prove that it indeed satisfies the properties mentioned
above. For a set Y of items and ` ≥ 0, we define

f(Y, `) =

Z ∞

x=0

` exp(−`x)
Y

j∈Y

(1 − exp(−w(j)x))dx . (2)

This is the probability that a random rank assignment with
exponential ranks for the items in Y , and for the items in a
set X such that w(X) = `, assigns the |Y | smallest ranks to
the items in Y and the (|Y | + 1)st smallest rank to an item
from X. For exponential ranks, this probability depends
only on w(X), and does not depend on how the weight of
X is divided between the items. This is a critical property
that allows us to compute adjusted weights with subset con-
ditioning specifically for ws sketches.

Let s be the ws sketch. Recall that for an item i, we use
the subspace with all rank assignments in which among the
items in I \{i}, the items in s\{i} have the (k−1) smallest
ranks. The probability, conditioned on this subspace, that

item i is contained in the sketch is f(s,w(I\s))
f(s\{i},w(I\s))

, and so the

adjusted weight assigned to i is

a(i) = w(i)
f(s \ {i}, w(I \ s))

f(s, w(I \ s))
. (3)

Note that we easily compute w(I \ s) from the total weight
and the weights of the items in s.

6.1 Computing SC adjusted weights
SC adjusted weights can be computed by numerical in-

tegration using Eq. (3). We propose an alternative method
based on a Markov chain that is faster and easier to imple-
ment. The method converges to the SC adjusted weights as
the number of steps grows. It can be used with any fixed
number of steps and provides unbiased adjusted weights.

The key idea is to use the fact (which follows from the
proof of Lemma 5.3) that the mean of the RC estimator
over all rank assignments in a partition of the SC estima-
tor is equal to the SC estimator. Let P be the set of the
items in the sketch. Let ΩP be the subspace of all rank as-
signments producing a sketch with items P . The subspace
ΩP is further partitioned according to the rank-order π of
the items in P . Let ΩP,π be one such subspace of ΩP that
corresponds to a permutation π of P . The subspace ΩP,π is
further partitioned according to the k + 1 smallest rank.

We approximate SC by drawing a subspace ΩP,π with
probability pπ = |ΩP,π|/|ΩP |; then drawing the k + 1 small-
est rank according to the distribution of rk+1 in ΩP,π; and
computing the RC adjusted weight of items in P using rk+1.
This process is repeated multiple times and we use the av-
erage as an unbiased estimate on the mean, which is the SC

estimator.
Consider a subspace ΩP,π, and let i1, i2, . . . , ik be the

items ordered as in π. By Lemma 3.1 the distribution of



rk+1 in ΩP,π is the sum of k independent exponential ran-
dom variables with parameters w(I), w(I)−w(i1),. . . ,w(I)−
Pk

h=1 w(ih). So the adjusted weight of ij , j = 1, . . . , k is
a(ij) = E[w(ij)/(1 − exp(−w(ij)rk+1))] where the expecta-
tion is over this distribution of rk+1.

6

Instead of computing the expectation, we average the RC

adjusted weights w(ij)/(1− exp(−w(ij)rk+1)) over multiple
draws of rk+1. This average is clearly an unbiased estimator
of w(ij) and its variance decreases with the number of draws.
Each repetition can be implemented in O(k) time (drawing
and summing k random variables.).

To draw the subspace ΩP,π we define a Markov chain over
permutations of P . Starting with a permutation π defined
by the original ranks, we continue to a permutation π′ by
applying the following process. We draw rk+1 as described
above from the distribution of rk+1 in ΩP,π. We then redraw
rank values for the items of P using their weights and rk+1

as described in Section 3. The permutation π′ is obtained
by reordering P according to the new rank values. This
Markov chain has the following property.

Lemma 6.1. Let P be a (unordered) set of k items. Let
pπ be the conditional probability that in a random rank as-
signment whose prefix consists of items of P , the order of
these items in the prefix is as in π. Then pπ is the stationary
distribution of the Markov chain described above.

Proof. Suppose we draw a permutation π of the items
in P with probability pπ and then draw rk+1 as described
above. Then this is equivalent to drawing a random rank
assignment whose prefix consists of items in P and taking
rk+1 of this assignment.

Similarly assume we draw rk+1 as we just described, draw
ranks for items in P , and order P by these ranks. Then this
is equivalent to drawing a permutation π with probability
pπ.

Our implementation is controlled by two parameters: inperm

and permnum. inperm is the number of times the rank
value rk+1 is redrawn for a permutation π (at each step of
the Markov chain). permnum is the number of steps of the
Markov chain (number of permutations in the sequence).

We start with the permutation (i1, . . . , ik) obtained in the
ws sketch. We apply this Markov chain to obtain a se-
quence of permnum permutations of {i1, . . . , ik}. For each
permutation πj , 1 ≤ j ≤ permnum, we draw rk+1 from
Pπj

inperm times as described above. For each such draw
we compute the RC adjusted weights for all items. The
final adjusted weight is the average of the RC adjusted
weights assigned to the item in the permnum ∗ inperm ap-
plications of the RC method. The total running time is
O(permnum · k log k + inperm · k).

An important property of this process is that if we ap-
ply it for a fixed number of steps, and average over a fixed

6The mean of RC adjusted weights over ΩP,π are correct
adjusted weights that have smaller variance than RC. Note
that this is not an instance of HTp. Also note that while
similar looking, this estimator is weaker than prefix condi-
tioning: Rank assignments with the same prefix of items
from I \ i, but where the item i appears in different po-
sitions in the k-prefix, can have different adjusted weights
with this assignment, whereas they have the same adjusted
weight with prefix conditioning. Thereby this estimator has
larger variance of the adjusted weight of each item i than
prefix conditioning.

number of draws of rk+1 within each step, we still obtain
unbiased estimators. Our experimental section shows that
these estimators perform very well.

7. CONFIDENCE BOUNDS
We provide a general derivation of confidence bounds for

bottom-k sketches, specialize it to ws sketches, and develop
efficient computational techniques.

We derive bounds for subpopulation weight when the total
weight is not known. These bounds use conditioning on the
order of the items in the sketch. In Appendix E we use
similar techniques to derive tighter confidence intervals for
two other variants of the problem: the (special case of the)
total weight (Appendix E.1) and subpopulations when the
total weight is known (Appendix E.3). Our bounds on the
total weight do not condition on the order of the items in the
sketch. This conditioning weakens the bounds but simplifies
the derivation and the computation for ws sketches.

A weighted list (Z, π) is a weighted set Z linearly ordered
according to a permutation π. The linear order will be often
derived from a rank assignment r to the elements in Z. In
such case we may also denote a weighted list by (Z, r).

The concatenation (Z1, π1)⊕(Z2, π2) of two weighted lists
(Z1, π1) and (Z2, π2) is a weighted list of Z1 ∪Z2 where the
elements in Z1 are ordered according to π1, the elements in
Z2 are ordered according to π2, and all the elements of Z1

precede all the elements of Z2. We define Ω((Z, π)) to be
the probability subspace of rank assignments over Z such
that the rank order of the items is π.

Let r be a rank assignment, s be the corresponding sketch,
and ` be the weighted list ` = (J ∩ s, r). Let W (`, rk+1, δ)
be the set of all weighted lists h = (H, π) such that

pr{r′(H) ≥ rk+1 | r′ ∈ Ω(` ⊕ h)} ≥ δ .

Verbally, W (`, rk+1, δ) consists of all weighted lists h =
(H,π) that we can concatenate to ` such that in at least
δ fraction of the rank assignments to (J ∩ s) ∪ H that re-
spects the order of ` ⊕ h, the smallest rank in H is at least
rk+1.

Let w(`, rk+1, δ) = sup{w(H) | (H,π) ∈ W (`, rk+1, δ)}.
(If W (`, rk+1, δ) = ∅, then w(`, rk+1, δ) = 0.)

Analogously, let W (`, rk, δ) be the set of all weighted lists
h = (H,π) such that

pr{r′(J ∩ s) ≤ rk | r′ ∈ Ω(` ⊕ h)} ≥ δ .

Let w(`, rk, δ) = inf{w(H) | (H, π) ∈ W (`, rk, δ).
(If W (`, rk, δ) = ∅, then w(`, rk, δ) = +∞). We prove the
following (Appendix E.2)

Lemma 7.1. Let r be a rank assignment, s be the corre-
sponding sketch, and ` be the weighted list ` = (J ∩ s, w, r).
Then w(J ∩ s) + w(`, rk+1, δ) is a (1 − δ)-confidence up-
per bound on w(J) and w(J ∩ s) + w(`, rk, δ) is a (1 − δ)-
confidence lower bound on w(J).

7.1 Confidence bounds for ws sketches
The derivation of Lemma 7.1 incorporates “worst case”

assumptions on the weight distribution of “unseen” items
(items that are not included in the sketch). ws sketches
have the unique property that the distribution of the ith
largest rank in a weighted set, conditioned on either the
set or the list of the i − 1 items of smallest rank values,
depends only on the total weight of the set (and not on



the particular partition of the “unseen” weight into items).
This property makes the bounds efficient in the respective
probability subspaces (the bounds correspond to the actual
quantiles of the estimator).

We provide some properties and notation that simplify
the presentation of bounds derived with conditioning on the
order. Consider a weighted set (I, w) and a subspace of
rank assignments where the ordered set of the h items of
smallest ranks is i1, i2, . . . , ih. Let sj =

Pj

`=1 w(i`). For
convenience we define s0 ≡ 0 and r0 = 0. By Lemma 3.1,
for j = 0, . . . , h, the rank difference r(ij+1) − r(ij) is an
exponential r.v. with parameter w(I) − sj , and these rank
differences are independent. Therefore for j ∈ {0, . . . , h},
the distribution of r(ij) (also the sum of the first i rank
differences) is a sum of exponential random variables.

For 0 ≤ x0 ≤ · · · ≤ xh < t, we use the notation v(t, x0, . . . , xh)
for the random variable that is the sum of h + 1 indepen-
dent exponential random variables with parameters t − xj

(j = 0, . . . , h). With this notation the distribution of r(ij)
is v(w(I), s0, . . . , sj−1). As we had seen in Lemma 7.1,
our confidence bounds are computed by finding quantiles
of these distributions, that is, solving equations of the form

pr{v(x, s0, . . . , sh) ≤ τ} = δ . (4)

From linearity of expectation,

E[v(t, x0, . . . , xh)] =
h

X

j=0

1/(t − xj) .

From independence, the variance is the sum of variances of
the exponential random variables and is

var[v(t, x0, . . . , xh)] =

h
X

j=0

1/(t − xj)
2 .

Bounds for the total weight w(I). We apply a derivation in
the Appendix (Lemma E.1). Note that pr{v(x, s0, . . . , sk) ≤
rk+1} is the probability that the k+1 largest rank is ≤ rk+1

given that the “unseen” weight is x − sk. This probability
increases with x. If for x = sk this probability is already
≥ 1 − δ it means that if the total weight is larger than sk

the event of seeing k + 1 largest rank ≥ rk+1 is already ≤ δ.
Therefore we can take x = sk as a 1 − δ confidence upper
bound. Otherwise, we take the solution of the equation

pr{v(x, s0, . . . , sk) ≤ rk+1} = 1 − δ .

to be our 1−δ confidence upper bound. A larger total weight
would mean that obtaining k +1 smallest rank ≥ rk+1 is an
event which is less than δ likely to happen.

Similarly, for a 1 − δ confidence lower bound we take the
solution of

pr{v(x, s0, . . . , sk) ≤ rk+1} = δ .

Bounds for subpopulation weight (with unknown w(I)).
We specialize Lemma 7.1 for ws sketches. Let J be a sub-
population. For a rank assignment, let s be the correspond-
ing sketch and let sh (1 ≤ h ≤ |J ∩ s|) be the sum of the
weights of the h items of smallest rank values from J (we de-
fine s0 ≡ 0). Lemma 7.1 implies that the (1 − δ)-confidence
upper bound on w(J) is the solution of the equation

pr{v(x, s0, . . . , s|J∩s|) ≤ rk+1} = 1 − δ

(and is s|J∩s| if there is no solution x > s|J∩s|.) The (1−δ)-
confidence lower bound is 0 if |J ∩ s| = 0. Otherwise, let
x > s|J∩s|−1 be the solution of

pr{v(x, s0, . . . , s|J∩s|−1) ≤ rk} = δ .

The lower bound is max{s|J∩s|, x}.
We propose two methods of solving these equations: (i)

applying the normal approximation to the respective sum of
exponentials distribution or (ii) the quantile method which
we developed.

Normal approximation. We apply the normal approxi-
mation to the quantiles of a sum of exponentials distribu-
tion. For δ � 0.5, let α be the Z-value that corresponds
to confidence level 1 − δ. The approximate δ-quantile of
v(x, s0, . . . , sh) is E[v(x, s0, . . . , sh)]−α

p

var[v(x, s0, . . . , sh)]
and the approximate (1− δ)-quantile is E[v(x, s0, . . . , sh)] +

α
p

var[v(x, s0, . . . , sh)].
To approximately solve pr{v(x, s0, . . . , sh) ≤ τ} = δ (x

such that τ is the δ-quantile of v(x, s0, . . . , sh)), we solve
the equation

E[v(x, s0, . . . , sh)] − α
p

var[v(x, s0, . . . , sh)] = τ .

To approximately solving pr{v(x, s0, . . . , sh) ≤ τ} = 1 − δ,
we solve

E[v(x, s0, . . . , sh)] + α
p

var[v(x, s0, . . . , sh)] = τ .

We solve these equations (to the desired approximation
level) by searching over values of x > sh using standard

numerical methods. The function E[v(x)] + α
p

var[v(x)]
is monotonic decreasing in the range x > sh. The function
E[v(x)]−α

p

var[v(x)] is decreasing or bitonic (first increas-
ing then decreasing) depending on the value of α.

The quantile method. Let D(x) be a parametric family of
probability distributions defined over the same domain, such
that the parameter x varies continuously in some interval.

Let τ be a value in the union of the domains of {D(x)}
such that the probability pr{y � τ | y ∈ D(x)} is increasing
with x. So the value of x which solves the equation pr{y �
τ | y ∈ D(x)} = δ (Qδ(D

(x)) = τ ) is unique.
We assume the following two “black box” ingredients. The

first ingredient is a tool for drawing a monotone parametric
sample. A monotone parametric sample is a function s such
that for every x, s(x) is a sample from D(x), and if x ≥ y
then s(x) � s(y). We say that monotone parametric samples
s1 and s2 are independent if for every x, s1(x) and s2(x) are

independent draws from D(x).
The second ingredient is a solver of equations of the form

s(x) = τ for a parametric sample s(x). We assume that the
parametric sampling process is such that there is always a
solution.

We define a distribution D
(τ)

such that a sample from

D
(τ)

is obtained by drawing a monotone parametric sample
s(x) and returning the solution of s(x) = τ . (parametric

samples of different samples from D
(τ)

are independent.)
The two black box ingredients allow us to draw samples from

D
(τ)

. Our interest in D
(τ)

is due to the following lemma.

Lemma 7.2. For any δ, the solution of Qδ(D
(x)) = τ is

the δ-quantile of D
(τ)

.

Proof. Consider the distribution D(z) such that Qδ(D
(z)) =

τ . Consider a parametric sample s. From the monotonicity



of s we have that the solution to s(x) = τ is ≥ z if and
only if s(z) ≥ τ . Similarly we have that the solution to
s(x) = τ is ≤ z if and only if s(z) ≤ τ . Since s1(z), s2(z)
are independent the lemma follows.

The quantile method for approximately solving equations
of the form pr{y � τ | y ∈ D(x)} = δ draws multiple

samples from D
(τ)

and returns the δ-quantile of the set of
samples. We apply the quantile method to approximately
solve equations of the form of Eq. (4). The family of dis-

tributions that we consider is D(x) = v(x, s0, . . . , sh). This
family has the monotonicity property with respect to any
τ > 0. A parametric sample s(x) from v(x, s0, . . . , sh) is
obtained by drawing h + 1 independent random variables
v0, . . . , vh from U [0, 1]. The parametric sample is s(x) =
Ph

j=0 − ln vh/(x − sj) and is a monotone decreasing func-

tion of x. A sample from D
(τ)

is then the solution of the
equation

Ph

j=0 − ln vh/(x−sj) = τ . Since s(x) is monotone,
the solution can be found using standard search.

7.2 Confidence bounds for wsr sketches
The wsr estimator on the total weight is the average of

the k minimum ranks which are independent exponential
random variables with (the same) parameter w(I). (This
is a Gamma distribution.) We used the normal approxi-
mation to this distribution in order to compute wsr confi-
dence bounds. The expectation of the sum is k/w(I) and the
variance is k/w(I)2. The confidence bounds are the δ and
1 − δ quantiles of r. Let α be the Z-value that corresponds
to confidence level 1 − δ in the standard normal distribu-
tion. By applying the normal approximation, the approxi-
mate upper bound is the solution of k/w(I)+α

p

k/w(I)2 =
kr, and the approximate lower bound is the solution of
k/w(I) − α

p

k/w(I)2 = kr. Therefore, the approximate

bounds are (1 ± α/
√

k)/r.

7.3 Confidence bounds for priority sketches
We review Thorup’s confidence bounds for pri sketches [37],

which we implemented and included in our evaluation. We
denote pτ (i) = pr{r(i) < τ}. The number of items in
J ∩ s with pτ (i) < 1 is used to bound

P

i∈J|pτ (i)<1 pτ (i)

(the expectation of the sum of independent Poisson tri-
als). These bounds are then used to obtain bounds on
the weight

P

i∈J|pτ (i)<1 w(i), exploiting the correspondence

(specific for pri sketches) between
P

i∈J|pτ (i)<1 pτ (i) and
P

i∈J|pτ (i)<1 w(i): For pri sketches, pτ (i) = min{1, w(i)τ}.
If w(i)τ ≥ 1 then pτ (i) = 1 (item is included in the sketch)
and if w(i)τ < 1 then pτ (i) = w(i)τ . Therefore, pτ (i) < 1 if
and only if pτ (i) = w(i)τ and

X

i∈J|pτ (i)<1

w(i) = τ−1
X

i∈J|pτ (i)<1

pτ (i) .

For n′ ≥ 0, define nδ(n
′) (respectively, nδ(n

′)) to be the
infimum (respectively, supremum) over all µ, such that for
all sets of independent Poisson trials with sum of expec-
tations µ, the sum is less than δ likely to be at most n′

(respectively, at least n′). If n′ = |{i ∈ J ∩ s|w(i)τ < 1}|,
then nδ(n

′) and nδ(n
′) are (1 − δ)-confidence bounds on

P

i∈J∩s|w(i)τ<1 pτ (i). Since

w(J) =
X

i∈J∩s|w(i)τ≥1

w(i) + τ−1
X

i∈J∩s|w(i)τ<1

pτ (i) ,

we obtain (1−δ)-confidence upper and lower bounds on w(J)
by substituting nδ(J) and nδ(J) for

P

i∈J∩s|w(i)τ<1 pτ (i) in

this formula, respectively.
Chernoff bounds provide an upper bound on nδ(n

′) of

− ln δ if n′ = 0 and the solution of exp(n′ − x)(x/n′)n′

= δ
otherwise; and a lower bound on nδ(n

′) ≤ n′ that is the

solution of exp(n′ − x)(x/n′)n′

= δ and 0 if there is no
solution.

Thorup’s approach is not effective for ws sketches: a
bound on the sum

P

i∈J
pτ (i) does not provide a corre-

sponding good bound on the sum of the weights of items
in J . In particular, w(i) can be arbitrarily large when p(i)
approaches 1, which precludes good upper bounds.

In contrast to our ws bounds, Thorup’s pri bounds are in-
efficient. One source of slack is the use of Chernoff bounds
rather than exactly computing nδ(n

′) and nδ(n
′). Other

sources of slack are due to the fact that the actual distri-
bution of the sum of independent Poisson trials depends on
how they are distributed. In particular, variance is higher
when there are more items with smaller p(i)’s. An inherent
source of slack is that the derivation must make “worst case”
assumptions on the distribution of “unseen” items, whereas
the actual variance of the estimator is lower when the weight
outside the sketch is attributed to a smaller number of larger
items. Another source of slack is that the derivation does
not utilize the (available) weights of the items in J ∩ s with
w(i)τ < 1 and extends the worst-case assumptions to the
weight attributed to these items. This discussion suggests
that it might be possible to tighten these pri bounds. Al-
ternative pri bounds can also be derived by specializing our
general derivation to pri sketches. The derivation and eval-
uation of these bounds is outside the scope of this paper.

8. EXPERIMENTAL EVALUATION

Data sets. Our evaluation included synthetic distributions
that allowed us to understand performance dependence on
the skew (Pareto power parameter) and real-world data sets
that provided natural selection predicates for subpopula-
tions:

• Our synthetic data sets were obtained by independently
drawing n ∈ {1×103, 2×104} items from each of uniform or
Pareto distributions with power parameters α ∈ {1, 1.2, 2}.
We select subpopulations (a partition into subpopulation),
using a group size parameter g. Items are ordered by their
weights and sequentially partitioned into n/g groups (sub-
populations) each consisting of g items. This partition cor-
responds to subpopulations of similar-size items.

• Netflix Prize [30] data set contains approximately 1×108

dated ratings of 17,770 movies by users. Each movie cor-
responds to a record with weight equal to the number of
ratings. We used a natural grouping of movies into subpop-
ulations according to ranges of movie release years (same
year, 2 years, 5 years, and decades).

• Two IP packet traces of 4.2×109 packets (campus) and
4.7 × 109 packets (peering). Items corresponded to desti-
nation IP address and application (determined by port and
protocol) pairs (7593 and 41217 distinct items). The weight
of each item was the total bytes of associated packets. We
used natural partition into subpopulations, based on the ap-
plication type (such as web, mail, p2p, and more).



Total weight. We compare estimators and confidence bounds
on the total weight w(I).

Estimators. We evaluate the maximum likelihood ws

estimator (ws ML) (Section 4), the rank conditioning ws

estimator (ws RC) (Section 5), the rank conditioning pri

estimator (pri RC) [1](Section 5) , and the wsr estimator [6]
(Section 3).

Figure 1 (left) shows the (absolute value) of the relative
error, averaged over 1000 runs, as a function of k. We
can see that all three bottom-k based estimators outper-
form the wsr estimator, demonstrating the advantage of the
added information when sampling “without replacement”
over sampling “with replacement” (see also [15]). The ad-
vantage of these estimators grows with the skew. The qual-
ity of the estimate is similar among the bottom-k estimators
(ws ML, ws RC, and pri RC). The maximum likelihood
estimator (ws ML), which is biased, has worse performance
for very small values of k where the bias is more significant.
pri RC has a slight advantage especially if the distribution
is more skewed. This is because, in this setting, with un-
known w(I), pri RC is a nearly optimal adjusted-weight
based estimator [36].

Confidence bounds. We compare the Chernoff based pri

confidence bounds from [37] (Section 7.3) and the ws (Sec-
tion 7.1) and wsr (Section 7.2) confidence bounds we de-
rived. We apply the normal approximation with the stricter
(but easier to compute) conditioning on the order for the
ws confidence bounds and the normal approximation for
the wsr confidence bounds (see Section 7.1). The 95%-
confidence upper and lower bounds and the 90% confidence
interval (the width, which is the difference between the upper
and lower bounds), averaged over 1000 runs, are shown in
Figure 1 (middle and right). We can see that the ws confi-
dence bounds are tighter, and often significantly so, than the
pri confidence bounds. In fact pri confidence bounds were
worse than the wsr-based bounds on less-skewed distribu-
tions (including the uniform distributions). This perhaps
surprising behavior is explained by the efficiency of our ws

and wsr bounds and the inefficiency of the bounds in [37]
(see discussion in Section 7.3).

The normal approximation provided fairly accurate confi-
dence bounds for the total weight. The ws and wsr bounds
were evidently more efficient, with actual errors closely cor-
responding to the desired confidence level. E.g., for the 90%
confidence interval on all Pareto distributions, across val-
ues of k, the highest error rate was 12%. The true weight
was within the ws confidence bounds on average in 90.5%,
90.2%, 90% of the time for the different values of α. The
corresponding in-bounds rates for wsr were 90.6%, 90.3%,
and 90.0%, and for pri 99.2%, 99.1%, and 98.9%. (The high
in-bounds rate for the pri bounds reflects the inefficiency of
these bounds).

Subpopulation weight. Estimators. We implemented
an approximate version of ws SC using the Markov chain
and averaging method (Section 6.1). We showed that this
approximation provides unbiased estimators that are better
than the ws RC estimator (better per-item variances and
negative covariances for different items), but attains zero
sum of covariances only at the limit. Here we quantify the
benefit of ws SC over ws RC and its dependence on the
size of the subpopulation. We also evaluate the quality of
approximate ws SC as a function of the parameters inperm,

and permnum, and compare ws SC to the pri RC estima-
tor.

It is always possible to design AW-summaries that artifi-
cially favor a particular subpopulation. Therefore, to obtain
a meaningful comparison, we consider all subpopulations de-
fined by a partition of the items. For such a partition, we
compute the sum, over subpopulations, of the square error
of the estimator (square of the difference between the ad-
justed weight and the true weight of the subpopulation),
averaged over multiple runs. This sum corresponds to the
sum of the variances of the estimator over the subpopula-
tions. We considered parameterized partitions by the group
size g for the Pareto distributions. For the Netflix data, we
partitioned the movies according to ranges of release years.
For the IP packets data, we used a fixed partition according
to application type of the IP flow.

To evaluate how the quality of the estimators varies with
subpopulation size, we sweep the parameter g for the Pareto
distributions. The RC estimators have zero covariances, and
therefore, the sum of square errors should remain constant
when sweeping g. The ws SC estimator has negative co-
variances and therefore we expect the sum to decrease as a
function of g. For g = 1, this sum corresponds to the sum of
the variances of the items which should be the same for the
ws estimators and smaller for the pri estimator. The sum
of square errors, as a function of g, is constant for the RC

estimators, but decreases with the ws SC estimator. For
g = n, we obtain the variance of the sum of the adjusted
weights, which should be 0 for the ws SC estimator (but
not for the approximate versions).

Representative results are shown in Figure 3 (Pareto dis-
tributions) and in Figure 2 (the Netflix and IP packets data
sets).

We observed that for g = 1, the pri RC estimator (that
obtains the minimum sum of per-item variances by a sketch
of size k + 1) performs slightly better than the ws RC es-
timator when the data is more skewed (smaller α). The
performance of ws SC is close and better for small values of
k (it uses one fewer sample). For g > 1, the ws SC estima-
tor outperforms both RC estimators and has significantly
smaller variance for larger subpopulations. We similarly
observe that on the Netflix and IP packet data, pri RC was
slightly better than ws RC and ws SC on smaller subpop-
ulations and ws SC was significantly better than the RC

estimators on larger subpopulations (25%-50% smaller vari-
ance).

We conclude that in applications when w(I) is provided,
the ws SC estimator is a considerably better choice than
the RC estimators. Our results also demonstrate that the
metric of the sum of per-item variances, that pri RC is
nearly optimal [36] with respect to it, is not a sufficient
notion of optimality for subpopulation weight estimators. It
must be augmented with comparison of covariances, making
their sum as small as possible.

Figure 4 compares different choices of the parameters inperm,
and permnum for the approximate (Markov chain based)
ws SC estimator. We denote each such choice as a pair
(inperm, permnum). We compare estimators with parame-
ters (400, 1), (20, 20), (1, 400), and (5, 2). We conclude the
following: (i) A lot of the benefit of ws SC on moderate-size
subsets is obtained for small values: (5, 2) performs nearly
as well as the variants that use more steps and iterations.
(ii) There is a considerable benefit of redrawing within a
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Figure 1: Left: Absolute value of the relative error of the estimator of w(I) averaged over 1000 repetitions.
Middle: 95% confidence upper and lower bounds for estimating w(I). Right: width of 90% confidence interval
for estimating w(I). We show results for Pareto distributions with n = 1 × 103, α = 1 (top row) and α = 2
(bottom row).
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Figure 2: Ratio of the sum of square errors (aver-
aged over 200 repetitions) over a partition, of ws

RC to pri RC and of ws SC with inperm = 20 and
permnum = 20 to pri RC. Left: The netflix request
stream, groupings corresponded to movies released
in the same year or range of years (same year, 2
years, 5 years, and decade), we sweep the size of the
range and show k = 50, 100, 200. Right: IP packet
streams, where items correspond to destination IP
and application-type pairs. We sweep the summary
size k.

permutation: (400, 1) that iterates within a single permu-
tation performs well. (iii) Larger subsets, however, benefit
from larger permnum: (1, 400) performs better than (20, 20)
which in turn is better than (400, 1).

Confidence bounds. We evaluate confidence bounds on
subpopulation weight using the pri Chernoff-based bounds [37]
(pri) (see Section 7.3), and the ws bounds that use w(I) (ws

+w(I)) (see Appendix E.3) or do not use w(I) (ws −w(I))
(see Section 7.1). The ws bounds are computed using the
quantile method with 200 draws from the appropriate dis-
tribution.

We consider the relative and square error of the bounds
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Figure 3: Normalized sum of square errors (aver-
aged over 1000 repetitions) over a partition as a
function of group size for k = 500 and k = 40 and
α = 1.2.

and the width of the confidence interval. The confidence
bounds, intervals, and square errors, were normalized using
the weight of the corresponding subpopulation. For each dis-
tribution, value of k, and partition g, the normalized bounds
were averaged across 500 repetitions and across all subpopu-
lations. Across these distributions, the ws +w(I) confidence
bounds are tighter (more so for larger g) than ws −w(I)
and both are significantly tighter than the pri confidence
bounds. Representative results are shown in Figure 5.
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APPENDIX
A. ML ESTIMATORS FOR WS SKETCHES

A general observation for our ML estimators is that tighter
estimators can be obtained by redrawing the rank values of
the items i1, . . . , ik (see Section 3) and taking the expec-
tation (or average over multiple draws) of the solution of
Eq. (1) over the corresponding permutations of the first k
items.

Estimating a subpopulation weight. We derive maximum
likelihood subpopulation weight estimators that use and do
not use the total weight w(I). Let J ⊂ I be a subpopu-
lation. Let j1, . . . , ja be the items in s that are in I \ J .7

Let r′1, . . . , r
′
a be their respective rank values and let s′i =

P

h≤i
w(jh) (i = 1, . . . , a). Define s′0 ≡ 0. Let i1, i2, . . . , ic

be the items in J ∩ s. Let r1, . . . , rc be their respective rank
values and let si =

P

h≤i w(ih) (i = 1, . . . , c). Define s0 ≡ 0.

ws ML subpopulation weight estimator that does not
use w(I): Consider rank assignments such that rank values
in I \ J are fixed and the order of ranks of the items in J is
fixed. The probability density of the observed ranks of the
first k items in J is that of seeing the same rank differences
(probability density is (w(J)−si) exp(−(w(J)−si)(ri+1−ri)
for the ith difference) and of the rank difference between the
c + 1 and c smallest ranks in J being at least τ − rc (where
τ is the (k + 1)st smallest rank in the sketch), which is
exp(−(w(J)−sc)(τ−rc)). Rank differences are independent,
and therefore, the probability density as a function of w(J) is
the product of the above densities. The maximum likelihood
estimator for w(J) is the value that maximizes this probabil-
ity. If c = 0, the expression exp(−w(J)τ ) is maximized for
w(J) = 0. Otherwise, by taking the natural logarithm and
deriving we find that the value of w(J) that maximizes the
probability density is the solution of

Pc−1
h=0

1
w̃(J)−sh

= τ .

As with the estimator of the total weight, we can obtain a
tighter estimator by redrawing the rank values.

ws ML subpopulation weight estimator that uses
w(I): We compute the probability density, as a function
of w(J), of the event that we obtain the sketch s with these
ranks given that the prefix of sampled items from I \ J is
j1, . . . , ja and the prefix of sampled items from J is i1, . . . , ic.
We take the natural logarithms of the joint probability den-
sity and derive with respect to w(J). If c = 0, the deriva-
tive is positive and the probability density is maximized for
w(J) = 0. If a = 0, the derivative is negative and the prob-
ability density is maximized for w(J) = w(I). Otherwise, if
a > 0 and c > 0, the probability density is maximized for
w̃(J) that is the solution of

c−1
X

h=0

1

w̃(J) − sh

−
a−1
X

h=0

1

(w(I) − w̃(J)) − s′h
= 0 .

The equation is easy to solve numerically, because the left
hand side is a monotone decreasing function of w(J).

B. ADJUSTED WEIGHTS

Lemma B.1. (Lemma 5.1) Consider RC adjusted weights
and two items i and j. Then, cov[a(i), a(j)] = 0.
7We assume that using meta attributes of items in the sketch
we can decide which among them are in J .

Proof. It suffices to show that E[a(i)a(j)] = w(i)w(j).
Consider a partition of the sample space of all rank assign-
ments according to the (k−1)th smallest rank of an item in
I \ {i, j}.8 Consider a subset in the partition and let rk−1

denote the value of the (k − 1)th smallest rank of an item
in I \ {i, j} for rank assignments in this subset. We show
that in this subset E[a(i)a(j)] = w(i)w(j). The product
a(i)a(j) is positive in this subset only when r(i) < rk−1 and
r(j) < rk−1, which (since rank assignments are indepen-
dent) happens with probability pr{r(i) < rk−1}pr{r(j) <
rk−1}. In this case the kth smallest rank in I \ {i} and

I \ {j} is rk−1 and therefore, a(i) = w(i)
pr{r(i)<rk−1}

, and

a(j) = w(j)
pr{r(j)<rk−1}

. It follows that

E[a(i)a(j)] =

pr{r(i) < rk−1}pr{r(j) < rk−1}
w(i)

pr{r(i)<rk−1}
w(j)

pr{r(j)<rk−1}

= w(i)w(j) .

We can extend the proof of Lemma 5.1 to show that for
any subset J ⊂ I, E[

Q

i∈I
a(i)] =

Q

i∈I
w(i).

Lemma B.2. (Lemma 5.3) Consider two partitions of the
sample space, such that one partition is a refinement of the
other, and the AW-summaries obtained by applying HTp

using these partitions. For each i ∈ I, the variance of a(i)
using the coarser partition is at most that of the finer parti-
tion.

Proof. We use the following simple property of the vari-
ance. Consider two random variables A1 and A2 over a
probability space Ω. Suppose that there is a partition {Bj}
of Ω such that for every Bj , and for every s ∈ Bj , A2(s) =
E[A1(s)|s ∈ Bj ]. Then var[A2] ≤ var[A1].

Let P i
j be the sets in the fine partition, and let Ci

` be the

sets in the coarse partition such that Ci
` =

S

t P i
`t

. Let P
i

j be

the subset containing all s ∈ P i
j such that i ∈ s. Similarly,

let C
i

` be the subset containing all s ∈ Ci
` such that i ∈ s.

Let a(i, s) be the adjusted weight of i in a sketch s according
to the partition P i

j , and let a(i, s) be the adjusted weight of

i in a sketch s according to the partition Ci
`. We will show

that for s ∈ C
i

` such that i ∈ s, a(i, s) = E
s′∈C

i
`
[a(i, s′)].

From this and the property of the variance stated above the
lemma follows. We remove the superscript i from the sets

P i
j , Ci

`, P
i

j , and C
i

` in the rest of the proof.

Let pj = pr(s ∈ P j | s ∈ Pj) and p` = pr(s ∈ Cj | s ∈
C`). Now,

Es′∈Ci
`
[a(i, s′)] =

P

t
pr(s ∈ P `t)

w(i)
p`t

pr(s ∈ C`)

=

P

t
pr(s ∈ P`t )p`t

w(i)
p`t

pr(s ∈ C`)p`

=
w(i)

P

t
pr(s ∈ P`t)

pr(s ∈ C`)p`

=
w(i)

p`

= a(i, s) .

8We can use a finer partitions in which all the ranks in
I \ {i, j} are fixed.



C. PREFIX CONDITIONING ESTIMATOR
For an item i ∈ s we partition the sample space according

to the sequence (prefix) of k − 1 items with smallest ranks
drawn from I \ {i}. That is if i 6∈ s, then s belongs to the
partition associated with the k − 1 items in s of smallest
ranks. If i ∈ s, then s belongs to the partition associated
with the sequence of k − 1 items in s \ {i}.

We assign adjusted weights as follows. Consider a sketch
s and i ∈ s. Let P be the set of sketches with the same
prefix of k − 1 items from I \ {i} as in s. We compute
the probability pr{i ∈ s | s ∈ P}, that is, the probability
that i is in a sketch from P . We compute the probability
of i occurring in each of the positions j ∈ 1, . . . , k and the
probability that it does not occur at all. We use the notation
pfxJ (j1, . . . , jk) for the event that the first k items drawn
by weighted sampling without replacement from a subset J
are j1, . . . , jk.

We denote by i` (1 ≤ ` ≤ k − 1) the `th item in s \ {i}.
For each j = 1, . . . , k, the probability ej that i appears in
the jth position in a sketch from P is

p(i → j ∩ s ∈ P ) = pr{pfxI(i1, i2, ij−1, i, ij , ik−1)} =

w(i1)

w(I)

w(i2)

w(I) − w(i1)

w(ij−1)

w(I) −
Pj−2

m=1 w(im)

w(i)

w(I) −
Pj−1

m=1 w(im)

w(ij)

w(I) −
Pj−1

m=1 w(im) − w(i)
· · ·

w(ik−1)

w(I) −
Pk−2

m=1 w(im) − w(i)
.

The probability that the sketch is from P but i does not ap-
pear in it (technically, appears in a position k+1 or beyond)
is

p(i 6∈ s ∩ s ∈ P ) = pr{
[

`∈{I\s}

pfx(i1, i2, . . . , ik−1, `)} =

w(i1)

w(I)

w(i2)

w(I)− w(i1)
· · ·

w(ik−1)

w(I)−
Pk−2

m=1 w(im)

w(I)− w(i)−
Pk−1

m=1 w(im)

w(I)−
Pk−1

m=1 w(im)
.

Therefore,

pr{i ∈ s | s ∈ P} =

Pk
j=1 p(i → j ∩ s ∈ P )

Pk
j=1 p(i → j ∩ s ∈ P ) + p(i 6∈ s ∩ s ∈ P )

.

The computation of the prefix conditioning adjusted weights
is quadratic in k for each item i. RC adjusted weights, on
the other hand, can be computed in constant number of
operations per item.

D. SUBSET CONDITIONING

Lemma D.1. Let s be a ws sketch of I and let a(i) be SC

adjusted weights. Then,
P

i∈s a(i) = w(I).

Proof. Observe that for any sketch s, i ∈ s, and ` ≥ 0

f(s, `) = f(s \ {i}, `) − f(s \ {i}, ` + w(i))
`

` + w(i)
. (5)

This relation follows by manipulating Eq. (2), or by the
following argument: Let X = I \ s and w(X) = `. The
probability that the items with smallest ranks in s ∪ X are
the items in s is equal to the probability that the |s| − 1
items of smallest ranks in (s \ {i})∪X are s \ {i} minus the
probability that the |s| − 1 items of smallest ranks in s ∪ X

are s \ {i} and the |s|th smallest rank is from X \ {i}. This
latter probability is equal to

f(s \ {i}, w(X ∪ {i})) `

` + w(i)
.

Using Equation (5) we obtain that

X

i∈s

a(i) =

=

P

i∈s
w(i)f(s \ {i}, w(I \ s))

f(s, w(I \ s))

=

P

i∈s
w(i)(f(s, w(I \ s)) + f(s \ {i}, w(I \ {s \ {i}})) w(I\s)

w(i)+w(I\s)
)

f(s, w(I \ s))

=
X

i∈s

w(i) + w(I \ s)
X

i∈s

w(i)
w(i)+w(I\s)

f(s \ {i}, w(I \ {s \ {i}}))

f(s, w(I \ s))

= w(I) .

To verify the last equality, observe that

w(i)

w(i) + w(I \ s)
f(s \ {i}, w(I \ {s \ {i}}))

is the probability that the first |s|−1 items drawn from I are
s \ {i} and the |s|th item is i. These are disjoint events and
their union is the event that the first |s| items drawn from
I are s. The probability of this union is f(s, w(I \ s)).

Lemma D.2. Consider SC adjusted weights of two items
i 6= j. Then, cov[a(i), a(j)] < 0.

Proof. Consider a partition of rank assignments accord-
ing to the items in I \ {i, j} that have the k − 2 smallest
ranks. Consider a part in this partition and denote this set
of k− 2 items by c. We compute the expectation of a(i)a(j)
conditioned on this part. Let ` = w(I)−w(c)−w(i)−w(j).
The probability of this part is f(c, `), the probability that
a(i)a(j) > 0 in c is equal to f(c ∪ {i, j}, `). Therefore, the

conditional probability is f(c∪{i,j},`)
f(c,`)

. In this case, the ad-

justed weight assigned to i is set according to items c ∪ {j}
having the (k − 1) smallest ranks in I \ {i}. Therefore,

this weight is a(i) = w(i) f(c∪{j},`)
f(c∪{i,j},`)

. Symmetrically for j,

a(j) = w(j) f(c∪{i},`)
f(c∪{i,j},`)

. We therefore obtain that E[a(i)a(j)]

conditioned on this part is

w(i)w(j)
f(c ∪ {j}, `)f(c ∪ {i}, `)

f(c ∪ {i, j}, `)f(c, `)
.

It suffices to show that

f(c ∪ {j}, `)f(c ∪ {i}, `)
f(c ∪ {i, j}, `)f(c, `)

≤ 1 .

To show that, we apply Eq. (5) and substitute in the nu-
merator f(c ∪ {j}, `) = f(c, `) − f(c, ` + w(j)) `

`+w(j)
and in

the denominator f(c∪{i, j}, `) = f(c∪{i}, `)−f(c∪{i}, `+
w(j)) `

`+w(j)
The numerator being at most the denominator

therefore follows from the immediate inequality

f(c, `)f(c ∪ {i}, ` + w(j)) ≤ f(c, ` + w(j))f(c ∪ {i}, `) .

Lemma D.3. Consider ws sketches of a weighted set (I,w)
and subpopulation J ⊂ I. The SC estimator for the weight
of J has smaller variance than the RC estimator for the
weight of J.



Proof. By Lemma 5.1 the variance of the RC estimator
for J is

P

j∈J
varRC[a(j)]. So using Lemma 5.3 we obtain

that
P

j∈J
varSC[a(j)] is no larger than the variance of the

RC estimator for J . Finally since

varSC[
X

j∈J

a(j)] =
X

j∈J

varSC[a(j)]+
X

i6=j,i,j∈J

covSC[a(i), a(j)] ,

and Lemma D.2 that implies that the second term is nega-
tive the lemma follows.

E. CONFIDENCE BOUNDS
We provide derivations omitted from Section 7.

E.1 Total weight
Let r be a rank assignment of a weighted set Z = (H, w).

Recall that for H ′ ⊆ H, r(H ′) is the minimum rank of
an item in H ′. In this section it will be useful to denote
by r(H ′) the maximum rank of an item in H ′. We define
r(∅) = +∞ and r(∅) = 0. For a distribution D over a totally
ordered set (by ≺) and 0 < α < 1, we denote by Qα(D) the
α-quantile of D. That is, pry∈D{y � Qα(D)} ≤ α and
pry∈D{y � Qα(D)} ≥ 1 − α. 9

For two weighted sets Z1 = (H1, w1) and Z2 = (H2, w2),
let Ω(Z1, Z2) be the probability subspace that contains all
rank assignments r over Z1 ∪Z2 such that r(H1) < r(H2).

10

Let (I,w) be a weighted set, let r be a rank assignment
for (I, w), and let s = s(r) be the bottom-k sketch that
corresponds to r (we also use s as the set of k items with
smallest ranks). Let W ((s, w), rk+1, δ) be the set containing
all weighted sets Z ′ = (H,w′) such that pr{r′(H) ≥ rk+1 |
r′ ∈ Ω((s, w), Z′)} ≥ δ. Define w((s,w), rk+1, δ) as fol-
lows. If W ((s, w), rk+1, δ) = ∅, then w((s,w), rk+1, δ) = 0.
Otherwise, let w((s, w), rk+1, δ) = sup{w′(H) | (H, w′) ∈
W ((s,w), rk+1, δ)} . (This supremum is well defined for “rea-
sonable” families of rank functions, otherwise, we allow it to
be +∞)

Let W ((s, w), rk+1, δ) be the set of all weighted sets Z ′ =
(H, w′) such that pr{r′(H) ≤ rk+1 | r′ ∈ Ω((s, w), Z′)} ≥ δ.
Define w((s,w), rk+1, δ) as follows. We have W ((s,w), rk+1, δ) 6=
∅ for “reasonable” families of rank functions, but if it is
empty, we define w((s,w), rk+1, δ) = +∞. Otherwise, let
w((s, w), rk+1, δ) = inf{w′(H)|(H,w′) ∈ W ((s, w), rk+1, δ)} .
(This infimum is well defined since weighted sets have non-
negative weights.)

Lemma E.1. Let r be a rank assignment for the weighted
set (I,w), and let s be the bottom-k sketch that corresponds
to r Then w(s) + w((s, w), rk+1, δ) is a (1 − δ)-confidence
upper bound on w(I), and w(s)+w((s,w), rk+1, δ) is a (1−
δ)-confidence lower bound on w(I).

Proof. We prove (1). The proof of (2) is analogous.
We show that in each subspace Ω((s, w), (I \s, w)) of rank

assignments our bound is correct with probability 1 − δ.
Since these subspaces, specified by s ⊂ I of size |s| = k,
form a partition of the rank assignments over (I,w), the
lemma follows.

9Note that the distributions we are dealing with may ob-
tain some discrete values with positive probabilities. In
such case pry∈D{y ≺ Qα(D)} may be strictly smaller than
pry∈D{y � Qα(D)}.

10Note that we use a different definition of Ω() in this section,
in Section E.2, and in Section E.3.

Let Dk+1 be the distribution of the (k + 1)st smallest
rank over rank assignments in Ω((s, w), (I\s, w)) (the small-
est rank in I \ s). Assume that r is a rank assignment in
Ω((s, w), (I \ s, w)). We show that if rk+1 ≤ Q1−δ(Dk+1)
then our upper bound is correct. Since by the definition of
a quantile rk+1 ≤ Q1−δ(Dk+1) with probability ≥ (1− δ) in
Ω((s, w), (I \s, w)), it follows that our bound is correct with
probability ≥ (1 − δ) in Ω((s, w), (I \ s, w)).

If rk+1 ≤ Q1−δ(Dk+1) then

pr{r′(I \ s) ≥ rk+1 | r′ ∈ Ω((s, w), (I \ s,w))} ≥

pr{r′(I \ s) ≥ Q1−δ(Dk+1) | r′ ∈ Ω((s, w), (I \ s,w))} ≥ δ .

So we obtain that (I \ s, w) ∈ W ((s, w), rk+1, δ) and there-
fore w(I \ s) ≤ w((s,w), rk+1, δ).

ws sketches: We apply Lemma E.1 for ws sketches as fol-
lows. For a weighted set (s, w), |s| = k, and ` ≥ 0, consider
a weighted set U of weight w(s) + ` containing (s, w). Let y
be the (k + 1)th smallest rank value, over rank assignments
over U such that the k items with smallest rank values are
the elements of s. The probability density function of y is
(see Section 6 and Eq. (2))

D(`, y) =
exp(−`y)

Q

j∈s(1 − exp(−w(ij)y))
R ∞

x=0
exp(−`x)

Q

j∈s
(1 − exp(−w(ij)x))dx

(6)

Let rk+1 be the observed k + 1 smallest rank. The (1 −
δ)-confidence upper bound is w(s) plus the value of ` that
solves the equation

R rk+1

0
D(`, y)dy = 1 − δ. The function

R rk+1

0
D(`, y) is an increasing function of ` (the probability

of the (k+1)st smallest rank being at most rk+1 is increasing
with `.) If

R rk+1

0
D(0, y)dy > 1−δ, then there is no solution

and the upper bound is w(s).
The lower bound is w(s) plus the value of ` that solves

the equation
R rk+1

0
D(`, y)dy = δ. If there is no solution

(
R rk+1

0
D(0, y)dy > δ), then the lower bound is w(s).

Remark. Lemma E.1 also holds for an ordered variant,
where we consider rank assignments r (and corresponding
subspaces) where the items in s appear in the same order as
in r. ws bounds with this variant are provided in Section 7.1.

E.2 Subpopulation weight
The derivation of confidence bounds on the weight of a

subpopulation J ⊂ I (Section 7) is more subtle than the
one for the total weight: The number of items from J that
we see in the sketch can vary between 0 and k and we do
not know if the (k + 1)th smallest rank belongs to an item
in J or in I \ J . Here we use the definition of Ω() given in
Section 7. That is Ω((Z, π)) is the probability subspace of
rank assignments over a weight list Z such that the rank
order of the items is π. We provide the proof of Lemma 7.1:

Lemma E.2. (Lemma 7.1) Let r be a rank assignment, s
be the corresponding sketch, and ` be the weighted list ` =
(J ∩ s, w, r). Then w(J ∩ s) + w(`, rk+1, δ) is a (1 − δ)-
confidence upper bound on w(J) and w(J ∩ s) + w(`, rk, δ)
is a (1 − δ)-confidence lower bound on w(J).

Proof. We partition the space of rank assignments over
(I, w) according to the ranks of items in I \ J and the order
of the ranks of the items in J . We show that the confidence
bounds hold within each subspace. Fix one such subspace
Φ of rank assignments. Let π denote the order of the items
in J , and let a(i) denote the rank of each item i ∈ I \



J , which are fixed for rank assignments in Φ. Note that
there is bijection between rank assignments in Ω((J, π)) and
rank assignments in Φ obtained by augmenting the rank
assignment in Ω((J, π)) with the ranks a(j) for items j ∈
I \ J . We show that the statement of the lemma holds for
rank assignments in Φ.

Let Dk+1 be the distribution of rk+1 for r ∈ Φ and let Dk

be the distribution of rk for r ∈ Φ. Over rank assignments
in Φ we have pr{rk+1 ≤ Q1−δ(Dk+1)} ≥ 1− δ and pr{rk ≥
Qδ(Dk)} ≥ 1 − δ. Specifically we show that

• The upper bound is correct for rank assignments r ∈ Φ
such that rk+1 ≤ Q1−δ(Dk+1). Therefore, it is correct
with probability at least (1 − δ).

• The lower bound is correct for rank assignments r ∈ Φ
such that rk ≥ Qδ(Dk). Therefore, it is correct with
probability at least (1 − δ).

Fix a rank assignment r ∈ Φ. Let s be the items in the
sketch defined by r. Let ` = (J ∩s, r) and `(c) = (J \s, r) be
the weighted lists of the items in J ∩ s or J \ s, respectively,
It is easy to check that another rank assignment r′ ∈ Φ has
r′k+1 ≥ rk+1 if and only if r′(J \ s) ≥ rk+1.

11 So if r is such
that rk+1 ≤ Q1−δ(Dk+1) then

prr′∈Φ{r′(J \ s) ≥ rk+1} = prr′∈Φ{r′k+1 ≥ rk+1}
≥ prr′∈Φ{r′k+1 ≥ Q1−δ(Dk+1)}
≥ δ .

Now notice that drawing r′ ∈ Φ is the same as drawing
r ∈ Ω((J, π)), and Ω((J, π)) is the same as Ω(` ⊕ `(c)).
Therefore, from the definition of W (`, rk+1, δ) follows that

`(c) ∈ W (`, rk+1, δ), and hence w(J \ s) ≤ w(`, rk+1, δ) and
the upper bounds holds.

Analogously, a rank assignment r′ ∈ Φ has r′k ≤ rk if and
only if r′(J ∩ s) ≤ rk. So if r ∈ Φ such that rk ≥ Qδ(Dk)

prr′∈Φ{r′(J ∩ s) ≤ rk} = prr′∈Φ{r′k ≤ rk}
≥ prr′∈Φ{r′k ≤ Qδ(Dk)}
≥ δ

Therefore, `(c) ∈ W (`, rk, δ), and hence w(J \s) ≥ w(`, rk, δ)
and the lower bound holds.

E.3 Subpopulation weight using w(I)
We derive tighter confidence intervals that use the to-

tal weight w(I). For weighted lists h1 = (H1, π1) and
h2 = (H2, π2) we define here the probability space Ω(h1, h2)
of all rank assignments r to H1 ∪ H2 such that the order
induced by the ranks on H1 is π1 and the order induced
by the ranks on H2 is π2. (Here we have no requirement
of the order between an item from H1 and an item from
H2.) For r ∈ Ω(h1, h2) we define c(r) to be the number
of items amongst those with k smallest ranks that are in
H1 (equivalently, it is i such that ri(H

1) < rk−i+1(H
2) and

rk−i(H
2) < ri+1(H

1)). We also define d(r) to be the differ-
ence between the largest rank values of items in H2 and H1

that are amongst the k least ranked items. That is

d(r) = rk−c(r)(H
2) − rc(r)(H

1) .

We denote by (c1, d1) � (c2, d2) the reverse lexicographic
order. That is (c1, d1) � (c2, d2) if c1 > c2 or if c1 = c2 and

11Note that the statement with strict inequalities does not
necessarily hold.

d1 ≥ d2. Note that if we keep w(H1) + w(H2) fixed then as
we increase w(H1) and decrease w(H2)

pr{(c(r′), d(r′)) � τ) | r′ ∈ Ω(h1, h2)} , (7)

for any fixed pair τ = (c, d), increases.
Let r be a rank assignment, and let s be the sketch cor-

responding to r. Let ∆ = r((I \ J) ∩ s) − r(J ∩ s), and let
`1 = (J ∩ s, r) and `2 = ((I \ J) ∩ s, r).

Let W (`1, `2, ∆, δ) be the set of all pairs (h1, h2) of weighted
lists h1 = (H1, π1) and h2 = (H2, π2) such that w(H1) +
w(H2) = w(I) − w(s) and

pr{(c(r′), d(r′)) � (|J∩s|,∆) | r′ ∈ Ω(`1⊕h1, `2⊕h2)} ≥ δ , (8)

or alternatively,

pr{(c(r′), d(r′)) � (|J ∩ s|,∆) | r′ ∈ Ω(`1 ⊕h1, `2 ⊕h2)} ≤ 1− δ .
(9)

Clearly as we increase w(H1) and decrease w(H2) the
probability of the event on the left hand side of Equation
(9) increases. To get an upper bound w(`1, `2, ∆, δ) on how
large can the “unseen” part of J be, we set w(`1, `2, ∆, δ) =
0 if W (`1, `2, ∆, δ) = ∅, and otherwise, w(`1, `2, ∆, δ) =
sup{w(H1) | (h1, h2) ∈ W (`1, `2, ∆, δ)}.

Let W (`1, `2, ∆, δ) be the set of all pairs (h1, h2) of weighted
lists h1 = (H1, π1) and h2 = (H2, π2) such that w(H1) +
w(H2) = w(I) − w(s) and

pr{(c(r′), d(r′)) � (|J ∩ s|,∆) | r′ ∈ Ω(`1 ⊕ h1, `2 ⊕ h2)} ≥ δ .
(10)

If W (`1, `2, ∆, δ) = ∅, then w(`1, `2, ∆, δ) = w(I) − w(s).
Otherwise,
w(`1, `2, ∆, δ) = inf{w(H1) | (h1, h2) ∈ W (`1, `2, ∆, δ)}.

Lemma E.3. Let r be a rank assignment, s be the corre-
sponding sketch, let ∆ = r((I \ J) ∩ s) − r(J ∩ s), and let
`1 = (J ∩ s, r) and `2 = ((I \ J) ∩ s, r). Then w(J ∩ s) +
w(`1, `2, ∆, δ) is a (1 − δ)-confidence upper bound on w(J),
and w(J ∩ s) + w(`1, `2, ∆, δ) is a (1 − δ)-confidence lower
bound on w(J).

Proof. The lower bound on w(J) is equal to w(I) mi-
nus a (1 − δ)-confidence upper bound, w((I \ J) ∩ s) +
w(`2, `1,−∆, δ) on w(I \ J). Therefore it suffices to prove
the upper bound.

We show that the bound holds with probability at least
(1−δ) in the subspace of rank assignments over (I,w) where
the rank order of the items in J and the rank order of the
items in I\J are fixed. These subspaces are a partition of the
space of rank assignments and therefore the lemma follows.
Consider a subspace Φ = Ω(`′1, `

′
2) where `′1 = (J, π1) is a

weighted list of J , and `′2 = (I \ J, π2) is a weighted list of
I \ J . We show that the bound holds for 1 − δ fraction of
the rank assignments in Φ.

Let D be the distribution over the pairs (c(r), d(r)) for
r ∈ Φ. We define the quantile Q1−δ(D) with respect to the
lexicographic order over the pairs.

We show that the upper bound is correct for all r ∈ Φ
such that (c(r), d(r)) � Q1−δ(D). Therefore, it holds with
probability at least 1 − δ in Φ.

Let r ∈ Φ such that (c(r), d(r)) � Q1−δ(D). Let s be the
corresponding sketch, `1 = (J ∩ s, r), `2 = ((I \ J) ∩ s, r),

`
(c)
1 = (J \ s, r), `

(c)
2 = ((I \ J) \ s, r). By definition, c(r) =



|J ∩ s|, ∆ = d(r) = r((I \ J) ∩ s) − r(J ∩ s), `′1 = `1 ⊕ `
(c)
1 ,

and `′2 = `2 ⊕ `
(c)
2 . It follows that

pr{(c(r′), d(r′)) � (|J ∩ s|, ∆) | r′ ∈ Φ} ≥
pr{(c(r′), d(r′)) � Q1−δ(D) | r′ ∈ Φ} ≥ δ .

Therefore, (`
(c)
1 , `

(c)
2 ) ∈ W (`1, `2, ∆, δ), and hence,

w(J \ s) ≤ w(`1, `2, ∆, δ) .

Subpopulation weight using w(I) for ws sketches. We
specialize the conditions in Lemma E.3 to ws sketches. Con-
sider the distribution of (c(r), d(r)) for r ∈ Ω(`1⊕h1, `2⊕h2).
We shall refer to items of h1 as items of J and to items of
h2 as items of I \J . This distribution in general depends on
the decomposition of the weighted lists h1 and h2 into items.
However we show that for ws sketches the probability

pr{(c(r), d(r)) � (|J ∩ s|,∆) | r ∈ Ω(`1 ⊕ h1, `2 ⊕ h2)} (11)

depends on `1, `2 and w(H1) (which also determines w(H2)
since w(H1) + w(H2) is fixed.)

Indeed, note that (c(r), d(r)) � (|J ∩ s|, ∆) is equivalent
to the following condition

(r(H2) > r(J ∩ s))∧
„

(r(H1) < r(s ∩ (I \ J)))∨
(r(H1) > r(s ∩ (I \ J)) ∧ (r((I \ J) ∩ s) − r(J ∩ s) > ∆))

«

.

(12)

The first line guarantees that we have at least |J ∩ s| items
of J among the k items of smallest ranks. If the second
line holds then we have strictly more than |J ∩ s| items of J
among the k items of smallest ranks. If the third line holds
then we have exactly |J ∩ s| items of J among the k items
of smallest ranks and r((I \ J) ∩ s) − r(J ∩ s) > ∆.

Now the last observation to make is that the predicate of
Equation (12) depends only on the rank values of the |J ∩ s|
and |J ∩s|+1 smallest ranks in J and of the |(I \J)∩s| and
|(I \ J)∩ s|+ 1 smallest ranks in I \ J . For ws sketches, the
distribution of these ranks is determined by the weighted
lists `1, `2 and w(H1).

So we pick a weighted list h1 with a single item of weight
x − w(J ∩ s), and a weighted list h2 with a single item

of weight w(I) − x − w((I \ J) ∩ s), and let D(x) be the
distribution of (c(r), d(r)) for r ∈ Ω(`1 ⊕ h1, `2 ⊕ h2). To

emphasis the dependency of r on x we shall denote by r(x)

a rank assignment drawn from Ω(`1 ⊕ h1, `2 ⊕ h2) where
w(H1) = x.

Since the largest rank in J ∩ s and the smallest rank of an
item in H1 decrease with x, and the largest rank in (I \J)∩s
and the smallest rank in H2 increase with x, it follows that
pr{y � τ | y ∈ D(x)} is increasing with x for τ = (|J ∩s|, ∆)
so we can apply the quantile method.

Obviously, w(J \ s) ∈ [0, w(I) − w(s)]. Therefore, we can
truncate the bounds to be in this range. So the upper bound
on w(J \ s) is the minimum of w(I)−w(s) and x such that

Q1−δ(D
(x)) = (|J ∩ s|, ∆). If there is no solution then the

upper bound is 0. (Similarly we get an upper bound on
w((I \ J) \ s).) The upper bound on w(J) is w(J ∩ s) plus
the upper bound on w(J \ s).

We apply the quantile method (Section 7.1) to solve the
equations

Q1−δ(D
(x)) = (|J ∩ s|, ∆) ,

Computing the range (L, U).

• If i′ = 0, let U = w(I) − w(s). Otherwise (i′ > 0), U is the

solution of
P

i
h=0

− ln vh
x−sh

−
Pi′−1

h=0

− ln v′
h

w(I)−x−s′
h

= 0 . (There is

always a solution U ∈ (si, w(I)− s′
i′−1

).)

• If i = 0, let L = 0. Otherwise (i > 0), L is the solution

of
Pi−1

h=0

− ln vh
x−sh

−
P

i′

h=0

− ln v′
h

w(I)−x−s′
h

= 0 . (There is always a

solution L ∈ (si−1, w(I)− s′
i′

).)

Search for x ∈ (L, U) such that d(x) = ∆.

• If i = 0 (we must have ∆ > 0) we set M to be the solution

of
Pi′−1

h=1

− ln v′
h

w(I)−x−sh
= ∆ in the range (L, U). If there is no

solution, we set M ← L.

• If i′ = 0 (we must have ∆ < 0), we set M to be the solution of
Pi−1

h=0

− ln vh
x−sh

= −∆ in the range (L, U). If there is no solution,

we set M ← U .

• Otherwise, if i > 0 and i′ > 0, we set M to be the solution

of
Pi−1

h=0

− ln vh
x−sh

−
Pi′−1

h=0

− ln v′
h

w(I)−x−sh
= ∆ . There must be a

solution in the range (L, U).

Truncating the solution.

• We can have L ∈ (si−1, si) and hence possibly M < si. In
this case we set M = si. Similarly, we can have U ∈ (w(I) −
si′ , w(I) − si′−1) and hence possibly M > w(I) − si′ . In this
case we set M = w(I)− si′ .

• We return M .

Figure 6: Solver for s(x) = τ for subpopulation
weight with known w(I). Here i = |J ∩ s| and
i′ = k − i = |(I \ J) ∩ s|.

and

Qδ(D
(x)) = (|J ∩ s|, ∆) .

The first black box ingredient that we need for the quantile
method is drawing a monotone parametric sample s(x) from

D(x). Let si (i ∈ (0, 1, . . . , |J∩s|)) be the sum of the weights
of the first i items from J in `1. Let s′i (i ∈ (0, 1, . . . , k −
|J ∩ s|)) be the respective sums for I \ J . We draw a rank

assignment r(x) ∈ Ω(`1⊕h1, `2⊕h2) as follows. We draw k+2
independent random variables v0, . . . , v|J∩s|, v

′
0, . . . , v

′
k−|J∩s|

from U [0, 1]. We let the jth rank difference between items
from J be − ln(vj)/(x − sj), and the jth rank difference
between items from (I \J) be − ln(v′

j)/(x− s′j). These rank
differences determine r(J∩s) and r(H1) (sums of |J∩s| and
|J ∩ s| + 1 first rank differences from J , respectively), and
r((I\J)∩s) and r(H2) (sums of |(I\J)∩s| and |(I\J)∩s|+1
first rank differences from I \ J , respectively). Then s(x) is

the pair (c(r(x)), d(r(x))).
The second black box ingredient is solving the equation

s(x) = τ . Let i = |J ∩ s| and let i′ = k − i = |(I \ J) ∩ s| as
before. The solver has three phases: We first compute the
range (L, U) of values of x such that the first coordinate of
the pair s(x) is equal to |J∩s|. That is, the rank assignment
r has exactly |J ∩ s| items from J among the first k items.

Let d(r(x)) = ri′(I \J)−ri(J) denote the second coordinate
in the pair s(x). In the second phase we look for a value

x ∈ (L, U) (if there is one) such that d(r(x)) = ∆ (the second

coordinate of s(x) is equal to ∆). The function d(r(x)) is
monotone increasing in this range, which simplifies numeric
solution. The third phase is truncating the solution to be in
[0, w(I) − w(s)]. See Figure 6.


