
Computing the Volume of the Union of Cubes∗

Pankaj K. Agarwal
Department of Computer

Science
Duke University

Haim Kaplan
School of Computer Science

Tel Aviv University

Micha Sharir
School of Computer Science

Tel Aviv University
and

Courant Institute
New York University

ABSTRACT
Let C be a set of n axis-aligned cubes in R

3, and let U(C) denote the
union of C. We present an algorithm that can compute the volume
of U(C) in time O(n4/3 log n). The previously best known algo-
rithm, by Overmars and Yap, computes the volume of the union of
any n axis-aligned boxes in R

3 in O(n3/2 log n) time.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
Union of objects, Klee’s measure problem, arrangements, segment
trees.

1. INTRODUCTION
Let C be a set of n axis-aligned cubes in R

3, and let U(C) denote
the union of C. The problem studied in this paper is to compute
the volume of U(C) efficiently. This is related to the well-known
Klee’s measure problem. In 1977 Victor Klee [11] had presented
an O(n log n) time algorithm for computing the union of n inter-
vals in R

1 and had asked whether his algorithm was optimal. An
Ω(n log n) lower bound was proved by Fredmen and Weide [9].
∗Work by Pankaj Agarwal and Micha Sharir was supported by a grant
from the U.S.-Israel Binational Science Foundation. Work by Pankaj Agar-
wal was also supported by by NSF under grants CCR-00-86013, EIA-01-
31905, and CCR-02-04118, and an ARO grant W911NF-04-1-0278. Work
by Haim Kaplan was supported by Grant 975/06 from the Israel Science
Fund. Work by Micha Sharir was also supported by NSF Grants CCR-00-
98246 and CCF-05-14079, by Grant 155/05 from the Israel Science Fund,
and by the Hermann Minkowski–MINERVA Center for Geometry at Tel
Aviv University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’07, June 6–8, 2007, Gyeongju, South Korea.
Copyright 2007 ACM 978-1-59593-705-6/07/0006 ...$5.00.

Bentley [4] studied the two-dimensional version of Klee’s measure
problem. When extended to computing the volume of the union of
n d-dimensional axis-aligned boxes, the running time of Bentley’s
algorithm is O(nd−1 log n). Later, van Leeuwen and Wood [10]
improved the running time to O(n2) for d = 3. The problem lay
dormant for a while until Overmars and Yap presented an algorithm
withO(nd/2 log n) running time [12]. Despite several attempts, no
further progress was made on this problem, except for a somewhat
simpler solution but with the same running time for d = 3, 4 [7],
and for a more space-efficient algorithm [6]. See [1] for a brief
history of the problem.

In contrast, there has been significant progress in the last decade
on obtaining sharp bounds on the combinatorial complexity of the
union (i.e., the number of faces of all dimensions on the bound-
ary of the union) of axis-aligned (and other) objects. For example,
Boissonnat et al. [5] proved that the combinatorial complexity of
n axis-aligned cubes in R

d is Θ(ndd/2e), and it is Θ(nbd/2c) if all
the cubes have the same size. Note that this bound is considerably
better than the Θ(nd) worst-case bound on the union of n axis-
aligned boxes in R

d. This suggests that it might be easier to com-
pute the volume of the union of n cubes. Indeed, the volume of the
union of n unit cubes in R

3 can be computed in O(n log n) time,
by computing their union explicitly (which has linear complexity).
However this will not lead to an efficient algorithm for cubes of dif-
ferent sizes. Edelsbrunner [8] gave an inclusion-exclusion formula
for computing the volume of the union of n balls (see also [2]). It
might be possible to extend his approach to computing the volume
of the union of cubes in R

3, but the running time will be Ω(n2) in
the worst case.

In this paper we show that one can indeed exploit the special
structure of cubes in R

3 in order to compute the volume of their
union more efficiently, and present the following result.

THEOREM 1.1. Let C be a set of n axis-aligned cubes in R
3.

The volume of U(C) can be computed in time O(n4/3 log n).

The high-level approach of our algorithm is similar to that of [12],
in the sense that it is also based on sweeping the space with a hor-
izontal plane. The details are, however, more intricate, and ex-
ploit, sometimes in subtle ways, the fact that we are dealing with
cubes, rather than boxes. We believe that our algorithm is far
from being optimal, and that the running time can be improved to
O(n polylog(n)), but so far we have not been able to overcome all
of the technical difficulties (which, as the reader might appreciate,
are quite numerous).

The algorithm asserted in Theorem 1.1 is presented in the three
following sections. Section 2 gives the high-level description of
the algorithm, Section 3 goes into the more technical low-level de-

tails, and Section 4 presents further details of the data structure that
maintains the union during the sweep.

2. THE GLOBAL STRUCTURE
We assume that the given cubes are in general position. In partic-

ular, we assume that no plane support facets of two distinct cubes
in C. Let z1 < · · · < z2n be the (distinct) z-coordinates of the
vertices of cubes in C, sorted in increasing order. We sweep a hor-
izontal plane Π in the (+z)-direction from −∞ to +∞, stopping
at each zi. Let Π(t) denote the horizontal plane at z = t. For each
1 ≤ i < 2n, the cross-section U(C) ∩ Π(z) is the same for all
z ∈ (zi, zi+1). Let ai denote the area of this cross-section. Then

Vol U(C) =

2n−1
X

i=1

ai(zi+1 − zi).

We thus need to maintain ai as we sweep the horizontal plane. The
intersection of Π(z) with U(C) is the union of a set S of squares that
changes dynamically—a square is added to the intersection when
Π sweeps through the bottom facet of its corresponding cube, and
is removed from the intersection when Π sweeps through the top
facet of its cube. We describe a data structure that maintains, in
O(n1/3 log n) amortized time, the area of the union of S, denoted
by Area U(S), as we insert a square into S or delete a square from
S during the sweep. This implies Theorem 1.1. Our procedure
exploits, in a crucial though subtle way, the special (obvious) prop-
erty that the life-time of a square of side length h (regarding the
z-direction as “time”) is also h time units.

In our case, we know in advance the set V ⊂ R
2 of vertices of all

the squares that will ever be inserted into S. That is, V is the set of
the xy-projections of the vertices of the given cubes, and we have
|V| = 4n. Let B be the smallest axis-parallel rectangle containing
V. We choose the parameter s = n1/3, and partition B into s
rectangles B1, . . . , Bs, called slabs, by vertical lines (parallel to
the y-axis), so that the interior of each Bi contains at most 4n/s =

O(n2/3) vertices of V; see Figure 1. Next, we partition each Bi

into s rectangles, called cells, by lines parallel to the x-axis, so
that the interior of each cell contains at most 4n/s2 = O(n1/3)
vertices. For 1 ≤ i ≤ s, we maintain αi = Area U(S)∩Bi, using
a binary tree Ti with s leaves. Each node v of Ti is associated
with a rectangle 2v contained in Bi and touching its two vertical
sides. For the ith leftmost leaf v of Ti, 2v is the ith bottom-most
cell of Bi. For an interior node v with children w and z, 2v =
2w ∪ 2z . For a node v ∈ Ti, let Sv ⊆ S be the set of squares
whose boundaries intersect the interior of 2v , and S

∗
v ⊆ S be the

set of squares that contain 2v but not 2p(v) (where p(v) is the
parent of v). At each leaf v of Ti we store the respective set Sv ,
and we also store σv = |S∗

v | at each node v. For a node v ∈ Ti, let
αv = Area U(Sv ∪S

∗
v)∩2v . If v is a leaf, we compute and update

αv using the algorithm described in Section 3. For an interior node
v with children w and z, we have

αv =

Area 2v if σv ≥ 1,
αw + αz if σv = 0. (1)

When we insert a square S, we first find all the slabs Bi that
S meets. Then, for each of these Bi, we find the leaves v of Ti

such that 2v ∩ ∂S 6= ∅. For each such v, we insert S into Sv and
update αv using the algorithm described in Section 3. If Bi does
not contain a vertex of S, then S is inserted into at most two leaves
w and z, such that 2w and 2z intersect the horizontal edges of S.
Next, we find all O(log n) nodes u in Ti which lie between w and
z, and whose parents lie along the two paths of Ti to w and to z,
so that 2u ⊆ S but 2p(u) 6⊆ S. For each such u, we increment

the value of σu and set αu = Area2u. If Bi contains a vertex of
S, then S may have to be inserted into many (perhaps all) leaves
of Ti, and S 6∈ S

∗
v for any v ∈ Ti. For each leaf v for which

2v ∩ ∂S 6= ∅, we update αv , using the algorithm of Section 3.
Finally, using (1) in a bottom-up manner, we update the values

αu for all ancestors u of any node v that has been updated. We
repeat this procedure for each of the slabs Bi, and return the value
of

Ps
i=1 αroot(Ti). A square is deleted from S in a similar manner.

2w

B3 B4

v

w

2v

B1 B2

Figure 1. Partition of B into four slabs and sixteen cells, and the tree
T1.

Let v be a leaf of T such that S ∈ Sv . We show in the next
section (cf. Lemma 3.1) that if 2v ∩ ∂S 6= ∅, then

(i) αv can be updated in O(log n) amortized time provided that
2v does not contain a vertex of S in its interior, and

(ii) αv can be updated in O((n/s2) log n) = O(n1/3 log n)
amortized time if 2v does contain a vertex of S in its in-
terior.

There are at most four cells that contain a vertex of S, and there are
at most 4s cells that intersect ∂S, so we spend a total of O((s +

n/s2) log n) = O(n1/3 log n) amortized time in updating the ar-
eas at the leaves of the trees Ti. We then update the ancestors of the
updated leaves. In the worst case, we visit all the nodes of at most
two Ti’s—if Bi contains a vertex of S—and O(log n) nodes of
any other Ti. We spend O(1) time at each of these ancestor nodes.
Hence, the total amortized time spent in updating Area U(S) when
a square is inserted or deleted isO(n1/3 log n). That is, Area U(S)

can be updated in O(n1/3 log n) amortized time after each update
operation, and Theorem 1.1 follows.

Remark. We believe that the running time of the algorithm can be
improved to O(n polylog(n)) by using a recursive binary partion-
ing of B and maintaining a similar (but more involved) information
at each cell in the recursive partition. However we have not suc-
ceeded in overcoming all the technical difficulties in updating the
information at each cell in amortized O(polylog(n)) time when a
square is inserted or deleted.

3. MANTAINING THE UNION WITHIN A
CELL

Let 2 = [x0, x1] × [y0, y1] be a fixed cell in the partition of B,
which, as we recall, is an axis-parallel rectangle in R

2. Without loss
of generality, we assume that x1−x0 ≥ y1−y0 (handling cells with
x1 − x0 < y1 − y0 is done in a symmetric manner, switching the
roles of the x- and y-axes). Let p0 = (x0, y0), p1 = (x1, y0), p2 =

(x1, y1), and p3 = (x0, y1) be its vertices in counterclockwise
order. Let S be a set of squares whose boundaries intersect 2. We
describe a data structure for maintaining the area α2 of U(S) ∩ 2

under insertions and deletions of squares to/from S, where we also
assume that the life-span of each square in S is equal to its side
length. Recall that the set S is updated when the sweep plane passes
through a top or a bottom facet of a cube in C.

Lower rim

pillars

upper rim

corner

floaters

corner

p2

p0

p3

p1

Figure 2. Partition of S into various categories.

Since the boundary of each square in S intersects 2, and the x-
span of 2 is at least as large as its y-span, no square S ∈ S can
intersect both left and right edges of 2 without fully containing
either the top or bottom edge of 2. We partition S into the follow-
ing subsets (we assume that no square of S fully contains 2—this
situation is handled in the high-level description given above); see
Figure 2):

Upper rim. The set of squares, denoted by U, that contain the top
edge of 2. We store U in a list sorted in decreasing order of
the y-coordinates of their bottom edges.

Lower rim. The set of squares, denoted by L, that contain the bot-
tom edge of 2. We store L in a list sorted in increasing order
of the y-coordinates of their top edges.

Pillars. The set of squares, denoted by P, that intersect both top
and bottom edges of 2.

Corners. The set of squares, denoted by C, that contain exactly
one vertex of 2; exactly one vertex of each corner square
lies in 2.

Floaters. The set of remaining squares, denoted by F; at least two
(i.e., either two or four) of the vertices of each floater square
lie in 2.

The first three types of squares are called long, and the last two
types are called short.1 The floor of 2 is the top edge of the last
square in the lower rim (i.e., the highest edge in the lower rim), and
the ceiling is the bottom edge of the last square (the lowest edge)
in the upper rim.

Returning to our overall algorithm described in the previous sec-
tion, 2 has only O(n1/3) short squares, so we can spend time lin-
ear in the number of short squares to indert or delete a short square.
For example, we can afford to (and indeed we will) recompute the
union of the corners or of the floaters when we insert or delete
one of these squares. In contrast, inserting/deleting a long square
(rim or pillar) is more challenging, since we want to do it in only
O(log n) (amortized) time.

The main technical complication in our solution is that, while
it is fairly easy to maintain the area of the union of each class of
1This is somewhat of a misnomer for corner squares, which can be quite
large compared with 2, but we still think of them as short since they have a
vertex inside 2.

squares separately, it is much more involved to maintain the area
of the combined union. Our approach is to maintain this latter area
as the sum of areas of disjoint portions of 2—the area covered by
the rims, the area covered by the pillars but not by the rims, the
area covered by the corner squares but not by the pillars or rims,
and finally the area covered by the floaters but not by any other
square. Maintaining these disjoint areas is somewhat tricky; the
high-level details are given in this section, and the low-level details
in Section 4.

We call a (rectilinear) polygon staircase if it consists of a rectilin-
ear chain that is both x- and y-monotone (in each coordinate it can
be either increasing or decreasing), and the endpoints of the chain
are connected together by a horizontal and a vertical edge; see Fig-
ure 3 (i). The common endpoint of the horizontal and the vertical
edge is called the apex of the polygon. Since the complexity of the
union of a set of axis-parallel squares is linear, U(C)∩2 hasO(|C|)
vertices. We can decompose U(C) ∩ 2 into four pairwise-disjoint
staircase polygons, P0, P1, P2, P3, with a total of O(|C|) vertices,
such that the apex of Pi is the vertex pi of 2 (see Figure 3 (ii)). In-
formally, Pi is composed of the corner squares that contain pi, but
since other squares can “nibble off” some portions of these squares,
as is illustrated in the figure, Pi may be smaller than the union of its
squares. Also, the Pi’s are not uniquely defined, but, since they will
be recomputed from scratch when we insert or delete a square into
C, the precise way of defining them does not matter, as long as we
keep them disjoint. We decompose each Pi into a set C̃i of rectan-
gles by computing the vertical decomposition of Pi, i.e., drawing a
vertical edge from each reflex vertex of Pi within 2 until it touches
a horizontal edge of 2; see Figure 3 (iii). Set C̃ =

S3
i=0 C̃i. By

construction, U(C̃) = U(C) ∩ 2.
We compute (U(F)∩2)\U(C), the portion of U(F)∩2 that lies

outside U(C), and partition it into pairwise-disjoint rectangles by
computing its vertical decomposition. Let R = {R1, . . . , Ru} be
the set of the rectangles in the resulting decomposition. Since U(F)
and U(C) have O(|F|) and O(|C|) vertices, respectively, |R| =
O(|C| + |F|). See Figure 4. We call a rectangle of R stalactite
(resp., stalagmite) if it intersects the ceiling (resp., floor) of 2; a
rectangle may be both a stalactite and a stalagmite. Let Sg (resp.,
Sc) denote the set of stalagmites (resp., stalactites) in R. We store
the horizontal edges of F (or, more precisely, the rectangles in R)
in a list Λ, sorted by their y-coordinates.

In addition we maintain the following information.

fl: The y-coordinate of the floor of 2.

cl: The y-coordinate of the ceiling of 2.

π: The length of the portion of the top edge of 2 (or any other
horizontal line intersecting 2) covered by the pillars.

ψ: The area of U(C̃) not covered by the long squares (i.e., pil-
lars, upper rim, and lower rim).

ϕ: The area of U(R) not covered by the long squares.

Assuming that we can maintain the above data as the squares
of S are inserted and deleted, the area α2 (which, as we recall, is
the area of the portion of 2 covered by the squares of S, whose
boundaries cross 2) can be computed as follows. If cl ≤ fl, then
α2 equals the entire area of 2. Otherwise,

α2 = (x1 −x0)[(fl− y0)+ (y1 − cl)]+ (cl−fl)π+ψ+ϕ. (2)

Indeed, the first term is the area of the region covered by the upper
rim squares and the lower rim squares. The second term is the area
of the region covered by the pillars but not by any rim square. The

(i) (ii) (iii)

P3

C̃3

P0

P2

P1

C̃2

C̃0 C̃1

Figure 3. (i) Staircase polygons. (ii) Decomposition of U(C) into four staircase polygons P0, . . . , P3. (iii) The decomposition C̃i of each Pi into
rectangles.

(ii)(i)

cl

fl

P3

P0

P2

stalactites

stalagmites

Figure 4. (i) Squares in F; the darkly-shaded region is U(C)∩2, and
the lightly-shaded region is (U(F) ∩ 2) \ U(C); the rim squares are
drawn as dashed. (ii) Rectangles in R; the dark shaded rectangles
are the stalagmites and stalactites;

third term is the area of the region covered by the corner squares
but not by any rim square or pillar, and the fourth term is the area
of the region covered by the floater squares but not by any other
type of squares (recall that, by construction, R is disjoint from the
corner squares). See Figure 5.

Figure 5. Each term of (2) is shown in a different shade.

We maintain π using a segment tree T(P) that stores P, we main-
tain ψ using a segment tree T(C̃) that stores C̃, and we maintain
ϕ using a segment tree T(R) that stores R. Each of these seg-
ment trees is defined over the endpoints of the x-projections of the
squares in S (and thus also the rectangles in P, C̃, and R). There-
fore, they have the same structure, and there is a bijection between
the nodes of any pair of them; the only difference among them is
the auxiliary information stored at each node. In principle, we can
use a single segment tree in which each node contains the combined
information from the individual trees T(P), T(C̃), and T(R). We
treat them as three separate segment trees, though, to simplify the
presentation.

We update T(P), and thereby π, when we insert or delete a pillar.
Similarly, we update T(C̃) when either C̃ changes, or when we
insert or delete a pillar (even though pillars are not stored in T(C̃)).
The tree T(C̃) is designed to answer corner-area queries, defined

as follows. Let ∆ ⊆ [y0, y1] be a y-interval, and letW∆ denote the
rectangle [x0, x1] × ∆. Define

ψ(∆) = Area
“

[U(C̃) \ U(P)] ∩W∆

”

.

A corner-area query is: given a y-interval ∆ ⊆ [y0, y1], com-
pute ψ(∆). We describe in Section 4.2 a procedure for answer-
ing such queries using T(C̃). When fl or cl changes we update
ψ by performing a query on T(C̃) with ∆ = [fl, cl] and setting
ψ := ψ([fl, cl]).

Although T(R) stores only R, the information stored at the nodes
of T(R) depends on P and C too, and also on fl and cl. Therefore
we update T(R) when one of the following events occurs:

(i) We insert or delete a pillar.

(ii) The set R changes, as we insert or delete a corner or floater
square.

(iii) A rectangle in R becomes or stops being a stalactite or a
stalagmite (due to the motion of fl or cl).

Note that

ϕ = Area ([U(R) \ U(P)] ∩W∆) ,

where ∆ = [fl, cl], and W∆ is as defined above. It is easy to com-
pute ϕ in O(1) time, using the values of fl and cl, and the informa-
tion maintained at the root of T(R); see Section 4.3. We update ϕ
after every update to T(R) and after inserting or deleting a lower
or an upper rim square.

We show in Section 4 how to implement these segment trees
so that (i) inserting a rectangle into, or deleting a rectangle from
T(P), T(C̃), or T(R) takes O(log n) time; (ii) a corner-area query
to T(C̃) takes O(log n) time.

Inserting/deleting a short square. Suppose we want to insert
a short square S into S or delete S from S. Let µ ≤ 4n/s2 =

O(n1/3) denote the maximum number of short squares ever present
in S. If S ∈ C, we recompute C̃ in O(µ log n) time. We delete the
old rectangles of C̃ from T(C̃) and insert the new ones, in a total
of O(µ log n) time. Next, in both cases where S is a floater or a
corner square, we recompute R in O(µ log n) time and reconstruct
the list Λ. We delete all old rectangles of R from T(R) and insert
each new rectangle of R into T(R), in a total of O(µ log n) time.
We update ψ by a corner-area query to T(C̃), and we update ϕ
using the information at the root of T(R). Finally, using (2), we
compute the new value of α2. The total time spent in inserting or
deleting a short square is O(µ log n).

Inserting/deleting a long square. Suppose we want to insert a
long square S. If S is a pillar, we first insert it into T(P) and
then update T(C̃) and T(R). Next, we update π, ψ, and ϕ and

recompute α2. It takes O(log n) time to update each of the trees
T(P), T(C̃), and T(R), and it takes O(log n) time to perform a
corner-area query on T(C̃) to obtain ψ.

If S is a lower rim square, we first insert S into the sorted se-
quence L of lower rim squares. If S is not the topmost lower rim
square, it does not affect U2, and we stop. Otherwise, let χ be the
y-coordinate of the top edge of S. We raise the floor continuously
from fl to χ, stopping at each horizontal edge of a square in F (or,
more precisely, of a rectangle in R) that the sweep encounters, and
update T(R), until we reach χ.

In more detail, we find the first edge in Λ that lies above the
current floor of 2, and then scan Λ from this edge upwards, pro-
cessing each edge that lies below χ. Consider such an edge e at
y-coordinate τ , and let R ∈ R be the rectangle bounded by e. If e
is the bottom edge ofR thenR becomes a stalactite, so we addR to
Sc, we delete R from T(R) and reinsert it into T(R) as a stalactite.
If R was also a stalagmite it remains a stalagmite. When the sweep
reaches χ we update ϕ and α2 in O(1) time. If e is the top edge
ofR thenR stops being a stalactite and disappears below the lower
rim. So we delete R from Sc and T(R), and reinsert R into T(R)
(with the new status of not being a stalactite).

If we delete the highest square of the lower rim, we essentially
follow the same algorithm in reverse, lowering the floor to its new
value, and processing the affected edges in Λ in the order that they
get exposed. We can lower and raise the ceiling in a similar manner.
If the algorithm sweeps across κ horizontal edges of rectangles in
R, then these updates take O((κ + 1) log n) time, which is large
when κ is large. Nevertheless, we show next that the amortized
cost of these updates remains O(log n) per update.

Amortized analysis. We now show that the total time spent in
lifting the floor or lowering the ceiling throughout the sweep is pro-
portional to the overall time it takes to insert and delete all the short
squares. The key observation is that the size of a lower or upper
rim square is always bigger than that of any floater. Recall that a
square is inserted when the sweep plane reaches the bottom facet of
its cube C and is deleted when it reaches the top facet of C. There-
fore if a lower or an upper rim square S is inserted after a floater
S′, then S′ is deleted before S is deleted.

Let e be the top or bottom edge of a rectangle R ∈ R. Since e
is also part of an edge of a floater, it follows that the floor sweeps
across e, before R is deleted, at most twice: It may be lowered
below e once (during the deletion of a lower-rim square that was
inserted before R was inserted), and then it may be raised above e
once. The same is true for the ceiling. Since R has two horizontal
edges, R may be reinserted into T(R) at most eight times before
it disappears. (Typically, this is an overestimate: the number of
times the floor or ceiling sweeps across a horizontal edge of some
square in S is at most eight, but these edges do not have to bound
the same rectangles of R at all these events.) Each such deletion
and reinsertion of R takes O(log n) time. So if we charge R for
O(log n) work when it is created, then this charge suffices to pay
for all deletions and insertions of R into T(R).

A rectangle R is created when we insert or delete a short square
S (either a square in C or a square in F). We then compute the entire
decomposition of (U(F) ∩ 2) \ U(C). This decomposition has at
most µ rectangles and we compute it in O(µ log n) time. The total
charges required by these new rectangles in R isO(µ log n). So we
can pay them by increasing the (amortized) insertion time of S by a
constant factor. The following lemma follows from our discussion
above and from the properties of the segment tree, which will be
established in Lemma 4.1.

LEMMA 3.1. The amortized update time of a long square in S

is O(log n), and the worst-case update time of a short square in
S is O(µ log n), where µ ≤ 4n/s2 = O(n1/3) is the maximum
number of short squares in 2 at any time.

Theorem 1.1 now follows from Lemma 3.1 and from the sweep-
ing algorithm that we have described.

PI-QUERY(v, I)

if I = ∅ return 0
if δv ⊆ I return π(v)
if I ⊆ δv and |Pv| ≥ 1 return ‖I‖
return PI-QUERY(L(v), I ∩ δL(v))

+ PI-QUERY(R(v), I ∩ δR(v))

Figure 6. Recursive procedure for computing π(I); ‖I‖ is the length
of the interval I.

4. THE SEGMENT TREES
We now describe the procedures for maintaining T(P), T(C̃),

and T(R). The leaves of each of them represent atomic intervals
delimited by the x-projections of all the vertices of the squares in
S, which we know in advance, so their structure is fixed. Since
these trees are isomorphic, for each node v in one of them, there
are corresponding nodes in the other two trees and we will denote
all of them by the same symbol v. Each node v of T(P) (and the
corresponding nodes in the other two trees) is associated with an
x-interval δv , and a rectangle 2v = δv × [y0, y1]. If v is a leaf,
then δv is the atomic interval associated with v. If v is not a leaf
and w, z are the two children of v, then δv = δw ∪ δz . We denote
the length of δv by ‖δv‖.

For an interval I , let C(I) denote the set of nodes v of these trees
such that δv ⊆ I ⊂ δp(v), where p(v) is the parent of v, and let
N(I) denote the set of ancestors of the nodes in C(I). For any
interval I , C(I) and N(I) can be computed in O(log n) time. For
a rectangle R, let IR denote its x-projection. For an interior node
v, let L(v) and R(v) denote its left and right child, respectively.

4.1 Maintaining T(P)

For a node v ∈ T(P), let Pv ⊆ P be the set of pillars whose
x-projections contain δv but not δp(v). Let P

∗
v =

S

w Pw , over all
descendents w of v (including v itself), and let π(v) be the length
of the portion of δv covered by the x-projections of the pillars in
P
∗
v . At each node v ∈ T(P) we maintain |Pv | and π(v). For a leaf
v, π(v) = ‖δ(v)‖ if Pv 6= ∅ and π(v) = 0 otherwise. If v is an
interior node then

π(v) =

‖δv‖ if Pv 6= ∅,
π(L(v)) + π(R(v)) otherwise. (3)

Clearly, if u is the root of T(P) then π(u) is the value of π, i.e., the
length of the portion of the top edge of 2 (or any other horizontal
line intersecting 2) covered by the pillars.

Inserting/deleting a pillar. Let P be a new pillar that we want
to insert into T(P). For each node v ∈ C(IP), we increment ‖Pv‖
and set π(v) = ‖δv‖ (since P ∈ Pv). Then we proceed, bottom-
up, through the nodes of N(IP), and, for each such node v, we
update π(v) using (3). Deletion of a pillar from T(P) is done sym-
metrically. Each of these operations takes O(log n) time.

Answering pillar-length queries. A pillar-length query, with an
interval I ⊆ [x0, x1], seeks the value of π(I), the length of the por-
tion of I covered by the x-projections of the pillars. The recursive

IL IB

∆ ∆RL

RB

xRx0xL

ψ0(∆)

xL
xR

P0(∆)

(i) (ii)

α

β

Figure 7. (i) Shaded region is ψ0(∆), rectangles in C̃0(∆) are drawn by thick lines; pillars are drawn by dashed lines. (ii) Rectangles RB and
RL; dotted lines surround P0(∆).

procedure described in Figure 6 computes π(I). It is a standard 1-
dimensional range-searching procedure, with one caveat: the end-
points of I may lie in the interior of the intervals associated with
the corresponding leaves of T(P), so additional (though obvious)
actions are required at those leaves. The correctness is straightfor-
ward, and the running time is obviously O(log n). Pillar-length
queries will be used in Section 4.2.

4.2 Maintaining T(C̃)

We next describe the information stored at the nodes of T(C̃)

and its update and query procedures. For each node v ∈ T(C̃) and
for i = 0, 1, 2, 3, we define C̃iv to be the subset of rectangles C
in C̃i such that δv ⊆ IC ⊂ δp(v); set C̃

∗
iv =

S

w C̃iw , over all
descendents w of v (including v itself). Since the rectangles in C̃i

are pairwise disjoint and a vertical line intersects at most one of
them, C̃iv 6= ∅ implies that C̃

∗
iv = C̃iv is a singleton set {Civ}. At

each node v of T(C̃), for i = 0, 1, 2, 3, we maintain the rectangle
Civ if C̃iv 6= ∅ and the following two pieces of information:

ξi(v): Area([U(C̃∗
iv) \ U(P∗

v)] ∩ 2v), for i = 0, . . . , 3.

Ji(v): The smallest vertical segment that contains the y-coordinates
of all the horizontal edges of the staircase polygon Pi that
cross 2v . If 2v intersects only one (resp., no) horizontal
edge of the chain, then Ji(v) is a singleton (resp., empty).
The segments Ji(v) at the leaves are ordered in the (increas-
ing or decreasing) y-direction because Pi(v) is a staircase,
and therefore monotone, polygon.

As already noted, if C̃iv 6= ∅, then it consists of a single rectangle
Civ . We denote by χiv the y-coordinate of the horizontal edge of
Civ that lies in the interior of 2v . Hence, for an interior node v we
have that

ξi(v) =

8

<

:

0 if Pv 6= ∅,
(‖δv‖ − π(v))Ht(Civ) if Pv = ∅, C̃iv 6= ∅,
ξi(L(v)) + ξi(R(v)) otherwise.

(4)

Ji(v) =

[χiv , χiv] if C̃iv 6= ∅,
conv(Ji(L(v)) ∪ Ji(R(v))) otherwise. (5)

Here conv(X) is the smallest interval containing X , and Ht(%)
denotes the height of a rectangle %. If v is a leaf, a similar equation
holds, without the recursive terms involving the children.

Inserting/deleting a pillar. Since ξi(v) depends on π(v), we up-
date T(C̃) when a pillar is inserted or deleted, even though pillars
are not explicitly stored in T(C̃). Suppose we insert or delete a
pillar P . After updating T(P), we update ξi(v) and Ji(v) at var-
ious nodes, as follows. For each node v ∈ C(IP) and for each

i = 0, 1, 2, 3, we set ξi(v) = 0 (since π(v) = ‖δv‖). Then we
proceed through the nodes of N(IP) in a bottom-up fashion, and
update ξi(v) at each such node v using (4).

Inserting/deleting a corner. To insert a rectangle C ∈ C̃i, we
first store C as the rectangle Civ for all nodes v ∈ C(IC). Then
we proceed through the nodes of C(IC) ∪ N(IC) in a bottom-up
fashion, and, for each such node v, we update ξi(v) and Ji(v) ac-
cording to (4) and (5), respectively. Since C̃iv 6= ∅ for v ∈ C(I),
updating ξi(v) and Ji(v) for v ∈ C(IC) does not require the recur-
sive terms of (4) and (5).

Answering a corner-area query. Let ∆ = [α, β] ⊆ [y0, y1] be a
y-interval. We describe how to compute

ψ(∆) = Area[U(C̃) \ U(P)] ∩W∆.

Clearly, ψ(∆) =
P3

i=0 ψi(∆), where ψi(∆) = Area[U(C̃i) \
U(P)]∩W∆; see Figure 7 (i). We describe how to compute ψ0(∆);
the other ψi(∆)’s are computed in a similar manner.

Let C̃0(∆) ⊆ C̃0 be the set of rectangles whose top edges have
y-coordinates in ∆; see Figure 7 (ii). The rectangles in C̃0(∆)

form a contiguous subsequence of C̃0, and U(C̃0(∆)) is also a
staircase polygon P0(∆). Let xL (resp., xR) be the x-coordinate
of the left (resp., right) boundary of P0(∆). Set IL = [x0, xL],
IB = [xL, xR], RL = IL × ∆, and RB = IB × [y0, α] (see
Figure 7 (ii)). Then

U(C̃0) ∩W∆ = [P0(∆) \RB] ∪RL.

Since RL and P0(∆) are disjoint and RB ⊆ P0(∆), we have

ψ0(∆) = Area(P0(∆) \ U(P)) − Area(RB \ U(P))

+ Area(RL \ U(P))

= Area(P0(∆) \ U(P)) − (xR − xL − π(IB))(α− y0)

+(xL − x0 − π(IL))(β − α).

We compute π(IB) and π(IL) by performing two pillar-length
queries on T(P) with IB and IL, respectively. We then compute
P0(∆) \ U(P) by invoking the recursive procedure described in
Figure 8 with the root of T(C) and ∆.

The running time of the procedure PSI-QUERY is O(log n) be-
cause the intervals J0(v) are ordered along the leaves of T(C̃) and
the parents of the nodes visited by the procedure lie on two paths
of T(C̃).

4.3 Maintaining T(R)

For each v ∈ T(R), we define Rv ⊆ R to be the subset of
rectangles of R whose x-projections contain δv but not δp(v), and
set R

∗
v =

S

w Rw , over all descendents w of v (including v itself).

PSI-QUERY(v, ∆)

if ∆ ∩ J0(v) = ∅ return 0
if J0(v) ⊆ ∆ return ξ0(v)
return PSI-QUERY(L(v), ∆)

+ PSI-QUERY(R(v), ∆)

Figure 8. The recursive procedure to compute P0(∆) \ U(P).

At each node v of T(R), we store the set Rv and the following
auxiliary information:

ϕ(v): Area of U(R∗
v)∩2v not covered by the long squares (pillars,

upper rim, lower rim) of S.

h(v): Length of the left edge of 2v covered by the rectangles in
Rv but not by the squares in the upper or lower rim.

λf (v): Length of the floor covered by the x-projections of the sta-
lagmites in R

∗
v but not by the pillars.

λc(v): Length of the ceiling covered by the x-projections of the sta-
lactites in R

∗
v but not by the pillars.

fl(v): The most recently recorded value of fl at v.

cl(v): The most recently recorded value of cl at v.

We remark right away that not all these values are correctly main-
tained at all times at v, but they are maintained in such a way that
it is easy to reset them (in O(1) time) to the correct values upon
demand—see below.

The values stored at the root of T(R) immediately give the values
of ϕ that we maintain for 2, as required by the algorithm described
in Section 3. Let %v be the rectangle δv × [fl, cl], assuming fl ≤ cl.
Since, by construction, every rectangle in Rv extends from the left
edge to the right edge of 2v , we have

h(v) =
X

R∈Rv

Ht(R ∩ %v). (6)

Note that h(v) depends only on Rv and not on the other rectangles
in the sets Rw , for proper descendants w of v. Moreover, there is
at most one rectangle in Rv that intersects the floor (resp., ceiling).
Hence, Ht(R ∩ %v) is either 0 or Ht(R) except for at most two
rectangles in Rv .

Let w and z be the children of an interior node v. The following
equalities are obvious (see Figure 9):

ϕ(v) =

0 if Pv 6= ∅,
ϕ(w) + ϕ(z) + (‖δv‖ − π(v))h(v) otherwise. (7)

λf (v) =

8

<

:

0 if Pv 6= ∅,
‖δv‖ if Pv = ∅, Rv ∩ Sg 6= ∅,
λf (w) + λf (z) otherwise.

(8)

λc(v) =

8

<

:

0 if Pv 6= ∅,
‖δv‖ if Pv = ∅, Rv ∩ Sc 6= ∅,
λc(w) + λc(z) otherwise.

(9)

We can use simpler variants of the above equations, which do not
involve the recursive terms, for the values of these quantities at the
leaf nodes; for example, ϕ(v) is 0 if Pv 6= ∅, and is ‖δv‖ · h(v)
otherwise.

T(R) always maintains the correct values of λc(v) and λf (v) at
all nodes, but the values of fl(v), cl(v), ϕ(v), h(v) may be incorrect
because the updating of the floor and ceiling of 2 does not always

cl

fl

δzδw

δv

Figure 9. Illustrating the data stored at a node v of the various seg-
ment trees: π(v) is the highlighted portion of the bottom edge; λf (v)
is highlighted on the floor, and λc(v) is highlighted on the ceiling;
h(v) is highlighted on the left edge, and ϕ(v) is the darker region.

reach all the nodes of T(R) in “real time”. For example, if the floor
is raised when we insert a square of the lower rim, so that no edge
in Λ lies between the new and old floor, then we do not update
T(R) at all, and thus fl(v), cl(v), ϕ(v), and h(v) are not modified,
even though they have changed. Even when T(R) gets updated,
when the floor or ceiling sweeps through a horizontal floater edge,
not all the nodes of T(R) “get the news”—it is too expensive to
broadcast the changes explicitly to all nodes of T(R). Instead, we
update them in a lazy manner, so that the following two invariants
are maintained:

(I1) For any node v ∈ T(R), none of the y-coordinates
of the horizontal edges of rectangles in R

∗
v lie be-

tween fl and fl(v) or between cl and cl(v).
(I2) The value of ϕ(v) gives the area of U(R∗

v) ∩
2v not covered by the long squares of S, under
the assumption that the floor (resp., ceiling) is at
fl(v) (resp., cl(v)).

To ensure that these quantities at a node v are correct whenever
we access v (either to update the information stored at v or to re-
compute the information at p(v)), we apply the two straightforward
subroutines described in Figure 10, before manipulating/accessing
any other data at v.

By invariant (I1), there is no horizontal edge of R
∗
v between fl

and fl(v), so if we raise the floor from fl(v) to fl then the value
of ϕ(v) decreases by the amount λf (v)[fl − fl(v)]. A similar ar-
gument justifies the updating applied to h(v), and for the ceiling.
This, in conjunction with (I2), implies that, after executing these
procedures, fl(v), cl(v), ϕ(v) and h(v) have their correct values.

Whenever we want to compute the value of ϕ in Section 3, after
inserting or deleting a square in S, we call ADJUSTFLOOR and AD-
JUSTCEILING at the root u in T(F) and return the value of ϕ(u).

Inserting/deleting a pillar. Although pillars are not stored ex-
plicitly in T(R), as for T(C̃), we update the auxiliary information
in T(R) whenever a pillar is inserted or deleted to reset the quan-
tities π(v). Suppose we insert or delete a pillar P . We first visit
the nodes v in N(IP) in a top-down manner and call the functions
ADJUSTFLOOR and ADJUSTCEILING at v, and at its children if v
is an interior node. Next, we update ϕ(v), λf (v), λc(v), fl(v), and
cl(v) at all nodes v ∈ N(IP)∪C(IP) in a bottom-up manner using
(7)–(9). The total time spent is O(log n).

Inserting/deleting a floater. Suppose we want to insert or delete
a rectangle R ∈ R. As for the case of pillars, we first visit the
nodes v in N(IR) in a top-down manner and call the functions

ADJUSTFLOOR(v)
ϕ(v) = ϕ(v) − λf (v)[fl − fl(v)]
if R(v) ∩ Sg 6= ∅
h(v) = h(v) − [fl − fl(v)]

fl(v) = fl

ADJUSTCEILING(v)
ϕ(v) = ϕ(v) − λc(v)[cl(v) − cl]
if R(v) ∩ Sc 6= ∅
h(v) = h(v) − [cl(v) − cl]

cl(v) = cl

Figure 10. Subroutines to adjust the information at the nodes of T(F).

ADJUSTFLOOR and ADJUSTCEILING at v, and at its children if
v is an interior node. Next, we perform the following step at each
node v ∈ C(IR), i.e., at those nodes for which R ∈ Rv . Let
%v = δv × [fl, cl] and r = Ht(R ∩ %v). If we are inserting R,
we set h(v) = h(v) + r, ϕ(v) = ϕ(v) + (‖δv‖ − π(v))r, and
set λf (v) (resp., λc(v)) to ‖δv‖ − π(v) provided R is a rectangle
of Sg (resp., Sc). (Note that the values of h(v), ϕ(v) in the right-
hand sides of the equations are correct because the ADJUSTFLOOR
and ADJUSTCEILING subroutines have just been called at v.) On
the other hand, if we are deleting R, we set h(v) = h(v) − r,
ϕ(v) = ϕ(v) − (‖δv‖ − π(v))r, and set λf (v) (resp., λc(v)) to
zero, provided R is a rectangle of Sg (resp., Sc). The last action
is justified by noting that if R ∈ Sg then no other rectangle of R

∗
v

belongs to Sg, and the same is true for Sc.
Finally, we update ϕ(v), λf (v), λc(v),fl(v), and cl(v) at all nodes

v ∈ N(IR)∪C(IR) in a bottom-up manner using (7)–(9). The total
time spent is O(log n).

Putting everything together, we obtain the following lemma which
summarizes the properties of our segment trees.

LEMMA 4.1. Each of the following operations can be performed
in O(log n) time:

(i) insertion or deletion of a pillar, including the updates in
T(C̃) and T(R);

(ii) insertion or deletion of a corner or a floater rectangle;

(iii) answering a pillar-length or a corner-area query.

5. CONCLUSIONS
In this paper we described an O(n4/3 log n)-time algorithm for

computing the volume of the union of a set of cubes in R
3. A

natural question is whether the running time can be improved to
O(n polylog(n)). As remarked in the introduction, we believe that
our approach can be extended to get such an improved algorithm
but so far we have not been able to circumvent various technical
difficulties. Our algorithm heavily uses the fact that the input boxes

are cubes, so a faster algorithm for computing the union of general
(axis-aligned) boxes in R

3 remains elusive.

References
[1] http://en.wikipedia.org/wiki/Klee’s measure problem

[2] D. Attali and H. Edelsbrunner, Inclusion-exclusion formulas from in-
dependent complexes, Proc. 21st Ann. Sympos. Comput. Geom., 2005,
247–254.

[3] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications, 2nd edition,
Springer Verlag, Heidelberg, 2000.

[4] J. L. Bentley, Algorithms for Klee’s rectangle problems. Unpublished
notes, Computer Science Department, Carnegie Mellon University,
1977.

[5] J.D. Boissonnat, M. Sharir, B. Tagansky and M. Yvinec, Voronoi dia-
grams in higher dimensions under certain polyhedral distance functions,
Discrete Comput. Geom. 19 (1998), 485–519.

[6] E. Chen and T. M. Chan, Space-efficient algorithms for Klee’s measure
problem, Proc. 17th Canadian Conf. Comput. Geom., 2005.

[7] B. S. Chlebus, On the Klee’s measure problem in small dimensions,
Proc. 25th Conf. Current Trends in Theory and Practice of Informatics,
1998, 304-311.

[8] H. Edelsbrunner, The union of balls and its dual shape, Discrete Com-
put. Geom. 13 (1995), 415–440.

[9] M. L. Fredman and B. Weide, The complexity of computing the mea-
sure of

S

[ai, bi], Commun. ACM 21 (1978), 540–544.

[10] J. van Leeuwen and D. Wood, The measure problem for rectangular
ranges in d-space, J. Algorithms 2 (1981), 282–300.

[11] V. Klee, Can the measure of
S

[ai, bi] be computed in less than
O(n log n) steps? Amer. Math. Monthly 84 (1977), 284–285.

[12] M. Overmars and C.K. Yap, New upper bounds in Klee’s measure
problem, SIAM J. Comput. 20 (1991), 1034–1045.

