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Abstract. We present significant improvements to a practical algorithm
for the point-to-point shortest path problem on road networks that com-
bines A

∗ search, landmark-based lower bounds, and reach-based pruning.
Through reach-aware landmarks, better use of cache, and improved algo-
rithms for reach computation, we make preprocessing and queries faster
while reducing the overall space requirements. On the road networks of
the USA or Europe, the shortest path between two random vertices can
be found in about one millisecond after one or two hours of preprocessing.
The algorithm is also effective on two-dimensional grids.

1 Introduction

We study the point-to-point shortest path problem (P2P): given a directed graph
G = (V,A) with nonnegative arc lengths, a source s, and a destination t, find a
shortest path from s to t. Preprocessing is allowed, as long as the amount of pre-
computed data is linear in the input graph size; preprocessing time is limited by
practical considerations. The algorithms have two components: a preprocessing

algorithm that computes auxiliary data and a query algorithm that computes
an answer for a given s-t pair. We are interested in exact solutions only.

No nontrivial theoretical results are known for the general P2P problem. For
the special case of undirected planar graphs, sublinear bounds are known [7].
Experimental work on exact algorithms with preprocessing includes [8, 10–12,
14, 16, 18–20, 22, 23, 25]. Next we discuss the most relevant recent developments.

Gutman [12] introduced the notion of vertex reach. Informally, the reach of a
vertex v is large if v is close to the middle of some long shortest path and small
otherwise. Intuitively, local intersections have low reach and highways have high
reach. Gutman showed how to prune an s-t search based on (upper bounds on)
reaches and (lower bounds on) vertex distances from s and to t, using Euclidean
distances as lower bounds. He also observed that efficiency improves further
when reaches are combined with Euclidean-based A∗ search, which uses lower
bounds on the distance to the destination to direct the search towards it.

Goldberg and Harrelson [8] (see also [11]) have shown that A∗ search (with-
out reaches) performs significantly better when landmark-based lower bounds

⋆ Work partially done while this author was visiting Microsoft Research Silicon Valley.
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are used instead of Euclidean ones. The preprocessing algorithm computes and
stores the distances between every vertex and a small set of special vertices,
the landmarks. Queries use the triangle inequality to obtain lower bounds on
the distances between any two vertices in the graph. This leads to the alt (A∗

search, landmarks, and triangle inequality) algorithm for the P2P problem.

Sanders and Schultes [19, 20] use the notion of highway hierarchies to design
efficient algorithms for road networks. The preprocessing algorithm builds a
hierarchy of increasingly sparse highway networks; queries start at the original
graph and gradually move to upper levels of the hierarchy, greatly reducing the
search space. To magnify the natural hierarchy of road networks, the algorithm
adds shortcuts to the graph: additional edges with length equal to the original
shortest path between their endpoints.

We have recently shown [10] how shortcuts significantly improve the perfor-
mance of reach-based algorithms, in terms of both preprocessing and queries.
The resulting algorithm, called re, can be combined with alt in a natural way,
leading to the real algorithm. Section 2 presents a more detailed overview of
these algorithms. This paper continues our study of reach-based point-to-point
shortest paths algorithms and their combination with landmark-based A∗ search.

An important observation about re and real is that, unless s and t are
very close to each other, an s-t search will visit mostly vertices of high reach.
Therefore, as shown in Section 3.1, reordering vertices by reach can significantly
improve the locality (and running times) of reach-based queries. In Section 3.2
we develop the concept of reach-aware landmarks, based on the intuition that
accurate lower bounds are more important for vertices of high reach. In fact,
as we suggested in [10], one can keep landmark data for these vertices only.
Balancing the number of landmarks and the fraction of distances that is actually
kept, a memory-time trade-off is established. For large graphs, we were able to
reduce both time and space requirements compared to our previous algorithm.

In addition, motivated by the work of Sanders and Schultes [20], Section 3.4
describes how shortcuts can be used to bypass vertices of arbitrary (but usually
low) degree, instead of just degree-two vertices as our previous method did. This
improves both preprocessing and query performance. We also study two tech-
niques for accelerating reach computation: a modified version of our partial trees
algorithm (for finding approximate reaches) and a novel algorithm for finding
exact reaches. They are described in Sections 3.3 and 3.5, respectively.

Experimental results are presented in Section 4. On road networks, the al-
gorithmic improvements lead to substantial savings in time, especially for pre-
processing, and memory. The road networks of Europe or the USA can be pre-
processed in one or two hours, and queries take about one millisecond (while
Dijkstra’s algorithm takes seconds). We also obtain reasonably good results for
2-dimensional grids. For grids of higher dimension and for random graphs, how-
ever, preprocessing becomes too expensive and query speedups are only marginal.

A preliminary version of this paper [9] was presented at the 9th DIMACS
Implementation Challenge: Shortest Paths [5], where several other algorithms
were introduced [1, 3, 4, 15, 17, 21]. Section 5 discusses these recent developments.
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2 Algorithm Overview

Our algorithms have four main components: Dijkstra’s algorithm, reach-based
pruning, A∗ search, and their combination. We discuss each in turn.

Dijkstra’s algorithm. The labeling method finds shortest paths from a source s to
all vertices in the graph as follows (see e.g. [24]). It keeps for every vertex v its dis-
tance label d(v), parent p(v), and status S(v) ∈ {unreached, labeled, scanned}.
Initially, d(v) = ∞, p(v) = nil, and S(v) = unreached for every vertex v. The
method starts by setting d(s) = 0 and S(s) = labeled. While there are la-
beled vertices, it picks a labeled vertex v, relaxes all arcs out of v, and sets
S(v) = scanned. To relax an arc (v, w), one checks if d(w) > d(v) + ℓ(v, w) and,
if true, sets d(w) = d(v) + ℓ(v, w), p(w) = v, and S(w) = labeled. By always
scanning the vertex with the smallest label, Dijkstra’s algorithm [6] ensures that
no vertex is scanned more than once. The P2P version can stop when it is about
to scan the target t: the s-t path defined by the parent pointers is the solution.

One can also run Dijkstra’s algorithm from the target on the reverse graph
to find the shortest t-s path. The bidirectional algorithm alternates between the
forward and reverse searches, each maintaining its own set of distance labels
(denoted by df (·) and dr(·), respectively). When an arc (v, w) is relaxed by
the forward search and w has already been scanned by the reverse search, we
know the shortest s-v and w-t paths have lengths df (v) and dr(w), respectively.
If df (v) + ℓ(v, w) + dr(w) is less than the shortest path distance found so far
(initially∞), we update it. We perform similar updates during the reverse search.
The algorithm stops when the two searches meet.

Reach-based pruning. Given a path P from s to t and a vertex v on P , the
reach of v with respect to P is the minimum of the lengths of the s-v and v-t
subpaths of P . The reach of v, r(v), is the maximum, over all shortest paths P
through v, of the reach of v with respect to P [12]. We assume shortest paths are
unique, which can be achieved through perturbation. Computing exact reaches
is impractical for large graphs; we must resort to upper bounds instead. We
denote an upper bound on r(v) by r(v), and a lower bound on the distance
dist(v, w) from v to w by dist(v, w). If, during an s-t query, we observe that
r(v) < dist(s, v) and r(v) < dist(v, t), then v is not on a shortest path from s to
t and therefore Dijkstra’s algorithm can prune the search at v.

To apply this, we need lower bounds on dist(s, v) and dist(v, t). During a
bidirectional search, one can use the bounds implicit in the search itself [10].
Consider the forward direction (the reverse case is similar), and let γ be the
smallest distance label of a labeled vertex in the reverse direction (i.e., the top-
most label in the reverse heap). If a vertex v has not been scanned in the reverse
direction, then γ is a lower bound on the distance from v to t. We can prune the
search at v if v has not been scanned in the reverse direction, r̄(v) < df (v), and
r̄(v) < γ. The algorithm can still stop when the searches meet.

Reach upper bounds are computed during the preprocessing phase. It works
in rounds, each associated with a threshold ǫi (which grows exponentially with
i). Round i bounds the reach of vertices whose reach is at most ǫi. It does so



4

by growing partial trees from each vertex, each with depth roughly 2ǫi. A ver-
tex whose reach is bounded is eliminated from the graph and considered only
indirectly in subsequent rounds. We also add shortcuts to the graph before each
round [10]. Given two edges (u, v) and (v, w), a shortcut is a new edge (u,w)
with length ℓ(u, v) + ℓ(v, w) (ℓ(·, ·) denotes the length of an edge). When ties
are broken appropriately, the shortcut will ensure that v does not belong to
the shortest path between u and w, potentially reducing v’s reach, thus mak-
ing pruning more effective and speeding up preprocessing. After all reaches are
bounded, a refinement step builds the graph induced by the ⌈5√n⌉ vertices with
highest reach bounds and recomputes the reaches using an exact algorithm. The
preprocessing algorithm, as well as improvements relative to [10], are discussed
in detail in Sections 3.3, 3.4, and 3.5.

A∗ search and the alt algorithm. A potential function maps vertices to reals.
Given a potential function π, the reduced cost of an arc is defined as ℓπ(v, w) =
ℓ(v, w)− π(v) + π(w). Suppose we replace ℓ by ℓπ. The length of every s-t path
changes by the same amount, π(t)−π(s), so finding shortest paths in the original
graph is equivalent to finding shortest paths in the transformed graph. Let πf

be a potential function such that πf (v) gives an estimate on the distance from
v to t. In the context of this paper, A∗ search [13] is an algorithm that works
like Dijkstra’s algorithm, but at each step selects a labeled vertex v with the
smallest key, defined as kf (v) = df (v) + πf (v), to scan next. This effectively
guides the search towards t. It is easy to see that A∗ search is equivalent to
Dijkstra’s algorithm on the graph with length function ℓπf

. If πf is such that ℓπ

is nonnegative for all arcs (i.e., if πf is feasible), the algorithm will find the correct
shortest paths. We use as potential functions lower bounds on the distance from
v to the target t. During the preprocessing stage, we pick a constant number
of vertices as landmarks and store distances between them and every vertex in
the graph; queries use these distances, together with the triangle inequality, to
compute the lower bounds. The alt algorithm is a bidirectional version of A∗

search with landmark bounds and triangle inequality.

Combining reaches and landmarks. We can combine A∗ search and reaches
in the obvious way: running A∗ search and pruning vertices based on reach
conditions. Specifically, when A∗ search is about to scan a vertex v with key
kf (v) = df (v) + πf (v), it can prune the search at v if r̄(v) < df (v) and
r̄(v) < πf (v). Note that this method (which we call real) has two prepro-
cessing algorithms: reach computation and landmark generation. Although they
are in principle independent, Section 3.2 will show that it might be useful to
take reaches into account when generating landmarks.

3 Algorithmic Improvements

3.1 Improving Locality

When reaches are available, a typical point-to-point query spends most of its
time scanning high-reach vertices. Except at the very beginning of the search,
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low-reach vertices are pruned by reach. This suggests an obvious optimization:
during preprocessing, reorder the vertices such that high-reach vertices are close
together in memory to improve cache locality. Simply sorting vertices in non-
increasing order of reach would destroy the locality of the input, which is often
quite high. Instead, we partition the vertices into equal-sized sets, the first with
the n/2 higher-reach vertices, and the other with the rest. We keep the original
relative ordering in each part, then recursively process the first (high-reach) part.
This also facilitates the optimizations described below.

3.2 Reach-Aware Landmarks

We can reduce the memory requirements of the algorithm by storing landmark
distances only for high-reach vertices, with marginal performance degradation.
If we use the saved space to add more landmarks, we get a wide range of trade-
offs between query performance and memory requirement. We call the resulting
method, a variant of real, the partial landmark algorithm.

Queries for this algorithm work as follows. Let R, the reach threshold, be
the smallest value such that all vertices with reach at least R have landmark
distances available. We say these vertices have high reach. Queries start as re,
with reach pruning but without A∗ search, until both balls searched have radius
R (or the algorithm terminates). From this point on, only vertices with reach R
or higher will be scanned. We switch to real by removing labeled vertices from
the heaps and reinserting them with new keys that incorporate lower bounds.

To process a vertex v, A∗ search needs lower bounds on the distance from
v to t (in the forward search) or from s to v (in the reverse search). They are
computed with the triangle inequality, which requires distances between these
vertices (v, s, and t) and the landmarks. These are available for v, which has
high reach, but not for s or t; for them, we must use proxies. The proxy for s,
which we denote by s′, is the high-reach vertex that is closest to s (t is treated
similarly). A lower bound on dist(s, v) using distances to a landmark L is given
by dist(s, v) ≥ dist(s′, L)−dist(v, L)−dist(s′, s). Other bounds (using distances
from landmarks and involving s and t) can be computed in a similar way. Proxies
(and related distances) are computed during the initialization phase of the query
algorithm with a multiple-source version of Dijkstra’s algorithm.

We use the avoid algorithm [11] to select landmarks: it picks landmarks
one by one, always in regions of the graph not already “covered” by existing
landmarks. It does so by assigning to each vertex a weight that measures how
well-covered it is. We changed the algorithm slightly from [11]: instead of com-
puting the weights of all vertices in the graph, we only consider n/k of them
(where k is the number of landmarks). This makes the algorithm linear in k,
instead of quadratic, without a significant effect on solution quality.

3.3 Growing Partial Trees

Next we describe the partial-trees routine executed in each iteration of our pre-
processing algorithm. For simplicity, we describe the algorithm as if it computed
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vertex reaches; it actually computes arc reaches and eventually converts them
to vertex reaches [10]. (The reach of an arc (v, w) with respect to a shortest s-t
path containing it is min{dist(s, w),dist(v, t)}.) In each round, we are given a
graph G = (V,A) and a threshold ǫ, and our goal is to find upper bounds on the
reaches of vertices in V whose actual reaches are smaller than ǫ. The remaining
reaches will be bounded in subsequent rounds, when ǫ will be larger.

Fix a vertex v. To prove that r(v) < ǫ, we must consider all shortest paths
through v, but only minimal paths must be processed explicitly. Let Pst =
(s, s′, . . . , v, . . . , t′, t) be the shortest s-t path, and assume that v has reach at
least ǫ with respect to this path. Path Pst is ǫ-minimal with respect to v if and
only if the reaches of v with respect to Ps′t and Pst′ are both smaller than ǫ.

The algorithm works by growing a partial tree Tr from each vertex r ∈ V .
It runs Dijkstra’s algorithm from r, but stops as soon as it can prove that all
ǫ-minimal paths starting at r have been considered. Let v be a vertex in this
tree, and let x be the first vertex (besides r) on the path from r to v. We say
that v is an inner vertex if either (1) v = r or (2) d(x, v) < ǫ, where d(x, v)
denotes the distance between x and v in the tree. The inner vertices are those
whose reaches we will try to bound. When v is not an inner vertex, no path Prw

starting at r will be ǫ-minimal with respect to v: if v’s reach is greater than ǫ
with respect to Prw, it will also be greater than ǫ with respect to Pxw. To get
accurate bounds on reaches, we must grow the tree until every inner vertex v
has one of two properties: (1) v has no labeled (unscanned) descendents; or (2)
v has at least one scanned descendent whose distance to v is ǫ or greater. For
efficiency, we relax the second condition and stop when every labeled vertex is
within distance greater than ǫ from the closest inner vertex.

Once the tree is built, we process it. Given an inner vertex v, we know its
depth, equal to d(r, v). In O(|Tr|) time, one can also compute its height, defined
as the distance from v to its farthest descendent (labeled or scanned). The reach
of v with respect to Tr is the minimum between its depth and its height, and
the reach of v with respect to the entire graph is the maximum over all such
reaches. If this maximum is ǫ or greater, we declare the reach to be ∞.

Penalties. As described, the algorithm assumes that partial trees will be grown
from every vertex in the graph. We would like, however, to run the partial-
trees routine even after some of the vertices have been eliminated in a previous
iteration. We use penalties to account for the eliminated vertices. The in-penalty

of a vertex v is the maximum over the reaches of all arcs (u, v) that have already
been eliminated; out-penalties are defined similarly, considering outgoing arcs
instead. Partial trees are processed as before, but the definitions of height and
depth must change. The (redefined) depth of a vertex v within a tree Tr, denoted
by depthr(v), is the distance from r to v plus the in-penalty of r. The (modified)
height of v is the distance to its farthest descendant not in Tr itself, but in a
pseudo-tree in which each vertex v in Tr is attached to a pseudo-leaf v′ by an
arc whose length is equal to the out-penalty of v.

For correctness, it is enough to take penalties into account only when pro-
cessing the tree, as we did in [10]. We can, however, use penalties to stop growing
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partial trees sooner, thus speeding up preprocessing. First, we now consider ver-
tex v to be an inner vertex if either (1) v = r or (2) depthx(v) < ǫ (recall
that x is the second vertex on the path from r to v). If v 6= r and depthr(v) <
in-penalty(v), however, v will not be considered an inner vertex (because its
modified depth will be even higher in the tree rooted at v), and neither will
its descendents. Second, we stop growing the tree when no labeled (unscanned)
vertex is relevant. All inner vertices are considered relevant; an outer vertex v is
relevant if d(u, v)+out-penalty(v) ≤ ǫ, where u is the closest inner ancestor of v.

3.4 Adding Shortcuts

Our previous implementation of the preprocessing procedure [10] only shortcuts
vertices with degree two. Sanders and Schultes [20] suggested shortcutting other
vertices of small degree as well, which is more general and works better for
both preprocessing and queries. A vertex v can be bypassed as follows. First, we
examine all pairs of incoming/outgoing arcs ((u, v), (v, w)) with u 6= w. For each
pair, if the arc (u,w) is not in the graph, we add a shortcut arc (u,w) of length
ℓ(u, v) + ℓ(v, w). Otherwise, we set ℓ(u,w) ← min{ℓ(u,w), ℓ(u, v) + ℓ(v, w)}.
Finally, we delete v and all arcs adjacent to it from the current graph.

The processing algorithm will produce a graph containing all original arcs
and all shortcuts. To prevent the graph from being too large, we only bypass
v if both its in-degree and its out-degree are bounded by a constant (5 in our
experiments); this ensures that only O(n) arcs will be added. In addition, we
consider the ratio cv between the number of new arcs added and the number of
arcs deleted by the procedure above. A vertex v is deemed bypassable only if
cv ≤ c, where c is a user-defined parameter. For road networks, we used c = 0.5
in the first round of preprocessing, 1.0 in the second, and 1.5 in the remaining
rounds. As a result, relatively few shortcuts are added during the first two rounds,
when the graph is larger but shrinks faster. For two- and three-dimensional grids,
which do not shrink as fast, we fixed c at 1.0 and 2.0, respectively.

We also consider two additional measures (besides cv) related to v: the length
of the longest shortcut arc introduced when v is bypassed, and the largest reach
of an arc adjacent to v (which will be removed). The maximum between these
two values is the cost of v, and it must be bounded by ǫi/2 during iteration i for
the vertex to be considered bypassable. As explained in [10], long arcs and large
penalties can decrease the quality of the reach upper bounds provided by the
preprocessing algorithm; they should not appear too soon. When deciding which
vertex to bypass next, we take those that minimize the product between cv and
cost, since they are less likely to affect the bypassability of their neighbors.

3.5 Exact Reach Computation

The standard algorithm for computing exact reaches (during the refinement step)
builds a shortest path tree from each vertex r in the graph and computes the
minimum between the depth and the height of each vertex v in the tree. The
maximum of these minima over all trees will be the reach of v. We developed
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an algorithm that has the same worst-case complexity, but can be significantly
faster in practice on road networks. It follows the same basic principle, but builds
parts of some of the shortest path trees implicitly by reusing previously found
subtrees. The algorithm partitions the vertices of the graph into k regions. (In our
experiments, we picked the regions of the Voronoi diagram of k =

√
n randomly

selected vertices.) The frontier of a region A is the set of vertices v ∈ A such that
there exists at least one arc (v, w) with w 6= A. When processing a region, the
algorithm first grows full shortest path trees from the frontier. Typically, they
will have large subtrees in common, and it is easy to see that the same subtrees
would appear in full shortest path trees rooted at non-frontier vertices as well.
It therefore suffices to grow truncated trees from these vertices, which account
for the common subtrees only implicitly.

4 Experimental Results

Our code is written in C++ and compiled with Microsoft Visual C++ 2005.
All tests were performed on a dual-processor, 2.4 GHz AMD Opteron running
Microsoft Windows Server 2003 with 16 GB of RAM, 32 KB instruction and 32
KB data level 1 cache per processor, and 2 MB of level 2 cache. Our code is
single-threaded, but an execution is not pinned to a single processor.

We tested the alt (with 16 landmarks), re, real-(16, 1), and real-(64, 16)
algorithms. Here real-(i, j) denotes an algorithm that uses i landmarks but
maintains landmark data for n/j highest-reach vertices only (when j = 1, all
landmark distances are kept, as in the original real algorithm). Due to space
constraints, we omit detailed results for other values of i and j. In general,
however, we observed that moderately increasing sparsity does affect running
times, but not too much: on large road networks, real-(16,16) is less than 30%
slower than real-(16,1), for instance. The sparser the landmarks, the more the
algorithm will rely on re (at the beginning); although this tends to slightly
increase the number of vertices scanned, this is offset by the fact that scans are
on average faster, since re does not need to access landmark data.

For machine calibration purposes, we also ran the DIMACS Challenge im-
plementation of the P2P version of Dijkstra’s algorithm, denoted by d, on the
largest road networks. Our experiments on road networks are described in Sec-
tion 4.1, and experiments on grid graphs are reported in Section 4.2.

4.1 Road Networks

We first test our algorithm on the road networks of the USA and Europe, which
belong to the DIMACS Challenge [5] data set. The USA is symmetric and has
23 947 347 vertices and 58 333 444 arcs; Europe is directed, with 18 010 173 ver-
tices and 42 560 279 arcs. Both graphs are strongly connected. Two length func-
tions are available in each case: travel times and travel distances.

Random queries. For each graph and each length function, we tested the algo-
rithms on 1 000 pairs of vertices picked uniformly at random. Table 1 reports
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Table 1. Data for random queries on Europe and USA graphs.

prep. time disk space query

graph method (min) (MB) avg sc. max sc. time (ms)

Europe alt 13.2 1597 82348 993015 160.34
(times) re 82.7 626 4643 8989 3.47

real-(16,1) 96.8 1849 814 4709 1.22
real-(64,16) 140.8 1015 679 2955 1.11
re-old 1558 570 16122 34118 13.5
real-old 1625 1793 1867 8499 2.8
hh 15 1570 884 — 0.8
hh-mem 55 692 1976 — 1.4
d — 393 8984289 — 4365.81

USA alt 18.6 2563 187968 2183718 400.51
(times) re 44.3 890 2317 4735 1.81

real-(16,1) 63.9 3028 675 3011 1.14
real-(64,16) 121.0 1575 540 1937 1.05
re-old 366 830 3851 8722 4.50
real-old 459 2392 891 3667 1.84
hh 18 1686 1076 — 0.88
hh-mem 65 919 2217 — 1.60
d — 536 11808864 — 5440.49

Europe alt 10.1 1622 240750 3306755 430.02
(distances) re 49.3 664 7045 12958 5.53

real-(16,1) 60.3 1913 882 5973 1.52
real-(64,16) 89.8 1066 583 2774 1.16
d — 393 8991955 — 2934.24

USA alt 14.5 2417 276195 2910133 530.35
(distances) re 70.8 928 7104 13706 5.97

real-(16,1) 87.8 2932 892 4894 1.80
real-(64,16) 138.1 1585 628 4076 1.48
d — 536 11782104 — 4576.02

the average query time (in milliseconds), the average number of scanned vertices
and, when available, the maximum number of scanned vertices. Also shown are
the total preprocessing time and the total space on disk used by the preprocessed
data. For d, this is the graph itself; for alt, this includes the graph and land-
mark data; for re, it includes the graph with shortcuts and an array of vertex
reaches; the data for real includes the data from re plus landmark data.

For travel times, the table also reports the performance of other algorithms
available at the time of writing. We give the data for our previous implementa-
tions, re-old and real-old from [10] (run on the same machine). real-old

uses 16 landmarks selected with the maxcover method (which finds slightly bet-
ter landmarks than avoid, but is slower). In addition, we present results for the
highway hierarchy-based algorithm of Sanders and Schultes from [20], run se-
quentially on a dual-core 2.0 GHz AMD Opteron machine (which is about 20%
faster than our machine on the DIMACS benchmark due to a different memory
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Fig. 1. USA queries: random on subgraphs (left) and local on the full graph (right).

architecture). There are two versions of their algorithm: hh-mem, entirely based
on highway hierarchies, and hh, which replaces high levels of the hierarchy by a
table with distances between all pairs of vertices in the corresponding graph.

The table shows that re is considerably faster than alt for queries, and
that real-(16,1) yields an additional speedup. Comparing real-(16,1) to real-
(64,16), we see they have almost identical query performance with transit times,
and that real-(64,16) is slightly better with travel distances. Given that real-
(64,16) requires about half as much disk space, it has the edge for these queries.
With travel distances, real-(64,16) wins both in time and in space, but prepro-
cessing takes roughly twice as long. re is less robust than real.

With travel times, re and real substantially improve on their old counter-
parts, especially in terms of preprocessing time. re and hh-mem have similar
performance on USA, and hh-mem is slightly better on Europe. For queries,
real-(64,16) performs similarly to hh: real-(64,16) uses less space, while hh is
slightly faster. Preprocessing for hh, however, is faster, especially for Europe.

Graph size dependence. To test the performance on smaller graphs, we performed
random queries on the subgraphs of USA that are part of the DIMACS data set;
their sizes range from 264 thousand (NYC) to 14 million (CTR) vertices. Figure 1
(left) shows how query times scale with graph size when travel times are used as
the length function. Although times tend to increase with graph size, they are not
strictly monotone: graph structure clearly plays a part. Reach-based algorithms
have better asymptotic performance than alt. Regarding preprocessing (not
shown in the figure), with a fixed number of landmarks alt is roughly linear in
the graph size. With 16 landmarks, alt preprocessing is faster than re, and the
ratio between the two remains roughly constant as the graph size increases; with
64, reach computation and landmark selection take roughly the same time.

Local queries. Up to this point, we have considered only random queries; we now
test what happens when queries are more local. If v is k-th vertex scanned when
Dijkstra’s algorithm is run from s, then the Dijkstra rank of v with respect to s is
⌊log

2
k⌋ (our definition differs slightly from [19]). To generate a local query with

rank k, we pick s uniformly at random from V and pick t uniformly at random
from all vertices with Dijkstra rank k with respect to s. Figure 1 (right) shows
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Table 2. Effect of applying (•) or discarding (◦) each of the improvements on re we
proposed: generalized shortcuts (s), penalty-aware partial trees (p), faster exact reach
computation (e) and improved locality (l).

features prep. time disk space query

s p e l (min) (MB) avg sc. max sc. time (ms)

• • • • 44.3 890 2317 4735 1.81
◦ • • • 63.8 817 3861 7679 2.64
• ◦ • • 76.2 888 2272 4633 1.75
• • ◦ • 58.7 890 2317 4735 1.81
• • • ◦ 44.3 890 2317 4735 3.20
◦ ◦ ◦ ◦ 156.1 816 3741 7388 3.89

the average query times as a function of Dijkstra rank (1 000 pairs were tested in
each case). For high Dijkstra ranks, the results are similar to those for random
queries: alt is the slowest algorithm, and the real variants are the fastest. For
small Dijkstra ranks, real-(16,1) scans the fewest vertices, but due to higher
overhead its running time is slightly worse than that of re. real-(64,16) mostly
visits low-reach vertices and thus fails to take advantage of the landmark data.
It scans about the same number of vertices as re, but is slower due to higher
overhead. Although alt has the worst asymptotic performance, for small ranks
it scans only slightly more vertices than re. As the rank grows, real-(64,16)
eventually catches up with real-(16,1).

Improvement breakdown. Table 1 has shown that the new version of re is signif-
icantly more efficient than re-old. Table 2 shows how each of the four major
improvements affect the performance of re on USA with travel times. Starting
with all improvements, we turn them off one at a time, and then all at once. Pre-
processing is accelerated by generalized shortcuts (Section 3.4), penalty-aware
partial trees (Section 3.3), and faster exact reach computation (Section 3.5).
Sorting by reach to improve locality (Section 3.1) actually slows preprocessing,
but by a negligible amount. When these improvements are combined, the overall
is speed up is more than a factor of 3.5. On Europe with travel times (not shown),
the combined speed up is more than 6. Queries benefit from generalized shortcuts
and sorting by reach, and are largely unaffected by the other improvements.

Refinement step. During preprocessing, the refinement step recomputes the ⌈5√n⌉
highest reaches (24 469 vertices in the USA graph) with an exact algorithm. If
we quadruple this value, re query times decrease from 1.86 ms to 1.66 ms (with
travel times as lengths); however, preprocessing time increases from under 45
minutes to 2.5 hours. With no refinement step, the preprocessing time decreases
to 32 minutes, but query times increase to 2.00 ms. Recomputing all reaches is
too expensive. Even on Bay Area, which has only 321 270 vertices, exact reach
computation takes almost 2.5 hours with the new algorithm (10 hours with the
standard one). Computing upper bounds takes less than a minute, but queries
are 40% faster with exact reaches.
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Table 3. Average results for 1 000 random queries on 2-dimensional grids.

prep. time disk space query

vertices method (min) (MB) avg sc. max sc. time (ms)

65536 alt 0.05 11.5 851 6563 1.19
re 1.83 3.4 2195 3706 1.50
real-(16,1) 1.87 12.7 214 1108 0.30
real-(64,16) 2.00 5.9 1999 3134 1.69
d — 2.2 33752 — 14.83

131044 alt 0.11 23.8 1404 11535 3.62
re 4.72 6.8 3045 5025 2.33
real-(16,1) 4.82 26.1 266 1261 0.61
real-(64,16) 5.09 12.1 2370 3513 2.19
d — 4.5 66865 — 30.72

262144 alt 0.22 48.3 2439 27936 5.72
re 16.61 13.2 4384 6933 3.52
real-(16,1) 16.83 52.5 410 2024 0.88
real-(64,16) 17.42 23.9 1869 2453 2.28
d — 9.0 134492 — 63.58

524176 alt 0.27 96.6 6057 65664 8.11
re 15.45 25.9 6334 9843 4.23
real-(16,1) 15.76 104.5 524 2663 1.08
real-(64,16) 16.68 47.5 2001 3113 1.97
d — 18.0 275589 — 112.80

Retrieving the shortest path. The query times reported so far for re and real

consider only finding the shortest path on the graph with shortcuts. This path
has much fewer arcs then the corresponding path in the original graph. On
USA with travel times, for example, the shortest path between a random pair of
vertices has around 5 000 vertices in the original graph, but only about 30 in the
graph with shortcuts. We can retrieve the original path in time proportional to
its length, which means about 1 ms on the USA graph. This is comparable to the
time it takes for real to compute the distances. For applications that require a
full description of the path, our algorithms are therefore close to optimal.

4.2 Grid Graphs

Reach-based pruning works well on road networks because they have a natural
highway hierarchy, so that relatively few vertices have high reach. We also tested
the algorithms on graphs without an obvious hierarchy. We created square 2-
dimensional with the spgrid generator, available at the 9th DIMACS Challenge
download page. The graphs are directed and each vertex is connected to its
neighbors in the grid with arcs of length chosen uniformly at random from the
range [1, n], where n is the number of vertices. Comparing the results in Table 3
to those reported in [10], we see that our new preprocessing algorithm is an
order of magnitude faster on these graphs. Query times improve by a factor
of about five. This makes re competitive with alt; in fact, re appears to be
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asymptotically faster. Performance of real-(16,1) improves as well. This shows
that reaches help even when a graph does not have an obvious highway hierarchy,
and that the applicability of real is not restricted to road networks. On the
largest grid, it is four times faster than alt, and two orders of magnitude faster
than Dijkstra’s algorithm. On such small graphs, extra landmarks do not help
much, and real-(64,16) does not perform as well as real-(16,1).

Similar experiments on cube-shaped three-dimensional grids (not shown) re-
vealed that the alt algorithm is much less effective than on two-dimensional
grids. For a quarter of a million vertices, queries are only five times as fast as
bidirectional Dijkstra’s algorithm. A combination with pruning by reach does
improve the algorithm for large graphs, but only marginally. Moreover, reach
computation becomes asymptotically slower (the time roughly triples when the
graph size doubles), thus making preprocessing large graphs prohibitively ex-
pensive. Results for higher-dimension grids and random graphs were even worse.

5 Final Remarks

At the 9th DIMACS Implementation Challenge [5] several other papers presented
also dealt with the P2P problem. Lauther [17] and Köhler et al. [15] presented
algorithms based on arc flags, but their (preprocessing and query) running times
are dominated by real and hh. Delling, Sanders, et al. [4] presented a variant
of the partial landmarks algorithm in the context of highway hierarchies, but
with only modest speedups; for technical reasons A∗ search cannot be combined
naturally with hh. Delling, Holzer, et al. [3] showed how multi-level graphs can
support random queries in less than 1 ms, but only after weeks of preprocessing.

The best results were those based on transit node routing, introduced by Bast
et al. [1] and combined with highway hierarchies by Sanders and Schultes [21]
(see also [2]). With travel times, the road networks of both USA and Europe
can be processed in about three hours and random queries take 5µs on average.
With travel distances, preprocessing takes about eight hours, and average query
times are close to 0.1 ms. Performance would probably be worse on grids.

Queries with transit node routing are significantly faster than with real.
Our method does appear to be more robust, however, when the length function
changes. Moreover, these approaches are not mutually exclusive. As Bast et al.
observe [2], reaches could be used instead of highway hierarchies to compute the
transit nodes and the corresponding distance tables. An actual implementation
of the combined algorithm is an interesting topic for future research.
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