
Kinetic and Dynamic Data Structures for Closest Pairs and All
Nearest Neighbors∗

Pankaj K. Agarwal† Haim Kaplan‡ Micha Sharir§

September 2, 2007

Abstract

We present simple fully dynamic and kinetic data structures, which are variants of a dy-
namic 2-dimensional range tree, for maintaining the closest pair and all nearest neighbors for
a set ofn moving points in the plane; insertions and deletions of points are also allowed. If
no insertions or deletions take place, the structure for closest pair usesO(n log n) space, and
processesO(n2βs+2(n) log n) critical events, each inO(log2 n) time. Heres is the maximum
number of times where the distances between any two specific pairs of points can become equal,
βs(q) = λs(q)/q, andλs(q) is the maximum length of Davenport-Schinzel sequences of order
s onq symbols. The dynamic version of the problem incurs a slight degradation in performance:
If m ≥ n insertions and deletions are performed, the structure still usesO(n log n) space, and
processesO(mnβs+2(n) log3 n) events, each inO(log3 n) time.

Our kinetic data structure for all nearest neighbors usesO(n log2 n) space, and processes
O(n2β2

s+2(n) log3 n) critical events. The expected time to process all events isO(n2β2
s+2(n) log4 n),

though processing a single event may takeΘ(n) expected time in the worst case. Ifm ≥ n in-
sertions and deletions are performed, then the expected number of events isO(mnβ2

s+2(n) log3 n)

and processing them all takesO(mnβ2
s+2(n) log4 n). An insertion or deletion takesO(n) ex-

pected time.

1 Introduction

Let P = {p1, p2, . . . , pn} be a set ofn points, each moving independently inR2. Let pi(t) =
(xi(t), yi(t)) denote the position ofpi at time t, and setP (t) = {p1(t), . . . , pn(t)}. We assume

∗Work by Pankaj Agarwal has been supported by NSF under grantsCCR- 00-86013, EIA-01-31905, CCR-02-04118,
and DEB-04-25465, by ARO grant W911NF-04-1-0278 and by a grant from the U.S.–Israel Binational Science Founda-
tion. Work by Haim Kaplan was partially supported by the Israeli Science Foundation (ISF) grant no. 975/06. Work by
Micha Sharir was partially supported by NSF Grant CCR-00-98246, by a grant from the U.S.-Israeli Binational Science
Foundation, by a grant from the Israel Science Fund, IsraeliAcademy of Sciences, for a Center of Excellence in Geo-
metric Computing at Tel Aviv University, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv
University.

†Dept. Computer Science, Duke University, Durham, NC 27708-0129, USA.pankaj@cs.duke.edu
‡School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail:haimk@post.tau.ac.il
§School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of Mathematical

Sciences, New York University, New York, NY 10012, USA. E-mail: michas@post.tau.ac.il

1

that eachxi(·), yi(·) is a semi-algebraic function of constant description complexity. The goal is to
design a data structure that keeps track of the closest pair of points inP , and that can also support
insertions and deletions of points into/fromP , as well as changes in the flight plans of the moving
points.

Thekinetic data structure(KDS) framework, introduced by Basch et al. [10], proposes an al-
gorithmic approach, together with several quality criteria, for maintaining a variety of geometric
configurations determined by a set of objects, each moving along a semi-algebraic trajectory of
constant description complexity (see below for a precise definition). Several interesting algorithms
have been designed, using this framework, over the past few years, including algorithms for main-
taining the convex hull of a setS of (moving) points in the plane [10], the closest pair in sucha set
[10], a point in the center region of such a set [3], kinetic planar subdivisions [2, 4, 7], kinetic me-
dians andkd-trees [5], kinetic range searching [1], maintaining the extent of a moving point set [6],
kinetic collision detection [9, 19, 22], shooting a moving target [12], kinetic discrete centers [16],
kinetic connectivity for unit disks, rectangles, and hypercubes [18, 20], kinetic geometric spanners
[21], and kinetic separation of convex polygons [23]; see [17] for a recent survey.

Typically, a geometric algorithm for computing such a configuration determined by a setS is
designed for thestationarycase, where the objects do not move. When the objects do move,the
combinatorial representation of the configuration may change at certaincritical times, when certain
“events” occur (e.g., a new vertex of the convex hull may appear, an old vertex may disappear, the
closest pair of points changes, etc.). The goal is to design adata structure that can efficiently keep
track of these changes, and maintain (a discrete representation of) the correct configuration at all
times. Thus the algorithm has to keep track of these criticalevents, and fix the configuration when
they happen.

The crux in designing an efficient KDS is finding a set ofcertificatesthat, on one hand, ensure
the correctness of the configuration currently being maintained, and, on the other hand, are inex-
pensive to maintain. When the motion starts, we can compute the closest failure time of any of the
certificates, and insert these times into a global event queue. When the time of the next event in
the queue matches the current time, we invoke the KDS repair mechanism, which fixes the config-
uration, and replaces the failing certificate(s) by new valid ones. In doing so, the mechanism will
typically delete from the queue failure times that are no longer relevant, and insert new failure times
into it.

To analyze the efficiency of a KDS, we distinguish between twotypes of events:internal and
external. External eventsare events associated with a real (combinatorial) change inthe configura-
tion that we maintain, thus forcing a change in the output.Internal events, on the other hand, are
events where some certificate fails, but the overall desiredconfiguration still remains valid. These
events arise because of our specific choice of the certificates, and are essentially an overhead in-
curred by the data structure. If the ratio between the numberof internal events to the number of
external events (in the worst case) is no more than polylogarithmic in the number of input objects,
the KDS is said to beefficient.1 Other parameters of the KDS that one would like to minimize are

1(a) In the original setup of Basch et al. [10], a KDS is considered to be efficient, if the ratio between the worst-case
number of internal events to the worst-case number of external events is bounded by an arbitrarily small power of the
number of input objects. In our definition of efficient KDS, weonly allow a degradation factor that is a polylogarithmic
function of the number of input objects. We impose similar stringer restrictions on the other performance parameters of

2

the following.

• The processing time of a critical event by the repair mechanism. If this parameter is no more
than polylogarithmic in the number of input objects, we say that the KDS isresponsive.

• The maximum number of events at any fixed time in the data structure that are associated with
one particular object. When this parameter is no more than polylogarithmic in the number of
input objects, we say that the KDS islocal. Locality typically implies that changes in flight
plans of the moving points can be handled efficiently.

• The space used by the data structure. If this is larger than the number of input objects by at
most a polylogarithmic factor, we say that the KDS iscompact.

In addition, which is one of the central issues addressed in this paper (for the specific closest
pair and all nearest neighbors problems), one might wish to design a KDS that is alsodynamic,
meaning that it can also efficiently support insertions and deletions of objects.

In their paper, Basch et al. [10] developed a KDS that maintains the closest pair in a set ofn
moving points in the plane, which meets all four standard criteria, namely, it is compact, efficient, lo-
cal, and responsive. Specifically, their structure uses linear space; it processesO(n2βs+2(n) log n)
events, each inO(log2 n) time, wheres is the number of times any two fixed pairs of points can
attain equal distances, andβs+2(n) is as defined in the abstract. To achieve locality, their algorithm
uses a fairly complicated set of certificates, to guarantee that each point participates inO(log n)
certificates. Furthermore, Basch et al. have focused only onkinetization, and did not consider inser-
tions and deletions of points, which seems hard to implementusing their approach. The motivation
for our work has been threefold: (i) to simplify the certificates used by [10] for the closest-pair prob-
lem, (ii) to obtain a dynamic algorithm that still meets the four quality criteria mentioned above, and
that can also be extended to higher dimensions, and (iii) to extend the technique to the all-nearest-
neighbors problem, a problem that has not yet been tackled inthe KDS literature.

Further background. In the static and stationary scenario, the complete set of points is given
when the algorithm starts, and the points do not move. The planar version of the static and stationary
closest-pair problem has been solved inO(n log n) time by Shamos and Hoey [28] in 1975. A year
later Bentley and Shamos [11] gave anO(n log n) algorithm for thed-dimensional case. Vaidya
[31] describes anO(n log n) algorithm for computing the nearest neighbor of every pointin a given
set ofn points inR

d. All these algorithms can be implemented in the algebraic decision tree model,
for which anΩ(n log n) lower bound holds; see [13].

The problem of maintaining the closest pair in the dynamic but stationary scenario has also been
studied extensively during the past fifteen years. The first algorithm supporting both insertions and
deletions in polylogarithmic update time was given by Smid [30], who presents a data structure for
points ind dimensions, that takesO(n logd n) space and supports updates inO(logd n log log n)
amortized time per update. Later, Schwarz et al. [26] have given an algorithm that supports only

the structure. (b) Ideally, one would like to ensure a small ratio between the number of internal events and the number of
external events thatactually take place. This is considerably harder to achieve, and is not addressed in the earlier works
too.

3

insertions, inO(log n) amortized time per insertion, again in any dimension. Finally, Bespamyat-
nikh [14] presented an algorithm that supports both insertions and deletions inO(log n) worst-case
time per update, in any dimension.

Our results. Our first result is an efficientdynamicKDS for maintaining the closest pair in a set
of moving points in the plane, which also supports insertions and deletions of points, and which can
be extended to any dimensiond > 2. The structure is constructed using standard off-the-shelf data
structure components, our certificates are simpler than those of [10], and the performance of our
algorithm (in the planar case) is comparable with that of [10].

We assume that each moving pointp is given as a pair(xp(t), yp(t)) of semi-algebraic functions
of time ofconstant description complexity. That is, each function is defined as a Boolean combina-
tion of a constant number of predicates involving polynomials of constant maximum degree.

Our solution is based on a simple geometric property of the nearest neighbor to a given point,
stated in Lemma 2.1 below, a property which has also been noted in [10]. Using this property, we
design a data structure, which in essence is a 2-dimensionalrange tree. It stores the points ofP in
a certain transformed coordinate system, along with certain additional information to facilitate the
maintenance of the closest pair.

We present the algorithm in three stages. First, in Section 2, we describe the data structure for the
static(no insertions and deletions) andstationary(no motion of the points) scenario. This leads to a
simple alternativeO(n log n) algorithm for computing the closest pair in a planar point set. We next
show, in Section 4, how to make this structure kinetic, stilldisallowing insertions and deletions. The
modified structure usesO(n log n) space, and processesO(n2βs+2(n) log n) critical events, each
in O(log2 n) time. Heres is the maximum number of times where the distances between any two
specific pairs of points can become equal,βs(q) = λs(q)/q, andλs(q) is the maximum length of
Davenport-Schinzel sequences of orders onq symbols. Then, in Section 5, we modify the structure
further, and turn it into a fully dynamic and kinetic structure. The dynamic version of the problem
incurs a slight degradation in performance: Ifm ≥ n insertions and deletions are performed, the
structure still usesO(n log n) space, and processesO(mnβs+2(n) log3 n) events, each inO(log3 n)
time. See Theorem 5.2 for a precise statement of the performance bounds.

An appealing feature of our solution, besides being the firstfully dynamic and kinetic solution
for this problem, is its simplicity. It is in fact a dynamic 2-dimensional range tree, on which we
superimpose a heap-like tournament structure, in which only a small number of pairs compete for
being the closest pair inP . This number is linear in the static-kinetic case, and isO(n log n) in the
dynamic-kinetic case.

Our second result is a KDS for maintaining the nearest neighbor of every point in a set of
moving points in plane, with the same assumption on the motions as before. We obtain this result
using the same basic observation of Lemma 2.1. The skeleton of the data structure itself is the same
two-dimensional range tree which we use for the closest pair, but with an additional level of kinetic
tournaments. In order to attain a sharp upper bound on the number of events that may occur in the
additional tournaments, and on the time to handle them, we use treaps [27] to implement both the
primary and the secondary trees. We present this result in Section 6. It usesO(n log2 n) expected
space, and the expected number of events processed by the data structure isO(mnβ2

s+2(n) log3 n),

4

if m ≥ n insertions and deletions are performed. The expected time to process all the events is
O(mnβ2

s+2(n) log4 n), though a single event may takeO(n) expected time. See Theorems 6.9
and 7.2 for precise statements.

Another feature of our solutions is that they can be extendedto arbitrary dimensionsd > 2,
using essentially the same machinery (ad-dimensional dynamic range tree combined with kinetic
and dynamic tournament data structures). We present this extension in Section 8; the precise per-
formance bounds are given in Theorems 8.2 and 8.3.

2 Closest Pair and Nearest Neighbors: Static and Stationary

Let P be a set ofn “fixed” points inR
2. We present a “warm-up” solution for the closet-pair and the

all-nearest-neighbor problems. Although these problems are well studied and optimal algorithms
exist [13], we derive specific solutions that are easy to extend to kinetic and dynamic scenarios.
These structures rely on the following simple but crucial lemma, also proved in [10].

Partition the plane into six wedgesW0, . . . ,W5 of angleπ/3 each, with the origin as their
common apex, whereWi spans the orientation[(2i − 1)π/6, (2i + 1)π/6]. Let bi denote the unit
vector in the direction of the bisector ray ofWi. Note thatWi+3 = −Wi andbi+3 = −bi (where
addition of indices is modulo6). For a pointp and a wedgeWi, let p + Wi denote the translation of
Wi so that its apex is atp.

Lemma 2.1. Letp be the point closest toq, and letWi be the wedge such thatp + Wi containsq.
Then

(q − p) · bi = min
{

(w − p) · bi | w ∈ P ∩ (p + Wi)
}

.

Proof: Suppose to the contrary that there exists a pointw ∈ P ∩ (p + Wi), such that(w − p) · bi <
(q − p) · bi. See Figure 1. We have|qw| ≥ |pq|, so∠pwq must be smaller than∠qpw. However,
∠qpw ≤ π/3, and∠pwq > π/3, a contradiction.�

q

p
w bi

p + Wi

o x

u

W+v

π/6
π/6 q

(i) (ii)

Figure 1. (i) p cannot be the point nearest toq. (ii) The u andv coordinates.

We restate Lemma 2.1 by saying that, ifp is closest toq then q is the closest point top (in
P ∩ (p + Wi)) in the bi-direction. Symmetrically, ifq is also the closest point top thenp is the
closest point toq (in P ∩ (q + Wi+3) = P ∩ (q −Wi)) in the opposite(−bi)-direction. We refer to
such pairs of points as beingmatchedin thebi-direction.

5

Closest pair. Clearly, if (p, q) is a closest pair inP , then there exists a directionbi such thatp and
q arematchedin directionbi. The algorithm keeps track of all these matched pairs of points, in each
of the three directionsb0, b1, andb2, and selects the closest pair (in the Euclidean metric) among
them. Note that, for each of the directionsb0, b1, andb2, a pointp can participate in at most two
matched pairs, once as the left point of the pair, and once as the right point of the pair. Thus, at any
time, there are onlyO(n) matched pairs.

Without loss of generality, we only consider matched pairs in directionb0, i.e., thex-direction.
Consider the twoπ/3 wedgesW+ = W0, W− = W3 with the origin as an apex, whose bisector
rays are, respectively, the positive and the negative portions of thex-axis. For simplicity of presen-
tation, we regardW+ andW− asopenwedges. For each pointq ∈ R

2, we setW+(q) := q + W+,
W−(q) := q + W−. We thus wish to find all matched pairs of points(p, q) in thex-direction; that
is, pairs(p, q) such thatp lies to the left ofq, q is the leftmost point ofP ∩ W+(p), andp is the
rightmost point ofP ∩ W−(q). Let Π denote the set of these matched pairs.

To constructΠ, we first map each pointp = (xp, yp) ∈ P to a point(up, vp) in a new parametric
plane, whereup = xp +

√
3yp, andvp = xp −

√
3yp. These coordinates are measured along axes

that are orthogonal to the directions of the rays bounding the wedgeW+. See Figure 1 (ii).

Note thatq ∈ W+(p) if and only if

uq > up and vq > vp. (1)

So all pointsq that may be matched withp are in the range given by (1), which is a translate of the
positive quadrant in theuv-plane. To computeΠ, we seek, for each pointp, the pointq ∈ P that
lies in that range and has the smallestx-coordinate. Sincex = (u + v)/2 in theuv-plane, we want
to find the point in the query quadrant which is extreme in the(−1,−1)-direction.

Motivated by this observation, we construct a 2-dimensional range treeT [13] on the trans-
formed points ofP , where the points are sorted in the primary tree by theiru-coordinates, and in
each secondary tree by theirv-coordinates. We store a point in each leaf. Internal nodes do not con-
tain points, but store keys to guide the search, and additional information that is described below.
See Figure 2. We slightly abuse the notation, and useT to denote both the whole range tree and its
primary tree. For a nodew in the primary tree, we denote the set of points in the subtreerooted at
w by P (w), and denote the secondary tree associated withw by Tw. For a nodeξ ∈ Tw, we denote
the set of points in the subtree ofξ by P (w, ξ). For an internal nodeζ, either in the primary treeT
or in some secondary tree, we denote byℓ(ζ) the left child ofζ, and byr(ζ) the right child ofζ.

Let w be a node in the primary treeT . The secondary treeTw stores all points inP (w) sorted
by their v-coordinates. WithinTw, we refer to points that belong toP (ℓ(w)) asblue points, and
to points that belong toP (r(w)) asred points. By definition, theu-coordinate of each blue point
is smaller than that of all the red points. However, when sorted by theirv-coordinates, the blue
and red points get mixed together. See Figure 2. We use the following observation, whose proof is
straightforward.

Lemma 2.2. Let w be a node in the primary treeT , and letξ be a node in the secondary treeTw.
For each blue pointp ∈ P (w, ℓ(ξ)) and for each red pointq ∈ P (w, r(ξ)), the wedgeW+(p)
containsq (and the wedgeW−(q) containsp).

For each nodeξ in Tw, let Red(w, ξ) (resp.,Blue(w, ξ)) be the subset of red (resp., blue) points

6

6 7 8 5

w

1 2 4 5 73 86

z

T

Tw

u

1
2

4

5

6

3
8

x
7

v

u = uw

v = vξ

Figure 2. A setP = {1, . . . , 8} of eight points inR2, the primary treeT storing the points sorted by theiru-coordinates,
and the secondary treeTw of nodew storingP (w) = {5, 6, 7, 8} sorted by theirv-coordinates. InTw, 5, 6 are blue and
7, 8 are red points, andblue(w, root(Tw)) = 6 andred(w, root(Tw)) = 8. The closest pair (which is also matched in
thex-direction) is(3, 4) = π(z, root(Tz)).

in P (w, r(ξ)) (resp.,P (w, ℓ(ξ))). Defineblue(w, ξ) to be the point of maximum (resp., minimum)
x-coordinate inBlue(w, ξ) (resp.,Red(w, ξ)); it is undefined if the set is empty. Consider the four
quadrants defined by the linesu = uw andv = vξ, whereuw is the maximumu-coordinate of a
point in P (ℓ(w)), andvξ is the maximumv-coordinate of a point inP (w, ℓ(ξ)). ThenRed(w, ξ)
(resp.,Blue(w, ξ)) lies in the first (resp., third) quadrant, andred(w, ξ) (resp.,blue(w, ξ) is the point
of P (w, ξ) with the minimum (resp., maximum)x-coordinate (i.e.,(u + v)-value) in this quadrant.
See Figure 2. Letπ(w, ξ) = (blue(w, ξ), red(w, ξ)), whenever both elements of the pair are defined.
Set

Π∗ = {π(w, ξ) | ξ ∈ Tw, w ∈ T}. (2)

We have the following lemma.

Lemma 2.3. Letp be the point closest toq so thatq ∈ W+(p). Then there are nodesw andξ such
that q = red(w, ξ) andp ∈ P (w, ℓ(ξ)). Symmetrically, ifq ∈ W−(p), then there are nodesw and
ξ such thatq = blue(w, ξ) andp ∈ P (w, r(ξ)).

Proof. We prove only the first part in whichq ∈ W+(p); the proof of the second part is symmetric.
Let w be the lowest common ancestor ofp andq in T . Sinceq ∈ W+(p), we haveuq > up, so
p ∈ P (ℓ(w)) andq ∈ P (r(w)). It follows that inTw, p is a blue point andq is a red point. Let
ξ be the lowest common ancestor ofp andq in Tw. Again, sinceq ∈ W+(p), we havevq > vp.
Therefore,p ∈ P (w, ℓ(ξ)) andq ∈ P (w, r(ξ)).

By Lemma 2.2, the wedgeW+(p) contains all the red points inP (w, r(ξ)). It follows thatq
must bered(w, ξ), for otherwise there would exist a pointq′ in W+(p) with x-coordinate smaller
than that ofq, contradicting Lemma 2.1.

The following corollary follows from Lemmas 2.1 and 2.3.

Corollary 2.4. For each matched pair(p, q) ∈ Π there are nodesw and ξ such that(p, q) =
π(w, ξ). That is,Π ⊆ Π∗.

Corollary 2.4 suggests the following procedure for computing the closest pair. We computeΠ∗

by constructing the range treeT and the pairsπ(w, ξ), for each primary nodew and secondary node

7

ξ ∈ Tw. We then find the pair inΠ∗ with the minimum distance between its points. We apply a
similar procedure to each of the two other bisector directionsb1, andb2. The closest among the three
resulting pairs is the closest pair inP . This completes the description of the static and stationary
data structure for the closest pair problem. It usesO(n log n) storage, and the cost of constructing
it, including the construction of the setΠ∗, is O(n log n). The storage can be reduced toO(n), if
we constructT and the secondary trees incrementally, discarding portions that have already been
fully processed.

All nearest neighbors. We now show how to use the range tree of the preceding analysisto find
the nearest neighbor of each pointp ∈ P . The strategy is to compute, for eachp ∈ P , a candidate
point q ∈ W+(p) ∪ W−(p), such that if the nearest neighbor ofp lies in this union then it is equal
to q (in certain cases,q may be undefined). By repeating this algorithm for the other two pairs of
wedges, we assign to each pointp at most three candidatesq, one of which must be the nearest
neighbor ofp. We build the two-dimensional range tree as in the precedingalgorithm. For each
primary nodew and secondary nodeξ ∈ Tw, we compute the following:

(i) the pointsred(w, ξ) andblue(w, ξ);

(ii) β(w, ξ), the point inBlue(w, ξ) closest tored(w, ξ);

(iii) ̺(w, ξ), the point inRed(w, ξ) closest toblue(w, ξ).

For each pointp, define

C(p) = {β(w, ξ) | p = red(w, ξ)} ∪ {̺(w, ξ) | p = blue(w, ξ)}. (3)

If C(p) 6= ∅, then the candidate pointq that we pick forp is the closest point top among all points
in C(p). The correctness of the algorithm follows from Lemma 2.1.

The running time of this algorithm is proportional to the sumof the sizes of all secondary
subtrees, which isO(n log2 n). The same technique can be used in higher dimensions too—see
Section 8 for details. While yielding a suboptimal solution(Vaidya’s algorithm runs inO(n log n)
time in any dimensiond), this technique is relatively easy to extend to the kineticand dynamic
scenarios, as will be described in the subsequent sections.

3 A Dynamic and Kinetic Tournament

In this section we review one of the main tools in our algorithm, adapted from Basch et al. [10],
who present the following algorithm for maintaining the lowest point among a set of points moving
along they-axis.2 Let Q be a completely balanced binary tree, with the points storedat its leaves
(in an arbitrary order). For an internal nodev ∈ Q, let P (v) denote the set of points in the subtree
rooted atv. At any specific timet, each internal nodev stores the lowest point among the points in

2We assume that when points collide, they simply go over each other and continue uninterruptedly with their individual
trajectories.

8

P (v) at timet. We call this lowest point thewinneratv. Clearly, at any given time, the winner atv
is the lower among the winner at the left child ofv and the winner at the right child ofv.

We associate a certificate with each internal nodev, which asserts which of the two winners, at
the left child and at the right child ofv, is the winner atv. This certificate remains valid as long as
(i) the winners at the children ofv do not change, and (ii) the order along they-axis between these
two “sub-winners” does not change. The actual certificate caters only to the second condition; the
first will be taken care of recursively. The failure time associated with this certificate is the next
time when these two winners switch their order along they-axis. We store all certificates in a heap,
using the failure times as keys.3 We call this heap of certificates theevent queue.

As time progresses, the algorithm encountersevents, in each of which some certificate fails.
The algorithm keeps removing from the event queue the certificate with the minimum failure time,
and replaces it with a new certificate, which takes into account the new order of the sub-winners at
the corresponding nodev, and whose failure time is the next time when the two points switch again
their order. In addition, the new winner atv is propagated upwards to the ancestors ofv, which may
cause the algorithm to replace the certificates at some of these nodes too.

In more detail, the algorithm proceeds as follows. When a certificate associated with a nodev
fails at timet, a new winnerq takes over the old winnerp at v. The old winnerp may have also
been the winner at some ancestors ofv, so, for each such ancestor, we change its winner to beq.
For each ancestor nodeu of v whose winner has changed, we also change the certificate associated
with its parentp(u), where the new certificate confronts the new winner atu with the winner at the
sibling of u. We remove the failure times of the old certificates from the event queue, and replace
them by the failure times of the new certificates. All this takesO(log2 n) time, and is dominated
by the cost of performingO(log n) updates of the event queue. This implies that our data structure
is responsive(in the terminology of [10]). It is alsocompactand local, as follows easily from the
construction.

To bound the total number of events, we focus on a single nodev, and bound the number of
times when the winner atv can change. Clearly, the total number of winner changes at all nodes
bounds the total number of events. (Note that creating a new certificate and inserting it into the
event queue is not considered an event—the certificate may get deleted from the queue before it
becomes the smallest element there. Only certificates that are removed by adeletemin operation
are considered to be events.)

A bound on the total number of events timesO(log2 n) bounds the total time to process all
events. However we can obtain a tighter bound by recalling that the time it takes to process an event
at v is bounded byO(log n) times the number of ancestors ofv that change their winner as a result
of the event. Therefore, the total number ofwinner changesat all nodes timesO(log n) bounds the
total time for processing the events. (Again, as just remarked, there are potentially more winner
changes than events.)

A winner change atv corresponds to a breakpoint in thelower envelopeof the arrangement
in the ty-plane, defined by the trajectories of the points inP (v). If each such pair of trajecto-
ries intersect at mosts times, then the complexity of the lower envelope that corresponds tov
is at mostλs(|P (v)|) = |P (v)|βs(|P (v)|), whereλs(n) is the maximum length of a Davenport-

3Any “regular” heap that supportsinsert, delete, anddeletemin in O(log n) time is good for our purpose.

9

Schinzel sequence of orders on n symbols, andβs(n) = λs(n)/n is an extremely slowly grow-
ing function ofn (see [29]). Summing these complexity bounds over all nodesv, we obtain that
the overall number of winner changes, and therefore also theoverall number of events, is at most
∑

v |P (v)|βs(|P (v)|) = O(nβs(n) log n). This is larger by a logarithmic factor than the maxi-
mum number of times the lowest point along they-axis can indeed change, since this latter number
is bounded by the complexity of the lower envelope associated with the root ofQ. It now fol-
lows from our discussion in the previous paragraph that the total time to process all the events is
O(nβs(n) log2 n). In the terminology of [10], our data structure is thus alsoefficient.

Making the tournament dynamic. We next turn this static structure into a dynamic one, which
also supports insertions and deletions of points. In principle, we can replace the static treeQ with
any kind of dynamic balanced search tree data structure. However, for the analysis of the number of
events to go through, we assume thatQ is aweight-balanced(BB(α)) tree[25] (see also [24]). This
allows us to insert a new point anywhere we wish inQ, and to delete any point fromQ, in O(log n)
time. Each such insertion or deletion may changeO(log n) certificates, along the corresponding
search path, and therefore takesO(log2 n) time, including the time for the structural updates of
(rotations in)Q; heren denotes the actual number of points inQ, at the step where we perform the
insertion or deletion. Again, most of the cost is incurred inaccessing the event queue; updating the
tournament structure itself takes onlyO(log n) time.4

We next bound the total number of events that may occur while inserting and deleting at mostm
points, at arbitrary locations, into a kinetic tournamentQ that contains at mostn points at any time.
Each node inv is created during an insertion, and then exists inQ until the corresponding deletion.
We refer to the period at whichv exists inQ as thelifetimeof v. We denote byP (v) themultiset
containing any point that is associated with a leaf of the subtree rooted atv during the lifetime ofv.
The multiplicity of a pointp in P (v) is the number of maximal connected time intervals at whichp
is stored at the subtree rooted atv. (Such transitions into and out of the subtree may happen when
we perform rotations to rebalance the tree; see below.)

An argument analogous to the one given above for the static case, implies that the number of
events at a nodev (i.e., events where the certificate associated withv fails), is bounded by the
number of winner changes atv. The number of winner changes inv is in turn bounded by|P (v)|
multiplied by βs+2(n).5 Note that here we useβs+2 instead ofβs, since the lower envelope that
we consider at each nodev is now a lower envelope ofpartial functions [29]. Indeed, insertions
and deletions of points from within the subtree ofv, as well as rotations that may introduce new
subtrees or remove subtrees from the subtree ofv, may make the trajectory of a point appear in the
arrangement in thety-plane associated withv only during part of the lifetime ofv.

Also, as in the static case, the time it takes to handle all theevents is proportional to the number
of winner changes at all nodesv multiplied by a factor ofO(log n). SoO ((

∑

v |P (v)|)βs+2(n) log n)
is an upper bound on the total time it takes to process all the events.

4Note that there is freedom in choosing the location where thenew point is inserted, which we do not know how to
exploit.

5We may useβs+2(n) rather thanβs+2(m), by a standard argument that analyzes the total complexity of the envelope
in the ty-plane by splitting it intoO(m/n) intervals along thet-axis, such that over each interval there are onlyO(n)
functions involved; see [29].

10

When inserting or deleting a node from a weight-balanced tree, we rebalance the tree by doing
rotations at certain edges along the access path. See Figure3.

C

A B B
C

A

η

ξ

ξ

η

Figure 3. A rotation around the edge(ξ, η).

Suppose we performm ≥ n insertions and deletions. If we ignore rotations for a moment,
then each insertion increases|P (v)| by one, only for nodesv on a single path, so this contributes
O(m log n) to

∑

v |P (v)|. A rotation around an edge(ξ, η), whereξ = p(η), changesP (ξ) and
P (η) substantially. In particular, the setP (η) grows substantially by inheriting the subtree rooted
at the former sibling ofη (and child ofξ). To complete the analysis, we have to bound the total
growth in the setsP (z) due to rotations. Here comes to the rescue a well known property of weight-
balanced trees [15] (see also [24]), which asserts that, even if the cost of a rotation around(ξ, η) is
proportional to|P (ξ)|, the total cost of any sequence ofO(m) operations is onlyO(m log n). This
immediately implies that the sum of the size increases of thesetsP (z), due to rotations, is only
O(m log n). The following theorem summarizes what we have just shown.

Theorem 3.1. A sequence ofm insertions and deletions into a kinetic tournament, whose max-
imum size at any time isn (assumingm ≥ n), when implemented as a weight-balanced tree
in the manner described above, generates at mostO(mβs+2(n) log n) events, for a total cost of
O(mβs+2(n) log2 n). Each update takesO(log2 n) worst-case time. One can construct (i.e., ini-
tialize) a kinetic tournament onn elements, at any fixed time, inO(n) time.

Remark. Note that the amortized analysis of rotations in a weight-balanced tree is used only for
guaranteeing a near-linear bound on the total number of events. In contrast, the time bound for an
update isworst-case, because, when we do a rotation in the weight-balanced tree,no rebuilding of
secondary structures is needed, so the rotation takesO(1) time.

4 KDS for Closest Pair

As the points ofP vary continuously with time, we maintain the closest pair inP by keeping track
of the combinatorial changes in the structure ofT , and in the setΠ of matched pairs. Without loss
of generality, we limit the discussion to changes in the firstrange tree data structure, that uses the
wedgesW+,W− with thex-axis as a bisector. Here is an overview of our approach. We note that,
as long as theu-order,v-order, andx-order of the points ofP all remain unchanged, the structure
of T also remains unchanged. Moreover, the setΠ of matched pairs, and the larger setΠ∗ also do

11

not change. We refer to swaps in which theu-order,v-order, orx-order of some pair of points ofP
changes, asu-swaps, v-swaps, or x-swaps, respectively.

We maintain the setΠ explicitly in a dynamic kinetic tournamentQ as described in Section 3.
Specifically, for each pair(p, q) we define an itemϕp,q, which is the Euclidean distance betweenp
andq, i.e.,

ϕp,q(t) = ‖p(t) − q(t)‖. (4)

Let Φ = {ϕp,q(t) | (p, q) ∈ Π}. We construct the tournamentQ onΦ. It follows that the winner at
the root ofQ corresponds to the closest pair. In between swaps, the setΦ is static, and changes of
the closest pair are tracked by the kinetic tournamentQ and its events.

To keep track of the swaps, we maintain the range treeT , and three auxiliary sorted listsLu,
Lv, Lx, whereLu (resp.,Lv, Lx) stores the points ofP sorted by theiru-coordinates (resp.,v-
coordinates,x-coordinates). We implementLu by threading the leaves ofT , and we can implement
Lv by threading the leaves of the secondary tree at the root ofT . The listLx is maintained separately.
We maintain a collection of certificates, one for each pair ofconsecutive elements in each of the
three lists; each certificate simply asserts that the corresponding pair obeys the respective order. We
refer to these certificates as certificates of type (i), type (ii), and type (iii), respectively. The failure
events of these certificates are then:

(i) Two consecutive pointsp, q ∈ P in the u-order switch their positions (au-swap). See Fig-
ure 4 (i).

(ii) Two consecutive pointsp, q ∈ P in thev-order switch their positions (av-swap).

(iii) Two consecutive pointsp, q ∈ P in the x-order switch their positions (anx-swap). See
Figure 4 (ii).

We add these certificates to the event queue in which we maintain the certificates ofQ; the key of
each such certificate is its failure time.

q

p

z

w

p + W0

q + W3

p

q

z
W0W3

(i) (ii)

Figure 4. (i) A u-swap betweenp andq, with p moving down andq up; the old matched pair(p, z) is replaced by the
new pair(p, q). (ii) An x-swap betweenp andq, with q moving to the left andp to the right; the old matched pair(z, p)
is replaced by(z, q).

When au-swap,v-swap, orx-swap between pointsp andq occurs, we update the treeT and the
appropriate one among the listsLu, Lv, andLx. The swap may also change the setΠ. Fortunately,
any pair that starts or stops being matched due to the swap containsp or q, and the number of such

12

pairs isO(1). We useT to efficiently identify the changes inΠ, and then perform the appropriate
constantly many insertions and deletions intoQ. By the assumption on the motion of the points, the
total number of swaps isO(n2). Hence, by Theorem 3.1,Q encountersO(n2βs+2(n) log n) events,
which can be processed in overall timeO(n2βs+2(n) log2 n). Note that a swap may also change the
setΠ∗; the number of changes in this set that are caused by a swap might not be constant, though.

The following lemma summarizes our observations thus far.

Lemma 4.1. The setΠ of matched pairs changes only when two pointsp, q swap their positions in
either theu-order, v-order, orx-order. In each of these events, any pair that starts or stopsbeing
matched containsp or q, and the number of such pairs isO(1).

We maintain at each nodeξ of each secondary treeTw, the points of maximal and minimalx-
coordinates stored atP (w, ξ). 6 This allows us to useT to answer queries of the form: For a given
point p, find the leftmost point inW+(p), or find the rightmost point inW−(p). The first type of
query specifies the quadrantu > up, v > vp, and asks for the point of smallestx-coordinate (or
(u + v)-value) in this quadrant. The second type of query specifies the quadrantu < up, v < vp,
and asks for the point of largestx-coordinate (or(u + v)-value) in this quadrant. Each of these
queries can be answered inO(log2 n) time, by standard techniques, using the information storedat
the secondary nodes.

To update our range tree efficiently when swaps take place, wemake each secondary tree a
dynamic balanced search tree data structure that supports insertions and deletions. These updates
are required when we encounter swaps in theu-order between consecutive elements—see below.

When we insert a pointp into a secondary treeTw, we may have to update the information
associated with the nodes along the path from the root ofTw to the new point, some of which may
participate in rebalancing rotations. For any nodeξ on the update path inTw, we addp to P (w, ξ),
which may now become the point with maximal or minimalx-coordinate in that set. Notice that,
for a secondary nodeξ in someTw, it is straightforward to compute thex-maximal andx-minimal
points inP (w, ξ) from the corresponding values at the children ofξ. Therefore, it is easy to maintain
these values, when we insert or delete a point and rebalance asecondary tree via rotations, in
O(log n) time per such update. Since onlyO(log n) secondary trees are affected by any swap (see
below), the cost of updating the overall tree structure after a swap isO(log2 n). The same discussion
applies in the case of deletions.

Handling u-swaps. Let p, q ∈ P be the pair of points that switch their positions in theu-order.
See Figure 4(i). This causesp andq to swap their positions in the primary treeT and in the list
Lu. Let w be the lowest common ancestor ofp andq in T . When we swapp andq, we have to
deletep from the secondary treeTw′ of every nodew′ on the path fromw to the leaf that contained
p before the swap, and addq to each such tree. Similarly, we have to deleteq from, and addp
to, every secondary treeTw′ , for w′ on the path fromw to the leaf containingq before the swap.
Since we insert and deletep andq in O(log n) secondary trees, the total update time of these trees
is O(log2 n). Next, we swapp andq in Lu, and update the type (i) certificates associated withp, q,

6Here we do not need to explicitly maintain the pairπ(w, ξ) = (blue(w, ξ), red(w, ξ)) at ξ, since we do not handle
the setΠ∗ of these pairs. This set will come into play when we make the structure dynamic, in Section 5.

13

and their neighbors inLu. Finally, we find the changes in the setΠ of matched pairs, and update
the items inQ accordingly. The procedure described below applies also for v-swaps andx-swaps,
without any modifications.

In view of Lemma 4.1, only pairs involvingp or q can start or stop being matched. To find these
changes, we queryT with the wedgesW+(p), W−(p), W+(q), andW−(q), seeking the leftmost
or rightmost point in each wedge, as appropriate. This yields at most four candidate pairs (each
consisting of the apex (p or q) of the query wedge and the output point) for being new matched
pairs. We check each of these pairs whether it is indeed matched. Let(p, z) be one of these pairs,
say, withp lying to the left ofz. We query inT with the left wedgeW−(z). If the output isp, the
pair is matched. Otherwise, it is not matched and we discard it.

We insert intoQ the new matched pairs, and delete from it the old pairs that involve p or q if
they are not inΠ anymore. To find the old pairs easily, we maintain two pointers from eachp ∈ P
to the (at most) two matched pairs that contain it, one as a left point and one as a right point. It is
easy to maintain these links as we insert and delete pairs from the tournament.

The cost of this swap is twofold: the cost of updatingT , and the cost of handling the tournament
structureQ. UpdatingT takesO(log2 n) time. QueryingT to compute the new matched pairs also
takesO(log2 n) time. Inserting and deleting a constant number of pairs intoQ also takesO(log2 n)
time, as discussed in Section 3. Hence, the cost of au-swap isO(log2 n).

Handling v-swaps. When two pointsp, q ∈ P switch their positions in thev-order, we have to
swap them inLv and any secondary tree that contains both of them. Specifically, let z be the lowest
common ancestor ofp andq in the primary treeT . Thenp andq are stored inTζ for every ancestor
ζ of z. For any such ancestorζ (including z), we swapp andq in Tζ . Fix one such treeTζ , and
notice thatp andq are stored at consecutive leaves ofTζ . Let η be the lowest common ancestor in
Tζ of those two leaves. We swapp andq, and update thex-maximal andx-minimal points stored at
each nodeξ on the paths from the leaves containingp andq to η. Next, we update the certificates
of type (ii), and their failure events, associated withp andq and their neighbors inLv. Finally, we
compute the new matched pairs inΠ that arise from the swap (becausex-maximal andx-minimal
points may have changed), and updateQ, exactly as in the case ofu-swaps. The total cost of the
swap is, as above,O(log2 n).

Handling x-swaps. Letp andq be the pair of points that switch their positions in thex-order, with
p precedingq before the event takes place. This event does not cause any structural changes, neither
in the primaryT nor in any secondary tree, but it may change thex-maximal or thex-minimal
points in any nodeξ of any secondary treeTw, such that the subtree ofξ contains bothp andq.

More precisely, letz be the lowest common ancestor ofp andq in the primaryT . We need to
process the swap ofp andq in the secondary trees rooted at the ancestors ofz, includingz itself.
Let w be a fixed ancestor ofz, and letη be the lowest common ancestor ofp andq in Tw. The
subtrees ofTw containing bothp andq are the subtrees rooted at ancestors ofη (includingη itself).
Let ξ be one such ancestor. If thex-minimal point inP (w, ξ) is p then we change it toq, and if the
x-maximal point inP (w, ξ) is q then we change it top. Finally, we swapp andq in Lx, and update
the certificates of type (iii), and their failure events, associated withp, q, and their neighbors inLx.

14

We then compute the new matched pairs that arise from the swap, and updateQ, exactly as in the
case ofu-swaps. The total cost of the swap is, as above,O(log2 n).

Theorem 4.2 below summarizes gives main result of this section.

Theorem 4.2. The KDS for the closest pair described above has the following properties:

(a) It processesO(n2βs+2(n) log n) events(thus the KDS isefficient).

(b) It takesO(log2 n) time to process an event(thus the KDS isresponsive).

(c) Each pointp participates in a constant number of certificates of type (i), (ii), and (iii), and in
O(log n) certificates ofQ, involving pairs ofΠ that containp (thus the KDS islocal).

(d) The KDS usesO(n log n) space(and is thuscompact).

Proof. The proof of (b), (c), and (d) follows directly from the construction of the data structure and
from the preceding analysis. We note that the size of the event queue is onlyO(n). The bound on
the number of events has been discussed in the paragraph preceding Lemma 4.1.

Remark: The time bounds of Theorem 4.2 are the same as those of [10]. The space is larger by a
O(log n) factor. However, the advantages of our KDS are that it is considerably simpler, is suitable
for dynamization (see Section 5), and can easily be extendedto higher dimensions (see Section 8).

5 Dynamizing the KDS for Closest Pair

In this section we show how to make the KDS described in Section 4 also support insertions and
deletions of points. We have to be careful here, though, because an insertion or a deletion of a point
may cause massive changes in the setΠ, as is illustrated in Figure 5. We overcome the problem
by maintaining the setΠ∗, as defined in Section 2, rather than the setΠ, in a kinetic and dynamic
tournamentQ.

p

Figure 5. An insertion of a pointp into the shaded region destroysΘ(n) pairs inΠ, and deleting the point re-exposes
them. In contrast, most of these pairs (those for which thev-coordinates of their points are both smaller thanvp) remain
in Π∗ whenp is inserted or deleted.

At each nodeξ of a secondary treeTw, we storered(w, ξ) andblue(w, ξ). If π(w, ξ) is defined,
it generates an item in the tournamentQ whose value at timet is the Euclidean distance between
red(w, ξ) andblue(w, ξ) at timet. Since|Π∗| = O(n log n), Q usesO(n log n) storage. In contrast
to Π, maintainingΠ∗ at an insertion or deletion can be made efficient, as we will shortly show.

15

Kinetization. Before describing the procedure for inserting or deleting apoint, we consider the
kinetization of the modified data structure. As in the case ofΠ, the setΠ∗ can change only at au-
swap, av-swap, or anx-swap (or at an insertion or deletion, which we consider next). At any such
swap, the treeT is updated as described in Section 4. The only changes inΠ∗ involve pairs stored
along the paths where the updates ofT and its secondary trees take place. Hence, onlyO(log2 n)
pairs have to be removed fromΠ∗, andO(log2 n) new pairs have to be inserted. The corresponding
updates in the tournament structure that representsΠ∗ can be naively performed inO(log4 n) time
per update, as described in Section 3.

We can slightly improve this cost, by noting that the nodes ofthe tournamentQ that are affected
by the updates are those along the paths from the modified leaves to the root. In the worst case, the
number of such nodes can beO(log3 n), but we can reduce it toO(log2 n), if we make the structure
of the tournamentQ identical to that of the 2-tier range treeT . In fact, we embed the tournamentQ

into the range treeT , as follows.

At each nodeξ of a secondary treeTw, we maintainπ(w, ξ) (whenever it is defined) and we
also keep track of the closest pair among the pairsπ(w, ζ), whereζ is a descendant ofξ in Tw. We
denote this pair byπ∗(w, ξ), which isπ∗(w, ℓ(ξ)), π∗(w, r(ξ)), or π(w, ξ). For each such node
ξ we maintain a certificate that asserts which amongπ∗(w, ℓ(ξ)), π∗(w, r(ξ)), andπ(w, ξ) is the
closest pair. The failure times of these certificates are maintained in the event queue, where we also
store the times of the upcomingu-swaps,v-swaps, andx-swaps. Similarly, each nodew ∈ T keeps
track of the closest pair among the pairsπ(u, ζ), whereu is a descendant ofw in T , andζ ∈ Tu. We
denote this pair byπ∗(w), which isπ∗(ℓ(w)), π∗(r(w)), or π∗(w, η), whereη is the root ofTw. For
each such nodew we keep a certificate that asserts which amongπ∗(ℓ(w)), π∗(r(w)), andπ∗(w, η)
is the closest pair, and keep the failure times of these certificates in the same event queue. We call
these two classes of certificatestournament certificates. Since the tournament is now embedded
into T , we make the secondary trees weight-balanced trees, in accordance with the strategy used in
Section 3.

When handling swaps, we update the tournament certificates at all nodes affected by the up-
date. Since there areO(log2 n) secondary nodes andO(log n) primary nodes affected by each such
update, we handle each swap inO(log3 n) time.

We handle a failure of a tournament certificate at a secondarynodeξ in Tw, by updatingπ∗(w, ξ)
and propagating up this new closest pair. This may cause the tournament certificates of ancestors of
ξ in Tw and ancestors ofw in T to change, and therefore takesO(log2 n) time. We handle a failure
of a tournament certificate at a primary nodew similarly.

Lemma 5.1. The data structure processesO(n2βs+2(n) log3 n) events.

Proof. We bound the total number of events due to failures of tournament certificates using the
same technique as in Section 3. A failure of a tournament certificate at a secondary nodeξ in Tw

corresponds to a breakpoint in the lower envelope of the distance functions between components of
pairsπ(w, ζ), for all descendantsζ of ξ in Tw. The complexity of this envelope is proportional to the
number of such functions times a factor ofβs+2(n). Similarly, a failure of a tournament certificate
at a primary nodew ∈ T corresponds to a breakpoint in the lower envelope of the distance functions
between components of pairsπ(u, ζ), over all descendantsu of w in T , andζ ∈ Tu.

16

Let Φ(w, ξ) be the multiset of pairs(p, q) that are stored asπ(w, ζ), for descendantsζ of ξ in
Tw, where each pair(p, q) is counted with multiplicity equal to the number of maximal connected
time intervals during which(p, q) is stored asπ(w, ζ), over all nodesζ as above. Similarly, letΦ(w)
be the multiset of pairs(p, q) that are stored asπ(u, ζ), over all descendantsu of w and nodesζ
of Tu, where the multiplicity of a pair is defined as above. With this notation, the total number of
events isO(βs+2(n)) times

∑

w,ξ

|Φ(w, ξ)| +
∑

w

|Φ(w)| . (5)

Before the motion starts, the sum (5) isO(n log2 n). Each swap may increase this sum byO(log3 n).
This is because each swap may changeO(log2 n) pairsπ(w, ζ), and each such new pair contributes
a new element toO(log n) setsΦ(w, ξ) andΦ(v), whereξ is an ancestor ofζ in Tw, andv is an
ancestor ofw in T . Theu-swaps also increase

∑

w,ξ |Φ(w, ξ)| by a total ofO(n2 log2 n), due to
rotations (this bound is a consequence of the fact that the secondary trees are maintained as weight-
balanced trees). Summing up, we obtain that the total numberof events due to failures of tournament
certificates is bounded byO(n2βs+2(n) log3 n).

It is easy to see that our modified data structure requiresO(n log n) space. Furthermore, each
point participates in at mostO(log2 n) tournament certificates, so the data structure is local.

Dynamization. We next turn to the implementation of insertions and deletions of points. For
this, we make the primary tree a weight-balanced tree too. (We recall that this is the way in which
standard dynamization of range trees is implemented [24].)When performing a rotation around an
edge(ξ, η) in the primary tree, we have to rebuild the secondary treesTξ andTη because a complete
subtree moves from one tree to the other; see Figure 3. The weight-balanced representation allows
us to amortize the work associated with such massive rebuildings. We also maintain the secondary
trees as weight-balanced binary search trees, as above. Here rotations are less expensive, since they
only entail pointer changes, and do not require any massive rebuilding, but we still need the weight-
balanced mechanism to bound the total number of events. In addition to making the range trees
dynamic, we also maintain a dynamic search tree over the listLx. Notice that we already have such
a search tree overLu, which is our primary treeT , and we have a search tree overLv, which is the
secondary treeTr associated with the rootr of the primary tree.

To perform an insertion of a pointp, we first insert it into the primary treeT , and then into all
secondary trees on the search path from the rootr of T to the primary leaf containingp. While
performing these insertions, we update the tournament certificates of all nodes along the insertion
paths in these trees. We also insertp into Lu, Lv, andLx, using the search trees over these lists to
locate the places wherep should be inserted. We create new order certificates, associated withp and
its neighbors in the listsLu, Lv, andLx, and delete the corresponding previous certificates.

For a rotation around an edge(ξ, η), whereξ = p(η), in the primary tree, we rebuildTξ andTη,
as follows. Using the notation in Figure 3, the subtreesA, B, andC themselves are not affected by
the rotation, so no update of the corresponding secondary trees is required. Updates are required in
the new secondary treesTξ andTη. ForTξ, we merge thev-sorted lists of the elements ofB andC
into a common sorted list, and then (re)constructTξ over this list. Both steps takeO(|B|+|C|) time.

17

For Tη, we simply use the old secondary treeTξ as the newTη. Hence, the properties of weight-
balanced trees imply that the total cost of these rebuildings, during a sequence ofm updates, is
O(m log n).

It follows that the overall (amortized) cost of an insertionis dominated by the update ofO(log2 n)
tournament certificates, which takeO(log3 n) time (using the optimization described above). Dele-
tions are performed in an analogous manner.

The proof of the following theorem is analogous to the proof of Theorem 4.2.

Theorem 5.2. The dynamic KDS for the closest pair, as described above, hasthe following proper-
ties.

(a) The number of events during a sequence ofm insertions and deletions into a KDS of size
at mostn at any time (assumingm ≥ n), is O(mnβs+2(n) log3 n). This makes the KDS
efficient.

(b) The time it takes to process an event isO(log3 n) (thus the KDS isresponsive).

(c) Each point participates in a constant number of order certificates, and inO(log2 n) tournament
certificates(thus the KDS islocal).

(d) The KDS requiresO(n log n) space(and is thuscompact).

(e) An insertion or a deletion takesO(log3 n) amortized time.

Proof. The proof of (b), (c), (d), and (e) follows directly from the construction of the data structure
and from the analysis in Section 4, combined with the analysis given above. It remains to bound the
total number of events, which we do as follows.

The number of failure events of order certificates in the lists Lu, Lv, Lx is O(mn), because
any newly inserted element can swap its position, in any of the three orders, with at mostn older
elements—those present at the time of insertion.

We bound the number of tournament events, as in Lemma 5.1, by charging them to breakpoints
in lower envelopes and by bounding the sum in Equation (5). Each insertion, deletion, or swap
increases this sum byO(log3 n), including the amortized contribution of rotations, and therefore
the number of tournament events isO(mnβs+2(n) log3 n).

To complete the proof of (a), we argue that the structure is efficient, by showing that, in this
dynamic and kinetic setup, the number of closest pairs can beΘ(mn). A simple construction that
shows this involvesn− 1 stationary points lying on thex-axis, andm additional points, where each
new pointp is inserted into thex-axis to the left of all stationary points, moves to the rightand
crosses each of the stationary points, and is then deleted. Hence, the data structure is efficient.

6 KDS for Nearest Neighbors

This structure is an enhancement of the structure presentedabove for closest pairs. This enhance-
ment is somewhat involved, though:

18

(a) It requires adding certain substructures to the nodes ofthe range tree of Section 4.

(b) In order to get a sharp bound on the number of events, we need to implement the primary and
secondary trees astreaps[27], so our algorithm becomes randomized, and its performance
bounds hold in expectation.

(c) The standard implementation of treaps stores an item at each node, rather than just at the
leaves [27]. This requires some technical changes in the wayin which the range-tree data
structure and its auxiliary data are maintained.

We maintain at each secondary nodeξ the pointsblue(w, ξ) and red(w, ξ) (whose definition
slightly changes, because of the treap structure—see below). As in Section 4, the structure of
the primary or a secondary tree changes only byu-swaps andv-swaps, and the pointsblue(w, ξ)
andred(w, ξ) may also change as a result of anx-swap. The winner pointsβ(w, ξ) and̺(w, ξ),
however, may change even when nou-swap,v-swap, orx-swap occurs.

To keep track of the pointsβ(w, ξ) and̺(w, ξ), for every primary nodew and secondary nodeξ,
we store at each secondary nodeξ two kinetic and dynamic tournaments, as described in Section 3.
Let a = red(w, ξ) andb = blue(w, ξ) at some timet. The first tournament atξ, denoted byB(w, ξ),
contains the distancesϕp,a, defined in (4), for each pointp ∈ Blue(w, ξ). The second tournament at
ξ, denoted byR(w, ξ), contains the distancesϕq,b for each pointq ∈ Red(w, ξ). Thusβ(w, ξ) and
̺(w, ξ) are the respective winners of the kinetic tournamentsB(w, ξ) andR(w, ξ).

In addition, for each pointp ∈ P , we maintain another small kinetic and dynamic tournament,
denotedK(p), which contains the distancesϕp,q, for each pointq ∈ C(p), whereC(p) is the set of
candidate points defined in (3). The basic properties of the range treeT , and of nearest neighbors
in planar point sets, established in Section 2, imply that the nearest neighbor ofp is the winner of
K(p) for one of the range trees corresponding to one of the three pairs of wedges.

The new tournamentsB(w, ξ) andR(w, ξ) at secondary nodes may undergo massive changes
duringu-swaps,v-swaps, andx-swaps. Each timered(w, ξ) changes, we have to rebuildB(w, ξ)
from scratch, since all trajectories of the items inB(w, ξ) change algebraically. Similarly, when
blue(w, ξ) changes, we have to rebuildR(w, ξ) from scratch. In addition, a rotation around an edge
(η, ξ) in Tw also requires rebuilding ofB(w, ξ), R(w, ξ), B(w, η), andR(w, η), because the sets
of points in the left and right subtrees ofξ and ofη change in a massive manner (and also because
red(w, ξ), blue(w, ξ), red(w, η), or blue(w, η), may change). To control the potential increase in
the cost of performing swaps, due to rebuildings of the new tournaments, we use the scheme of
Alexandron et al. [8], which storesT and each of its secondary trees astreaps (also known as
randomized search trees) [27].

6.1 Treaps and the data structure

Here is a brief review of treaps and their basic properties; more properties will be established later,
as ingredients for our analysis. Atreap is a randomized search tree with optimalexpectedbehavior.
We associate with each nodez in the treap arank, denoted byrank(z), and apriority, denote by
priority(z). 7 Thei-th node encountered when we traverse the tree in symmetric order (or inorder,

7Note that priorities are associated with thenodesof the tree, rather than with the items that will reside at these nodes.

19

obtained by recursively traversing the left child, then thenode itself, and then the right child) has
rank i. The node of ranki stores theith smallest item (the item of ranki) among the items stored
in the treap. The priorities are random numbers, drawn independently and uniformly at random
from an appropriate continuous distribution, so that, withprobability 1, the set of priorities defines
a random permutation of the nodes. The treap is a heap with respect to thepriorities. That is, the
priority of a node is larger than the priorities of its children. Note that, once we draw the priorities,
the resulting treap is uniquely determined. The analysis of[27] shows that the expected depth of
any node in a treap (over the draws of the priorities) isO(log n).

To insert a new itemx into a treap, we create a new leafℓ, in a position determined by the rank
of x. Then we draw a random priority forℓ from the given distribution, and rotateℓ up the tree, as
long as its priority is larger than the priority of its parent. The implementation of a delete operation
is similar: Letx be the item to be deleted and letv be the node containingx. We keep rotating the
edge connectingv to its child of larger priority, untilv becomes a leaf, and then removev. Note
that an insertion or a deletion changes the rank of all subsequent nodes by one, which, however, has
no effect on the algorithm, because ranks are maintained only implicitly.

We maintain the primary treeT of our two-dimensional range tree as a treap. This requires a
few minor and technical modifications of the structure, caused by the fact that now items are also
stored at internal nodes of the tree. Specifically, the nodez ∈ T of rank k stores the pointµ(z),
which is the point with thek-th smallestu-coordinate. We refer to the priorities of nodes in this
tree asu-priorities. We now denote byP (z) the set of points stored at the nodes of the subtree
rooted atz ∈ T , including µ(z) itself. Each secondary tree is maintained as a treap in a similar
manner. We use a different independent set of priorities foreach secondary tree, which we refer
to asv-priorities. A nodeξ of rank k in a secondary treeTw stores the pointµ(w, ξ) of the k-th
smallestv-coordinate among all points ofP (w). We denote byP (w, ξ) the set of points stored at
the nodes of the subtree ofTw rooted atξ, includingµ(w, ξ) itself. Since the expected depth of a
treap isO(log n), we obtain that any point belongs to an expected number ofO(log n) subtrees of
the primary tree, and to an expected number ofO(log2 n) subtrees of secondary trees.

v = vq

(i)

v = vq

u = up

(ii)

u = up

p

q
a

b

p = q

b a

Figure 6. Points ofP (w, ξ), p = µ(w), q = µ(w, ξ); filled (hollow) circles denote the blue (red) points ofP (w, ξ).
Points inRed(w, ξ) andBlue(w, ξ) are denoted by double circles. (i)p 6= q. Hereq = blue(w, ξ), b = red(w, ξ),
q = β(w, ξ), anda = ̺(w, ξ). (ii) p = q. ̺(w, ξ) = a, andβ(w, ξ) = b.

Let w be a primary node. Since we now store points also at internal nodes, we have to redefine
which points ofTw are red and which are blue, so as to guarantee that Lemma 2.3 still holds, thereby
ensuring the correctness of the data structure. As before, each point inP (ℓ(w)) is blue inTw, and

20

each point inP (r(w)) is red inTw. The pointµ(w), stored atw, is considered to be both red and
blue.

Let ξ be a node inTw. If µ(w, ξ) 6= µ(w) then we redefineRed(w, ξ) (resp.,Blue(w, ξ)) to
be the set of red (resp., blue) points inP (w, r(ξ)) (resp.,P (w, ℓ(ξ))) together withµ(w, ξ) if it is
red (resp., blue). As earlier,red(w, ξ) is the point of the minimumx-coordinate inRed(w, ξ), and
blue(w, ξ) is the point of the maximumx-coordinate inBlue(w, ξ).

Let p = µ(w) and q = µ(w, ξ). We say that nodeξ is special if p = q. Let αξ be the
intersection point of the linesu = up andv = vq. Note that ifξ is special thenαξ = p = q. The set
Red(w, ξ) (resp.,Blue(w, ξ)) consists of the points inP (w, ξ) \ {αξ} contained inW+(αξ) (resp.,
W−(αξ)), andred(w, ξ) (resp.,blue(w, ξ)) is the point ofP (w, ξ)\{αξ} with the minimum (resp.,
maximum)x-coordinate in this quadrant. See Figure 6. We now define the points̺(w, ξ), β(w, ξ),
and the candidate nearest neighbors generated atξ. There are two cases:

Case A: ξ is not special, that is p 6= q. We define̺(w, ξ) to be the point closest toblue(w, ξ) in
Red(w, ξ), andβ(w, ξ) to be the point closest tored(w, ξ) in Blue(w, ξ). We maintain two
tournaments atξ: a tournamentR(w, ξ) on the distancesϕa,b, overa ∈ Red(w, ξ), where
b = blue(w, ξ), and another tournamentB(w, ξ) on the distancesϕa,b, overa ∈ Blue(w, ξ),
whereb = red(w, ξ). Thus̺(w, ξ) (resp.,β(w, ξ)) is the winner of the tournamentR(w, ξ)
(resp.,B(w, ξ)). We add the point̺ (w, ξ) to C(blue(w, ξ)) andβ(w, ξ) to C(red(w, ξ)).

Case B: ξ is special, that is p = q. We define̺(w, ξ) to be the point closest top = q = µ(w, ξ)
in Red(w, ξ), andβ(w, ξ) to be the point closest toµ(w, ξ) in Blue(w, ξ). We maintain two
tournaments atξ: a tournamentR(w, ξ) on the distancesϕp,a, overa ∈ Red(w, ξ), and an-
other tournamentB(w, ξ) on the distancesϕp,b, overb ∈ Blue(w, ξ). Thus, as above,̺(w, ξ)
(resp.,β(w, ξ)) is the winner of the tournamentR(w, ξ) (resp.,B(w, ξ)). We add the points
̺(w, ξ), β(w, ξ) to C(µ(w, ξ)). We also addµ(w, ξ) to C(red(w, ξ)) andC(blue(w, ξ)).

The following lemma proves the correctness of our data structure.

Lemma 6.1. If p is the nearest neighbor ofq andq ∈ W+(p) or q ∈ W−(p), thenp ∈ C(q).

Proof. Suppose, without loss of generality, thatq ∈ W+(p); the other case is symmetric. Letw be
the lowest common ancestor of the nodes storingp andq in T . Thenp, q ∈ P (w) andp (resp.,q)
is blue (resp., red) inTw; if p (or q) is µ(w), then it has both colors. Letξ be the lowest common
ancestor of the nodes storingp andq in Tw.

First, we claim that ifµ(w) = µ(w, ξ), then this point is eitherp or q. Indeed supposeµ(w) =
µ(w, ξ) = a 6= p, q; see Figure 7 (i). Thenp is a blue point inP (w, ℓ(ξ)) andq is a red point
in P (w, r(ξ)), thereby implying thatq ∈ W+(a) andp ∈ W−(a). Consequently,a ∈ W+(p)
andxa < xq. Hence, by Lemma 2.1,p cannot be the nearest neighbor ofq, a contradiction which
establishes the claim. The proof continues by considering the following three cases.

Case A: µ(w) = µ(w, ξ) = p. In this case,Red(w, ξ) is the set of red points inP (w, r(ξ)). Since
q ∈ W+(p), q ∈ Red(w, ξ). Moreover,Red(w, ξ) ⊂ W+(p), therefore by Lemma 2.1,
q = red(w, ξ). Since the data structure addsµ(w, ξ) to C(red(w, ξ)) if ξ is special,p ∈ C(q).
See Figure 7 (ii).

21

q

p

q

q
p

q

αξ

b

a

(i) (ii) (iii) (iv)

W+(p)W+(p)

a
p p

W+(p)

Figure 7. (i) µ(w) = µ(w, ξ) = a 6= p, q. (ii) µ(w) = µ(w, ξ) = p, q = red(w, ξ). (iii) µ(w) = µ(w, ξ) = q,
p = β(w, ξ). (iv) µ(w) 6= µ(w, ξ).

Case B: µ(w) = µ(w, ξ) = q. In this case,Blue(w, ξ) is the set of blue points inP (w, ℓ(ξ)). Since
p ∈ W−(q), p ∈ Blue(w, ξ). Moreover,p = β(w, ξ) becausep is the nearest neighbor of
q = µ(w, ξ) and thus the winner of the tournament built on the points inBlue(w, ξ). Since
the data structure addsβ(w, ξ) to C(µ(w, ξ)) if ξ is special,p ∈ C(q). See Figure 7 (iii).

Case C: µ(w) 6= µ(w, ξ). Let a = µ(w), b = µ(w, ξ), andαξ the intersection point of the line
u = ua and v = vb. Thenp ∈ W−(αξ) and q ∈ W+(αξ), thereby implying thatp ∈
Blue(w, ξ) andq ∈ Red(w, ξ). MoreoverRed(w, ξ) ⊂ W+(αξ) ⊂ W+(p), therefore, by
Lemma 2.1,q = red(w, ξ) andp, the nearest neighbor ofq, is β(w, ξ). We can thus conclude
thatp ∈ C(q). See Figure 7 (iv).

6.2 Kinetic maintenance of the structure

We now proceed to describe the details of the kinetic maintenance of the modified tree structure.
Similar to the maintenance of the closest-pair KDS in Section 4, the critical events that affect the
structure ofT and its extreme blue and red points (that is, the pointsblue(w, ξ) andred(w, ξ)), for
w ∈ T andξ ∈ Tw) are theu-swaps,v-swaps, andx-swaps, defined as above. The tournaments
maintained at the secondary nodes, as well as the tournaments K(p), may undergo discrete changes
in between swaps. As in Section 4, to keep track of these swaps, we maintain three auxiliary sorted
lists Lu, Lv, andLx, and a collection ofO(n) certificates that specify the respective sorted orders
of the points by theiru-coordinates,v-coordinates, andx-coordinates.

Handling u-swaps. Let p, q ∈ P be the pair of points that switch their positions in theu-order,
so thatp precedesq before the swap. This causes them to swap their (consecutive) positions in the
primary treeT and in the listLu. Since nowT stores a point at each node, one of these points is
an ancestor of the other. Assume thatq = µ(w) and thatp is stored at the rightmost leaf ofTℓ(w).
The case wherep is an ancestor ofq is handled in a fully symmetric manner. We swapp andq by
makingµ(w) := p and by storingq at the leaf that used to storep. This does not change the primary
tree structure, but requires the following updates of secondary treaps.

When we swapp andq, we deletep from the secondary treeTz of every nodez on the path
from ℓ(w) to the leaf that containedp before the swap, and addq to each such tree. In the treapTw,

22

η

b

d

c

η

c
a

b
d

e
f g

h
i i

h
g

f
e

(ii)

a

q

(i)

q

p

p

Figure 8. UpdatingT at au-swap: (i) Swappingp andq in the primary treap. (ii) Insertingq into a secondary treapTz,
a new leafη is created, which storesq; the filled (resp., hollow) nodes have lower (resp., higher)priority than that ofη;
the nodeη is rotated upwards until it becomes a child ofe.

q was both blue and red, andp was blue before the swap. After the swapq is blue andp is both
blue and red. This involves no structural changes inTw, but it does affect the setsRed(w, ξ) and
Blue(w, ξ), and the tournamentsB(w, ξ) andR(w, ξ), at nodesξ along the paths from the root of
Tw to the nodes that storep andq, and thus also affect the corresponding extreme pointsblue(w, ξ)
andred(w, ξ) and the winnersβ(w, ξ) and̺(w, ξ); see Figure 8 (i). Special care is needed at the
nodes ofTw that storep andq—one of them stops being a special node and the other becomes
special; see Section 6.1 for details.

We insertq to a secondary treapTz, wherez is a node on the rightmost path of the left subtree
of w, using the insertion algorithm for a treap. Recall that the insertion putsq in a new node,
sayη, which is initially a leaf. It then propagatesη upwards, using rotations, untilpriority(η) <
priority(p(η)); see Figure 8 (ii). When we perform a rotation around an interim edge(η, ξ = p(η))
we recomputeblue(z, ξ) andred(z, ξ), and we rebuild the tournamentsB(z, ξ) andR(z, ξ). Once
the final position ofη is fixed, we update the tournamentsred(z, ζ), blue(z, ζ) andR(z, ζ),B(z, ζ)
at the ancestorsζ of η (after the rotations; hollow nodes in Figure 8 (ii)), as follows. Assume that
q is blue after the swap (as in the case considered in Figure 8).For each ancestor nodeζ of η such
thatη lies, say, in the left subtree ofζ we do the following: if thex-coordinate ofq is larger than
that ofblue(z, ζ), we setblue(z, ζ) to q, and if ζ is not special we rebuildR(z, ζ) on the distances
ϕq,a, for a ∈ Red(z, ζ). Furthermore, we setb := red(z, ζ) if ζ is not special, andb := µ(z, ζ) if ζ
is special, and we addϕb,q to B(z, ζ). The treatment of the case in whichq is red is analogous. We
delete a pointp from a secondary treapTz in a fully symmetric manner.

For each primary nodez and secondary nodeξ such thatred(z, ξ), blue(z, ξ), ̺(w, ξ), orβ(w, ξ)
changes we also make the derived modification to the tournaments K(p) for the affected pointsp.
Finally, we swapp andq in Lu, and update theO(1) order certificates associated withp, q, and their
neighbors inLu.

Handling v-swaps. As in the structure of Section 4, when two pointsp, q ∈ P switch their
positions in thev-order, we have to swap them in any secondary tree that contains them both, and
in Lv. Specifically, letz be the lowest common ancestor ofp andq in the primary treeT . For
any ancestory of z (including z), we swapp andq in Ty. Fix one such secondary treapTy, and
notice thatp andq are stored atconsecutivenodes (in symmetric order) ofTy, thus one of them is
an extreme node in a subtree rooted at a child of the other, as in Figure 8(i). Letη be the lowest

23

common ancestor ofp andq in Ty. Assume that before the swapη storedq, andp was stored at the
rightmost leaf of the left subtree ofη. (The case whenη holdsp andq is stored at the leftmost leaf of
the right subtree ofη is symmetric.) We swapp andq, and updateblue(y, ξ), red(y, ξ), B(y, ξ), and
R(y, ξ), for each nodeξ on the path from the leaf containingp to η. We perform an insertion and/or
a deletion to/fromB(y, ξ) in casered(y, ξ) does not change and eitherp or q is blue. If red(y, ξ)
does change, andξ is not special, we rebuildB(y, ξ). Symmetric updates are applied toR(y, ξ).

Note that eitherp or q is µ(z), and therefore inTz eitherη or the leaf containingp is special. Ifη
is special before the swap then it stops being special and theleaf that containedp and now contains
q becomes special, and vice versa. We recomputeblue(y, ξ), red(y, ξ), B(y, ξ), andR(y, ξ) for
these nodes that change their status from special to non-special or vice versa.

For each primary nodez and secondary nodeξ such thatred(z, ξ), blue(z, ξ), ̺(w, ξ), orβ(w, ξ)
changes we also make the derived modification to the tournaments K(p) for the affected pointsp.
Finally, we swapp andq in Lv, and update theO(1) order certificates associated withp andq and
their neighbors inLv.

Handling x-swaps. Let p andq be a pair of points that switch their positions in thex-order, with
p to the left ofq before the event takes place. This event does not cause any structural changes
in the primary treap, nor in any secondary treap, but it may changered(z, ξ) in any nodeξ of any
secondary treapTz, such that the subtree ofTz rooted atξ contains bothp andq.

Let z be the lowest common ancestor ofp andq in the primary treap. We need to processp and
q at each ancestor ofz, includingz itself. Lety be a proper ancestor ofz; note that neitherp nor q
is stored aty. Assume thatp andq are both red inTy, and letη be the lowest common ancestor of
p andq in Ty. The subtrees ofTy containing bothp andq are the subtrees rooted at ancestors ofη
(includingη itself). At any such ancestorζ, if p = red(y, ζ) then we changered(y, ζ) to beq and
rebuildB(y, ζ). Finally, we swapp andq in Lx, and update theO(1) order certificates associated
with p, q, and their neighbors inLx. The case where bothp andq are blue inTy is analogous. If one
is blue and the other is red inTy (i.e., y = z), then we do nothing; this also covers the case when
one ofp, q is stored asµ(z).

6.3 Analysis

Some properties of treaps. Before analyzing the expected cost of the various swaps, we provide
two related lemmas on the expected size of various substructures in a treap. The proofs are similar
to those given in the original paper of Seidel and Aragon [27], but we present them in detail for the
sake of completeness.

Lemma 6.2. Letw be the node of rankk in a treap, and letW = 〈w1, . . . , wl〉 be the rightmost path
starting from the left childw1 of w and ending at the leafwl. Then, for any nonnegative functionf ,

E

(l
∑

s=1

f(size(ws))

)

≤ f(k − 1)

k
+ 2

k−2
∑

m=1

f(m)

m2
,

wheresize(w) is the size of the subtree rooted atw.

24

Proof. For eachi, let w(i) denote the node of ranki in the treap. For each pair of indicesi, j such
that i ≤ j < k, consider the eventXi,j, wherew(j) is the root of a subtree inT whose leftmost
leaf isw(i) and whose rightmost leaf isw(k− 1); clearly, in this case this subtree consists of all the
verticesw(l), for i ≤ l ≤ k − 1. Note that whenXi,j takes place,w(j) is a node on the pathW.
Conversely, ifw(j) is a node onW then there exists ani ≤ j such thatXi,j occurs; moreover, in
any random instance ofT , this i is unique. We then have

E

(l
∑

s=1

f(size(ws))

)

≤
k−1
∑

i=1

k−1
∑

j=i

Pr(Xi,j) · f(k − i) . (6)

For i > 1, Xi,j occurs if and only if among the nodesw(s), i − 1 ≤ s ≤ k, w(i − 1) andw(k)
have the two largest priorities, in either order, andw(j) has the third largest priority. Hence,

Pr[Xi,j] =
2(k − i − 1)!

(k − i + 2)!
≤ 2

(k − i)3
.

The eventX1,j occurs if among the nodesw(l), 1 ≤ l ≤ k, w(k) has the largest priority andw(j)
has the second largest priority. Hence,

Pr[X1,j] =
1

k(k − 1)
.

We can thus rewrite (6) as

E

(l
∑

s=1

f(size(ws))

)

≤
k−1
∑

j=1

f(k − 1)

k(k − 1)
+

k−1
∑

i=2

k−1
∑

j=i

2f(k − i)

(k − i)3

=
k−1
∑

i=2

2f(k − i)

(k − i)2
+

f(k − 1)

k
,

which is exactly the inequality asserted in the lemma.

In particular, forf(s) = s, Lemma 6.2 yields

E

(l
∑

j=1

size(wj)

)

= O(log n).

Lemma 6.3. Let w be the root of a treap onn points, and letW = 〈w = w1, . . . , wl〉 denote the
path fromw to a nodewl of rankk. Then, for any nonnegative functionf ,

E

(l
∑

s=1

f(size(ws))

)

= O

(

f(n) +

n
∑

m=1

f(m)

m + 1

)

,

wheresize(u) is, as above, the size of the subtree rooted at nodeu.

25

Proof. Let w(i) denote the node of ranki in the treap, so, in particular,wl = w(k). For each triple
of indicesi,m, j such thati ≤ m ≤ j andi ≤ k ≤ j, consider the eventXi,m,j, in whichw(m) is
the root of a subtree inT whose leftmost node isw(i) and whose rightmost node isw(j); clearly,
in this case this subtree consists of all the verticesw(s), for i ≤ s ≤ j, and, in particular, it contains
w(k). Note that whenXi,m,j occurs,w(m) is a node on the pathW. Conversely, ifw(m) is a node
on W then there exist indicesi ≤ m ≤ j, where we also havei ≤ k ≤ j, such thatXi,m,j occurs.
Moreover, in any random instance ofT , thesei andj are unique. We then have

E

(l
∑

s=1

f(size(wq))

)

≤
k
∑

i=1

n
∑

j=k

j
∑

m=i

Pr(Xi,m,j) · f(j − i + 1) . (7)

We bound the right hand side by dividing the summation into four subsums.

Case A:i > 1 and j < n. In this caseXi,m,j occurs if and only if among the nodesw(s),
i− 1 ≤ s ≤ j + 1, w(i− 1) andw(j + 1) have the two largest priorities, in either order, andw(m)
has the third largest priority. Hence,

Pr[Xi,m,j] =
2(j − i)!

(j − i + 3)!
≤ 2

(j − i + 1)(j − i + 2)2
.

Therefore

k
∑

i=2

n−1
∑

j=k

j
∑

m=i

Pr(Xi,m,j) · f(j − i + 1) ≤
k
∑

i=2

n−1
∑

j=k

j
∑

m=i

2f(j − i + 1)

(j − i + 1)(j − i + 2)2

=

k
∑

i=2

n−1
∑

j=k

2f(j − i + 1)

(j − i + 2)2
≤

n
∑

i=1

2f(i)

i + 1
. (8)

Case B:i = 1 and j < n. The eventX1,m,j, for j < n, occurs if among the nodesw(s),
1 ≤ s ≤ j + 1, w(j + 1) has the largest priority andw(m) has the second largest priority. Hence,

Pr[X1,m,j] =
1

j(j + 1)
,

thereby implying that

n−1
∑

j=k

j
∑

m=1

Pr(X1,m,j) · f(j) ≤
n−1
∑

j=k

j
∑

m=1

f(j)

j(j + 1)
≤

n
∑

j=1

f(j)

j + 1
. (9)

Case C:i > 1 andj = n. As in the previous case,Xi,m,n, for i > 1, occurs if among the nodes
w(s), i − 1 ≤ s ≤ n, w(i − 1) has the largest priority andw(m) has the second largest priority.
Therefore,

Pr[Xi,m,n] =
1

(n − i + 2)(n − i + 1)
,

and

k
∑

i=2

n
∑

m=i

Pr(Xi,m,n) · f(n − i + 1) ≤
k
∑

i=2

n
∑

m=i

f(n − i + 1)

(n − i + 2)(n − i + 1)
≤

n
∑

i=1

f(i)

i + 1
. (10)

26

Case D:i = 1 andj = n. Finally, X1,m,n occurs ifw(m) has the highest priority overall (this
is the event wherew(m) is the root), which implies thatPr[X1,m,n] = 1/n. Therefore

n
∑

m=1

Pr(X1,m,n) · f(n) =

n
∑

m=1

f(n)

n
= f(n). (11)

Summing (8)–(11), we obtain

E

(l
∑

s=1

f(size(ws))

)

= O

(

f(n) +

n
∑

j=1

f(j)

j + 1

)

,

as asserted.

We now give the analysis of the data structure. We do not consider updates to the kinetic
tournamentsK(p) as it would be easy to verify that the cost of maintaining these tournaments is
dominated by the cost of maintaining the tournamentsR(w, ξ) andB(w, ξ).

The cost of a u-swap. Consider first the cost of rebuilding tournaments during au-swap, and
assume the setup depicted in Figure 8. At each of the affectedsecondary subtreesTz (includingTw

itself), the tournaments that might have to be rebuilt originate at nodes that lie on two paths from the
root to two nodes of specific ranks. The cost of rebuilding a tournament at a nodeξ is proportional
to the size of the subtree rooted atξ. Hence, the total expected cost of rebuilding tournaments at
some secondary treeTz is proportional to the expected sum of the sizes of the subtrees rooted at
nodes lying along the path top before it is deleted and along the path toq after it is inserted. By
Lemma 6.3, withf(x) = x, this expected sum isO(|Tz |). Plugging this bound into Lemma 6.2, the
overall expected cost of rebuilding tournaments at au-swap isO(log n).

The cost of the other steps that handle au-swap is smaller—the cost of the actual updating of
a secondary treeTz is only O(log |Tz|), even if the cost of peforming a rotation around a nodeξ
is proportional to the size of the subtree rooted byξ (See Theorem 7.1). This is subsumed by the
preceding bound. We thus obtain the following lemma.

Lemma 6.4. The expected cost of handling au-swap isO(log n).

The cost of a v-swap. Recall that av-swap of two pointsp, q requires updates in secondary trees
Tz, wherez is a common ancestor of the nodes storingp andq. In each such treeTz, p andq are
consecutive, so one is an extreme node in a subtree rooted at achild of the other. Using Lemma 6.2,
the expected cost of updating a secondary treeTz, which consists of swappingp andq and rebuilding
the appropriate tournaments, isO(log |Tz|). Plugging this into Lemma 6.3, withf(x) = log x, we
obtain:

Lemma 6.5. The expected cost of handling av-swap isO(log2 n).

27

Expected cost of all x-swaps. A singlex-swap may be expensive, also in expectation (see below),
but we show that the total cost of allx-swaps is small, arguing as follows. For a nodeξ ∈ Tw, let
Λ(w, ξ) be the multiset of all pairs(a, b) of points ofP , with a 6= b, such that, at some timet, a ∈
Red(w, ξ) andb ∈ Blue(w, ξ). The multiplicity of each pair(a, b) in Λ(w, ξ) is equal to the number
of maximal (connected) time intervals in which the above event occurs. LetΛ =

⋃

w,ξ Λ(w, ξ),
where the union is over all primary nodesw and secondary nodesξ ∈ Tw. The following lemma
bounds the expected total size of tournaments that we rebuild while handlingx-swaps.

Lemma 6.6. The expected total size of tournaments that we rebuild whileperformingx-swaps is
O(|Λ|βs+2(n)).

Proof. Fix a nodeξ in a secondary treapTw. Let B denote the multiset of all blue points that
are ever stored either at the left subtree ofξ or at ξ itself. Each point is counted with multiplicity
equal to the number of times it enters this set. Similarly, let R denote the multiset of all red points
which are stored either at the right subtree ofξ or at ξ itself, where each point is counted with
multiplicity equal to the number of times it enters this set.Associate with each pointb ∈ B the
function x(b(t)), and letU = U(t) denote the upper envelope of these (partial) functions, each
defined over some connectedt-interval. Since, by assumption, thex-coordinates of a fixed pair of
points can become equal at mosts times, it follows [29] that the number of breakpoints ofU is
at mostλs+2(|B|) = O(|B|βs+2(n)). Similarly, the number of breakpoints in the upper envelope
defined by any subsetB′ ⊆ B of the functions isO(|B′|βs+2(n)).

Each such breakpoint corresponds to anx-swap at which we rebuildR(w, ξ). So if we sum the
sizes of the tournamentsR(w, ξ), measured at the times these breakpoints occur, we get a bound on
the total size of red tournaments at the times when they are rebuilt at ξ. We can get a similar bound
on the total size of blue tournaments at the times of their rebuilding. Assume that each time such
a breakpoint occurs, we charge one unit to each point inR(w, ξ). We now bound the maximum
number of such charges.

Fix a red pointa ∈ R, within a fixed maximal time intervalI in which a is in R. Let Ψa be
the set of breakpoints ofU that chargea; that is, breakpoints that occur withinI. Let B∗

a denote
the multiset of those blue points whose functions are incident to the breakpoints ofΨa. Clearly, the
breakpoints ofΨa are also breakpoints of the upper envelope of{x(b(t)) | b ∈ B∗

a}. Hence we have
|Ψa| = O(|B∗

a|βs+2(n)). Now the total count of tournament changes under consideration is

∑

a∈R

|Ψa| = O

(

∑

a

|B∗
a|βs+2(n)

)

.

Since
∑

a |B∗
a| ≤ |Λ(w, ξ)|, we conclude thatO(|Λ(w, ξ)|βs+2(n)) bounds that total size of red

tournaments, measured at the time of their rebuilding, inξ. Summing over all primary nodesw and
secondary nodesξ, and applying the same argument to blue tournaments, the lemma follows.

To apply Lemma 6.6, we have to bound|Λ|. New pairs inΛ are created during the handling of
u-swaps andv-swaps. Consider first au-swap of pointsp andq. There are two types of pairs that
this swap creates: pairs that contain eitherp or q, and pairs created by the structural changes caused
by rotations while deletingq and insertingp (or vice versa) into secondary trees. We refer to pairs
of the first (resp., second) kind asprimary (resp.,secondary) pairs. The number of primary pairs is

28

bounded by the expected total size of the secondary trees affected by the swap. By Lemma 6.2, this
size is bounded byO(log n).

To bound the number of new secondary pairs, we first show that each insertion into or deletion
from a secondary tree of sizes creates an expected number ofO(s) new secondary pairs.

Lemma 6.7. If a point is inserted into or deleted from a secondary treeTw, then the expected
increase in the value of

∑

ξ∈Tw
Λ(w, ξ) is O(|Tw|).

Proof. We analyze deletions in detail; the analysis of insertions is analogous and hence omitted.
Assume that the point to be deleted fromTw resides at nodeξ of rankm. We examine the rotations
that bringξ down, and bound the expected number of new pairs created by these rotations.

Let X = 〈χ1 = ℓ(ξ), χ2, . . . , χg〉 denote the rightmost path fromℓ(ξ) to a leaf, and letZ =
〈ζ1 = r(ξ), ζ2, . . . , ζh〉 denote the leftmost path fromr(ξ) to a leaf, both defined before the rotations
begin; see Figure 9. Each rotation in the deletion procedureto bringξ down is performed along an
edge onX or Z. Let B = Blue(w, ξ) andR = Red(w, ξ). For 1 ≤ i ≤ g, let Bi = Blue(w,χi),
and for1 ≤ j ≤ h, let Rj = Red(w, ζj).

ξ

ξ

ξ

χ2

χ1

χ1

χ2

χ1

χ2

A

B
C

D

B C C

D

D

B

AA

Figure 9. Rotatingξ down by a sequence of right rotations.D becomes part ofTχi
after performing the right rotation

along the edgeξχi.

Suppose we first perform right rotations along the edges ofX. As shown in Figure 9, a right
rotation around the edge betweenξ and its current left childℓ(ξ) = χi (starting withi = 1) changes
the left child ofξ to χi+1, andξ becomes the right child ofχi. Tr(ξ) remains unaffected by these
rotations (see, e.g., the subtreeD in Figure 9.) SinceTr(ξ) was disjoint from the right subtree ofTχi

before the rotation, but becomes part of it after the rotation, new pairs are generated inΛ(w,χi) by
the rotation, namely, the pairs inBi × R. The only other pairs inΛ that can be generated by this
rotation involve the pointp = µ(w, ξ) stored atξ; there are at most|Bi| such pairs—see Figure 9.
Hence, the right rotations introduce

∑g
i=1(|Bi × R| + |Bi|) ≤ |B|(|R| + 1) new pairs toΛ (note

that theBi’s are disjoint—see Figure 9).

Similarly, if we first perform left rotations alongZ (before performing any right rotation), then
the rotation around the edge(ξ, ζj) introduces|B × Rj | + |Rj | pairs toΛ(w, ζj), for a total of
(|B| + 1)|R| pairs. If right and left rotations are performed in any mixedorder, then each right
rotation creates only a subset of the pairs it would have created if performed before all left rotations,
and the same holds for left rotations. Therefore, regardless of the order of the rotations, the total
number of new pairs is

O((|B| + 1)(|R| + 1)) = O((|P (w, ℓ(ξ))| + 1) · (|P (w, r(ξ))| + 1));

29

here we are referring to the children ofξ before the rotations. It thus suffices to bound the expected
value of this quantity.

Let ξ(i) denote the node of ranki in the treapTw, so in particularξ = ξ(m). For i ≤ m ≤ j,
defineXi,j to be the indicator random variable of the event in which the nodeξ(m), storingm in
Tw, is the lowest common ancestor ofξ(i) andξ(j). The expected value of(|P (w, ℓ(ξ))| + 1) ·
(|P (w, r(ξ))| + 1), for a fixed nodeξ = ξ(m), is

∑

i≤m

∑

j≥m

E(Xi,j) .

For Xi,j to be 1,ξ(m) must have the largest priority among all nodesξ(k), for i ≤ k ≤ j. The
probability of this event is clearly1/(j − i + 1). Summing up over all pairs(i, j) with i ≤ m ≤ j,
we get that

∑

i≤m

∑

j≥m

E(Xi,j) =
∑

i≤m

∑

j≥m

1

j − i + 1
≤

|Tw|
∑

k=0

(k + 1)
1

k + 1
= O(|Tw|).

That is, we have shown that the expected increase in the sum
∑

ξ |Λ(w, ξ)|, caused by generating
new secondary pairs, isO(|Tw|).

Combining this with Lemma 6.2, we obtain that the expected number of new secondary pairs is
O(log n). Since we haveO(n2) u-swaps altogether, it follows that the total contribution of u-swaps
to Λ is O(n2 log n) pairs.

Consider now av-swap of pointsp andq. Here there are no structural changes in any tree,
and each newly created pair contains eitherp or q. By Lemma 6.2, withf(x) = x, the expected
total size of the affected subtrees in a secondary treapTu containing bothp andq is O(log |Tu|).
Applying Lemma 6.3 to the primary tree, we obtain that the expected number of new pairs created
by a singlev-swap isO(log2 n). In total we haveO(n2) v-swaps, which contribute an expected
number ofO(n2 log2 n) new pairs toΛ.

Lemma 6.8. The expected cost of allx-swaps isO(n2βs+2(n) log2 n).

Proof. Since the expected depth of a node in a treap isO(log n), it follows that, initially, the ex-
pected number of setsΛ(w, ξ) in which a pair of points ofP appears isO(log2 n). So the expected
initial size ofΛ is O(n2 log2 n). By the preceding discussion, the expected contribution toΛ by all
u-swaps andv-swaps is alsoO(n2 log2 n). Thus the expected size ofΛ is O(n2 log2 n). Combining
this with Lemma 6.6, we obtain that the expected total size oftournaments, measured at the time
of their rebuilding, isO(n2βs+2(n) log2 n). By Theorem 3.1, the total time to rebuild these tourna-
ments is alsoO(n2βs+2(n) log2 n). This bounds the total time spent in handling allx-swaps.

Expected cost of a single x-swap. Recall that the time spent in anx-swap of two pointsp andq
is proportional to the expectation of the sum, over all secondary treesTz that contain bothp andq,
of the sum of the sizes of the subtrees rooted at nodes along the path leading from the root to the
lowest common ancestor ofp andq. Applying Lemma 6.3, withf(s) = s, to such a secondary treap

30

Tz, we obtain that the expected contribution ofTz to this sum isO(|Tz|). Now, applying Lemma 6.3
again in the primary treeT , we obtain that the expected total size of all tournaments affected by the
swap isO(n).

We summarize the result of this section in the following theorem.

Theorem 6.9. Our KDS for maintaining the nearest neighbor of each point ina set ofn moving
points in the plane has the following properties.

1. The number ofu-swaps isO(n2), and handling au-swap takesO(log n) expected time.

2. The number ofv-swaps isO(n2), and handling av-swap takesO(log2 n) expected time.

3. The number ofx-swaps isO(n2), processing a singlex-swap takesO(n) expected time, and
processing allx-swaps takesO(n2 log2 nβs+2(n)) expected time.

4. The number of tournament events isO(n2 log3 nβ2
s+2(n)), and the total time required to

handle them isO(n2 log4 nβ2
s+2(n)).

5. The data structure requiresO(n log2 n) expected storage.

In particular, the KDS is compact, efficient, responsive in an amortized sense, but in general not
local.

Proof. The proof of (1), (2), and (3) follows from our assumption on the motion and from Lem-
mas 6.4, 6.5, 6.8, and the preceding discussion.

To bound the number of tournament events, recall, from the proof of (3), that, over the entire
motion, all tournaments together containO(n2 log2 nβs+2(n)) items (where each item is counted
with multiplicity equal to the number of times it is insertedinto the tournament). The bounds
claimed in (4) now follow from Theorem 3.1. The expected storage required by the structure is
dominated by the expected total size of all tournamentsB(w, ξ), R(w, ξ). which is bounded by the
expected sum of the sizes of all subtrees over all secondary trees. Since the expected depth of the
primary tree and each of the secondary subtrees isO(log n), this expected sum isO(n log2 n). Thus
(5) follows.

7 Dynamizing the KDS for Nearest Neighbors

Our kinetic data structure for nearest neighbors of Section6 can in fact support insertions and
deletions of points. We only need to add a dynamic search treeover the listsLu, Lv, andLx, as
we did for the closest pair problem in Section 5. Here too the primary treapT can serve as the tree
associated withLu, and the secondary treap associated with the root of the primary treap can serve
as the tree associated withLv.

To perform an insertion of a pointp, we first insert it into the primary treapT . For a rotation
around an edge(z,w) in the primary tree (withw the former parent ofz), we rebuildTw andTz,
and the tournaments that they store. This takesO(|Tw| log n) expected time. Seidel and Aragon

31

[27] proved the following lemma (which is similar to Lemma 6.2); it shows that rotations in treaps
are not that expensive in expectation.

Lemma 7.1. Assume that a rotation around an edge(x, y = p(x)) in a treap takesO(f(s)) time,
wheres is the size of the subtree rooted aty. Then the expected time to perform an insertion or a
deletion to/from the treap is

O





f(n)

n
+
∑

1≤s≤n

f(s)

s2



 .

Lemma 7.1 implies that the insertion ofp into the primary treap takesO(log2 n) expected time.

Let z be the node containingp in the primary treapT . After insertingp into the primary treap,
we insertp into every secondary treapTu, whereu is an ancestor ofz in T . While insertingp into
a secondary treapTu, we also have to insertp into a tournament at each node on the path top in
Tu. Furthermore, ifp becomesred(u, ξ) or blue(u, ξ), for some (non-special) nodeξ ∈ Tu, then we
have to rebuild the tournamentB(u, ξ) or R(u, ξ), respectively. The nodeη containingp in Tz is
special and we rebuildB(u, η) andR(u, η).

The expected time it takes to insertp into all secondary trees containing it isO(log2 n). Updat-
ing tournaments, however, may be expensive. Nevertheless,this time is bounded by the expected
sum of the sizes of all secondary subtrees containingp, which isO(n), by Lemma 6.3. We summa-
rize with the following theorem.

Theorem 7.2. Suppose we makem ≥ n insertions and deletions to the kinetic and dynamic data
structure for nearest neighbors described above, such thatthere are at mostn points in the data
structure at any fixed time. Then the following properties hold.

1. The number ofu-swaps isO(mn) and processing au-swap takesO(log n) expected time.

2. The number ofv-swaps isO(mn) and processing av-swap takesO(log2 n) expected time.

3. The number ofx-swaps isO(mn), processing a singlex swap takesO(n) expected time, and
processing allx-swaps takesO(mn log2 nβs+2(n)) expected time.

4. The expected number of tournament events isO(mn log3 nβ2
s+2(n)), and their total expected

cost isO(mn log4 nβ2
s+2(n)).

5. The data structure requiresO(n log2 n) space.

6. An insertion or a deletion takesO(n) expected time.

Proof. Arguing as in the proof of Theorem 5.2, the number ofu-swaps,v-swaps, andx-swaps is
O(mn). It takesO(n) expected time to insert or delete a point by the discussion preceding this
theorem.

The rest of the proof is analogous to the proof of Theorem 6.9.The only difference is that
we have to take into account the increase inΛ when we insert or delete a pointp. Clearly there
areO(n) new primary pairs (containingp) in Λ. Secondary new pairs are created as a result of

32

rotations in the primary treap, which cause rebuildings of secondary treaps. Each secondary treap
Tw that is rebuilt may contributeO(|Tw|2) new pairs toΛ. However, Lemma 7.1 implies that the
expected total number of new pairs isO(n), so the increase of|Λ| caused by insertions and deletions
is O(mn), and it therefore does not dominate the size ofΛ.

8 Extension to Higher Dimensions

In this section, we extend the data structures of Sections 5 and 7 to fully dynamic and kinetic data
structures for maintaining the closest pair and all nearestneighbors in a setP of n moving points in
R

d, for anyd ≥ 3. The extension is straightforward, and is based on the following generalization of
the key geometric property, given in Lemma 2.1. The proof is essentially identical to the preceding
proof, and is thus omitted.

Lemma 8.1. Letp be the closest point toq, and letC be a cone of opening angleπ/3, with apex at
the origin, which containsq − p. Let b denote a vector in the direction of the symmetry axis ofC
(pointing intoC). Then

(q − p) · b = min {(w − p) · b | w ∈ P ∩ (p + C)}.

We tile R
d by a constant number of convex polyhedral cones, all having the origino as their

apex, such that each of these polyhedral cones is bounded byd facets, and is contained in a regular
cone8 of opening angleπ/3 with apexo. Note that the number of polyhedral cones grows exponen-
tially with d. As in the planar case, we may assume that, for each polyhedral coneW , its antipodal
cone−W also appears in the tiling. We describe the extension for closest pair, since the extension
for all nearest neighbors is similar.

Let W be one of these polyhderal cones. Without loss of generality, assume that the symmetry
axis of theπ/3 cone that containsW is the positivex-axis. Clearly, Lemma 8.1 also holds forW .
That is, ifp, q is a closest pair at timet such thatq − p ∈ W , then

(q − p)x = min {(w − p)x | w ∈ P ∩ (p + W)}.

That is,q is the leftmost point ofp + W , and, symmetrically,p is the rightmost point ofq − W .
As in the planar case, we say that such a pair ismatched(in thex-direction). Our strategy is thus
to maintainO(1) data structures, one for each pairW,−W of cones in the tiling. For each cone
W , its data structure maintains (a superset of) the setΠ of all matched pairs, and runs a kinetic and
dynamic tournament among them, to keep track of the closest pair in Π. The real closest pair is the
pair with the smallest distance between its points, among the winners of theseO(1) tournaments.
In complete analogy with the planar case, in the purely kinetic scenario we can maintain the actual
setΠ, whereas in the kinetic and dynamic scenario, we need to maintain a slightly larger superset
Π∗, which we will shortly define.

Fix a coneW , and assume, as above, that its “symmetry axis” is the positive x-axis. Let
e(1), . . . , e(d) be vectors orthogonal to the facets ofW and pointing intoW . For each pointp ∈ R

d,

8That is, a cone of the form{x | ∠(x, u) ≤ α}, for some vectoru and angleα.

33

defineu
(i)
p = p ·e(i), for i = 1, . . . , d. Clearly,q−p ∈ W if and only if u(i)

q > u
(i)
p , for i = 1, . . . , d.

We thus apply the same strategy as in the planar case: We construct ad-dimensional range treeT ,
where thei-th level of the tree stores points according to theiru(i)-order. At the bottom level of the
structure, each nodeξ records the points with the smallest and largestx-coordinates that are stored
in the subtree rooted atξ. By querying the structure with a pointp, or, more precisely, with the
orthantu(i) > u

(i)
p , for i = 1, . . . , d, we can find the leftmost pointq ∈ p + W , in timeO(logd n).

This allows us to construct the setΠ of all O(n) matched pairs, inO(n logd n) time, and to run a
tournament on these pairs, using exactly the same structureas described in Section 3. (Note that
this tournament structure is independent ofd.)

As in the planar case, we can alternatively use the larger setΠ∗ of pairs, defined as follows. For
each nodeξ of the bottom level ofT , we form a pair(p, q), wherep (resp.,q) is the rightmost (resp.,
leftmost) point that is stored at the left (resp., right) subtree of each of the nodesξ(1), ξ(2), . . . , ξ(d) =
ξ in thed levels of the structure, whose respective trees containξ. As in the planar case, it is easy
to see thatΠ ⊆ Π∗. The size ofΠ∗ is O(n logd−1 n), and it can initially be constructed in time
O(n logd−1 n), during the construction ofT , in a straightforward bottom-up manner. (Thus, in the
static and stationary case, we obtain an algorithm for the closest pair that runs in timeO(n logd−1 n).
There are, however, faster algorithms for this scenario, such as the one of Vaidya [31].) To compute
and maintainΠ∗, we need to store a more refined information in the nodes of thebottom level ofT ,
which extends, in an obvious manner, the blue/red pointers maintained in the 2-dimensional tree of
Section 4.

Each of the setsΠ andΠ∗ remains unchanged as long as the orders of the points ofP in each
of the coordinatesx, u(1), . . . , u(d) remain unchanged. Hence, the critical events that the rangetree
T has to keep track of are theO(n2) swaps of consecutive points in any one of these orders. In
addition, the tournament structure maintains its own set ofcritical events, exactly as in the planar
case.

Consider first the purely kinetic scenario (no insertions ordeletions). Here we maintain only the
setΠ. When a swap between two pointsp, q takes place, we updateT in an analogous manner to
that described in Section 4. To make the updates efficient, wemaintain each subtree ofT in each of
the levels2, . . . , d as a dynamic weight-balancedBB(α) tree. Note that rebalancing rotations may
require that the relevant subtrees be completely rebuilt inthe deeper levels. Using the properties of
BB(α) trees, an update ofT takesO(logd n) amortizedtime. In the kinetic and dynamic scenario,
the first level ofT is also maintained as a weight-balanced tree.

In the purely kinetic scenario, we queryT after the update withp andq, and find theO(1) new
pairs ofΠ that the swap has generated, as well as theO(1) old pairs that have to be deleted. We
then update the tournament structure accordingly. The costof handling the tournament structure is
negligible in this case. We summarize the performance of thestructure in the following theorem.

Theorem 8.2. In the purely kinetic scenario, the KDS for the closest pair in R
d described above

has the following properties.

1. The number of events that it processes isO(n2βs+2(n) log n) (thus the KDS isefficient).

2. The (amortized) time it takes to process an event isO(logd n) (thus the KDS isresponsive, in
an amortized sense).

34

3. At any time, each pointp participates in a constant number of certificates of types (i), (ii),
and (iii), and pairs thatp belongs to participates inO(log n) certificates ofQ (thus the KDS
is local).

4. The structure requiresO(n logd−1 n) space(and is thuscompact).

In the kinetic and dynamic scenario, we need to maintain the larger setΠ∗, for which we need
to maintain the refined information at the bottom-level nodes of T . Here each swap generates an
amortized number ofO(logd n) updates ofΠ∗, which are then fed into the tournament structure. As
in the planar case, naive implementation using an external tournament will result inO(logd+1 n)
certificates changing, which will then requireO(logd+2 n) time to process (largely consumed by
updating the event queue). However, if we embed the tournament into the range tree, we can reduce
the (still amortized) number of certificates changing by a swap toO(logd n), and their processing
cost toO(logd+1 n). The total number of internal critical events that the tournament keeps track of
is O(mnβs+2(n) logd+1 n), by arguments analogous to the ones given in Section 5. Summarizing,
we have:

Theorem 8.3. The dynamic KDS for the closest pair inRd, as described above, has the following
properties.

1. The number of events during a sequence ofm insertions and deletions into a KDS of size
at mostn at any time (assumingm ≥ n), is O(mnβs+2(n) logd+1 n). This makes the KDS
efficient.

2. The amortized time it takes to process an event isO(logd+1 n) (thus the KDS isresponsive).

3. Each point participates inO(logd n) certificates(thus the KDS islocal).

4. The KDS requiresO(n logd−1 n) space(and is thuscompact).

5. An insertion or a deletion takesO(logd+1 n) amortized time.

Finally, we consider the extension of our data structure forall nearest neighbors to higher di-
mensions. For this we need to construct ad-dimensional dynamic range tree using treaps. The
analysis in Sections 6 and 7 extends to higher dimensions in astraightforward (albeit tedious) man-
ner. Omitting all further details, we obtain the following extension of Theorem 7.2.

Theorem 8.4. Let P be a set of moving points inRd. to which we also makem ≥ n insertions
and deletions of points, so that there are at mostn points in the set at any fixed time. One can then
construct a KDS that maintains all nearest neighbors inP , which also supports these insertions and
deletions, and which satisfies the following properties.

1. The number ofe(i)-swaps, for1 ≤ i ≤ d, is O(mn) and processing ane(i)-swap takes
O(logd n) expected time.

2. The number ofx-swaps isO(mn), processing a singlex-swap takesO(n) expected time, and
processing allx-swaps takesO(mnβs+2(n) logd n) expected time.

35

3. The expected number of tournament events isO(mnβ2
s+2(n) logd+1 n), and their total ex-

pected cost isO(mnβ2
s+2(n) logd+2 n).

4. The data structure requiresO(n logd n) space.

5. An insertion or a deletion takesO(n) expected time.

Acknowledgment

We thank Danny Feldman for pointing out that our technique works in any dimension.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson, Indexing moving points,J. Comp. Sys. Sci.66 (2003), 207–
243.

[2] P. K. Agarwal, J. Basch, M. de Berg, L. Guibas, and J. Hershberger, Lower bounds for kinetic planar
subdivisions,Discrete Comput. Geom.24 (2000), 721–733.

[3] P. K. Agarwal, M. de Berg, J. Gao, L. Guibas, and S. Har-Peled, Staying in the middle: Exact and
approximate medians inR1 andR2 for moving points,Proc. 16th Annu. Canadian Conf. Comput.
Geom., 2005.

[4] P. K. Agarwal, J. Erickson, and L. Guibas, Kinetic binaryspace partitions for intersecting segments and
disjoint triangles,Proc. 9th Annu. ACM-SIAM Sympos. Discrete Algo.1998, 107–116,

[5] P. K. Agarwal, J. Gao, and L. Guibas, Kinetic medians andkd-trees,Proc. 10th European Sympos.
Algo., 2002, 5–16.

[6] P. K. Agarwal, L. Guibas, J. Hershberger, and E. Veach, Maintaining the extent of a moving point set,
Discrete Comput. Geom.26 (2001), 353–374.

[7] P. K. Agarwal, L. Guibas, T. M. Murali, and J. S. Vitter, Cylindrical static and kinetic binary space
partitions.Comput. Geom. Theory Appls.16 (2000), 103–127.

[8] G. Alexandron, H. Kaplan and M. Sharir, Kinetic and dynamic data structures for convex hulls and
upper envelopes,Comput. Geom. Theory Appls.36 (2007), 144–158.

[9] J. Basch, J. Erickson, L. Guibas, J. Hershberger, and L. Zhang, Kinetic collision detection between two
simple polygons,Comput. Geom. Theory Appls.27 (2004), 211–235.

[10] J. Basch, L. J. Guibas, and J. Hershberger, Data structures for mobile data,J. Algorithms31(1) (1999),
1–28.

[11] J. Bentley and M. Shamos, Divide-and-conquer in higher-dimensional space.Proc. 8th Annu. ACM
Sympos. Theory Comput., 1976, 220–230.

[12] M. de Berg, Kinetic dictionaries: how to shoot a moving target,Proc. 11th European Sympos. Algo.,
2003, 172–183.

36

[13] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry: Algorithms
and Applications, 2nd Edition, Springer Verlag, Heidelberg, 2000.

[14] S. Bespamyatnikh, An optimal algorithm for closest-pair maintenance,Discrete Comput. Geom.19
(1998), 175–195.

[15] N. Blum and K. Mehlhorn, On the average number of rebalancing operations in weight-balanced trees,
Theoret. Comput. Sci.11 (1980), 303–320.

[16] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu, Discrete mobile centers,Discrete Comput.
Geom.30 (2003), 45–63.

[17] L. Guibas, Modeling motion, inHandbook of Discrete and Computational Geometry,2nd Ed., (J.
Goodman and J. O’Rourke, eds.), Chapman and Hall/CRC, 2004,1117–1134.

[18] L. Guibas, J. Hershberger, S. Suri, and L. Zhang, Kinetic connectivity for unit disks.Discrete Comput.
Geom.25 (2001), 591–610.

[19] J. Hershberger, Kinetic collision detection with fastflight plan changes,Inform. Process. Lett.92
(2004), 287–291.

[20] J. Hershberger and S. Suri, Simplified kinetic connectivity for rectangles and hypercubes,Proc. 12th
Annu. ACM-SIAM Sympos. Discrete Algo., 2001, 158–167.

[21] M. I. Karavelas and L. Guibas, Static and kinetic geometric spanners with applications,Proc. 12th
Annu. ACM-SIAM Sympos. Discrete Algo., 2001, 168–176.

[22] D. Kirkpatrick, J. Snoeyink, and B. Speckmann, Kineticcollision detection for simple polygons,Inter-
nat. J. Comput. Geom. Appls.12 (2002), 3–27.

[23] D. Kirkpatrick and B. Speckmann, Separation sensitivekinetic separation structures for convex poly-
gons,Proc. Japanese Sympos. Discrete Comput. Geom., 2001, 222–236,

[24] K. Mehlhorn,Data Structures and Algorithms 1: Sorting and Searching, Springer Verlag, Berlin 1984.

[25] J. Nievergelt and E. M. Reingold, Binary search trees ofbounded balance,SIAM J. Comput.2 (1973),
33–43.

[26] C. Schwarz, M. Smid, and J. Snoeyink, An optimal algorithm for the on-line closest-pair problem,
Algorithmica12 (1994), 18–29.

[27] R. Seidel and C. R. Aragon, Randomized search trees,Algorithmica16 (1996), 464–497.

[28] M.I. Shamos and D. Hoey, Closest-point problems,Proc. 16th IEEE Sympos. Foundat. Comp. Sci.,
1975, 151–162.

[29] M. Sharir and P.K. Agarwal,Davenport-Schinzel Sequences and Their Geometric Applications, Cam-
bridge University Press, New York, 1995.

[30] M. Smid, Maintaining the minimal distance of a point setin polylogarithmic time,Discrete Comput.
Geom.7 (1992), 415–431.

[31] P.M. Vaidya, AnO(n log n) algorithm for the all nearest neighbor problem,Discrete Comput. Geom.4
(1989), 101–115.

37

