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Abstract

We present simple fully dynamic and kinetic data structuvgsich are variants of a dy-
namic 2-dimensional range tree, for maintaining the clogas and all nearest neighbors for
a set ofn moving points in the plane; insertions and deletions of {gare also allowed. If
no insertions or deletions take place, the structure fosedbpair use®(nlogn) space, and
processe®)(n? 3,2 (n)logn) critical events, each i®(log® n) time. Heres is the maximum
number of times where the distances between any two speaifeqf points can become equal,
Bs(q) = As(q)/q, andX,(q) is the maximum length of Davenport-Schinzel sequencesdsror
s ong symbols. The dynamic version of the problemincurs a sliglgrddation in performance:
If m > n insertions and deletions are performed, the structuleustisO(n logn) space, and
processe®) (mn,2(n)log® n) events, each i®(log® n) time.

Our kinetic data structure for all nearest neighbors @eslog” ) space, and processes
O(n?B2,,(n) log® n) critical events. The expected time to process all everisis 52, , (n) log* n),
though processing a single event may téke.) expected time in the worst casenif > n in-
sertions and deletions are performed, then the expectedenohevents i®) (mn32, ,(n) log® n)
and processing them all tak€mn 2, ,(n) log* n). An insertion or deletion taked(n) ex-
pected time.

1 Introduction

Let P = {p1,p2,...,pn} be a set ofr points, each moving independently R?. Let p;(t) =
(x;(t),y;(t)) denote the position af; at timet, and setP(t) = {pi(t),...,pn(t)}. We assume
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that eachr;(-), v;(+) is a semi-algebraic function of constant description caxipf. The goal is to
design a data structure that keeps track of the closest ppaimts in P, and that can also support
insertions and deletions of points into/fraR) as well as changes in the flight plans of the moving
points.

Thekinetic data structurdKDS) framework, introduced by Basch et al. [10], proposesk
gorithmic approach, together with several quality créeifior maintaining a variety of geometric
configurations determined by a set of objects, each moviogga& semi-algebraic trajectory of
constant description complexity (see below for a precidmidien). Several interesting algorithms
have been designed, using this framework, over the pastéansyincluding algorithms for main-
taining the convex hull of a sét of (moving) points in the plane [10], the closest pair in sacset
[10], a point in the center region of such a set [3], kinetianalr subdivisions [2, 4, 7], kinetic me-
dians and:d-trees [5], kinetic range searching [1], maintaining theeakof a moving point set [6],
kinetic collision detection [9, 19, 22], shooting a movirggdet [12], kinetic discrete centers [16],
kinetic connectivity for unit disks, rectangles, and hypdres [18, 20], kinetic geometric spanners
[21], and Kkinetic separation of convex polygons [23]; sed fbr a recent survey.

Typically, a geometric algorithm for computing such a comfagion determined by a sétis
designed for thestationarycase, where the objects do not move. When the objects do riwve,
combinatorial representation of the configuration may geaat certaircritical times when certain
“events” occur (e.g., a new vertex of the convex hull may appan old vertex may disappear, the
closest pair of points changes, etc.). The goal is to desiiatastructure that can efficiently keep
track of these changes, and maintain (a discrete repréisentd) the correct configuration at all
times. Thus the algorithm has to keep track of these crideahts, and fix the configuration when
they happen.

The crux in designing an efficient KDS is finding a seteftificatesthat, on one hand, ensure
the correctness of the configuration currently being maieth and, on the other hand, are inex-
pensive to maintain. When the motion starts, we can competelbsest failure time of any of the
certificates, and insert these times into a global eventeju&#uhen the time of the next event in
the queue matches the current time, we invoke the KDS repathemism, which fixes the config-
uration, and replaces the failing certificate(s) by newdvalies. In doing so, the mechanism will
typically delete from the queue failure times that are ngénrelevant, and insert new failure times
into it.

To analyze the efficiency of a KDS, we distinguish between types of eventsinternal and
external External eventsre events associated with a real (combinatorial) chantgesinonfigura-
tion that we maintain, thus forcing a change in the outpoternal eventson the other hand, are
events where some certificate fails, but the overall desicediguration still remains valid. These
events arise because of our specific choice of the certificated are essentially an overhead in-
curred by the data structure. If the ratio between the nuroberternal events to the number of
external events (in the worst case) is no more than polyiibgaic in the number of input objects,
the KDS is said to befficient! Other parameters of the KDS that one would like to minimize ar

1(a) In the original setup of Basch et al. [10], a KDS is consédeto be efficient, if the ratio between the worst-case
number of internal events to the worst-case number of eat@vents is bounded by an arbitrarily small power of the
number of input objects. In our definition of efficient KDS, wely allow a degradation factor that is a polylogarithmic
function of the number of input objects. We impose similaingier restrictions on the other performance parameters of



the following.

e The processing time of a critical event by the repair medmanif this parameter is no more
than polylogarithmic in the number of input objects, we dat the KDS igesponsive

e The maximum number of events at any fixed time in the datatsireithat are associated with
one particular object. When this parameter is no more thardqgarithmic in the number of
input objects, we say that the KDSl@cal. Locality typically implies that changes in flight
plans of the moving points can be handled efficiently.

e The space used by the data structure. If this is larger tranuimber of input objects by at
most a polylogarithmic factor, we say that the KDS®@snpact

In addition, which is one of the central issues addressetisnpaper (for the specific closest
pair and all nearest neighbors problems), one might wishetigth a KDS that is alsdynamic
meaning that it can also efficiently support insertions aslétibns of objects.

In their paper, Basch et al. [10] developed a KDS that maist#ie closest pair in a set of
moving points in the plane, which meets all four standarigdd, namely, itis compact, efficient, lo-
cal, and responsive. Specifically, their structure usesalispace; it process€§n? 3, o(n)logn)
events, each iD(log? n) time, wheres is the number of times any two fixed pairs of points can
attain equal distances, afid, »(n) is as defined in the abstract. To achieve locality, theirritlym
uses a fairly complicated set of certificates, to guarartiae éach point participates i (logn)
certificates. Furthermore, Basch et al. have focused onkjratization, and did not consider inser-
tions and deletions of points, which seems hard to implemsing their approach. The motivation
for our work has been threefold: (i) to simplify the certiies.used by [10] for the closest-pair prob-
lem, (ii) to obtain a dynamic algorithm that still meets tberf quality criteria mentioned above, and
that can also be extended to higher dimensions, and (iiixtene the technique to the all-nearest-
neighbors problem, a problem that has not yet been tackldwiKDS literature.

Further background. In the static and stationary scenario, the complete set iotpc given
when the algorithm starts, and the points do not move. Theaphlaersion of the static and stationary
closest-pair problem has been solvedifr log n) time by Shamos and Hoey [28] in 1975. A year
later Bentley and Shamos [11] gave @n logn) algorithm for thed-dimensional case. Vaidya
[31] describes a®(n log n) algorithm for computing the nearest neighbor of every pwirt given
set ofn points inR?. All these algorithms can be implemented in the algebragisiten tree model,
for which an{2(n log n) lower bound holds; see [13].

The problem of maintaining the closest pair in the dynamicshationary scenario has also been
studied extensively during the past fifteen years. The figstrithm supporting both insertions and
deletions in polylogarithmic update time was given by Sn3id][ who presents a data structure for
points ind dimensions, that take®(n log?n) space and supports updatesiflog? n loglogn)
amortized time per update. Later, Schwarz et al. [26] havergan algorithm that supports only

the structure. (b) Ideally, one would like to ensure a snaibrbetween the number of internal events and the number of
external events thaictually take placeThis is considerably harder to achieve, and is not adddessthe earlier works
too.



insertions, inO(log n) amortized time per insertion, again in any dimension. Rmn&espamyat-
nikh [14] presented an algorithm that supports both insestiand deletions i®(log n) worst-case
time per update, in any dimension.

Our results.  Our first result is an efficierdynamicKDS for maintaining the closest pair in a set
of moving points in the plane, which also supports insegiand deletions of points, and which can
be extended to any dimensidn> 2. The structure is constructed using standard off-thef slagh
structure components, our certificates are simpler thasetlod [10], and the performance of our
algorithm (in the planar case) is comparable with that of.[10

We assume that each moving pajris given as a paifz,(t), y,(t)) of semi-algebraic functions
of time of constant description complexityhat is, each function is defined as a Boolean combina-
tion of a constant number of predicates involving polyndsn@ constant maximum degree.

Our solution is based on a simple geometric property of tlaest neighbor to a given point,
stated in Lemma 2.1 below, a property which has also beemotid 0]. Using this property, we
design a data structure, which in essence is a 2-dimengiangé tree. It stores the points Bfin
a certain transformed coordinate system, along with gegdditional information to facilitate the
maintenance of the closest pair.

We present the algorithm in three stages. First, in Sectisre2lescribe the data structure for the
static(no insertions and deletions) astationary(no motion of the points) scenario. This leads to a
simple alternative) (n log n) algorithm for computing the closest pair in a planar point 8¢ next
show, in Section 4, how to make this structure kinetic, digallowing insertions and deletions. The
modified structure used(nlogn) space, and processe€¥n?3, »(n)logn) critical events, each
in O(log? n) time. Heres is the maximum number of times where the distances betwegtwan
specific pairs of points can become equal,g) = A\s(¢)/q, and\(q) is the maximum length of
Davenport-Schinzel sequences of orden g symbols. Then, in Section 5, we modify the structure
further, and turn it into a fully dynamic and kinetic struatu The dynamic version of the problem
incurs a slight degradation in performancemnif> n insertions and deletions are performed, the
structure still use® (n log n) space, and process@$mn3s o (n) log® n) events, each i (log® n)
time. See Theorem 5.2 for a precise statement of the perfarenaounds.

An appealing feature of our solution, besides being thefiiflst dynamic and kinetic solution
for this problem, is its simplicity. It is in fact a dynamicdimensional range tree, on which we
superimpose a heap-like tournament structure, in which argmall number of pairs compete for
being the closest pair iR. This number is linear in the static-kinetic case, an@{s log n) in the
dynamic-kinetic case.

Our second result is a KDS for maintaining the nearest neiglolb every point in a set of
moving points in plane, with the same assumption on the mstas before. We obtain this result
using the same basic observation of Lemma 2.1. The skelétbe data structure itself is the same
two-dimensional range tree which we use for the closest pairwith an additional level of kinetic
tournaments. In order to attain a sharp upper bound on thdeuai events that may occur in the
additional tournaments, and on the time to handle them, wdreaps [27] to implement both the
primary and the secondary trees. We present this resultdticBes. It usesD(n log? n) expected
space, and the expected number of events processed by éhetrdature i€ (mn 32 o(n) log®n),



if m > n insertions and deletions are performed. The expected tnpedcess all the events is
O(mnf32_,(n)log* n), though a single event may tak¥(n) expected time. See Theorems 6.9
and 7.2 for precise statements.

Another feature of our solutions is that they can be exterideatbitrary dimensiong > 2,
using essentially the same machineryl{dimensional dynamic range tree combined with kinetic
and dynamic tournament data structures). We present ttegsgrn in Section 8; the precise per-
formance bounds are given in Theorems 8.2 and 8.3.

2 Closest Pair and Nearest Neighbors: Static and Stationary

Let P be a set of: “fixed” points inR2. We present a “warm-up” solution for the closet-pair and the
all-nearest-neighbor problems. Although these problerasaell studied and optimal algorithms
exist [13], we derive specific solutions that are easy torekt® kinetic and dynamic scenarios.
These structures rely on the following simple but cruciaiea, also proved in [10].

Partition the plane into six wedgég, ..., W5 of anglen/3 each, with the origin as their
common apex, wher®/; spans the orientatiof{2: — 1)7/6, (2 + 1)7/6]. Letb; denote the unit
vector in the direction of the bisector ray @f;. Note thatW,,3 = —W; andb; 3 = —b; (where
addition of indices is modul6). For a pointp and a wedgéV;, let p + W; denote the translation of
W; so that its apex is at.

Lemma 2.1. Letp be the point closest tg, and letlV; be the wedge such that+ WW; containsg.
Then
(q—p)- by =min{(w—p)-b; |we PN (p+W;)}.

Proof: Suppose to the contrary that there exists a poist P N (p + W;), such tha{w — p) - b; <
(¢ — p) - b;. See Figure 1. We haew| > |pq|, S0 Zpwq must be smaller thargpw. However,
Zgpw < /3, andZLpwq > /3, a contradiction]

(i) (if)

Figure 1. (i) p cannot be the point nearest¢o(ii) The « andv coordinates.

We restate Lemma 2.1 by saying thatpifs closest tog thenq is the closest point te (in
PN (p+ W;)) in the b;-direction. Symmetrically, if; is also the closest point tethenyp is the
closest point tg; (in P N (¢ + Wit3) = PN (¢ — W;)) in the opposite —b;)-direction. We refer to
such pairs of points as beimgatchedn the b;-direction.



Closest pair. Clearly, if (p, ¢) is a closest pair ifP, then there exists a directidnsuch thap and

g arematchedn directiond;. The algorithm keeps track of all these matched pairs oftppin each

of the three directiong, b1, andbs, and selects the closest pair (in the Euclidean metric) gmon
them. Note that, for each of the directiolg b, andbs, a pointp can participate in at most two
matched pairs, once as the left point of the pair, and ondeeasght point of the pair. Thus, at any
time, there are only)(n) matched pairs.

Without loss of generality, we only consider matched pairgdirectionby, i.e., thex-direction.
Consider the twor/3 wedgesiW+ = Wy, W~ = W3 with the origin as an apex, whose bisector
rays are, respectively, the positive and the negative@ustof thex-axis. For simplicity of presen-
tation, we regardV+ and¥ ~ asopenwedges. For each pointc R?, we setW*(q) := ¢ + W T,
W= (q) := ¢+ W~. We thus wish to find all matched pairs of poiliis ¢) in the z-direction; that
is, pairs(p, q) such thatp lies to the left ofq, g is the leftmost point of® N W (p), andp is the
rightmost point ofP N W~ (q). LetIl denote the set of these matched pairs.

To constructl, we first map each point = (z,, y,) € P to a point(u,, v,) in a new parametric
plane, wherey, = z;, + v/3y,, andv, = z,, — v/3y,. These coordinates are measured along axes
that are orthogonal to the directions of the rays boundiegatbdgelV ~. See Figure 1 (ii).

Note thaty € W (p) if and only if
ug > u, and vy > vp. @

So all pointsg that may be matched withare in the range given by (1), which is a translate of the
positive quadrant in thev-plane. To computél, we seek, for each point, the pointg € P that
lies in that range and has the smallestoordinate. Since = (u + v)/2 in the uv-plane, we want

to find the point in the query quadrant which is extreme in(thé, —1)-direction.

Motivated by this observation, we construct a 2-dimendioaage tre€l” [13] on the trans-
formed points ofP, where the points are sorted in the primary tree by theipordinates, and in
each secondary tree by thekcoordinates. We store a point in each leaf. Internal node®oticon-
tain points, but store keys to guide the search, and addltioformation that is described below.
See Figure 2. We slightly abuse the notation, andiuse denote both the whole range tree and its
primary tree. For a node in the primary tree, we denote the set of points in the subtveted at
w by P(w), and denote the secondary tree associatedwitly 7;,. For a node € T,,, we denote
the set of points in the subtree by P(w, £). For an internal nodg, either in the primary tre@’
or in some secondary tree, we denote’fy) the left child of¢, and byr(¢) the right child of¢.

Let w be a node in the primary tré€. The secondary tre€,, stores all points inP(w) sorted
by their v-coordinates. Withiril,,, we refer to points that belong tB(¢(w)) asblue points and
to points that belong t@(r(w)) asred points By definition, theu-coordinate of each blue point
is smaller than that of all the red points. However, whenegbhiy theirv-coordinates, the blue
and red points get mixed together. See Figure 2. We use tloavfoh observation, whose proof is
straightforward.

Lemma 2.2. Letw be a node in the primary tre€, and let¢ be a node in the secondary trég,.
For each blue poinp € P(w,£(£)) and for each red poing € P(w,r()), the wedgeV *(p)
containsg (and the wedgél —(g) containsp).

For each nod¢ in 7, let Red(w, £) (resp.,Blue(w, £)) be the subset of red (resp., blue) points

6
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Figure2. AsetP = {1,...,8} of eight points ifR?, the primary tred” storing the points sorted by theircoordinates,
and the secondary tréé, of nodew storing P(w) = {5, 6, 7, 8} sorted by theiw-coordinates. 117", 5, 6 are blue and
7, 8 are red points, anbllue(w, root(T)) = 6 andred(w, root(T,,)) = 8. The closest pair (which is also matched in
the z-direction) is(3,4) = 7(z, root(T%)).

in P(w,r(&)) (resp.,P(w,£(§))). Defineblue(w, £) to be the point of maximum (resp., minimum)
x-coordinate iBlue(w, &) (resp.,Red(w, £)); it is undefined if the set is empty. Consider the four
quadrants defined by the lines= u,, andv = v¢, whereu,, is the maximumu-coordinate of a
point in P(¢(w)), andv is the maximumu-coordinate of a point ilP(w, £(¢)). ThenRed(w, &)
(resp.,Blue(w, &)) lies in the first (resp., third) quadrant, ared (w, &) (resp. blue(w, &) is the point
of P(w, &) with the minimum (resp., maximumj)-coordinate (i.e.(u + v)-value) in this quadrant.
See Figure 2. Let(w, §) = (blue(w, &), red(w, £)), whenever both elements of the pair are defined.
Set

I = {m(w,&) | £ € Ty, w € T}. 2

We have the following lemma.

Lemma 2.3. Letp be the point closest t9so thatg € W (p). Then there are nodas and¢ such
that g = red(w, &) andp € P(w,¢(¢)). Symmetrically, ify € W~ (p), then there are nodes and
¢ such thaty = blue(w, ) andp € P(w, r(£)).

Proof. We prove only the first part in whichh € W (p); the proof of the second part is symmetric.
Let w be the lowest common ancestorpéndg in 7. Sinceq € W (p), we haveu, > u,, SO

p € P({(w)) andg € P(r(w)). It follows that inT,, p is a blue point and is a red point. Let
¢ be the lowest common ancestoréndq in 7,,. Again, sinceg € W (p), we havev, > uv,.
Thereforep € P(w, £(§)) andq € P(w,r(£)).

By Lemma 2.2, the wedg@/ * (p) contains all the red points if?(w, 7(£)). It follows thatg
must bered(w, £), for otherwise there would exist a poigtin ¥ (p) with z-coordinate smaller
than that ofy, contradicting Lemma 2.1. O

The following corollary follows from Lemmas 2.1 and 2.3.

Corollary 2.4. For each matched paifp,q) € II there are nodesv and ¢ such that(p,q) =
m(w, ). Thatis,IT C IT*.

Corollary 2.4 suggests the following procedure for commuthe closest pair. We compute
by constructing the range trgéand the pairsr(w, £), for each primary node and secondary node
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¢ € T,,. We then find the pair iil* with the minimum distance between its points. We apply a
similar procedure to each of the two other bisector direstig, andb,. The closest among the three
resulting pairs is the closest pair in. This completes the description of the static and stationar
data structure for the closest pair problem. It uS¢s logn) storage, and the cost of constructing
it, including the construction of the sét*, is O(nlogn). The storage can be reduced@n), if

we constructl” and the secondary trees incrementally, discarding partibat have already been
fully processed.

All nearest neighbors.  We now show how to use the range tree of the preceding anabysisd
the nearest neighbor of each poinE P. The strategy is to compute, for eagle P, a candidate
pointq € W (p) UW ™ (p), such that if the nearest neighborofies in this union then it is equal
to ¢ (in certain cases; may be undefined). By repeating this algorithm for the other pairs of
wedges, we assign to each pojnat most three candidates one of which must be the nearest
neighbor ofp. We build the two-dimensional range tree as in the precediggrithm. For each
primary nodew and secondary nodec< T,,, we compute the following:

(i) the pointsred(w, &) andblue(w, §);
(i) B(w,&), the point inBlue(w, £) closest taed(w, &);

(i) o(w,&), the point inRed(w, &) closest tdblue(w, ).

For each poinp, define

e(p) = {ﬁ(wvg) |p = red(w,{)} U {Q(w,f) | p= blue(wvg)} )

If C(p) # 0, then the candidate poigtthat we pick forp is the closest point tp among all points
in C(p). The correctness of the algorithm follows from Lemma 2.1.

The running time of this algorithm is proportional to the swithe sizes of all secondary
subtrees, which i€ (nlog?n). The same technique can be used in higher dimensions too—see
Section 8 for details. While yielding a suboptimal solutiMaidya’s algorithm runs irO(n log n)
time in any dimensioni), this technique is relatively easy to extend to the kinatid dynamic
scenarios, as will be described in the subsequent sections.

3 A Dynamic and Kinetic Tournament

In this section we review one of the main tools in our algoniftadapted from Basch et al. [10],
who present the following algorithm for maintaining the kst point among a set of points moving
along they-axis? Let Q be a completely balanced binary tree, with the points statet leaves

(in an arbitrary order). For an internal nodec Q, let P(v) denote the set of points in the subtree
rooted at. At any specific time, each internal node stores the lowest point among the points in

2\We assume that when points collide, they simply go over ediwr and continue uninterruptedly with their individual
trajectories.



P(v) attimet. We call this lowest point therinneratv. Clearly, at any given time, the winnerat
is the lower among the winner at the left childw&nd the winner at the right child af

We associate a certificate with each internal nodehich asserts which of the two winners, at
the left child and at the right child af, is the winner ab. This certificate remains valid as long as
(i) the winners at the children af do not change, and (ii) the order along theaxis between these
two “sub-winners” does not change. The actual certificatersaonly to the second condition; the
first will be taken care of recursively. The failure time agated with this certificate is the next
time when these two winners switch their order alongittexis. We store all certificates in a heap,
using the failure times as keysWVe call this heap of certificates tlesent queue

As time progresses, the algorithm encountevents in each of which some certificate fails.
The algorithm keeps removing from the event queue the @atifiwith the minimum failure time,
and replaces it with a new certificate, which takes into antthe new order of the sub-winners at
the corresponding node and whose failure time is the next time when the two pointiscéwagain
their order. In addition, the new winnerats propagated upwards to the ancestors,efhich may
cause the algorithm to replace the certificates at some sé thedes too.

In more detail, the algorithm proceeds as follows. When &fwete associated with a node
fails at timet, a new winnerg takes over the old winnes atv. The old winnerp may have also
been the winner at some ancestora 00, for each such ancestor, we change its winner t@. be
For each ancestor nodeof v whose winner has changed, we also change the certificateiatesb
with its parentp(u), where the new certificate confronts the new winner waiith the winner at the
sibling of u. We remove the failure times of the old certificates from then¢ queue, and replace
them by the failure times of the new certificates. All thiseak (log® n) time, and is dominated
by the cost of performin@ (log n) updates of the event queue. This implies that our data steuct
is responsivgin the terminology of [10]). It is alseompactandlocal, as follows easily from the
construction.

To bound the total number of events, we focus on a single mod@éd bound the number of
times when the winner at can change. Clearly, the total number of winner changed abdks
bounds the total number of events. (Note that creating a regtificate and inserting it into the
event queue is not considered an event—the certificate nmagedeted from the queue before it
becomes the smallest element there. Only certificates thataoved by aleletemin operation
are considered to be events.)

A bound on the total number of events tim@glog® n) bounds the total time to process all
events. However we can obtain a tighter bound by recalliagttie time it takes to process an event
atv is bounded by)(log n) times the number of ancestorstwothat change their winner as a result
of the event. Therefore, the total numbemohner changest all nodes timeg (log n) bounds the
total time for processing the events. (Again, as just reedrkhere are potentially more winner
changes than events.)

A winner change ab corresponds to a breakpoint in tl@ver envelopeof the arrangement
in the ty-plane, defined by the trajectories of the pointsAfw). If each such pair of trajecto-
ries intersect at most times, then the complexity of the lower envelope that cpoess tov
is at mosth\;(|P(v)|) = |P(v)|8s(|P(v)|), whereAs(n) is the maximum length of a Davenport-

3Any “regular” heap that supportasert, delete, anddeletemin in O(log n) time is good for our purpose.



Schinzel sequence of orderon n symbols, ands(n) = As(n)/n is an extremely slowly grow-
ing function ofn (see [29]). Summing these complexity bounds over all nadese obtain that
the overall number of winner changes, and therefore alsovbeall number of events, is at most
Yo |P()|Bs(|P(v)]) = O(nBs(n)logn). This is larger by a logarithmic factor than the maxi-
mum number of times the lowest point along traxis can indeed change, since this latter number
is bounded by the complexity of the lower envelope assatiatith the root ofQ. It now fol-
lows from our discussion in the previous paragraph thatdke time to process all the events is
O(nfs(n)log®n). In the terminology of [10], our data structure is thus adficient

Making the tournament dynamic. We next turn this static structure into a dynamic one, which
also supports insertions and deletions of points. In pgoieciwe can replace the static treewith
any kind of dynamic balanced search tree data structure.emMenyfor the analysis of the number of
events to go through, we assume thas aweight-balanced BB(«)) tree[25] (see also [24]). This
allows us to insert a new point anywhere we wistjrand to delete any point fro®, in O(logn)
time. Each such insertion or deletion may chaidgéog n) certificates, along the corresponding
search path, and therefore tak@$log? n) time, including the time for the structural updates of
(rotations in)Q; heren denotes the actual number of pointsinat the step where we perform the
insertion or deletion. Again, most of the cost is incurredacessing the event queue; updating the
tournament structure itself takes ortlflog n) time?

We next bound the total number of events that may occur widlerting and deleting at most
points, at arbitrary locations, into a kinetic tournam@rihat contains at most points at any time.
Each node inv is created during an insertion, and then exist8 umtil the corresponding deletion.
We refer to the period at which exists inQ as thelifetime of v. We denote byP(v) the multiset
containing any point that is associated with a leaf of theregtrooted at during the lifetime ofv.
The multiplicity of a pointp in P(v) is the number of maximal connected time intervals at wiich
is stored at the subtree rooteckat(Such transitions into and out of the subtree may happemwhe
we perform rotations to rebalance the tree; see below.)

An argument analogous to the one given above for the stadie, ¢aplies that the number of
events at a node (i.e., events where the certificate associated withils), is bounded by the
number of winner changes at The number of winner changes ins in turn bounded byP(v)]
multiplied by 3., 2(n).> Note that here we us8,, » instead of3,, since the lower envelope that
we consider at each nodeis now a lower envelope gdartial functions [29]. Indeed, insertions
and deletions of points from within the subtreewfas well as rotations that may introduce new
subtrees or remove subtrees from the subtreg ofay make the trajectory of a point appear in the
arrangement in they-plane associated withonly during part of the lifetime of.

Also, as in the static case, the time it takes to handle akteats is proportional to the number
of winner changes at all nodesnultiplied by a factor o) (logn). SoO ((3>_, |P(v)])Bs42(n) logn)
is an upper bound on the total time it takes to process all\bats.

“Note that there is freedom in choosing the location wherenéive point is inserted, which we do not know how to
exploit.

*We may used, »(n) rather tharB, »(m), by a standard argument that analyzes the total compleiihe@nvelope
in the ty-plane by splitting it intoO(m/n) intervals along the-axis, such that over each interval there are anly:)
functions involved; see [29].
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When inserting or deleting a node from a weight-balanceel, iree rebalance the tree by doing
rotations at certain edges along the access path. See Bigure

JANVAN fo\ /o

Figure 3. A rotation around the edg&, ).

Suppose we perforrm > n insertions and deletions. If we ignore rotations for a moinen
then each insertion increasg3(v)| by one, only for nodes on a single path, so this contributes
O(mlogn) to ), |P(v)|. A rotation around an edgg,n), where{ = p(n), changesP(¢) and
P(n) substantially. In particular, the sét(n) grows substantially by inheriting the subtree rooted
at the former sibling of; (and child of¢). To complete the analysis, we have to bound the total
growth in the set$>(z) due to rotations. Here comes to the rescue a well known pyopeweight-
balanced trees [15] (see also [24]), which asserts that iéWiee cost of a rotation around, ) is
proportional to P ()|, the total cost of any sequence®@{m) operations is only)(mlogn). This
immediately implies that the sum of the size increases ok#isP(z), due to rotations, is only
O(mlogn). The following theorem summarizes what we have just shown.

Theorem 3.1. A sequence ofn insertions and deletions into a kinetic tournament, whos&-m
imum size at any time ia (assumingm > n), when implemented as a weight-balanced tree
in the manner described above, generates at must3s2(n)logn) events, for a total cost of
O(mfss2(n)log?n). Each update take®(log” n) worst-case time. One can construct (i.e., ini-
tialize) a kinetic tournament on elements, at any fixed time,@(n) time.

Remark. Note that the amortized analysis of rotations in a weighdit@ed tree is used only for
guaranteeing a near-linear bound on the total number ot®vémcontrast, the time bound for an
update isworst-casebecause, when we do a rotation in the weight-balancedricessbuilding of
secondary structures is needed, so the rotation @kestime.

4 KDSfor Closest Pair

As the points ofP vary continuously with time, we maintain the closest paiPiby keeping track

of the combinatorial changes in the structuré/gfand in the sell of matched pairs. Without loss
of generality, we limit the discussion to changes in the fiasige tree data structure, that uses the
wedgesiV T, W~ with the z-axis as a bisector. Here is an overview of our approach. Wethat,

as long as the-order,v-order, ande-order of the points of? all remain unchanged, the structure
of T" also remains unchanged. Moreover, thel$etf matched pairs, and the larger $Et also do
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not change. We refer to swaps in which therder,v-order, orz-order of some pair of points a?
changes, ag-swaps v-swaps or z-swaps respectively.

We maintain the sdfl explicitly in a dynamic kinetic tournamerit as described in Section 3.
Specifically, for each paifp, ¢) we define an itenp, ,, which is the Euclidean distance between
andgq, i.e.,

Pp.q(t) = [Ip(t) — a(t)].- (4)

Let® = {p,4(t) | (p,q) € II}. We construct the tourname@ton &. It follows that the winner at
the root ofQ corresponds to the closest pair. In between swaps, the isestatic, and changes of
the closest pair are tracked by the kinetic tournanteand its events.

To keep track of the swaps, we maintain the range Treand three auxiliary sorted lists,,,
Ly, L., whereL, (resp.,L,, L,) stores the points of sorted by their:-coordinates (respy-
coordinatesg-coordinates). We implemetit, by threading the leaves @f, and we can implement
L, by threading the leaves of the secondary tree at the rdbt dhe listL,, is maintained separately.
We maintain a collection of certificates, one for each paicarisecutive elements in each of the
three lists; each certificate simply asserts that the qooreting pair obeys the respective order. We
refer to these certificates as certificates of type (i), tyipeand type (iii), respectively. The failure
events of these certificates are then:

(i) Two consecutive pointp,q € P in the u-order switch their positions (a-swap). See Fig-
ure 4 (i).

(ii) Two consecutive pointp, g € P in thev-order switch their positions (eswap).

(iii) Two consecutive point®,q € P in the x-order switch their positions (am-swap). See
Figure 4 (ii).

We add these certificates to the event queue in which we nraithie certificates of2; the key of
each such certificate is its failure time.

(ii)

Figure 4. (i) A u-swap betweep andg, with p moving down and; up; the old matched pailp, =) is replaced by the
new pair(p, ¢). (i) An z-swap betweep andg, with ¢ moving to the left angh to the right; the old matched pajt, p)
is replaced by(z, q).

When au-swap,v-swap, orz-swap between poingsandg occurs, we update the trééand the
appropriate one among the lidtg, L., andL,. The swap may also change the BetFortunately,
any pair that starts or stops being matched due to the swdgicsp or ¢, and the number of such
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pairs isO(1). We useT to efficiently identify the changes ifl, and then perform the appropriate
constantly many insertions and deletions i9taBy the assumption on the motion of the points, the
total number of swaps i9(n?). Hence, by Theorem 3.9 encounters)(n?3,2(n) log n) events,
which can be processed in overall tifén? 3, »(n) log® n). Note that a swap may also change the
setll*; the number of changes in this set that are caused by a swéy nuigbe constant, though.

The following lemma summarizes our observations thus far.

Lemma4.1. The sefll of matched pairs changes only when two pojtg swap their positions in
either theu-order, v-order, or z-order. In each of these events, any pair that starts or stogpeg
matched containg or ¢, and the number of such pairs@¥(1).

We maintain at each nodeof each secondary trég,, the points of maximal and minimat
coordinates stored & (w, £).  This allows us to us& to answer queries of the form: For a given
point p, find the leftmost point iV *(p), or find the rightmost point itV ~(p). The first type of
query specifies the quadraat> w,, v > v,, and asks for the point of smallestcoordinate (or
(u + v)-value) in this quadrant. The second type of query specifiegitadrant < u,, v < vy,
and asks for the point of largestcoordinate (or{u + v)-value) in this quadrant. Each of these
queries can be answereddr{log? n) time, by standard techniques, using the information stated
the secondary nodes.

To update our range tree efficiently when swaps take placenake each secondary tree a
dynamic balanced search tree data structure that suppsegions and deletions. These updates
are required when we encounter swaps imth@der between consecutive elements—see below.

When we insert a poinp into a secondary tre&,,, we may have to update the information
associated with the nodes along the path from the ro@i,ab the new point, some of which may
participate in rebalancing rotations. For any ngden the update path if,,, we addp to P(w, &),
which may now become the point with maximal or minimatoordinate in that set. Notice that,
for a secondary nodg¢in someT,, it is straightforward to compute themaximal andz-minimal
points inP(w, £) from the corresponding values at the childre.oT herefore, it is easy to maintain
these values, when we insert or delete a point and rebalaseeandary tree via rotations, in
O(log n) time per such update. Since orfy(log n) secondary trees are affected by any swap (see
below), the cost of updating the overall tree structureraftavap i0 (log? n). The same discussion
applies in the case of deletions.

Handling u-swaps. Letp,q € P be the pair of points that switch their positions in therder.

See Figure 4(i). This causgsandg to swap their positions in the primary trdeand in the list

L,. Letw be the lowest common ancestorbndq in 7. When we swap andg, we have to
deletep from the secondary treg, of every nodev’ on the path fromw to the leaf that contained

p before the swap, and addto each such tree. Similarly, we have to delet&om, and addp

to, every secondary treg,, for w’ on the path fromw to the leaf containing before the swap.
Since we insert and deleteandq in O(log n) secondary trees, the total update time of these trees
is O(log? n). Next, we swap andq in L,,, and update the type (i) certificates associated wit

®Here we do not need to explicitly maintain the paitw, £) = (blue(w, £), red(w, €)) até&, since we do not handle
the setlI* of these pairs. This set will come into play when we make thecsire dynamic, in Section 5.
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and their neighbors i,,. Finally, we find the changes in the détof matched pairs, and update
the items inQ accordingly. The procedure described below applies also-fwaps and:-swaps,
without any modifications.

In view of Lemma 4.1, only pairs involving or ¢ can start or stop being matched. To find these
changes, we query with the wedgesV *(p), W~ (p), W*(q), andW ~(q), seeking the leftmost
or rightmost point in each wedge, as appropriate. This gialdmost four candidate pairs (each
consisting of the apexp(or ¢) of the query wedge and the output point) for being new matche
pairs. We check each of these pairs whether it is indeed mdtdtet(p, z) be one of these pairs,
say, withp lying to the left ofz. We query inT" with the left wedgeV ~(z). If the output isp, the
pair is matched. Otherwise, it is not matched and we disc¢ard i

We insert intoQ the new matched pairs, and delete from it the old pairs thai\a p or ¢ if
they are not il anymore. To find the old pairs easily, we maintain two pomtesm eaclp € P
to the (at most) two matched pairs that contain it, one astgt@ht and one as a right point. Itis
easy to maintain these links as we insert and delete pairstfie tournament.

The cost of this swap is twofold: the cost of updatifigand the cost of handling the tournament
structureQ. UpdatingT” takesO(log? n) time. Queryingl’ to compute the new matched pairs also
takesO (log? n) time. Inserting and deleting a constant number of pairsnadso takeg) (log? n)
time, as discussed in Section 3. Hence, the costiefaap isO(log2 n).

Handling v-swaps. When two pointsp, ¢ € P switch their positions in the-order, we have to
swap them inL,, and any secondary tree that contains both of them. Spebffilelz be the lowest
common ancestor gf andgq in the primary treél’. Thenp andgq are stored ir{- for every ancestor
¢ of z. For any such ancestqr(including z), we swapp andq in 7;. Fix one such tred, and
notice thatp andq are stored at consecutive leaves/pf Letn be the lowest common ancestor in
T¢ of those two leaves. We swayandg, and update the-maximal andz-minimal points stored at
each nod€ on the paths from the leaves containingndq to . Next, we update the certificates
of type (ii), and their failure events, associated withndg and their neighbors id.,,. Finally, we
compute the new matched pairslinthat arise from the swap (becausenaximal andz-minimal
points may have changed), and upd@ieexactly as in the case afswaps. The total cost of the
swap is, as above) (log? n).

Handling z-swaps. Letp andq be the pair of points that switch their positions in therder, with

p preceding; before the event takes place. This event does not causeraoiusl changes, neither
in the primaryT’ nor in any secondary tree, but it may change themaximal or thez-minimal
points in any node of any secondary treg,,, such that the subtree éfcontains bottp andq.

More precisely, let be the lowest common ancestorpandgq in the primaryT’. We need to
process the swap ¢@f andq in the secondary trees rooted at the ancestors ofcluding z itself.
Let w be a fixed ancestor of, and letn be the lowest common ancestorfndq in T;,. The
subtrees off;, containing botlp andq are the subtrees rooted at ancestors @hcluding » itself).
Let ¢ be one such ancestor. If theminimal point in P(w, £) is p then we change it tg, and if the
x-maximal point inP(w, £) is ¢ then we change it tp. Finally, we swagp andq in L,, and update
the certificates of type (iii), and their failure events,asated withp, ¢, and their neighbors if.,..
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We then compute the new matched pairs that arise from the, amapupdated, exactly as in the
case ofu-swaps. The total cost of the swap is, as ab¥@og? n).

Theorem 4.2 below summarizes gives main result of this@ecti

Theorem 4.2. The KDS for the closest pair described above has the follgwroperties:

(@) It processe®)(n2Bs42(n) log n) events(thus the KDS igfficient).
(b) It takesO(log?® n) time to process an evefthus the KDS igsesponsive

(c) Each pointp participates in a constant number of certificates of typg(ii)), and (iii), and in
O(log n) certificates o, involving pairs offI that containp (thus the KDS isocal).

(d) The KDS use®(nlogn) space(and is thuscompach.

Proof. The proof of (b), (c), and (d) follows directly from the consttion of the data structure and
from the preceding analysis. We note that the size of thetepggue is onlyO(n). The bound on
the number of events has been discussed in the paragragdimgt.emma 4.1. O

Remark: The time bounds of Theorem 4.2 are the same as those of [1@]s@ddrce is larger by a
O(log n) factor. However, the advantages of our KDS are that it isidenably simpler, is suitable
for dynamization (see Section 5), and can easily be extetweigher dimensions (see Section 8).

5 Dynamizing the KDS for Closest Pair

In this section we show how to make the KDS described in Sectialso support insertions and
deletions of points. We have to be careful here, though,usecan insertion or a deletion of a point
may cause massive changes in thel$ess is illustrated in Figure 5. We overcome the problem
by maintaining the selil*, as defined in Section 2, rather than theldetn a kinetic and dynamic
tournament).

Figure 5. An insertion of a poinp into the shaded region destroggn) pairs inll, and deleting the point re-exposes
them. In contrast, most of these pairs (those for whichvtieeordinates of their points are both smaller thghremain
in IT* whenp is inserted or deleted.

At each nodé of a secondary tre€,,, we storered(w, ) andblue(w, £). If 7(w, ) is defined,
it generates an item in the tournaméhtvhose value at time is the Euclidean distance between
red(w, &) andblue(w, &) at timet. Since|Il*| = O(nlogn), Q usesO(nlogn) storage. In contrast
to I, maintainingIl* at an insertion or deletion can be made efficient, as we walttshshow.
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Kinetization. Before describing the procedure for inserting or deletirgpiat, we consider the
kinetization of the modified data structure. As in the casH athe sefll* can change only at a-
swap, av-swap, or arx-swap (or at an insertion or deletion, which we consider neXt any such
swap, the treqd" is updated as described in Section 4. The only chang8s involve pairs stored
along the paths where the updatesToéind its secondary trees take place. Hence, 6Xlyg® n)
pairs have to be removed frofii*, andO(log® n) new pairs have to be inserted. The corresponding
updates in the tournament structure that repredéhisan be naively performed i (log* n) time

per update, as described in Section 3.

We can slightly improve this cost, by noting that the nodetheftournamenf that are affected
by the updates are those along the paths from the modifieddeauhe root. In the worst case, the
number of such nodes can Bélog® n), but we can reduce it t©(log? n), if we make the structure
of the tournameng identicalto that of the 2-tier range trég. In fact, we embed the tournament
into the range tre&’, as follows.

At each nodée of a secondary tre€,,, we maintainr(w, ) (whenever it is defined) and we
also keep track of the closest pair among the pafis, ¢), where( is a descendant @fin 7,,. We
denote this pair byr*(w, ), which is7*(w, £(£)), 7*(w,r(£)), or 7(w,§). For each such node
¢ we maintain a certificate that asserts which amehgu, £(£)), 7*(w, r(£)), and7(w,§) is the
closest pair. The failure times of these certificates aretamied in the event queue, where we also
store the times of the upcomingswaps-swaps, and:--swaps. Similarly, each node € T keeps
track of the closest pair among the pait3:, ), whereu is a descendant af in 7', and¢ € T,,. We
denote this pair byt*(w), which is7*(¢(w)), 7* (r(w)), or 7*(w, n), wheren is the root ofT,. For
each such node we keep a certificate that asserts which amoh@(w)), 7*(r(w)), andz*(w, n)
is the closest pair, and keep the failure times of theseficatts in the same event queue. We call
these two classes of certificatesirnament certificatesSince the tournament is now embedded
into 7', we make the secondary trees weight-balanced trees, indaceze with the strategy used in
Section 3.

When handling swaps, we update the tournament certificatak modes affected by the up-
date. Since there ar@(log? n) secondary nodes ari(log n) primary nodes affected by each such
update, we handle each swap(rilog® n) time.

We handle a failure of a tournament certificate at a secormtadgé in 7., by updatingr* (w, £)
and propagating up this new closest pair. This may causetineament certificates of ancestors of
¢inT,, and ancestors af in T' to change, and therefore tak@glog? n) time. We handle a failure
of a tournament certificate at a primary nadeaimilarly.

Lemma5.1. The data structure process€Xn? g3, o(n)log® n) events.

Proof. We bound the total number of events due to failures of tousrdngertificates using the
same technique as in Section 3. A failure of a tournamenificate at a secondary nodein 7T,
corresponds to a breakpoint in the lower envelope of thauitst functions between components of
pairst(w, ¢), for all descendant$ of £ in T,. The complexity of this envelope is proportional to the
number of such functions times a factor@f, »(n). Similarly, a failure of a tournament certificate
at a primary nodev € T corresponds to a breakpoint in the lower envelope of thawmkist functions
between components of pair$u, (), over all descendantsof w in 7', and¢ € T,,.
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Let ®(w, &) be the multiset of pairép, ¢) that are stored as(w, ¢), for descendants of ¢ in
T, Where each paifp, ¢) is counted with multiplicity equal to the number of maximahoected
time intervals during whiclip, ¢) is stored as(w, ¢), over all nodeg as above. Similarly, le? (w)
be the multiset of pairép, ¢) that are stored as(u, (), over all descendants of w and nodes
of T,,, where the multiplicity of a pair is defined as above. Wittsthotation, the total number of

events i0((s42(n)) times
> 12w, ]+ Y |e(w)]. ()
w7£ w

Before the motion starts, the sum (502¢n log® ). Each swap may increase this sum®glog® n).
This is because each swap may cha@iglg? n) pairsm(w, ¢), and each such new pair contributes
a new element t@)(logn) sets®(w, ) and®(v), where¢ is an ancestor of in 7,,, andv is an
ancestor ofw in T'. Theu-swaps also increasg,,, . |®(w, )| by a total ofO(n?log? n), due to
rotations (this bound is a consequence of the fact that ttensary trees are maintained as weight-
balanced trees). Summing up, we obtain that the total nuoflesents due to failures of tournament
certificates is bounded b9 (n? 3, 2(n)log® n). O

It is easy to see that our modified data structure requi@slog n) space. Furthermore, each
point participates in at mog?(log? n) tournament certificates, so the data structure is local.

Dynamization. We next turn to the implementation of insertions and dehetiof points. For
this, we make the primary tree a weight-balanced tree to@ r@all that this is the way in which
standard dynamization of range trees is implemented [2¥h&n performing a rotation around an
edge(&, n) in the primary tree, we have to rebuild the secondary tfgemd7;, because a complete
subtree moves from one tree to the other; see Figure 3. TlghiMealanced representation allows
us to amortize the work associated with such massive rebggd We also maintain the secondary
trees as weight-balanced binary search trees, as aboverdlations are less expensive, since they
only entail pointer changes, and do not require any massblding, but we still need the weight-
balanced mechanism to bound the total number of events. ditiguto making the range trees
dynamic, we also maintain a dynamic search tree over thé JisNotice that we already have such
a search tree ovdr,,, which is our primary tre€’, and we have a search tree o¥gl, which is the
secondary tre#,. associated with the roetof the primary tree.

To perform an insertion of a point, we first insert it into the primary tre€, and then into all
secondary trees on the search path from the raaft 7' to the primary leaf containing. While
performing these insertions, we update the tournamenficatés of all nodes along the insertion
paths in these trees. We also ingemnto L,,, L., andL,, using the search trees over these lists to
locate the places whegeshould be inserted. We create new order certificates, asedavithp and
its neighbors in the list,,, L,, andL,, and delete the corresponding previous certificates.

For a rotation around an edgg n), where{ = p(n), in the primary tree, we rebuild; andT;,,
as follows. Using the notation in Figure 3, the subtrde$3, andC' themselves are not affected by
the rotation, so no update of the corresponding secondaeyg ts required. Updates are required in
the new secondary tre@$ and’;,. ForT;, we merge the-sorted lists of the elements &f andC
into a common sorted list, and then (re)consttlicover this list. Both steps tak@(|B|+|C) time.
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For T;,, we simply use the old secondary tréeas the newrl;,. Hence, the properties of weight-
balanced trees imply that the total cost of these rebuildimyiring a sequence af updates, is
O(mlogn).

It follows that the overall (amortized) cost of an insertisdominated by the update 6f(log? n)
tournament certificates, which taklog® n) time (using the optimization described above). Dele-
tions are performed in an analogous manner.

The proof of the following theorem is analogous to the prdofleeorem 4.2.

Theorem 5.2. The dynamic KDS for the closest pair, as described abovethes®llowing proper-
ties.

(a) The number of events during a sequencenoinsertions and deletions into a KDS of size
at mostn at any time (assumingz > n), is O(mnBs42(n)log®n). This makes the KDS
efficient

(b) The time it takes to process an everidog® n) (thus the KDS isesponsivi

(c) Each point participates in a constant number of ordettifieates, and irO(log? n) tournament
certificates(thus the KDS isocal).

(d) The KDS require®)(n log n) space(and is thuscompact.

(e) An insertion or a deletion take&s(log® n) amortized time.

Proof. The proof of (b), (c), (d), and (e) follows directly from thertstruction of the data structure
and from the analysis in Section 4, combined with the ansigsien above. It remains to bound the
total number of events, which we do as follows.

The number of failure events of order certificates in theslist, L,, L, is O(mn), because
any newly inserted element can swap its position, in any eflinee orders, with at mostolder
elements—those present at the time of insertion.

We bound the number of tournament events, as in Lemma 5.hdrgiag them to breakpoints
in lower envelopes and by bounding the sum in Equation (5)chHasertion, deletion, or swap
increases this sum b9 (log® n), including the amortized contribution of rotations, andrtfore
the number of tournament eventsd$mn 3, 2(n) log® n).

To complete the proof of (a), we argue that the structurefisiefit, by showing that, in this
dynamic and kinetic setup, the number of closest pairs caf(ben). A simple construction that
shows this involves — 1 stationary points lying on the-axis, andn additional points, where each
new pointp is inserted into thec-axis to the left of all stationary points, moves to the righd
crosses each of the stationary points, and is then deletmucd;ithe data structure is efficientd

6 KDSfor Nearest Neighbors

This structure is an enhancement of the structure presaiieee for closest pairs. This enhance-
ment is somewhat involved, though:
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(a) It requires adding certain substructures to the nod#éseafange tree of Section 4.

(b) In order to get a sharp bound on the number of events, wettogmplement the primary and
secondary trees amaps[27], so our algorithm becomes randomized, and its perfaoma
bounds hold in expectation.

(c) The standard implementation of treaps stores an itenact aode, rather than just at the
leaves [27]. This requires some technical changes in theimvahich the range-tree data
structure and its auxiliary data are maintained.

We maintain at each secondary nagéne pointsblue(w, £) andred(w, &) (whose definition
slightly changes, because of the treap structure—see peldw in Section 4, the structure of
the primary or a secondary tree changes onlyuswaps and-swaps, and the pointdue(w, &)
andred(w, {) may also change as a result of aswap. The winner point§(w, £) and o(w, £),
however, may change even whenmswap,v-swap, orz-swap occurs.

To keep track of the points(w, £) ando(w, &), for every primary nodev and secondary node
we store at each secondary ngdevo kinetic and dynamic tournaments, as described in Sestio
Leta = red(w, £) andb = blue(w, £) at some time. The first tournament &t denoted byB (w, ),
contains the distances, ., defined in (4), for each point € Blue(w, £). The second tournament at
¢, denoted byR(w, £), contains the distances, ; for each poiny € Red(w, §). Thusg(w, £) and
o(w, ) are the respective winners of the kinetic tournamé&s, £) andR(w, £).

In addition, for each point € P, we maintain another small kinetic and dynamic tournament,
denotedX(p), which contains the distances ,, for each poiny € C(p), whereC(p) is the set of
candidate points defined in (3). The basic properties ofdnge tre€l’, and of nearest neighbors
in planar point sets, established in Section 2, imply thatribarest neighbor gfis the winner of
XK(p) for one of the range trees corresponding to one of the thriee giavedges.

The new tournament® (w, £) andR(w, §) at secondary nodes may undergo massive changes
during u-swaps,v-swaps, and:-swaps. Each timesd(w, £) changes, we have to rebufli(w, &)
from scratch, since all trajectories of the itemsB(w, {) change algebraically. Similarly, when
blue(w, £) changes, we have to rebui{w, £) from scratch. In addition, a rotation around an edge
(n,€) in T,, also requires rebuilding dB(w, ¢), R(w, &), B(w,n), andR(w, n), because the sets
of points in the left and right subtrees &nd ofn change in a massive manner (and also because
red(w, §), blue(w, &), red(w,n), or blue(w, n), may change). To control the potential increase in
the cost of performing swaps, due to rebuildings of the newrtaments, we use the scheme of
Alexandron et al. [8], which store® and each of its secondary treestesaps (also known as
randomized search tregR7].

6.1 Treapsand thedata structure

Here is a brief review of treaps and their basic propertiesenproperties will be established later,
as ingredients for our analysis. tleapis a randomized search tree with optireapectedehavior.
We associate with each noden the treap aank, denoted byrank(z), and apriority, denote by
priority(z). © Thei-th node encountered when we traverse the tree in symmetiéc ¢or inorder,

"Note that priorities are associated with tiedesof the tree, rather than with the items that will reside aséheodes.
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obtained by recursively traversing the left child, then tioele itself, and then the right child) has
ranki. The node of rank stores theth smallest item (the item of rank among the items stored
in the treap. The priorities are random numbers, drawn iadeéently and uniformly at random
from an appropriate continuous distribution, so that, yeitbbability 1, the set of priorities defines
a random permutation of the nodes. The treap is a heap wipleceto thepriorities. That is, the
priority of a node is larger than the priorities of its chédr Note that, once we draw the priorities,
the resulting treap is uniquely determined. The analysi® ¢f shows that the expected depth of
any node in a treap (over the draws of the priorities) {$og n).

To insert a new itemx into a treap, we create a new léaifin a position determined by the rank
of z. Then we draw a random priority fdrfrom the given distribution, and rotateup the tree, as
long as its priority is larger than the priority of its parefmhe implementation of a delete operation
is similar: Letz be the item to be deleted and tebe the node containing. We keep rotating the
edge connecting to its child of larger priority, untibv becomes a leaf, and then remaveNote
that an insertion or a deletion changes the rank of all sulesgqodes by one, which, however, has
no effect on the algorithm, because ranks are maintaingdimlicitly.

We maintain the primary tre€' of our two-dimensional range tree as a treap. This requires a
few minor and technical modifications of the structure, edusy the fact that now items are also
stored at internal nodes of the tree. Specifically, the nodeT" of rank k& stores the poing(z),
which is the point with thé:-th smallestu-coordinate. We refer to the priorities of nodes in this
tree asu-priorities. We now denote byP(z) the set of points stored at the nodes of the subtree
rooted atz € 7', including u(z) itself. Each secondary tree is maintained as a treap in dasimi
manner. We use a different independent set of prioritiesefmh secondary tree, which we refer
to asv-priorities. A node¢ of rank k in a secondary tre&,, stores the point(w, &) of the k-th
smallestv-coordinate among all points d?(w). We denote byP(w, £) the set of points stored at
the nodes of the subtree @, rooted at, including u(w, €) itself. Since the expected depth of a
treap isO(log n), we obtain that any point belongs to an expected numbér(fg n) subtrees of
the primary tree, and to an expected numbeP@bg* n) subtrees of secondary trees.

V=g
\@\p . o ©b 5
@ ©
® e o
a * .
U= up
@ (ii)

Figure 6. Points of P(w, &), p = u(w), ¢ = p(w,§); filled (hollow) circles denote the blue (red) points Bfw, &).

Points inRed(w, §) and Blue(w &) are denoted by double circles. (i)# ¢. Hereq = blue(w, &), b = red(w, §),
q = B(w,§), anda = o(w, §). (i) p=q. (w §) = a,andp(w,§) = b.

Let w be a primary node. Since we now store points also at intewds$) we have to redefine
which points of7,, are red and which are blue, so as to guarantee that Lemmallh8lsls, thereby
ensuring the correctness of the data structure. As befagh point inP(¢(w)) is blue inT,,, and
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each point inP(r(w)) is red inT,,. The pointu(w), stored atw, is considered to be both red and
blue.

Let ¢ be a node inl,. If p(w,§) # p(w) then we redefin®ed(w, &) (resp.,Blue(w, §)) to
be the set of red (resp., blue) pointsittw, r(£)) (resp.,P(w, ¢(£))) together withu(w, £) if it is
red (resp., blue). As earliefed(w, £) is the point of the minimumx-coordinate inRed(w, £), and
blue(w, £) is the point of the maximum-coordinate irBlue(w, &).

Letp = p(w) andg = p(w,&). We say that nodg is specialif p = ¢. Let ag be the
intersection point of the lineg = u, andv = v,. Note that if¢ is special themve = p = ¢. The set
Red(w, &) (resp.,Blue(w, £)) consists of the points if?(w, €) \ {a,} contained inV* (ag) (resp.,
W™ (ag)), andred(w, §) (resp. blue(w, £)) is the point of P(w, §) \ { ¢ } with the minimum (resp.,
maximum)z-coordinate in this quadrant. See Figure 6. We now definedivego(w, £), B(w, £),
and the candidate nearest neighbors generatedTditere are two cases:

Case A: ¢ isnot special, thatisp # ¢q. We definep(w, £) to be the point closest tblue(w, £) in
Red(w, &), and3(w, £) to be the point closest ted(w, &) in Blue(w, ). We maintain two
tournaments af: a tournamentR(w, £) on the distance, ;, overa € Red(w, &), where
b = blue(w, £), and another tournamef(w, £) on the distance®, ;, overa € Blue(w, §),
whereb = red(w, §). Thusp(w, &) (resp.,B(w, £)) is the winner of the tournamefi(w, &)
(resp.,B(w, &)). We add the poinp(w, &) to C(blue(w, £)) andF(w, §) to C(red(w, §)).

Case B: ¢ isspecial, thatisp = q. We defineg(w, &) to be the point closest to = ¢ = u(w, &)
in Red(w, &), and3(w, &) to be the point closest to(w, &) in Blue(w, £). We maintain two
tournaments af: a tournamenfR(w, £) on the distanceg, ,, overa € Red(w, ), and an-
other tournamerB(w, £) on the distanceg,, ;, overb € Blue(w, ). Thus, as abovey(w, &)
(resp.,B(w, £)) is the winner of the tournamefi(w, &) (resp.,B(w,&)). We add the points
o(w, &), B(w, &) to C(u(w,§)). We also addi(w, &) to C(red(w, £)) andC(blue(w, £)).

The following lemma proves the correctness of our data sirec

Lemma6.1. If pis the nearest neighbor gfandq € W (p) or ¢ € W~ (p), thenp € C(q).

Proof. Suppose, without loss of generality, tlgae W (p); the other case is symmetric. Letbe
the lowest common ancestor of the nodes stogirgndq in 7. Thenp, ¢ € P(w) andp (resp.,q)
is blue (resp., red) iff,; if p (or ¢) is u(w), then it has both colors. Lé&tbe the lowest common
ancestor of the nodes storipgandq in T,.

First, we claim that ifu(w) = u(w, £), then this point is eithep or ¢. Indeed supposg(w) =
ww,&) = a # p,q; see Figure 7 (i). Thep is a blue point inP(w, ¢(¢)) andq is a red point
in P(w,r(£)), thereby implying thay € W (a) andp € W~ (a). Consequentlya € W (p)
andz, < z4,. Hence, by Lemma 2.1, cannot be the nearest neighborgofa contradiction which
establishes the claim. The proof continues by considehirddllowing three cases.

Case A: p(w) = p(w, &) = p. In this caseRed(w, £) is the set of red points i (w, r(£)). Since
q € Wt(p), ¢ € Red(w,&). Moreover,Red(w,&) € W (p), therefore by Lemma 2.1,
q = red(w, §). Since the data structure addgw, &) to C(red(w, &)) if £ is specialp € C(q).
See Figure 7 (ii).
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® (i) (iii) (iv)

Figure 7. () w(w) = p(w, &) = a # p,q. (i) p(w) = p(w,&) = p, ¢ = red(w,§). (i) p(w) = p(w,§) = q,
p=Bw,§). (V) p(w) # p(w,&).

CaseB: pu(w) = p(w,§) = q. Inthis caseBlue(w, §) is the set of blue points i (w, £(£)). Since
p € W™ (q), p € Blue(w,&). Moreover,p = 3(w, ) because is the nearest neighbor of
q = p(w, &) and thus the winner of the tournament built on the pointBlire(w, £). Since
the data structure addgw, &) to C(u(w, €)) If £ is specialp € C(q). See Figure 7 (iii).

CaseC: pu(w) # p(w,§). Leta = p(w), b = p(w,§), andag the intersection point of the line
u = u, andv = v,. Thenp € W~ (a¢) andg € W («g), thereby implying thap €
Blue(w,&) andg € Red(w,&). MoreoverRed(w,£) € W (ag) € WT(p), therefore, by
Lemma 2.1g = red(w, ) andp, the nearest neighbor of is 5(w, £). We can thus conclude
thatp € C(q). See Figure 7 (iv).

6.2 Kinetic maintenance of the structure

We now proceed to describe the details of the kinetic maartea of the modified tree structure.
Similar to the maintenance of the closest-pair KDS in Sectipthe critical events that affect the
structure ofl” and its extreme blue and red points (that is, the pdihts(w, £) andred(w, §)), for

w € T and¢ € T,) are theu-swaps,v-swaps, ands-swaps, defined as above. The tournaments
maintained at the secondary nodes, as well as the tournafidén), may undergo discrete changes
in between swaps. As in Section 4, to keep track of these swagpmaintain three auxiliary sorted
lists L,,, L, andL,, and a collection 0©(n) certificates that specify the respective sorted orders
of the points by theiu-coordinatesy-coordinates, and-coordinates.

Handling u-swaps. Letp,q € P be the pair of points that switch their positions in therder,

so thatp precedeg before the swap. This causes them to swap their (consecpwgiions in the
primary treeT” and in the listL,. Since nowI" stores a point at each node, one of these points is
an ancestor of the other. Assume that n(w) and thatp is stored at the rightmost leaf @)

The case wherg is an ancestor of is handled in a fully symmetric manner. We swapndg by
makingu(w) := p and by storing; at the leaf that used to stope This does not change the primary
tree structure, but requires the following updates of sdapntreaps.

When we swap and g, we deletep from the secondary tre€, of every nodez on the path
from ¢(w) to the leaf that containeplbefore the swap, and agdo each such tree. In the tredp,
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Figure 8. UpdatingT at au-swap: (i) Swapping andq in the primary treap. (ii) Inserting into a secondary tredp.,
a new leafy is created, which storeg the filled (resp., hollow) nodes have lower (resp., higlpeigrity than that ofy;
the node, is rotated upwards until it becomes a childeof

g was both blue and red, andwas blue before the swap. After the swaps blue andp is both

blue and red. This involves no structural change%.in but it does affect the seRed(w, &) and
Blue(w, §), and the tournamentB (w, {) andR(w, £), at nodes along the paths from the root of

T,, to the nodes that stopeandq, and thus also affect the corresponding extreme pointgw, &)
andred(w, £) and the winners}(w, £) and o(w, £); see Figure 8 (i). Special care is needed at the
nodes ofT}, that storep and ¢—one of them stops being a special node and the other becomes
special; see Section 6.1 for details.

We insertg to a secondary tredp,, wherez is a node on the rightmost path of the left subtree
of w, using the insertion algorithm for a treap. Recall that theertion putsy in a new node,
sayn, which is initially a leaf. It then propagatesupwards, using rotations, ungiority () <
priority(p(n)); see Figure 8 (ii). When we perform a rotation around animedge(n, ¢ = p(n))
we recomputeblue(z, £) andred(z, £), and we rebuild the tournameriy z, £) andR(z, ). Once
the final position ofy is fixed, we update the tournamemés(z, ), blue(z, ) andR(z,¢), B(z,()
at the ancestorg of » (after the rotations; hollow nodes in Figure 8 (ii)), asdals. Assume that
q 1s blue after the swap (as in the case considered in Figuied8)each ancestor nodeof n such
thaty lies, say, in the left subtree gfwe do the following: if ther-coordinate ofy is larger than
that ofblue(z, ¢), we setblue(z, {) to ¢, and if  is not special we rebuilR(z, ¢) on the distances
g, for a € Red(z, ¢). Furthermore, we sét:= red(z, () if ¢ is not special, andl := (2, ) if ¢
is special, and we adgj , to B(z, (). The treatment of the case in whiglis red is analogous. We
delete a poinp from a secondary tredf. in a fully symmetric manner.

For each primary nodeand secondary nodesuch thated(z, £), blue(z, £), o(w, §), or B(w, &)
changes we also make the derived modification to the toumefi&p) for the affected pointp.
Finally, we swap andgq in L,,, and update thé&(1) order certificates associated withy, and their
neighbors inL,,.

Handling v-swaps. As in the structure of Section 4, when two points; € P switch their
positions in thev-order, we have to swap them in any secondary tree that osntiaém both, and
in L,. Specifically, letz be the lowest common ancestor @fndq in the primary tre€l’. For
any ancestoy of z (including z), we swapp andgq in T},. Fix one such secondary tredp), and
notice thatp andq are stored atonsecutivenodes (in symmetric order) df,, thus one of them is
an extreme node in a subtree rooted at a child of the othen Bigyure 8(i). Letn be the lowest
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common ancestor gf andgq in 7. Assume that before the swagstoredq, andp was stored at the
rightmost leaf of the left subtree gf (The case when holdsp andq is stored at the leftmost leaf of
the right subtree of is symmetric.) We swap andq, and updatélue(y, £), red(y, &), B(y, ), and
R(y, &), for each nodé& on the path from the leaf containingo n. We perform an insertion and/or
a deletion to/fromB(y, &) in casered(y, £) does not change and eitheor ¢ is blue. Ifred(y, &)
does change, anglis not special, we rebuil®(y, ). Symmetric updates are applied®dy, &).

Note that eithep or ¢ is i(z), and therefore ifl’, eithern or the leaf containing is special. Ify
is special before the swap then it stops being special aneafithat containegh and now contains
g becomes special, and vice versa. We recomplite(y, &), red(y, &), B(y, &), andR(y, ) for
these nodes that change their status from special to naiaspe vice versa.

For each primary nodeand secondary nodesuch thated(z, £), blue(z, £), o(w, §), or 5(w, §)
changes we also make the derived modification to the toumeti&p) for the affected pointp.
Finally, we swap andgq in L,, and update thé(1) order certificates associated wjilandq and
their neighbors in_,,.

Handling xz-swaps. Let p andq be a pair of points that switch their positions in th@rder, with
p to the left ofg before the event takes place. This event does not cause racjusil changes
in the primary treap, nor in any secondary treap, but it mangered(z, &) in any node¢ of any
secondary treaf,, such that the subtree 6t rooted at; contains botlp andg.

Let z be the lowest common ancestorpofndg in the primary treap. We need to procesand
q at each ancestor af including z itself. Lety be a proper ancestor of note that neithep nor ¢
is stored aty. Assume thap andq are both red irf},, and letn be the lowest common ancestor of
p andq in T;,. The subtrees df, containing bottp andq are the subtrees rooted at ancestors of
(including n itself). At any such ancestay, if p = red(y, ¢) then we changeed(y, ¢) to beq and
rebuild B(y, ¢). Finally, we swapp andq in L,, and update thé(1) order certificates associated
with p, ¢, and their neighbors if,. The case where boghandg are blue irll, is analogous. If one
is blue and the other is red iR, (i.e.,y = z), then we do nothing; this also covers the case when
one ofp, g is stored ag(z).

6.3 Analysis

Some properties of treaps. Before analyzing the expected cost of the various swaps roxéde
two related lemmas on the expected size of various substagin a treap. The proofs are similar
to those given in the original paper of Seidel and Aragon,[Bidt we present them in detail for the
sake of completeness.

Lemma6.2. Letw be the node of rank in a treap, and leW = (w1, ..., w;) be the rightmost path
starting from the left childv, of w and ending at the leaf;. Then, for any nonnegative functign

l k—2
E<Z—:1 f(size(ws))> < w +2 Z:l f;ﬂ;),

wheresize(w) is the size of the subtree rootechat
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Proof. For eachi, let w(i) denote the node of rankin the treap. For each pair of indicési such
that: < j < k, consider the everiX; ;, wherew(j) is the root of a subtree ifi’ whose leftmost
leaf isw(i) and whose rightmost leaf is(k — 1); clearly, in this case this subtree consists of all the
verticesw(l), fori < | < k — 1. Note that wherX;, ; takes placew(j) is a node on the pat.
Conversely, ifw(j) is a node orW then there exists anh< j such thatX; ; occurs; moreover, in
any random instance @f, thisi is unique. We then have

! k—1k—1
(X fsine(w) ) < 35 Prci,) - £k ). ©
s=1 i=1 j=i

Fori > 1, X; ; occurs if and only if among the nodess), i — 1 < s < k, w(i — 1) andw(k)
have the two largest priorities, in either order, ang) has the third largest priority. Hence,
2k —i—1)! 2

< .
(k—i+2)! = (k—1)3

PI‘[X@J] =

The eventX, ; occurs if among the nodes(l), 1 < I < k, w(k) has the largest priority and(;)
has the second largest priority. Hence,

1
PI‘[XLJ'] = ]{T(k‘ — 1)
We can thus rewrite (6) as

! k—1 k—1k—1

. flk— 2f(k
B(X feimetw) = YIS+ Y S HESD
s=1 7j=1 =2 j=1
k—1
I SE (LRI (Y
pors (k —1)? ko
which is exactly the inequality asserted in the lemma. O

In particular, forf(s) = s, Lemma 6.2 yields

<Zsme w; ) = O(logn).

Lemma 6.3. Letw be the root of a treap on points, and letW = (w = wy,...,w;) denote the
path fromw to a nodew; of rank k. Then, for any nonnegative functigh

E<§f(size(ws))>= ( +Zm+1>

wheresize(u) is, as above, the size of the subtree rooted at node
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Proof. Letw(i) denote the node of rankin the treap, so, in particulay, = w(k). For each triple
of indicesi, m, j such that < m < j andi < k < j, consider the everX, ,, ;, in whichw(m) is
the root of a subtree i’ whose leftmost node i&(:) and whose rightmost node is(j); clearly,
in this case this subtree consists of all the vertices), for i < s < j, and, in particular, it contains
w(k). Note that wherX; ,,, ; occurs,w(m) is a node on the pat. Conversely, ifw(m) is a node
on'W then there exist indices< m < j, where we also have< k£ < j, such thafX;, ,,, ; occurs.
Moreover, in any random instance 'Bf thesei andj are unique. We then have

! k- n J
B fsinetw,) ) < 3050 DT PrlHin) £G4 ). Q
s=1

i=1 j=k m=i

We bound the right hand side by dividing the summation into fubsums.

Case Aii > 1 andj < n. In this caseX;,, ; occurs if and only if among the nodes(s),
i—1<s<j+1,w(—1)andw(j+ 1) have the two largest priorities, in either order, amn )
has the third largest priority. Hence,

o
2(5 —)! - 2

Pr[Xi,m,j] = (j—i—|—3)! > (j—’L'—i—l)(j—i—l—Q)z.
Therefore
k n—1 7 . ‘ k n—1 j 2f(j—Z—|—1)
;E;PY(XZ’m’])'f(j_Z+1) : ;jzk£<j—i+1><j—z+2>2
k n—1
_ fG—i+1) 21 (4)
o ;j:k (]—i+2)2 Szi—i—l (8)

Case Bii = 1 andj < n. The eventX ,, ;, for j < n, occurs if among the nodes(s),
1 <s<j+1,w(j+ 1) has the largest priority and(m) has the second largest priority. Hence,

1
PriXi ] = ——,
[ 17 7]] ](j + 1)
thereby implying that

n—1 J n—1 J . n .

. 1) (4)
DN Pr(Ximy) - f() < )N ©)
j=k m=1 7=k m=1 ‘7(‘7 + 1) j=1 J+ 1

Case Ci > 1andj = n. Asin the previous cas&;; ,, », for : > 1, occurs if among the nodes
w(s), i —1 < s < n,w( — 1) has the largest priority and(m) has the second largest priority.
Therefore,

1
Prlimal = G m =i
and
kK n kK n . n .
Z; Z_: Pr(Ximn) - fn=i+1) < 2_; — (n _f(fz_)(?_lz IV Z_; z‘ff)r (10)
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Case D:i = 1 andj = n. Finally, X; ,, », occurs ifw(m) has the highest priority overall (this
is the event where(m) is the root), which implies thder[X; ,, ,] = 1/n. Therefore

> e fm) = 30 L = ) (11)
m=1 m=1

Summing (8)—(11), we obtain

E<§ f(size(ws))> = O<f(n) + ]Z: ]f(Tj)l)

as asserted. O

We now give the analysis of the data structure. We do not densipdates to the kinetic
tournamentsK(p) as it would be easy to verify that the cost of maintaining ¢heegirnaments is
dominated by the cost of maintaining the tournamétts, ) andB(w, &).

The cost of a u-swap. Consider first the cost of rebuilding tournaments during-swap, and
assume the setup depicted in Figure 8. At each of the affeseteshdary subtreds (including Ty,
itself), the tournaments that might have to be rebuilt oge at nodes that lie on two paths from the
root to two nodes of specific ranks. The cost of rebuildinguariament at a nodgis proportional

to the size of the subtree rootedéat Hence, the total expected cost of rebuilding tournameints a
some secondary treég is proportional to the expected sum of the sizes of the sebtreoted at
nodes lying along the path gbefore it is deleted and along the pathgtafter it is inserted. By
Lemma 6.3, withf (z) = =z, this expected sum i9(|7% ). Plugging this bound into Lemma 6.2, the
overall expected cost of rebuilding tournaments atswap isO (log n).

The cost of the other steps that handle-swap is smaller—the cost of the actual updating of
a secondary tre&, is only O(log |T%]|), even if the cost of peforming a rotation around a ngde
is proportional to the size of the subtree rootedéksee Theorem 7.1). This is subsumed by the
preceding bound. We thus obtain the following lemma.

Lemma 6.4. The expected cost of handlingieswap isO(log n).

The cost of a v-swap. Recall that a-swap of two point®, ¢ requires updates in secondary trees
T., wherez is a common ancestor of the nodes storingndg. In each such tre&,, p andq are
consecutive, so one is an extreme node in a subtree rootethéd &f the other. Using Lemma 6.2,
the expected cost of updating a secondaryfiesvhich consists of swappingandq and rebuilding
the appropriate tournaments,(glog |7.|). Plugging this into Lemma 6.3, witli(z) = log z, we
obtain:

Lemma 6.5. The expected cost of handling:eswap isO (log? n).
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Expected cost of all z-swaps. A singlex-swap may be expensive, also in expectation (see below),
but we show that the total cost of allswaps is small, arguing as follows. For a ngde T, let
A(w, &) be the multiset of all pairéa, b) of points of P, with a # b, such that, at some timega €
Red(w, ) andb € Blue(w, §). The multiplicity of each paifa, b) in A(w, §) is equal to the number

of maximal (connected) time intervals in which the abovengéaecurs. LetA = Uwé A(w, §),
where the union is over all primary nodesand secondary nodése T,,. The following lemma
bounds the expected total size of tournaments that we celhile handlingz-swaps.

Lemma 6.6. The expected total size of tournaments that we rebuild vig@téormingz-swaps is

O(|A|s+2(n)).

Proof. Fix a node¢ in a secondary treaf,,. Let B denote the multiset of all blue points that
are ever stored either at the left subtreg afir at¢ itself. Each point is counted with multiplicity
equal to the number of times it enters this set. SimilarlyHalenote the multiset of all red points
which are stored either at the right subtree¢adr at ¢ itself, where each point is counted with
multiplicity equal to the number of times it enters this sAksociate with each poirit € B the
function 2(b(t)), and letll = U(¢) denote the upper envelope of these (partial) functionsh eac
defined over some connectedhterval. Since, by assumption, thecoordinates of a fixed pair of
points can become equal at mastimes, it follows [29] that the number of breakpoints fis

at mosthgs2(|B|) = O(|B|Bs+2(n)). Similarly, the number of breakpoints in the upper envelope
defined by any subsé?’ C B of the functions IO (| B’|Bs+2(n)).

Each such breakpoint corresponds taraswap at which we rebuil®(w, §). So if we sum the
sizes of the tournamenfi$(w, £), measured at the times these breakpoints occur, we get d lboun
the total size of red tournaments at the times when they atélrat¢. We can get a similar bound
on the total size of blue tournaments at the times of thewilging. Assume that each time such
a breakpoint occurs, we charge one unit to each poifit(im, £). We now bound the maximum
number of such charges.

Fix a red pointa € R, within a fixed maximal time interval in which a is in R. Let ¥, be
the set of breakpoints di that charges; that is, breakpoints that occur within Let B} denote
the multiset of those blue points whose functions are imtitiethe breakpoints o¥,. Clearly, the
breakpoints ofl, are also breakpoints of the upper envelopéxgh(t)) | b € B}. Hence we have
|W,| = O(|B¥|Bs+2(n)). Now the total count of tournament changes under considerat

S 0= 0 (z \B;wsﬂw) |

acER

Since) ", |Bi| < |[A(w,§)|, we conclude thaO(|A(w,£)|Bs+2(n)) bounds that total size of red
tournaments, measured at the time of their rebuilding, Bumming over all primary nodes and
secondary nodes and applying the same argument to blue tournaments, thadeiollows. [

To apply Lemma 6.6, we have to bouht|. New pairs inA are created during the handling of
u-swaps and-swaps. Consider first@aswap of pointg andq. There are two types of pairs that
this swap creates: pairs that contain either ¢, and pairs created by the structural changes caused
by rotations while deleting and insertingy (or vice versa) into secondary trees. We refer to pairs
of the first (resp., second) kind pgmary (resp.,secondary pairs. The number of primary pairs is
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bounded by the expected total size of the secondary treestedf by the swap. By Lemma 6.2, this
size is bounded by (logn).

To bound the number of new secondary pairs, we first show #edt msertion into or deletion
from a secondary tree of sizecreates an expected number@fs) new secondary pairs.

Lemma 6.7. If a point is inserted into or deleted from a secondary tieg then the expected
increase in the value of ... A(w, ) is O(|Ty|).

Proof. We analyze deletions in detail, the analysis of insertiaanalogous and hence omitted.
Assume that the point to be deleted fr@iy resides at nodé of rankm. We examine the rotations
that bringé down, and bound the expected number of new pairs createdebg tiotations.

LetX = (x1 = £(§), x2,---,Xq) denote the rightmost path frod{¢) to a leaf, and le® =
(¢1 =71(8),(s, ..., denote the leftmost path froni¢) to a leaf, both defined before the rotations
begin; see Figure 9. Each rotation in the deletion procettubeing & down is performed along an
edge onX or Z. Let B = Blue(w, &) andR = Red(w,§). Forl < i < g, let B; = Blue(w, x;),
and forl < j < h, let R; = Red(w, ;).

Figure 9. Rotating¢ down by a sequence of right rotation®. becomes part df’y, after performing the right rotation
along the edg€y:;.

Suppose we first perform right rotations along the edge¥.oAs shown in Figure 9, a right
rotation around the edge betwegand its current left child(¢) = y; (starting withi = 1) changes
the left child of¢ to x;+1, and§ becomes the right child of;. 7. remains unaffected by these
rotations (see, e.g., the subtiBen Figure 9.) Sincd,¢) was disjoint from the right subtree @,
before the rotation, but becomes part of it after the rotatew pairs are generated Afw, x;) by
the rotation, namely, the pairs i8; x R. The only other pairs ir\ that can be generated by this
rotation involve the poinp = u(w, &) stored at; there are at mosB3;| such pairs—see Figure 9.
Hence, the right rotations introdu¢e?_, (|B; x R| + |B;|) < |B|(|R| + 1) new pairs ta\ (note
that theB;’s are disjoint—see Figure 9).

Similarly, if we first perform left rotations along (before performing any right rotation), then
the rotation around the eddg, ¢;) introduces|B x R;| + |R;| pairs toA(w, (), for a total of
(IB| + 1)|R| pairs. If right and left rotations are performed in any mixader, then each right
rotation creates only a subset of the pairs it would haveedgéperformed before all left rotations,
and the same holds for left rotations. Therefore, regasdbéshe order of the rotations, the total
number of new pairs is

O((IB + (IR + 1)) = O((|P(w, L&) + 1) - (|P(w, ()] +1));
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here we are referring to the childrenobefore the rotations. It thus suffices to bound the expected
value of this quantity.

Let £(i) denote the node of rankin the treapTy,, so in particulart = £(m). Fori < m < j,
defineX; ; to be the indicator random variable of the event in which tbdeat (m), storingm in
Ty, is the lowest common ancestor &fi) and{(j). The expected value dfP(w, ¢(£))| + 1) -
(|P(w,r(£))| + 1), for a fixed nod& = &£(m), is

Z Z E(X; ) .

i<mj>m
ForX; ; to be 1,£(m) must have the largest priority among all nodg¢s), fori < k < j. The

probability of this event is clearly/(j — i + 1). Summing up over all pairg, j) withi < m < j,
we get that

T

|
SN EE) =Y < S ) = O(T, ).
j—i+1 = k+1

i<mj>m i<mj>m

That is, we have shown that the expected increase in theggﬂvt\(w,{‘) , caused by generating
new secondary pairs, 8(|1y|). O

Combining this with Lemma 6.2, we obtain that the expectedler of new secondary pairs is
O(logn). Since we havé (n?) u-swaps altogether, it follows that the total contributidrueswaps
to A is O(n?logn) pairs.

Consider now as-swap of pointsp andq. Here there are no structural changes in any tree,
and each newly created pair contains eith@r ¢q. By Lemma 6.2, withf(z) = z, the expected
total size of the affected subtrees in a secondary tigapontaining bothp andq is O(log |T3]).
Applying Lemma 6.3 to the primary tree, we obtain that theested number of new pairs created
by a singlev-swap isO(log?n). In total we haveO(n?) v-swaps, which contribute an expected
number ofO(n? log® n) new pairs taA.

Lemma 6.8. The expected cost of atkswaps isO(n2(,.2(n) log? n).

Proof. Since the expected depth of a node in a treap (log n), it follows that, initially, the ex-
pected number of set§(w, ) in which a pair of points of? appears i (log® n). So the expected
initial size of A is O(n?log? n). By the preceding discussion, the expected contributioh by all
u-swaps and-swaps is als®(n? log? n). Thus the expected size afis O(n?log? n). Combining
this with Lemma 6.6, we obtain that the expected total sizevofhaments, measured at the time
of their rebuilding, iSO (n?3,2(n) log? n). By Theorem 3.1, the total time to rebuild these tourna-
ments is als@ (n?Bs12(n) log® n). This bounds the total time spent in handlingaabwaps. [

Expected cost of a single z-swap. Recall that the time spent in answap of two pointy andg
is proportional to the expectation of the sum, over all sdaoyn treesl’, that contain bottp andg,
of the sum of the sizes of the subtrees rooted at nodes alenggatih leading from the root to the
lowest common ancestor pfandg. Applying Lemma 6.3, withf (s) = s, to such a secondary treap
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T., we obtain that the expected contributioriZgfto this sum isO(|7>|). Now, applying Lemma 6.3
again in the primary tre#’, we obtain that the expected total size of all tournameriesigd by the
swap isO(n).

We summarize the result of this section in the following tieso.

Theorem 6.9. Our KDS for maintaining the nearest neighbor of each poinaiset ofn moving
points in the plane has the following properties.

1. The number ofi-swaps isO(n?), and handling au-swap take®) (log n) expected time.
2. The number of-swaps isO(n?), and handling a-swap take) (log? n) expected time.

3. The number aof-swaps isO(n?), processing a single-swap takeg)(n) expected time, and
processing all:-swaps take®) (n? log? nfs,(n)) expected time.

4. The number of tournament events$n? log® n3%,,(n)), and the total time required to
handle them i©)(n? log* ng2, ,(n)).

5. The data structure require8(n log? n) expected storage.

In particular, the KDS is compact, efficient, responsive imaanortized sense, but in general not
local.

Proof. The proof of (1), (2), and (3) follows from our assumption de tnotion and from Lem-
mas 6.4, 6.5, 6.8, and the preceding discussion.

To bound the number of tournament events, recall, from tbhefpof (3), that, over the entire
motion, all tournaments together contaitin?log?® nB,2(n)) items (where each item is counted
with multiplicity equal to the number of times it is insertéato the tournament). The bounds
claimed in (4) now follow from Theorem 3.1. The expected ager required by the structure is
dominated by the expected total size of all tournamétits, ), R(w, ). which is bounded by the
expected sum of the sizes of all subtrees over all secondzeg.t Since the expected depth of the
primary tree and each of the secondary subtre€Xlisg 1), this expected sum 8 (n log? n). Thus
(5) follows. O

7 Dynamizing the KDSfor Nearest Neighbors

Our kinetic data structure for nearest neighbors of Sediiaran in fact support insertions and
deletions of points. We only need to add a dynamic searchoreethe listsL,,, L,, andL,, as
we did for the closest pair problem in Section 5. Here too tiiragry treapl” can serve as the tree
associated with.,,, and the secondary treap associated with the root of theapyiinreap can serve
as the tree associated withy.

To perform an insertion of a point, we first insert it into the primary tredp. For a rotation
around an edgéz, w) in the primary tree (withv the former parent of), we rebuildT,, and T,
and the tournaments that they store. This tak¢&, | logn) expected time. Seidel and Aragon
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[27] proved the following lemma (which is similar to Lemma&}.it shows that rotations in treaps
are not that expensive in expectation.

Lemma 7.1. Assume that a rotation around an edgey = p(x)) in a treap takeD(f(s)) time,
wheres is the size of the subtree rootediat Then the expected time to perform an insertion or a
deletion to/from the treap is

1<s<n

Lemma 7.1 implies that the insertion @fnto the primary treap take8(log® n) expected time.

Let z be the node containingin the primary treaf¥’. After insertingp into the primary treap,
we insertp into every secondary treafj,, wherew is an ancestor of in 7. While insertingp into
a secondary treajp,, we also have to insejt into a tournament at each node on the patp to
T,. Furthermore, i) becomesed(u, &) or blue(u, £), for some (non-special) nodec T,,, then we
have to rebuild the tournamet(w, &) or R(u, ), respectively. The nodeg containingp in T, is
special and we rebuil® (u, ) andR(u, ).

The expected time it takes to inserinto all secondary trees containing it@log? n). Updat-
ing tournaments, however, may be expensive. Neverthdlassime is bounded by the expected
sum of the sizes of all secondary subtrees contaipjieghich isO(n), by Lemma 6.3. We summa-
rize with the following theorem.

Theorem 7.2. Suppose we make > n insertions and deletions to the kinetic and dynamic data
structure for nearest neighbors described above, suchttieak are at most points in the data
structure at any fixed time. Then the following propertieklho

1. The number of-swaps iSO (mn) and processing a-swap take®)(log n) expected time.
2. The number of-swaps isO(mn) and processing a-swap take®) (log? n) expected time.

3. The number of-swaps igD(mn), processing a single swap take®)(n) expected time, and
processing all:-swaps take®) (mn log® nfs o(n)) expected time.

4. The expected number of tournament evert¥isn log® n3> 1o(n)), and their total expected
cost isO(mnlog* nB2, ,(n)).

5. The data structure require8(n log? n) space.

6. An insertion or a deletion take&3(n) expected time.

Proof. Arguing as in the proof of Theorem 5.2, the numberegwaps,v-swaps, andc-swaps is
O(mn). It takesO(n) expected time to insert or delete a point by the discussieogaling this
theorem.

The rest of the proof is analogous to the proof of Theorem @8e only difference is that
we have to take into account the increase\imvhen we insert or delete a poipt Clearly there
areO(n) new primary pairs (containing) in A. Secondary new pairs are created as a result of
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rotations in the primary treap, which cause rebuildingseziosdary treaps. Each secondary treap
T, that is rebuilt may contribut®(|T,,|?) new pairs toA. However, Lemma 7.1 implies that the
expected total number of new pairgi¥$n), so the increase ¢f\| caused by insertions and deletions
is O(mn), and it therefore does not dominate the sizé of O

8 Extensionto Higher Dimensions

In this section, we extend the data structures of Sectiomgl5/ao fully dynamic and kinetic data
structures for maintaining the closest pair and all neareisthbors in a seP of n moving points in
R, for anyd > 3. The extension is straightforward, and is based on theviiig generalization of
the key geometric property, given in Lemma 2.1. The proosieatially identical to the preceding
proof, and is thus omitted.

Lemma8.1. Letp be the closest point tg and letC' be a cone of opening angte/3, with apex at
the origin, which containg — p. Letb denote a vector in the direction of the symmetry axi€’'of
(pointing intoC). Then

(g—p)-b=min{(w—p)-blwePNn(p+C)}.

We tile R? by a constant number of convex polyhedral cones, all haviegotigino as their
apex, such that each of these polyhedral cones is boundéddogts, and is contained in a regular
coné of opening angler /3 with apexo. Note that the number of polyhedral cones grows exponen-
tially with d. As in the planar case, we may assume that, for each polyh=mrall/, its antipodal
cone—V also appears in the tiling. We describe the extension faedbpair, since the extension
for all nearest neighbors is similar.

Let W be one of these polyhderal cones. Without loss of generaisume that the symmetry
axis of therr /3 cone that contain®/ is the positiver-axis. Clearly, Lemma 8.1 also holds far.
Thatis, ifp, ¢ is a closest pair at timesuch thayy — p € W, then

(g—p)z =min{(w—p), |we PN(p+ W)}

That is, q is the leftmost point op + W, and, symmetricallyp is the rightmost point of — .
As in the planar case, we say that such a pam&ched(in the z-direction). Our strategy is thus
to maintainO(1) data structures, one for each p#it —1V of cones in the tiling. For each cone
W, its data structure maintains (a superset of) thélseft all matched pairs, and runs a kinetic and
dynamic tournament among them, to keep track of the closestrpll. The real closest pair is the
pair with the smallest distance between its points, amoagninners of thes€ (1) tournaments.
In complete analogy with the planar case, in the purely idretenario we can maintain the actual
setll, whereas in the kinetic and dynamic scenario, we need totaiaia slightly larger superset
1I*, which we will shortly define.

Fix a coneW, and assume, as above, that its “symmetry axis” is the pesitiaxis. Let
e ... e be vectors orthogonal to the facetsi&fand pointing intol/’. For each poinp € R¢,

8That is, a cone of the forffw | Z(z,u) < a}, for some vector and anglex.
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defineu!) = p-e® fori =1,...,d. Clearly,q—p € Wifand only iful’ > u{” fori =1,...,d.
We thus apply the same strategy as in the planar case: Wewdrast-dimensional range treg,
where thei-th level of the tree stores points according to théit-order. At the bottom level of the
structure, each noderecords the points with the smallest and largesbordinates that are stored
in the subtree rooted & By querying the structure with a poipt or, more precisely, with the
orthantu® > 4\, fori = 1,...,d, we can find the leftmost pointe p + W, in time O(log? n).
This allows us to construct the sdtof all O(n) matched pairs, i (n log? n) time, and to run a
tournament on these pairs, using exactly the same struatudescribed in Section 3. (Note that
this tournament structure is independent/Qf

As in the planar case, we can alternatively use the largdi’seft pairs, defined as follows. For
each nodé of the bottom level of", we form a pair(p, ¢), wherep (resp. q) is the rightmost (resp.,
leftmost) point that is stored at the left (resp., right)tse® of each of the nodes!), ¢, ... ¢ =
¢ in the d levels of the structure, whose respective trees cortaiks in the planar case, it is easy
to see thafl C IT*. The size oflI* is O(nlog?~' n), and it can initially be constructed in time
O(n logd—! n), during the construction df, in a straightforward bottom-up manner. (Thus, in the
static and stationary case, we obtain an algorithm for thgesit pair that runs in tim@(n log?! n).
There are, however, faster algorithms for this scenarich si$ the one of Vaidya [31].) To compute
and maintaidIl*, we need to store a more refined information in the nodes didktem level ofT’,
which extends, in an obvious manner, the blue/red pointaigtained in the 2-dimensional tree of
Section 4.

Each of the set$l andII* remains unchanged as long as the orders of the pointsinfeach
of the coordinates:, u(!, . .., u(¥ remain unchanged. Hence, the critical events that the raege
T has to keep track of are th@(n?) swaps of consecutive points in any one of these orders. In
addition, the tournament structure maintains its own setitital events, exactly as in the planar
case.

Consider first the purely kinetic scenario (no insertiondaletions). Here we maintain only the
setll. When a swap between two poinisg takes place, we updafg in an analogous manner to
that described in Section 4. To make the updates efficientaiatain each subtree @fin each of
the levels2, ..., d as a dynamic weight-balance8lB(«) tree. Note that rebalancing rotations may
require that the relevant subtrees be completely rebuilierdeeper levels. Using the properties of
BB(a) trees, an update df takesO(log? n) amortizedtime. In the kinetic and dynamic scenario,
the first level ofI" is also maintained as a weight-balanced tree.

In the purely kinetic scenario, we quetyafter the update with andg, and find theO(1) new
pairs ofII that the swap has generated, as well asQg) old pairs that have to be deleted. We
then update the tournament structure accordingly. Theafdsindling the tournament structure is
negligible in this case. We summarize the performance oétitueture in the following theorem.

Theorem 8.2. In the purely kinetic scenario, the KDS for the closest paiRF described above
has the following properties.

1. The number of events that it processe (823 »(n)log n) (thus the KDS igfficient).

2. The (amortized) time it takes to process an eve@X(lsg? n) (thus the KDS isesponsivein
an amortized sense
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3. At any time, each point participates in a constant number of certificates of typ&s(if),
and (iii), and pairs thaip belongs to participates i (logn) certificates o (thus the KDS
is local).

4. The structure require® (n log?~! n) space(and is thuscompac}.

In the kinetic and dynamic scenario, we need to maintaindhgel seil*, for which we need
to maintain the refined information at the bottom-level rodéT. Here each swap generates an
amortized number ab (log? n) updates ofI*, which are then fed into the tournament structure. As
in the planar case, naive implementation using an exteouahament will result irO(logC“rl n)
certificates changing, which will then requié(log?*2 n) time to process (largely consumed by
updating the event queue). However, if we embed the tournami® the range tree, we can reduce
the (still amortized) number of certificates changing by awo O (log? n), and their processing
cost toO(log?*! n). The total number of internal critical events that the taunent keeps track of
is O(mnBs12(n)log?*! n), by arguments analogous to the ones given in Section 5. Stigintg
we have:

Theorem 8.3. The dynamic KDS for the closest pairitf, as described above, has the following
properties.

1. The number of events during a sequencendhsertions and deletions into a KDS of size
at mostn at any time (assuming: > n), is O(mnfs42(n)log? ! n). This makes the KDS
efficient

2. The amortized time it takes to process an eve@X(isg?*! n) (thus the KDS isesponsiv
3. Each point participates i®(log? n) certificates(thus the KDS igocal).

4. The KDS require® (n log?~! n) space(and is thuscompac}.
5.

An insertion or a deletion take$(log? ™! n) amortized time.

Finally, we consider the extension of our data structureafbnearest neighbors to higher di-
mensions. For this we need to construai-dimensional dynamic range tree using treaps. The
analysis in Sections 6 and 7 extends to higher dimensionstimightforward (albeit tedious) man-
ner. Omitting all further details, we obtain the followingtension of Theorem 7.2.

Theorem 8.4. Let P be a set of moving points iR?. to which we also make: > n insertions
and deletions of points, so that there are at mogints in the set at any fixed time. One can then
construct a KDS that maintains all nearest neighborg’inwhich also supports these insertions and
deletions, and which satisfies the following properties.

1. The number ot()-swaps, forl < i < d, is O(mn) and processing ar()-swap takes
O(log?n) expected time.

2. The number of-swaps i9D(mn), processing a single-swap take®)(n) expected time, and
processing all:-swaps take® (mn3,,.2(n) log? n) expected time.
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3. The expected number of tournament event3(isn 32, ,(n) log?*! ), and their total ex-
pected cost i©) (mnf2,,(n)log™ 2 n).

4. The data structure requirg8(n log® n) space.

5. An insertion or a deletion take&3(n) expected time.
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