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Abstract

Top-k queries are desired aggregation operations on data setmfes of queries on network data
include finding the top 100 source Autonomous Systems (A9)100 ports, or top domain names over
IP packets or over IP flow records. Since the complete data®dten not available or not feasible to
examine, we are interested in processing kapseries from samples.

If all records can be processed, the toftems can be obtained by counting the frequency of each
item. Even when the full dataset is observed, however, ressuare often insufficient for such counting
so techniques were developed to overcome this issue. Whemanvelserve only a random sample of
the records, an orthogonal complication arises: The taguiacies in the sample are biased estimates
of the actual top: frequencies. This bias depends on the distribution and brisiccounted for when
seeking the actual value.

We address this by designing and evaluating several schiateserive rigorous confidence bounds
for top-k estimates. Simulations on various data sets that includéoW data, show that schemes
exploiting more of the structure of the sample distributnduce much tighter confidence intervals
with an order of magnitude fewer samples than simpler schetmat utilize only the sampled tdp-
frequencies. The simpler schemes, however, are more afficiéerms of computation.
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1 Introduction

Top-k computation is an important data processing tool and constitute a basic aggnegery. In many
applications, it is not feasible to examine the whole dataset and therefmm@xapate query processing is
performed using a random sample of the recards [CCMNOO, DLT03,3WOUK 04, JMRO5, BID05].
These applications arise when the dataset is massive or highly distribut@d]Guch as the case with
IP packet traffic that is both distributed and sampled, and with Netflow redbat are aggregated over
sampled packet traces and collected distributively. Other applications\dmsethe value of the attribute we
aggregate over is not readily available and determining it for a givendédws associated (computational
or other) cost. For example, when we aggregate over the domain nametredponds to a source or
destination IP address, the domain name is obtained via a reverse DNSdaoghkigh we may want to
perform only on a sample of the records.

A top-k query over some attribute is to determine thenost common values for this attribute and
their frequencies (number of occurrences) over a set of recBs@dsnples of such queries are to determine
the top-100 Autonomous Systems (AS) destinations, the top-100 applicatiebs [§@p, other protocols),
10 most popular Web sites, or 20 most common domain names. These queries jgased in terms of
number of IP packets (each packet is considered a record), nufdistioct IP flows (each distinct flow is
considered a record), or other unit of interest. We are interested aegsimg top: queries from a sample
of the records. For example, from a sampled packet streams or frommesaf the set of distinct flows.
We seek probabilistic or approximate answers that are provided with eocdntervals.

It is interesting to contrast Top-queries withproportion queries. A proportion query is to determine
the frequency of apecifiedattribute value in a dataset. Examples of proportion queries are to estimate the
fraction of IP packets or IP flows that belong to p2p applications, origifiate a specific AS, or from a
specific Web site.

Processing an approximate proportion query from a random sample isi@aa well understood
statistical problem. The fraction of sampled records with the given attriblite ian unbiased estimator,
and confidence intervals are obtained using standard methods.

Processing top-queries from samples is more challenging. When the complete data set igeuh) yee
can compute the frequency of each value and take thé topst frequent values. When we have a random
sample of the records, the natural estimator is the result of performing the aetion on the sample.
That is, obtaining thé: most frequent values in theampleand proportionally scaling them to estimate
the frequencies of the top-values in the real data set. This estimator, however, is biased upwards: Th
expectation of the combined frequency of the tofiems in the sample is generally larger than the value
of this frequency over the unsampled records. This is a consequétive loasic statistical property that
the expectation of the maximum of a set of random variables is generally thagethe maximum of their
expectations. While this bias must be accounted for when deriving caoéidetervals and when evaluating
the relation between the sampled and the actuaktepts, it is not easy to capture as it depends on the fine
structure of the full distribution of frequencies in the unsampled datasathwsinot available to us.

Overview of our contributions. In Sections 3 F 7 we devise and evaluate three basic methods to derive
confidence intervals for top-estimates. The main problem which we consider is to estimate the sum of the
frequencies of the top-values.

e “Naive” bound: Letf be the sum of the frequencies of the tolements in the sample. We
consider distributions (datasets) for which the probability that in a samplaithe&the frequencies
of the top% elements is at leasf is at leasts. Among these distributions we look for those of
smallest sum of top frequencies, say this sumis We usex as the lower end of our confidence
interval. By constructing the confidence interval this way we capture bettids of the sampled



top-k frequency and standard proportion error bounds. The definitioneoNtive bound requires
to consider all distributions, which is not computationally feasible. To compugeiriterval, we
identify a restricted set of distributions such that it is sufficient to congtuese distributions. We
then construct a precomputed table providing the bound for the desinéideace level and sampled
top-k frequencyy.

e CUB bounds: We use the sample distribution to construct a cumulative upper bound (QWB)ef
top- weight for alli > 1. We then use the CUB to restrict the set of distributions that must be taken
into account in the lower bound construction. Therefore, we can podigralatain tighter bounds
than by the Naive approach. The CUB method, however, is computationtdlysiie, since we can
not use precomputed values.

e Cross-validation bounds: We borrow terminology from hypothesis testing. The sample is split into
two parts, one is the “learning” part and the other is a “testing” partS le¢ the sampled top-set of
the learning part. We use the sampled weight @f the testing part to obtain the “lower end” for our
confidence interval. We also consider variations of this method in which thpleas split into more
parts.

We evaluate these methods on a collection of datasets that include IP traffiefiords collected from a
large ISP and Web request data. We show (precise characterizationidgal in the sequel) that in a sense,
the hardest distributions, those with the worst confidence bounds feemgampled togs weight, are those
where there are many large items that are close in size. Real-life distributmmeyer, are more Zipf-like
and therefore the cross-validation and CUB approaches can sigtiifioatperform the naive bounds. The
naive bounds, however, require the least amount of computation.

Relation to previous work. Most previous work addressed applications where the complete detaadet c
observed [MM02, CM03, CCFC04, KSXZ05, KMEO5] but resouraesnot sufficient to compute the exact
frequency of each item. The challenge in this case is to find approximate meqaeht items using limited
storage or limited communication. Examples of such settings are a data strearthatasadistributed
on multiple servers, distributed data streams [BOO03], or data that residegemal memory. We address
applications where we observe random samples rather than the complets.dilte challenge is to estimate
actual top frequencies from the available sample frequencies. Thessettimgs are orthogonal. Our
techniques and insights can be extended to a combined setting where thatapplibserves a sample
of the actual data and the available storage and communication do not allowobsato exact sample
frequencies. We therefore need to first estimate sample frequenaiethieobserved sample, and then use
these estimates to obtain estimates of the actual frequencies in the originat.datas

A problem related to the computation of tépand heavy hitters is estimating the entsiee distri-
bution[KSXWO04, KSXZ05] (estimate the number of items of a certain size, for alls3iz€his is a more
general problem than top-and heavy hitters queries and sampling can be quite inaccurate for estimating th
complete size distribution [DLT03] or even just the number of distinct items [GIO0]. Clearly, sampling
is too lossy for estimating the number of items with frequencies that are welf timeleampling rate. The
problem of finding top flows from sampled packet traffic was consider¢@lD05], where empirical data
was used to evaluate the number of samples required until the $epin the sample closely matches the
top-k set in the actual distribution. Their work did not include methods to obtainaemde intervals. The
performance metrics used in [BID05] are rank-based rather than weéged. That is, the approximation
quality is measured by the difference between the actual rank of a flon8(ddargest in size) to its rank in
the sampled trace (i.e., 10th largest in side), whereas our metrics aredvetbedveight (size of each flow).
That s, if two flows are of very similar size our metric does not penalizedoranking them properly with




respect to each other as two flows that have different weights. Asilt, ribe conclusion in [CCFCO04], that
a fairly high sampling rate is required may not be applicable under weigletdbastrics.

We are not aware of other work that focused on deriving confidarteevals for estimating the top-
frequencies and the heavy hitters from samples. Related work applied nmaikelihood (through the Ex-
pectation Maximization (EM) algorithm) to estimate the size distribution from sampleBEJIB) KSXZ05].
Unlike our schemes, these approaches do not provide rigorous eocdidhtervals.

Some work on distributed topwas motivated by information retrieval applications and assumed sorted
accesses to distributed index list: Each remote server maintains its ovirlisd@nd these lists can only be
accessed in this order. Algorithms developed in this model included the welirkithreshold Algorithm
(TA) [Fag99, FLNO1], TPUT [CWO04], and algorithms with probabilistic garstees [TWS04]. In this model,
the cost is measured by the number of sorted accesses. These algoréhsugeal for applications where
sorted accesses rather then random samples are readily available as theyase when the data is a list
of results from a search engine.

An extended abstract of this paper has appeared in [CGKO06].

2 Preliminaries

Let I be a set of items with weights(i) > 0 fori € I. For.J C I, denotew(J) = > ;. ;w(i). We
denote byT;(J) (top- set) a set of thé heaviest items i/, and by B;(J) (bottom+ set) a set of thé
lightest items inJ. We also denote by¥;(J) = w(T;(J)) the weight of the top-elements in/ and by
W,(J) = w(B;(J)) the weight of the bottoni-elements inJ.

We have access to weighted samples, where in each sample, the probakilay iteam is drawn is
proportional to its weight. In the analysis and evaluation, we normalize theweight of all items tol,
and use normalized weights for all items. This is done for the convenienmeséntation and without loss
of generality.

The sample weighof an item; using a set of samples is the fraction of times it is sampled 5. We
denote the sample weight of itejrby w(.S, j). We define the sample weight of a subdetf items as the
sum of the sample weights of the itemsjinand denote it byv (.S, J). The sampled top-and bottom: sets
(thed items with most/fewest samples i) and their sampled weights are denotedibysS, J), B;(S, J),

Wi(S,J) =w(S,T;(S,J)), andW, (S, J) = w(S, B;(S, J)), respectively.

2.1 Top-k problem definition

There are several variations of the approximate/iggpoblem. The most basic one is to estimate ().
In this problem we are given a sét of weighted samples with replacements frdnand a confidence
parametep. We are interested in an algorithm that computes an intéfya) such that! < W (I) < u
with probability 1 — 6. That is if we run the algorithm many times it would be “correct” in at lelast ¢
fractions of its runs. We call this problethe approximate top-weight problem

A possible variation is to compute a sEtof k£ items, and a fractiom, as small as possible, such that
w(T) > (1—€)W(I) with probability 1 — §. If we are interested in absolute error rather than relative error
then we require that(7T") > W, (I) — e with probability 1 — §. We call this problenthe approximate tog-
set problem

Note that in theapproximate tope setproblem we do not explicitly require to obtain an estimate of
w(T). In case we can obtain such an estimate then we also obtain good bouRdg Hn

The relation between these two variants is interesting. It seems that apptiogiriee topx weight
rather than finding an actual approximate subset is an easier problpmrésefewer samples). As we shall
see, however, there are families of distributions for which it is easier torohteapproximate topg-set.



There are stronger versions of the approximatekapeight problem and the approximate tépset
problem. Two natural ones are the following. We define here the “sesioms of these problems. The
definition of the “weight” version is analogous.

o All-prefix approximate topg: set: Compute an ordered set bfitems such that with probability — ¢
foranyi = 1,..., k, the firsti items have weight that is approximatély; (7). We can require either
a small relative error or a small absolute error.

e Per-item approximate top-set: Compute an ordered set bfitems such that with probability — §
foranyi = 1,..., k, theith item in the set has weight that approximately eqU&ls(1) — W,;_1(I))
(the weight of theith heaviest item i). Here too we can require either a small relative error or a
small absolute error.

Satisfying the stronger definitions can require substantially more samplestiieeaker definitions
suffice for many applications. It is therefore important to distinguish thermifft versions of the problem.
We provide algorithms and results for obtaining an approximate:tageight, some of our techniques also
extend to other variants.

2.2 Confidence bounds

We say that a random variahléis a(1 — §)-confidence upper bourfdr a parametet of a distribution/,
if £ is not larger thart/ with probability (1 — 0):

PROB{{ <U}>1-9.

(The r.v.U is a function of the random samples, so this probability is over the draw oatttom samples.)
We define(1 — ¢)-confidence lower bound for ¢ analogously. We say thak, U] is a(1 — ¢)-confidence
intervalfor ¢, if the value of¢ is not larger thar/ and not smaller thah with probability (1 — §):

PROB{L<{(<UP>1-9.

If U(61) is a(l — d;)-confidence upper bound for a parameter, &Gdb) is a(1 — J2)-confidence lower
bound for the same parameter, tHéiids), U (61)] is a(1 — &; — d2)-confidence interval for the parameter.
Once we have a confidence interval we can think of the middle of the int¢tvéd;) + L(d2))/2, as the
estimateand of the differences between the endpoints and the estithgli&y;) — L(d2))/2, as theerror
bars

Bounds for proportions. Consider a coin with biag and a samplé& of s coin flips. LetSuc(s, ¢) be the
number of positive flips irt. Then the distribution ofuc(s, ¢) is binomial with parametersandg. Define
Suc<(q, s, h) = PROB{Suc(s, q) < h}, andSuc>(q, s, h) = PROB{Suc(s,q) > h}. Itis easy to see that
Suc<(q, s, h) is a decreasing function @f Wheng = 0 we have thatSuc<(q, s, h) = 1 and wherny = 1
we haveSuc<(q, s, h) = 0 for anyh < s. Similarly, Suc> (g, s, h) is an increasing function af. When
¢ = 0 we have thaSuc> (g, s, h) = 0 for anyh > 0, and whery = 1 we haveSuc<(q, s, h) = 1.

A proportion query is the task of estimating the biesf a coin from a set of coin flips. So consider now
a sampleS of s coin flips obtained for a proportion query (from a coin whose bias wet teaastimate).
Let » be the number of positive samples.$h and letp = h/s be the fraction of positive samples. Let
U(p, s, ) be the largest valug such thatSuc<(q, s, h) > 6. The following lemma shows thaf(p, s, J) is
a(1 — ¢)-confidence upper bound on the proportion

Lemma l. U(p,s,0)is a(l — §)-confidence upper bound on the proportjan

4



Proof. We have to show that

zs: PrROB{p < U <I;, 5,5) | (Suc(s,p) = h)}PROB{Suc(s,p) =h}>1—4.
h=0

By Bayes rule we have that the left hand side equals

> Pros((p < U (%.5.6)) A (Sucts.p) = )
h=0 5
Clearly FRoB{(p < U (,5,6)) A (Suc(s,p) = h)} = 0 for h such thap > U (%, s,5) and RRoB{(p <
U (%, s, 5)) A (Suc(s,p) = h)} = PROB{Suc(s,p) = h} for h such thap < U (%, s, (5).
Now leth’ be the largest such that

Z ProOB{Suc(s,p) =h} <1-6.
h=nh'

ThenSuc<(p,s,h — 1) > ¢ and thereforg < U(%, s,0). So we obtain that

i PROBY{(p < U (h, s, 5)) A (Suc(s,p) = h)} > Z PROB{ Suc(s,p) = h} > 1— 4,
h=0 s h=h'—1

as required. O

Similarly, let L(p, s, §) be the smallest valugsuch that a proportionis at least likely to have at least
h positive samples in a sample of sizé That isq is the smallest value such théitic>(q, s,h) > 6. The
following lemma is analogous to lemma 1. Its proof is similar and hence omitted.

Lemma 2. L(p, s,d) is a(1 — &)-confidence lower bound on the proportipn

Exact values of these bounds are defined by the Binomial distributiorro&jppations can be obtained
using Chernoff bounds, tables produced by simulations, or via the Poisddormal approximation. The
Normal approximation applies whems > 5 ands(1 — p) > 5. The standard error is approximated by

Vb1 =p)/s.

Difference of two proportions. We use(1 — §)-confidence upper bounds for tdéference of two pro-
portions Suppose we have; samples from a coin with bigg andn, samples from a coin with bigs.
Denote the respective sample meangbgndp,. Observe that the expectationgyf — ps is p; — po.

We use the notatio@'(p1, n1, p2, n2, 0) for the (1 — §)-confidence upper bound gn — p,.

We can apply bounds for proportions to bound the difference: It ig &asee thal/ (pq,n1,0/2) —
L(pa,n2,6/2) is a(1 — &)-confidence upper bound on the differemge- p2. This bound, however, is not
tight. The prevailing statistical method is to use the Normal Approximation (thasiscban the fact that if
the two random variables are approximate Gaussians, so is their di#¢rérite Normal approximation is
applicable ifpinq, (1 — p1)n1, pang and(1 — p2)ne > 5. The approximate standard error on the difference

estimates; — ps is v/p1(1 — p1)/n1 + p2(1 — p2) /na.

! Whenever we use the notatidrip, s, §) or U(p, s, §) we assume thais is an integer.



2.3 Cumulative confidence bounds

Consider a distributiod, and letF'(i) = Wi(l)? Let S be a set of points sampled from We would like
to obtain a (simultaneous) — §)-confidence upper bounds féi(b) for all b > a, for somea > 1 based on
S which we observe. Observe that this is a generalization of proportion ¢stim&roportion estimation
is equivalent to estimating a single pojnt= F'(a) rather thant'(b) for all b > a. o

Let F'(i) = w(S,T;(I)) be the weight of the top-set in the sample. Clearly the observéd (S, I) is
an upper bound ow (S, T;(I)) for everyi. )

We define the random variabiéa, S) to be max,>, w So (1 — e(a, S))F(x) < F(x) for
x > a. Let R(p,s,d) be the smallest fraction such that, for every distributtorwith F'(a) = p, when
sampling$ of sizes from £, then RRoB{e(a, S) < R(p,s,d)} = 1 — 4. Intuitively, R(p, s, 6) is an upper
bound with confidencé — § on the relative erro}% for every F' and sample of size, if F/(x) > p.

Letp = W,(S,I) > F(a). Itis easy to see that the functigitp) = p(1 — R(p, s, §)) is monotonically
increasing. So ley be the value such that(l — R(q,s,d)) = p. LetG(x) = % (Note that
G(a) = q). We prove the following lemma.

Lemma 3. F(x) < G(x) for everyz > a with probability> 1 — 4.

Proof. Assume that for some > «a, F'(x) > G(x). Then by the definition of7(z) we have that

Fz) <Wa(S,1) < (1= R(g,s,6)) F(x) . (1)

SinceW (S, 1) > W,(S,I) = p we obtain from Equation (1) that < (1 — R(q,s,d))F(z). By the
definition ofg this implies thatF'(z) > ¢. Now from the definition of?(q, s, §) the probability that Equation
holds if F'(x) > ¢ is < . O

We say thati(z) is thecumulative(1 — ¢)-confidence upper bouraf F'(z) for x > a.
We also consider cumulative bounds that are multiplicativerfor a and additive forr < a. We refer
to these bounds asimulativer bounds.Define

E+a = max elLa maXM
(a, ) { (0, 8) max =575 } :

Let R (p, s,d) be the smallest fraction such that for every distributiowith F'(a) = p, when sampling®
of sizes from F then RoB{¢ " (a, S) < R (p,s,6)} > 1 — 4.
Letp = W4(S,I) < F(a). Itis easy to see that the functigifp) = p(1—R*(p, s, §)) is monotonically

. . et oA + _ Wa(S,0)
. 999 - M - 1—Rt -
increasing. So lef be the value such tha{l — R (g, s,9)) = p. LetG™ (z) = =3 (G5.0) for z > a, and

G (x) = W(S,I)+ qR*(q,s,0) for z < a. The following lemma is analogous to Lemma 3.
Lemmad4. F(z) < G (z) for all z > 0 with probability > 1 — 4.

Proof. Lety be the point such thdt(y) = ¢. Let A be the event where for some> y, (1-R* (q, s,9))F(x) >
F(z). Let B be the event that for some < y, F(z) — Rt (q,s,6)F(y) > ( ). By the definition of
R™(q, s, 0) the eventd U B happens with probability: 4.

We show that ifF'(z) > G*(z) for somex then eitherA or B happens. First it’(z) > G*(z) for
x> athen(l — R (q,s,0))F(x) > W.(S,I) > W.(S,I) = p. This implies, by the definition af that
F(z) > q. Sox >yand(1 — Rt(q,s,0))F(z) > W,(S,I) > F(z), therebyA occurs.

20ne can think ofF" as a cumulative distribution function: Indeed if the name of dihelargest item isi. Then F (i) =

Emgi w(z).



If F(z) < G*(z) for all z > a then in particularF'(a) < G*(a) or (1 — R*(q,s,0))F(a) <
Wa(S,I) = p. So from the definition of g follows thdt(a) < ¢ = F(y) and therefore, < y. Now assume
that F'(z) > G (x) for somez < a. ThenF(x) > W, (S, 1) +qR" (q,s,5) or F(z) — F(y)R™ (¢, s,8) >

I)>F(x

W (S, ). Sincex < y this implies thatB occurs. O

We say thatz* () is thecumulativer (1 — §)-confidence upper bouraf F'(x).

It is known thatR(p, s,d) and R*(p, s,d) are not much larger than the relative error in estimating a
proportionp usings draws with confidencé — §. Furthermore they have the same asymptotic behavior as
proportion estimates whengrows [LLS01]. Simulations show that we need ab2ift; more samples for
the cumulative upper bound to be as tight as an upper bound on a propb(tip. We computed estimates
of R(p, s,d) andR*(p, s, §) using simulations and prestored them for discretized valupsaafls.

2.4 Data Sets

We use 4 data sets of IP flows collected on a large ISP network in a 10 minuteaindering October
2005. We looked at aggregations according to IP source addreSK (B6tinct values), IP destination
address (517K distinct values), source port (55K distinct values)dastination port (57k distinct values).
We also use three additional Web traffic dataséterldCup Web server log from the 1998 World soccer
championship, with 4021 distinct itemBec-64 Web proxy traces that were recorded at Digital Equipment
Corporation in 1996, with 497597 itemkbl-100 30 days of all wide-area TCP connections between the
Lawrence Berkeley Laboratory (LBL) and the rest of the world, wit@8@3distinct items. Figure 1 shows
the top4 weights for these distributions that show an obvious Zipf-like form.
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Figure 1: topk weights for test distributions

3 Basic bounds for top-k sampling

When estimating a proportion, we use the fraction of positive examples inrtif@esas our estimator. Using
the notation we introduced earlier, we can use the interval fEdm s, §) to U(p, s,d) as a2d confidence
interval. It is also well understood how to obtain the number of samples ddedproportion estimation
within some confidence and error bounds when the proportion is atdeast

When estimating the top-weight from samples, we would like to derive confidence intervals and also
to determine the size of a fixed sample needed to answer & goery when the weight of the tapset is
at leastp.



The natural tope candidate is the set &¢f most sampled items. The natural estimator for the weight
of the top#4 set is the sampled weight of the sampled tofiems. This estimator, however, is inherently
biased. The expectation of the sampled weight of the samplé tedways at least as large and generally
is larger than the weight of the tdpset. The bias depends on the number of samples and vanishes as the
number of samples grows. It also depends on the distribution. To degigratsn procedures or to obtain
confidence intervals for a top-estimate we have to account for both the standard error, as in proportion
estimation, and for the bias.

3.1 Top-k versus proportion estimation

We show that top- estimation is at least as hard as estimating a proportion. Intuitively, we etietd be
the case. Estimating proportion is equivalent to estimating a single fixed itemeageathen we estimate
the topd we have, in a sense, to bound more than one item.

Lemma 5. Let A be an algorithm that approximates the tdpveight in a distribution with confidende— 6.
We can used to derive an algorithmd’ for estimating a proportion. The accuracy d4f when estimating a
proportionp is no worse than the accuracy dfon a distribution with topt weight equals t.

Proof. Aninputto A’ is a setS’ of s coin flips of a coin with biag. Algorithm A’ translatess’ to a sample
S from a distributionD in which we have one iternof weightp and every other item has negligibly small
weight. We generat® by replacing each positive sample$ by a draw ofb and every negative example
in S” by a draw of a different element (a unique element per each negatvepds). AlgorithmA’ applies
A'to S and returns the result. O

Itis also not hard to see that the tégroblem is at least as hard as the toproblem. This is obvious
for the stronger (per item) versions of the tbgaroblem but also holds for the approximate topveight
problem. To see this, consider a stream of samples for a fmpblem. Replace each sample of itédoy
a sample of an item labeldd, =) wherez is chosen uniformly fron{0, ...,k — 1}. This is equivalent to
drawing from a distribution where each item is partitioned foarts of the same weight. The tépweight
in this distribution is the same as the top-1 weight in the original distribution.

4 The Naive confidence interval

Let Lk(f, s,0) be the smallesf such that there exists a distributidfy with top-% weight of f, such that
when samplingS of sizes we have RoB{W (S, F) > f} > 6. Similarly, letUy(f, s, d) be the largest
f such that there exists a distributian with top-k£ weight of f such that when samplin§g of size s,
PROB{W (S, F) < f} > 6.

Let S be a sample of items from a distributiod and assume that = W (S, I). By a proof similar to
that of Lemma 1 one can show that

Lemma 6. Ux(f, s,0)is a(1—4)-confidence upper bound on the tbpveight, andLy (f, s, 8) is a (1 —d)-
confidence lower bound on the tépweight.

We define théNaive (1 — §)-confidence intervao be[Ly(f,s,8/2), Ux(f, s,8/2)]. Note that since the
(1 —4/2)-confidence upper bound and thie— ¢ /2)-confidence lower bound are not symmetric we may be
able to reduce the length of the interval by splitting ér@nfidence asymmetrically between the upper and
the lower bounds. That is, for evety< &' < 8, [Ly(f,s,8'), Ux(f, s,6 — &')] is also a confidence interval
that may be smaller thai,,(f,s,8/2), Ux(f, s,8/2)].



4.1 Computing the Naive confidence interval

Our definitions do not provide an immediate way to compute the Naive conédaterval, since they
require to consider all possible distributions. We now describe an algotittwompute these bounds.

We first consider the upper bound and show that we can us@ the))-confidence upper bound for a
proportion as &1 — §)-confidence upper bound on the tépveight.

Lemma 7. Uy(f,s,8) < U(f,s,0).
Lemma 7 follows from the following lemma.

Lemma 8. The distribution function of the sampled weight of the sampledktdpminates that of the
sampled weight of the topset. That is, for albe > 0,

Prob{Wy(S,I) > a} > Prob{w(S,Ty(I)) > a} .

In particular, E(W (S, 1)) > W(I) (the expectation of the sampled weight of the sampled: togk-is an
upper bound on the actual topweight.)

Proof. Observe that the sample weight of the sampleditigpat least as large as the sampled weight of the
actual topk set (assume top-set is unique using arbitrary tie breaking). O

Proof. [of LemmaT?J LetUk(ﬁs,é) = f, and letF' be a distribution with topge weight f such that
PROB{W (S, F) < f} > 4. By Lemma 8 we have that

Prob{Wi(S,1) < f} < Prob{w(S, T,(I)) < f}.

Since the right hand side equals to the probability thattwsses of a coin with success prghwe get< fs
successes we get that the latter probability is at l@alstfollows that f < U(f, s, d). O

We next consider how to obtain a lower bound on the kogeight. The definition oth(f, s,0) was
with respect to all distributions. The following Lemma restricts the set of digtabs that we have to
consider. We can then comput@(f, s,0) using simulations with the restricted set of distributions.

Let I; andl; be two distributions. We say that dominateds if for all i > 1, Wy (I1) > W (I2).

The next lemma shows thatlif dominateds then the distribution of the sampled weight of the sampled
top-k of I; dominates that of,.

Lemma 9. If the distribution/; dominates the distributioih, then for anyk > 1, and number of samples

s > 1, the distribution function of the sampled weight of the sampledktapa sample of size from

I, dominates the same distribution function with respeciktoThat is, for anyt, the probability that the
sampled topk in a sample from/; has at least samples is at least as large as the same probability with
respect tals.

Proof. We prove the claim for two distribution§ and I, that are identical except for two itemag andb,.
In I, the itemsb; andb, have weightsv; andws, respectively where; > wso. In I the itemsh; andbs
have weightsv; + A andws — A, respectively for somé > 0. Clearly if the claim holds for; and/, as
above then it holds in general. This is true since given any two distribufioaisd [ such that/; dominates
I, we can find a sequence of distributiohs= 1°,1',...,I° = I, where for every) < j < /, Iﬁ“ is
obtained fromlg by shifting A weight from a smaller item to a larger one.

Consider a third distributiori; that is identical tol; and I, with respect to all items other than and
bs. The distribution/s, similar to 1y, it has an itenb; with weightw,, an itemb, of weightw, — A and an
additional itembs of weight A.



We samples items from I, by samplings items from/s and considering any sample &f or b3 as a
sample ofb,. Similarly we samples items fromI; by samplings items fromI3; and considering a sample
from by as a sample df; and a sample of eithéy or b3 as a sample df;.

Suppose we sample a sebf s items from/I3; and map them as above to a samfeof s items from
I, and to a samplé; of s items fromI,. We show that for every andt, Prob{W (S, ;) > t} is not
smaller thanProb{W (Ss, I5) > t}.

Fix the number of samples of each item differenbofb,, andbs, fix the number of samples of to
ber, fix the number of samples &f andb, together to ben, fix m/2 < j < m and assume that eith&r
or by getsj our of them samples. Consider only sampléf /5 that satisfy these conditions. We look at
the probability space conditioned on these choices where the only freiddme have left is which df;
andb, getsj samples (the other then gets— j samples). We show that in this subspace, for eweandt,
Prob{Wy(Si1, 1) >t} is not smaller tha®Prob{ W (Ss, I5) > t}.

Over this conditioned probability subspace, 4stbe the event where the number of samples; s j
and the number of samplestfis m — j, and letA,,,_; be the event where the number of samples;a§
m — j and the number of samples &f is j. In A; the maximum among the weights bof andb, in S; is
max{j +r,m—j} = j+r, and the maximum among the weightsgfandb, in Sy ismax{j,m —j +r}
which is smaller thag 4 r. On the other hand, id,,,_; the maximum among the weightsfafandb, in S
ismax{m—j-+r,j}, and the maximum among the weight$ptindb, in Sy ismax{m—j,j+r} = j+r.

Consider the weight of the topset ofS in A,,_;, and the weight of the top-set ofS; in A,,_;. If both
are at leastthen they both are atleasin A;, and bothProb{W(S1, I1) > t} andProb{W (S, Is) > t}
equal 1. However it could be that i, ; the weight of the topk set ofS; is larger thart but the weight
of the top-k set inS; is smaller thart. However if this is indeed the case.h,_;, then inA; the weight of
the top# set ofS; is larger thart but the weight of the top-k set i, is smaller thari.

Leta = wy/(wy +wy — A). Since

Prob{A;} = < ’;L ) a/(1—a)™ I > ( Z” ) (1—a)(a)™ 7 = Prob{A,_;},

it follows that Prob{W(S1, I) > t} is not smaller thaProb{ W (Ss, I5) > t}. O

Lemmal 9 identifies the family of “worst-case” distributions among all distributioas$ fiave topk
weight equal tof. That is, for any thresholtdand for anyk, one of the distributions in this family maximizes
the probability that the sampled weight of the samplediap«ceeds. Therefore, to fintﬂk(f, s,0), itis
enough to consider the more restricted set of most-dominant distributions.

The most-dominant distribution is determined once we fix both the weighthe top#, and the weight
0 < ¢ < f/k of thekth largest item. The top-1 item in this distribution has weight (k — 1)/, the next
k — 1 heaviest items have weightnext there aré(1 — f)/¢] items of weight and then possibly another
item of weightl — f —¢| (1 — f)/¢]|. Example is provided in Figure 3. Fix the weighof the top%. LetG,
be the most dominant distribution with valééor the kth largest item. We can use simulations to determine
the threshold valué so that with probabilitys, the sampled weight of the sampled thjn s samples from
Gy is at leastty. Let f,,, = max,t,. Clearly f,,, decreases witlf. The vaIueLk(f, s,0) is the largestf
such thatf,, < f. This mapping from the observed valfi¢o the lower bound’ can be computed once and
stored in a table, or can be produced on the fly as needed.

Note that for the top-1 problem, there existsiagle “worst-case” most-dominant distributipmnhis
distribution hag 1/ f | items of weightf and possibly an additional item of weight- f[1/f].
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4.2 Bounding the weight of the topk set

We now consider the problem of bounding the (real) weight of the samptekl set. We define &1 — §)-
confidence lower bound/(f,s,§) on the actual weight of tog-set: L/(f, s, ) is the minimum¢ such
that there exists a distributiohwith the following property. When sampling a s€of sizes from I then
PROB{(W(S,I) > f) A (w(Ty(S, 1)) <€)} > 6.

It is easy to see thal, (f,s,0) < Li(f,s,d) since if we restrict the distributions that we consider
when definingZ; (f, s, §) to those with topk weight at most we obtainLy(f, s, ).

Lemma 10. L,(f, s,4) is a(1 — &)-confidence lower bound on the weight of the sampled top-1 item.

Proof. Consider a distributiod with top-1 item of weight greater thef. If PROB{(W1(S,1) > f) A
(w(Ty(S, 1)) <€)} > 6then RoB{(W1(S,I') > f)A(w(Ty(S,I')) < £)} > & wherel is obtained from
I by splitting all items of weight larger thehinto small items. O]

Fork > 1 we conjecture the following:
Conjecture 11. Lk(f, s,0) isa(1 — d)-confidence lower bound on the weight of the sampled:tegt.

To prove the conjecture we need to show tb?.(f, s,0) = Li(f,s,0), thatis, there is distribution that
minimize ¢ that has topk weight that is at most. Our experiments support the conjecture as we always
observed that the actual weight of the tbpveight lies inside the confidence interval.

4.3 Asymptotics of the Naive estimator

For a given distributiod, and a givere andd, consider the smallest number of sampted) such that the
sampled weight of the sampled taptem inm (1) samples is in the intervél + €)W () with confidence
1 — 6. The maximumm(I) over all distributions/ with top-1 item of weightf is the smallest number of
samples that suffices to answer a tioguery for a specified ande, when! has top-1 weight at leagt

The distribution/ with top-1 item of weightf that maximizesn(/) has aboutl/f items of weight
f. To estimatéV (1) to within (1 + ¢€), each of thes% items has to be estimated to withih + ¢) with
confidencel — f§. Using multiplicative Chernoff bounds we obtain that the number of sampledede
is O(f~te2(Ind~t + In f~1)), which issuper linearin f~1. One can contrast this with the number of
samples needed to estimate a proportion of value at fedet a givene, ¢, and f. From Chernoff bounds
we haveO(f~te=2In 1), which islinearin f~1.

The Naive bound is derived under “worst-case” assumptions on thebditon, and therefore the
asymptotic ofO(f~te 2(Ind~! + In f~1)) applies to it. A distribution in which all items other than the
top-1 are tiny behaves like a proportion and for such distributions we obtain @ @stimate of the top-1
weight afterO(f~'e21nd~!) samples. Estimating the topweight in a Zipf-like distributions, that arise
in natural settings, is similar to estimating proportion as the distribution becomesskewved.

This point is demonstrated in Figure 2. The figure shows sampling from &disdn with top-1 item
of weight0.05. It shows the sampled weight of the sampled top-1 item on a uniform distributheane
there are 20 items of weiglit05 each. It also shows the sampled weight of a sampled top-1 item in a
distribution where there is a single item of wei@i5 and all other items have infinitesimally small weight.
The averaging of the expected sampled weight of the sampled top-1 d¥@mrdegs illustrates the bias of
the estimator on the two distributions. Evidently, the bias quickly vanishes orto@d distribution but is
significant for the uniform distribution. The Naive confidence bounzbants for this maximum possible
bias, so even on this simple distribution, aftéx 000 samples we are only able to guarantee a 5% error
bars. The figure shows a similar situation when we measure the sampled wktgbttop-5 items in a
distribution with5 items of weight).05 each and all other items infinitesimally small. The convergence is
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similar to that of estimating a proportion 6f25; When there are 20 items of weight)5, convergence is
much slower and there is a significant bias.

0.1 ‘ . : : 0.1 . — :
top-1 uniform —— top-1 uniform ——
top-1 proportion-like --------- top-1 proportion-like ----------
0.08 top-1 weight = | | top-1 weight -
. 0.06 | -
= 5
0.04 iw 1 0.04 - 1
‘
0.02 1 0.02 |
0 L L L L L L L L L 0 ) ) ) ) ) ) ) ) )
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
number of thousands of samples number of thousands of samples
0.4 ‘ — . 0.4 ‘ — :
top-5 uniform —— top-5 unifrom ——
top-5 proportion-like ---------- top-5 proportion-like -----------
035 tOp-5 Weight D | 035 tOp-S weight D |
0.3
5 5
5 0.25 po < pEEEEEE = = 025
[ ¥ et A e [
2 &r‘w =
0.2 1 0.2
0.15 1 0.15
Ol 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
number of thousands of samples number of thousands of samples
A single set of samples Average of 1000 sets of samples

Figure 2: Convergence of the Naive tégestimator. The top figures are for top-1 item of weiglits. The
bottom figures for the top-5 items of weigh25. The curve “top-1 uniform” shows the sample weight of the
sampled top-1 item in a uniform distribution. The curve “top-1 proportion*lgkews the sample weight of
the sampled top-1 item from a distribution with a single item of weight 0.05 and ategtanfinitesimally
small. The plots for top-5 are annotated similarly.

These arguments indicate that the Naive estimator gives a pessimistic lowetsbiat also exhibit
worse asymptotics than what we can hope to obtain for some natural distnutiée therefore devise and
evaluate procedures to derive tighter lower bounds by exploiting moranaton on the distribution.

5 Using a cumulative upper bound

The derivation of the CUB resembles that of the Naive bound. We useathe sipper bound and the
difference is in the computation of the lower bound. As with the Naive bouerdpek for the distribution
with the smallest tog: weight that is at least likely to produce the sampled tdpweight that we observe.
The difference is that we do not use the sampleditageight only, but extract more information from the
sample to further restrict the set of distributions we have to consider,bshéightening the bound. The
bound is derived in two steps where we split the confideficito &’ < ¢ for the first step, and — ¢’ for
the second step.

12



1. Cumulative upper bound (CUB) derivatiokVe obtain(1 — ¢’)-confidence cumulative upper bound
{K(i)} = K(1),K(2),...such that (i) is an upper bound oW ,(I) for all i > 1 with probability
(1-49).

2. Lower bound derivationiet f = W, (S,1). We derive a1 — (§ — ¢'))-confidence lower bound
L ({K (i)}, f,s,6—46") which is defined as follows. We consider all distributions that are consisten
with the CUB{K (i)}: that is distributions/ such thati?;(J) < K (i) for all (i > 1). Among these
distributions we look for the distributios with smallest topk weight1W,,(.J) that is at leasts — &)
likely to have a sampled top-weight of at Ieas]f. The lower bound is then set W', (.J).

Correctness follows since for any distribution the probability that the curmalapper bound obtained
for it fails (even for one value) is at moét. If the distribution obeys the cumulative upper bound derived
for it in the first stage then the probability that the lower bound derived irséitend step is incorrect is at
most(é — ¢’). Therefore, for any distribution, the probability that it does not lie in itsficemce interval
is at mostd. A formal argument for correctness of the second stage is analogdlis tme of Lemmall,
Lemmad 2, and Lemma 6.

Note also that ifK (i) = 1 for all « > 1 then the CUB bound degenerates to the Naive bound. In
particularL§*({1,1,1,1,1..}, f, 5,8) = Li(f, 5, 9).

We obtain the upper bounds (i) either by Lemma 3 or by lemma 4. We have thfat= Wi(S,1).

Using Lemma B we lef; be the value such tha(1 — R(q,s,6)) = f and letK (i) = G(i) = Wi(5,1)

1_R(q7875)
fori > k. We useG(i) = 1 fori < k. Alternatively, we use Lemma 4, setto be the value such that
q(1 — R™(¢,s,0)) = f and letK (i) = Gt (i) = % for all > 1. Recall that we precompute

R(q,s,d) andR™(q, s, d) for many possible values qf

We compute(1 — §)-confidence lower boundL{“*({K (i)}, f.s,6), by considering most dominant
distribution as follows. We apply Lemma 9 in a way similar to its usage in Section 4thdddaive bound.
We obtain that the most dominant distributions that satisfy{tkié;) } upper bounds is determined once we
fix the top4 weight f and the weight < f/k of thekth heaviest item. Far > k, the weight of theth item
is as large as possible given that it is no larger thar{thel )th item and that the sum of the tagtems is at
mostK (i). If K(1) = K(2) =... = K(k — 1) = 1, then thek-heaviest items are as in the naive bounds:
the top-1 weight isf — (k — 1)¢ and the next — 1 heaviest items have weight Otherwise, left < j < k
be the minimum such tha'(j) + (k — j)¢ > f. The most dominant distribution is such that itérfor
¢ < j has weightK (i) — K (i — 1) with (K(0) = 0); itemsj + 1, ... k£ have weight; and thejth item has
weightf — K(j — 1) — (k — j)L.

Figurel 3 shows most dominant distributions foe= 100 with top-k weight equal td).4 that are con-
structed subject to CUB constrainks(:) for ¢ > 100 and K (1) = ... = K(99) = 1. The dotted lines
show the most dominant distributions without the CUB constraints. The figalps kisualize the benefit of
the CUB. The CUB constraints reduce the size and the number of largeopénitems and by doing so
reduces the bias of the tdpestimator (the sampled weight of the sample k9p-

We use simulations on these most-dominant distributions to determine the probahiiitgetsampled
weight of the sampled top-matches or exceeds the observed one.

Since the CUB has many parametef&(i)} for i > 1), we can not use a precomputed table for the
lower boundLg“b({K(i)},f, s,0) as we can do for the naive bouricic“b(f,s,d). Therefore the CUB
bounds are more computationally intensive than the Naive bound.

The confidence interval that we obtain applies to the welight ) of the top# set. Using an argument
similar to the one we used in Lemmal 10, foe= 1, the confidence interval also applies to the actual weight
of the sampled top-1 set. We conjecture that it also applies to the actual weéititet sampled top- set
whenk > 1 (see Conjecture 11).
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Figure 3: Most dominant distributions fdr = 100 and top4 weight 0.4. These distributions are for
¢ = 0.004 (Uniform), ¢ = 0.002, and/¢ = 0.0001. We also show the distributions subject to CBg)
for ¢ > 100. The distributions with and without the CUB are identical fox 100. With CUB the straight
lines for¢ = 0.004 and/ = 0.002 start bending at some> 100 to obey the CUB. Without the CUB they
continue according to the lightly shaded straight lines. The distribution &vth0.0001 is not affected by
the CUB.
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The CUB method is based on performing simulations based on statistics deorethe sample and in
this sense it is related to statistical bootstrap method [ET93].

6 Cross validation methods

In this chapter we borrow some concepts from machine learning and useethed of cross validation to
obtain confidence bounds. Intuitively, the methods we present in this sertobased on the following
lemma.

Lemma 12. Let.S” and S” be two subsets of the sam@lesuch thatS’ N'S” = (). LetT be the top-k subset
in S. Then the weight df" in S” is unbiased estimate of the real weigh{,7"), of T".

Proof. Infact,w(S",T) is a random variable counting the fraction of successes when we tossaf bias
w(T), |S”| times. O

We start with a simplaplit-sample validatiomethod. This method gives a tépeandidate and a lower
bound on its actual weight. Then we generalize this method and descrifiddltecross validatiormethod
and theleavem,-out cross validatiormethod that partition the sample to more than two parts.

The expectation of all these estimators is equal to the expectation of thewaetght of a sampled tog-
set obtained in a sample of size equal to that of the learning part. Sincettiz &eight of any top: set
is smaller thariV (1) these estimators are biased down and their expectation is smalldith@n. For a
larger learning set, this expectation is higher and clos#r {¢I), and therefore may give tighter bound. On
the other hand, the variance of the estimate depends on the size of the testWg study these tradeoffs.
Since these estimators are biased down we show how to use them to obtaineheralof a confidence
interval. We can obtain the upper end as we did for the Naive and the CUBdseth

We also study a technique to upper bound the difference between thetweéiglr set to that of the
actual topk set. That is, upper bound the potential increase in weight by exchaitging in our candidate
set with items outside it. We combine this technique with the split-sample method.

6.1 Split-sample (hold out) validation

We denote the learning part §fby S,, and the testing part by,, and their sizes by, andm, respectively.
We usedn, = m, = s/2, where|S| = s, but other partitions are possible. The samplediet in the
learning samplel}, , = T3 (S4, ), is our topk candidate, and its sampled weightS, I;, ,,) in the testing
sample is thesplit-sample estimatdor the top4 weight.

By Lemma 12, for every possiblg, ,,, the expectation of the sampled weight/gf, in S, equals to the
actual weight offy, ,,. Sincew (I, ,,) < W (I), the expectation of(Sy, I, is a lower bound oV, (I).

We obtain confidence bounds based on this estimator as follows. For anhgmnd we usé/(d) =
U(Wg(S,I),m,d) as in the previous methods. Since the variance of this estimator is no largethéhan
variance of a proportion withn, flips we useL(d) = L(w(Sy, I;4), me, 6) as our lower bound. For both
upper and lower bounds we ta[@(g), U(%)] as our(1 — ¢) - confidence interval. Note that our estimate is
valid not only for the topk weight but also for the actual weight of the dgt,.

6.2 2-fold cross validation

In 2-fold cross validation we split the sampfeinto two equal partsS,, andS,. Let I, andI;, be the
sampled topk sets inS,, and.Sy, respectively. The 2-fold estimator (& (S, I1.,) + w(Sy, Ix¢))/2. This
estimator is an average of two estimatdfs= w(Sy, I1,,) andY = w(Sy, I ¢). The expectation of each
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of these two estimators equals to the average weight of & &gi-in a sample of size/2. So by linearity
of expectation this is also the expectation of the 2-fold estimator. Clearly by Le&l@rtize expectation of
this estimator is at mos¥/ (I).

We turn this estimator into a confidence interval in a way similar to what we did éosyiit sample
estimator. But for the lower bound we us€) = L((w(Se, Iku) +w(Su, Ikr))/2,s/2,0). To see that this
is a(1 —d)-confidence lower bound let = w(Sy, I}, ,,) andY = w(Sy, I ¢). Note that in general we have

Var (X + Y) _ Var(X)+Var(Y) +2Cou(X,Y) )

2 4 '
whereCouv(X,Y) is the covariance oK andY. Since
2C000(X,Y) =2E(XY) —2E(X)E(Y) < E(X?) + E(Y?) —2E(X)E(Y),

and in our case®(X) = E(Y), we have thaRCov(X,Y) < Var(X) + Var(Y). Furthermore since
Var(X) = Var(Y)we have thaVar (¥4¥) < Var(X). This implies that a lower bound for a proportion
with s/2 flips applies. Although in our cas& andY are not independent we expect them to be weakly
correlated, in which cas€ov(X,Y) is small andV ar (X5Y) is close toVar(X)/2 as if X andY were
independent. Our lower bound is worst-case and does not take thivaiise into account.

Our experiments indicate that the following conjecture analogous to Corgettumay be true.

Conjecture 13. L(¢) is a(1 — 0¢)-confidence lower bound on the weight of the BgtS, 7).

6.3 R-fold cross validation

In general by partitioning the samples inteequal parts we get thefold cross validation estimator. For
each part, we compute the sampled toget in the union of the other— 1 parts (the learning set). Then we
compute the weight of this set in the held-out part (the testing set)XL et < j < r be a random variable

that denotes this weight when tlieh part is held out. The following lemma follows from Lemma 12.

Lemma 14. For anyj, E(X;) < W(I).

Ther-fold estimator |@

6.4 Leave-out cross validation

Leavemy,-out cross validation is a “smoothed” versionofold cross validation. Consider some fixed
k < m, < m — 1. The estimatot/,,, is the average, over all subséis C S of size|S,| = m,, of the
sampled weight iS5, = S\ S, of the sampled top- subset inS,,. When there are multiple items with
kth largest number of samples we average the sampled weightahall possible topk sets inS,. The
following lemma follows from Lemma 12 and the linearity of expectation.

Lemma 15. For all m,,, E(J,,,) < Wi(I).

Letm, = |S,| and assum% is an integer, then we expect this leave out estimdjiprto have smaller

variance than of an r-fold estimator with= % As for r-fold withr = % the expectation of the estimator
Jm,, 1S equal to the expectation of the actual weight of the sampled ®gt-in a sample of sizey,,.
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6.5 Computing leave-out estimators

The leave-out estimator is defined as an average over all possibléssidusits direct computation can be
prohibitive. In this section we develop a method to estimate the leave-out estimator

We definedJ,,, as an average over all subséts C S of size|S,| = m,, of the sampled weight in
Sy =5\ S, of the sampled top-subset inS,,. Alternatively, we can sum for each occurrencef an item
iin S, the number of subsets, of S'\ {z} wherei is in the top% set ofS,,, and then divide this by the total
number of subsets of size,,.

Let Py(i,m,S) be the number of subsef§ of sizem, of a multisetS wherei is in the topk subset
of S’. To carefully account for subsefs in which the topk set is not uniquely defined, a more precise
definition of P (i,m, S) is as follows. We consider every subsgtof sizem of S. Let/ be the number of
occurrences of theth most frequent item i8”. If the frequency of in S is larger thar? thenS’ contributes
1to Py(i,m, S). If the frequency of in S’ is smaller tharf thenS’ contributed) to P (i, m, S). Otherwise,
let b be the total number of items with frequency equaltand letc be the number of such items in the
top-k set of S’. The contribution ofS’ to P.(i,m,S) is ¢/b. The following lemma gives an equivalent
formulation of J,,,, .

Lemma 16. Leti be the theith most frequent item il§ and leta; be the number of occurrencesiah S.
Letx; be one among the; occurrences of in S. Then

_ Zz aiPk(ivmwS\ {xl})
u (o) |

For each item we can estimat ’“(”’(‘j‘s’f)\{“}) by sampling random subsets of sizg, from S\ {z;},

Im

compute the contribution t&% (i, m,,, S \mfa:i}) of each subset, and divide by the number of subsets we
sampled. To make this computation more efficient we sample subsets of gizdl from S. For each such
subsetS’, and for each occurrence, of an item: in S, we useS’ \ {x} as a random sample frod\ {z}

and use it in the estimation “’TTS"S)\{”}).

Leave-1-out. The leave-1-out and thefold estimators (where = |S|) are the same. We can compute this
estimator efficiently from the counts of items in the sample. Consider a s&ffrguid leta; > ao > a3 - --

be the counts of the items i%\. Let¢;,; > 1 be the number of items with frequency equakiq . Letn

(0 <n <try1 — 1) be the number of items with frequeney, ; in the sampled tog-set. The estimate is

1 n+1
Jsfl = (S) Z a; + (W) Z Qg

ila;>ap41+1 tla;=ap41+1

The first terms account for the contribution of items that definitely remain in thdified top4 set
after “loosing” the leave-out sample. This includes all items that their coutitarsample is larger than
ar+1 + 1. The second term accounts for items that are “partially” in thekset after loosing the leave-
out sample. By partially we mean that there are more items with that frequencgpbtnfor them in the
new top# set. The hypothesis testing literature indicates that leave-1-out crosati@ligerforms well but
has the disadvantage of being computationally intensive. In our settingotheutation of the estimator
is immediate from the sampled frequencies. This estimator has a learning setiofahsize,s — 1, and
therefore its expectation is closest to the topreight among all the cross validation estimators.
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6.6 Bounding the variance.

The choice of the particular cross validation estimator, selectifuy the r-fold estimators om,, for the
leave-out estimators reflects the following tradeoffs. The expectatioresétbstimators is the expectation
of the actual weight of the sampled tépset in a sample of the size of the learning set. This expectation is
non-decreasing with the number of samples and gets clo$gy,{d) with more samples in the learning set.
Therefore, it is beneficial to use larger learning sets (smalt largem,,). In the extreme, the leave-1-out
estimator is the one that maximizes the expectation of the estimator. However, simlégst sets and
dependencies between learning sets can increase the variance dirttetogs The effect of that on the
derived lower bound depends on both the actual variance and on Huly tige can bound this variance. In
our evaluation, we consider both the empirical performance of these estmaatbthe rigorous confidence
intervals we can derive for them.

As we did with the 2-fold estimator, we can apply proportion lower boundsyoatine cross validation
estimators to obtain the lower end of a confidence interval as follows. Siecetiance of the estimator
is not larger than the variance of a Binomial random variable with= s — m,, (or s/r) independent

samples we apply the proportion lower bound to it. Fontfield method we havé, ( = X s 5) as our

)
1 — d-confidence lower bound, and for the leawg-out estimator we obtaidy (J,,, , my, ).

This method is pessimistic for two reasons. The first is the application of agi@p bound to a
biased quantity. The second reason is that the calculation assumes a bitistritalition withm, or s/r
independent trials, and therefore does not account for the bemefie @wross validation averaging over
multiple splits into learning and test subsets. This effect becomes worseder lalues of-. (See the
discussion in Sectidn 6.2.)

In the experimental evaluation, we consider both the empirical performdnie estimators (in terms
of expectation and the average squared and absolute error), anadlitg gf the confidence intervals. For
confidence intervals, we use two approaches to derive lower bodidsfirst is the pessimistic rigorous
approach. The second is a heuristic that “treats” the estimate as a binomial wibpendent trials and
applies a proportiof.(Z, s, §) lower bound, where is the value of the estimator. We refer to this heuristic
asr-fold with sand carefully evaluate its empirical correctness.

6.7 Weight difference to the top-k weight

We next consider the goal of obtainingla— ¢)-confidence upper bound on the differentg (1) — w(1j )
between the weight of our output skt, to that of the true tog: set. A more refined question is “by how
much can we possibly increase the weight of our set by exchanging itemd/fr, with items that are in
I\ I;,,?" Itis a different question than bounding the weight of the set. For elegrmpsome cases we can
say that “we are 95% certain that our set is the (exact)tspt’, which is something we can not conclude
from confidence bounds on the weight.

We use the basic split-sample validation approach, where the tamdidate set];, ,, is derived from
the learning sampl§,,. The testing sampl#, is then used to bound the amount by which we can increase
the weight of the sef;, , by exchanging a set of items frofyp , with a set of items of the same cardinality
from I\ Ij, ,,.

LetC; = C(W,(Se, I\ T )y ma, W5 (Se, I ), My, 0). Recall thatC'() was define in Section/ 2. It
is a(1 — d)-confidence upper bound on the difference of two proportions. Taik'; we apply it as if
we observeV ;(Sy, I \ I;.,) positive examples imn, draws of one proportion and’; (S, I ..) positive
examples of the other im, draws.

Lemma 17. max; <<, C; is a(1 — ¢)-confidence upper bound on the amount by which we can increase
the weight of the seff, , by exchanging items. (Hence, it is alsdla— ¢)-confidence upper bound on the
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differenceW (1) — w(ly.,).)
Proof. The maximal amount by which we can increase the weiglf, 9fby exchanging items is equal to

121]&;(]@ Wj (I \ Ik,u) - Ej(Ik,u) .

It follows that if C; is a (1 — d)-confidence upper bound on the differengg (I \ Ix..) — W;(Ix.), then
maxi << C;isa(1—4)-confidence upper bound on the maximum increase (and therefore diffénence
Wi(I) —w(lkw).) o

It remains to show that’; is a(1 — d)-confidence upper bound o ; (1 \ Ix.) — W, (Ix.). We use
the samples, to obtain upper bound on the weight of the tpplements i/ \ I, ,,, and a lower bound on
the weight of the bottom-elements in/;, ,,.

Let J; = T;(I \ I;,) be the real top-setin/ \ I ,. Let H; = B;(l,,) be the real bottor-set in
I - ClearlyW;(I'\ Iy ) — W, (Ixu) = w(J;) — w(H;).

The valuew(Sy, J;) is equivalent to the fraction of positive examplesiipntosses of a proportiom(.J; ).
Similarly, the valuew(Sy, H;) is equivalent to the fraction of positive examplesiip tosses of a proportion

SinceW ;(S¢, I'\ Iru) > w(Se, J;) andW (S, Ir,u) < w(Se, H;) we obtain that

Wi(Se, I\ Inu) — Wi (Se, Inu) > w(Se, Jj) — w(Se, Hy) .

SinceC} is an upper bound (with probability — J) on the difference of the proportions, assuming the
outcomes from drawing the proportions a&; (S, I \ Ix..) and W ;(Se, Ir..), then it is clearly an upper
bound with probabilityl — 6 onw(J;) — w(B;) as required. O

7 Evaluation Results

The algorithms were evaluated on all data sets, for top-100 and top-Toafidence levels = 0.1 and
0 = 0.01. In the evaluation we consider the tightness of the estimates and confidéesals For the
heuristicr-fold with s lower bounds we also consider correctness.

7.1 Quality of different estimators

We empirically evaluated the expectation, average square error, argj@absolute error of the (positively
biased) sampled weight of the sampled fojpems, and the negatively-biased split-sample, 2-fold, 10-fold,
and s-fold estimators. We also consider two combined estimators: the average sdrtied weight of
the sampled top items and thes-fold estimator §-fold+upper) and the average of the sampled weight
of the sampled top- items and the-fold estimator 2-fold+upper). The expectation of these estimators
shows their bias, the square and absolute error reflect both the bittsearatiance of these estimators. The
results for three datasets are shown in Figures 4 and 5. We only shovetlagia absolute error, the average
square error behaves similarly. The figures show that the bias desredth - for the r-fold estimators.
The absolute error and variance measures varfold is always at least as good as split-sample and on
some datasets it has considerably smaller variance. In most casedpteand 10-fold estimators have
smaller variance than thiefold estimator. The sampled weight of the sampledtdfems is often worse or
comparable to the-fold estimator. The combined estimators perform very well and in most tasesad
the smallest error and bias.
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7.2 Confidence intervals

We compared the Naive bound, the CUB bound, the split-sample and 2dalttlb (withs/2 proportion
correction), and the 10-fold bound (witf10 proportion correction). The split-sample bound is similar to
the 2-fold bound, and therefore not shown in the plots. Figure 6 sheeraged1 — §)-confidence upper
and lower bounds for these methods. The upper bound is the same fortlddadut the lower bound
varies.

We precomputed, using multiple simulation runs, tables for(the ¢)-confidence bound&(p, s, ),
L(p, s,d) (for proportions, see Section 2.2), aﬁq;](f‘, s,d) (for the Naive lower bound, see Section 4.1).
The tables oka(f, s,0) were generated using a simulations with the families of most dominant distribu-
tions. We used the table &f(p, s,d) to derive the upper bound, and the tableldp, s, §) to derive the
lower bounds for the cross validation methods. We used the tallg (qf s, §) to derive the Naive lower
bound. The precomputation of this table made the implementation of the Naive mvettyoelficient. The
implementation of the CUB method involved constructing and running simulationanitids of most-
dominant distributions in each run of the algorithms. For the CUB method, thesées depend on the
cumulative upper bounds obtained, so we could not use precomputesl tAsla result, the CUB method
is considerably more computation intensive.

We evaluated two variants of the CUB. The first one (denoted CUB in FiguderivesK (i) only for
i > k(K1) =...=K(k—1) = 1), using the method in Lemma 3. The second one (denoted-€UB
in Figurel 6) uses a cumulativebound of Lemma 4 and thereby deriv&g:) for all : > 1. For a given
confidence level, the bounds() obtained by CUB- are tighter for { < k) but weaker fori > k than the
bounds obtained by CUB. There is a difference between CUB andiCaty for k > 1.

The results for selected datasets and parameteasdd) are provided in Figure 6. The figures also
show the topk weight W, (I), the sampled weight of the sampled tbset (that has expectation at least
W (I) and gets closer 0/, () as the number of samples grows) the actual weight of the sampléd top-
set (that has expectation at m&Et, (1) and also gets closer 17, (1) as the number of samples grows).

The Naive lower bound is almost always the lowest (least tight) boundsandtperformed by the
CUB and 2-fold bounds. The 10-fold bound is sometimes below Naivegusecof the pessimisti¢/10
proportion adjustment. In some cases, the Naive bound was tighter thatidlietidund. This can happen
on distributions that are closer to the “most dominant distributions” on whiciN#iee bound is tight and
the 2-fold method, that utilizes half the samples, is not. On our datasets, emetishat Naive is tighter on
distributions where the top-k weight is most of the total weight. The CUB beasgitighter than the 2-fold
bound on more distributions, but there were also many distributions whe2efthi@ bound was tighter. The
CUB+ bounds were slightly tighter than the CUB bounds.

Observed error-rates for top-k weight. We considered the observed error rates of(the ¢)-confidence
upper bounds and thé — ¢)-confidence lower bounds obtained via rigorous methods (Naive, Quad

with s/2 correction and 10-fold witty/10 correction). The observed error rate is the fraction of runs in
which the lower bound was higher (or the upper bound was lower) thatofhke weight. Tables 1, 2,
and 3 show the error rates for the upper bound and for the Naive didl@ver bounds. The results are
aggregated across different numbers of samples, for each datdset When the number of experiments
grows to infinity the error rate should be smaller thiark-or most instances (an instance is specified by the
datasetk, §, method, and number of samples), the error rate was well b&ldwis was the case since our
worst case bounds are pessimistic.

Observed error-rates for top-k set. We also considered the error rates of flhe- ¢)-confidence lower
bounds with respect to the “tapset” metric, that is the fraction of runs in which the actual weight of the
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dataset; 0=0.11]06=0.01
dec64 1 0.101 | 0.005
dec64 100 0.005 |0
destport 1 0.084 | 0.002

destport 100 | O 0
destIP 1 0 0
destIP 100 0 0
Ibl100 1 0.11 0.012
Ibl100 100 0.008 |0
srcport 1 0.101 | 0.006
srcport 100 | 0.016 | O
srclP 1 0.077 | 0.002
srclP 100 0 0

worldcup 1 0.05 0.001
worldcup 100 0.008 | O

Table 1: Observed error rate of the— ¢)-confidence upper bound.

dataset; 0=0.1 0 =0.01
weight | set weight | set
dec64 1 0.003 | 0.003| 0 0
dec64 100 0 0 0 0
destport 1 0.001 | 0.002| 0O 0
destport 100 | O 0 0 0
destlP 1 0 0 0 0
destIP 100 0 0.001| 0 0
[bl100 1 0.003 | 0.003| 0 0
Ibl100 100 0 0 0 0
srcport 1 0.024 | 0.024| 0 0
srcport 100 | O 0 0 0
srclP 1 0.001 | 0.001| 0 0
srclP 100 0 0 0 0
worldcup 1 0 0.004| 0 0
worldcup 100| 0 0 0 0

Table 2: Observed error rate of the— §)-confidence Naive lower bound on tépaeight and topk set.
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dataset; 60=0.1 6 =0.01
weight | set weight | set
dec64 1 0.018 | 0.018| 0 0
dec64 100 0 0 0 0
destport 1 0.022 | 0.022] 0.001 | 0.002
destport 100 | O 0 0 0
destlP 1 0.005 | 0.089| 0 0.033
destiP100 | O 0 0 0
Ibl100 1 0.025 | 0.025| 0.002 | 0.002
Ibl200 100 0 0 0 0
srcport 1 0.041 | 0.041| 0.005 | 0.005
srcport 100 | 0.001 | 0.017| 0O 0.001
srclP 1 0.036 | 0.038| 0.002 | 0.002
srclP 100 0 0 0 0
worldcup 1 | 0.007 | 0.011| 0.002 | 0.004
worldcup 100| O 0 0 0

Table 3: Observed error rate of the— §)-confidence CUB lower bound on tdpweight and topk set.

top-k set in the sample is below the respective lower bound. The real weighe edpk: set in the sample

is always smaller than the weight of the real toget. Therefore, the observed error rate should be higher
than for the “topk weight” metric. Tables 2 and 3 list the observed error rates for the Nant«€aB lower
bounds. The results are aggregated across different numbenmnpliesa for each dataset akd= 1, 100.

We observed that across all instances, the error rates were congigketie respective lower bounds, that
is, the error rate was belotwor otherwise close té within the applicable standard error. These observations
support that a variant of Conjecturel 11 holds for CUB.

Observed error-rates for split-sample and 2-fold. We compared the observed error rates for thektop-
weight of the(1 — §)-confidence lower bounds obtained via the split-sample and the 2-fold nsetRedall
that both estimators have the same expectation (and therefore the samé/biaspected the 2-fold method
to have lower variance and the observed error rates support thistatipe. For§ = 0.1, the average error
rate over split-sample instances w844 and was only0.015 over 2-fold instances. Fos = 0.01, the
respective error rates weted016 and2.3e — 05. A more detailed summary is provided in Table 4 (error
rates are aggregated across different numbers of samples foratasktdand).

Heuristic cross validation bounds. We evaluated the observed error rates of the heuristic cross validation
lower bounds--fold with s. The observed error rates feifold with s are listed in Table 5. On the majority

of instances, the error rate did not exceed the correspordiuadue. For the weight of the top-set, the
bounds were often too loose. Since the heuristic lower bounds are tigatewith the rigorous methods,
the results suggest that this might be a reasonable heuristic fdr vegight, but not for topk set. The
empirically good performance of thié-fold and s-fold estimators suggests that there might be a way to
derive tighter rigorous bounds on their variance.

7.3 Bounding the difference to the topk weight

We evaluated the method (Section|6.7) that directly bounds the differetveedrethe weight of the observed
top-k set to the weight of the best alternative set of ¢iz&Ve used the Normal approximation to bound the
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datasefk; split-sample 2-fold
0=01]6=001]6=0.1]5=0.01
dec64 1 0.108 | 0.004 0.034 |0
dec64 100 0 0 0.002 |0
destport 1 0.079 | 0.003 0.029 |0
destport 100 | O 0 0.004 |0
destlP 1 0.017 | 0.001 0.031 |0
destIP 100 0 0 0.006 | O
[bl100 1 0.107 | 0.003 0.034 |0
Ibl200 100 0.006 | O 0.003 |0
srcport 1 0.121 | 0.008 0.035 |0
srcport 100 | 0.004 | O 0.002 |0
srclP 1 0.091 |0 0.037 |0
srclP 100 0 0 0.001 | O
worldcup1 | 0.064 | 0.001 0.041 |0
worldcup 100 0.007 | O 0.006 |0

Table 4: Observed error rates of the — ¢§)-confidence split-sample and 2-fold lower bounds on kop-
weight.

datasefk 0=0.1 60 =0.01
weight | set weight | set
dec64 1 0.097 | 0.097| 0.002 | 0.002
dec64 100 0.006 | 0.139| 0 0.012
destport 1 0.082 | 0.087| 0.002 | 0.003
destport 100 | 0.001 | 0.115| 0 0.009
destlP 1 0.069 | 0.147| 0.004 | 0.037
destiP100 | O 0.156| 0 0.028
[bl100 1 0.102 | 0.102| 0.001 | 0.001
Ibl200 100 0.02 0.135| 0 0.006
src4600 1 0.117 | 0.117| 0.008 | 0.008
src4600 100 | 0.009 | 0.099| 0 0.002
srclP 1 0.102 | 0.104| 0.003 | 0.003
srclP 100 0.004 | 0.149| 0 0.009
worldcup1 | 0.089 | 0.146| 0.004 | 0.014
worldcup 100| 0.028 | 0.157| O 0.013

Table 5: Observed error rates of thie— ¢)-confidences-fold with s heuristic lower bound on top-weight
and topk set.
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differences of proportions (see Section 2.2).

Assume that Conjecture 11 and its extension to the CUB and the 2-fold (Qangjeé8) are true. That
is our confidence interval bounds not only the fopreight but also the weight of the tapset that we find.
Then itis easy to see that the width of the -confidence interval is &— §-confidence bound on the weight
difference between the weight of our candidate set and the weight ofd@héop# set. Figuré 7 shows the
average width of this interval for the Naive bound, the CUB bound, aed?tfold bound withd = 0.2
andd = 0.02. It also shows the bound that is derived using the direct method dewgkingection 6.7
for confidence levels = 0.2 andé = 0.02. (We used = 0.1 andé = 0.01-confidence upper and lower
bounds respectively.)

The direct bounds are not always tighter than the 2-fold, CUB, and=Nmiunds, but on many instances
they are significantly tighter. The bounds obtained as the width of the caoBidatervals are always posi-
tive whereas the direct method can sometimes provide a negative boureldifiglence. The interpretation
of a negative bound is that we are— ¢)-confident that replacing items from our set with the heaviest items
that are not in our set will decrease the weight of the set by at leastatbe of the negative bound. In
particular, the direct method enables us in some cases to derive coegfitewal for our set being the
unique topk set.

8 Conclusion and future directions

We developed several rigorous methods to derive confidence intamvalsstimators for approximate top-
k weight and topk set queries over a sample of the dataset. Our work provides basic sthtatisafor
applications that provide only sampled data. The methods we developethvhlg amount of computa-
tion required and in the tightness of the bounds. Generally, methods thablaréo uncover and exploit
more of the structure of the distribution which we sample provide tighter boundscan also be more
computationally intensive.

We plan to extend our methodology to applications where the available stonagiesigfficient to store
the entire sample. In such applications the sampled records are distributedyidaoations or arrive as a
data stream. For these applications, we need to decide which information toimamthe sample, and to
derive estimators and confidence intervals that are based on this pddiai@tion. In addition, we would
like to consider a sequential settings where the algorithm can adaptivebasethe number of samples
until it can answer a query with specified precision and confidencedsoun
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