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Abstract

Top-k queries are desired aggregation operations on data sets. Examples of queries on network data
include finding the top 100 source Autonomous Systems (AS), top 100 ports, or top domain names over
IP packets or over IP flow records. Since the complete datasetis often not available or not feasible to
examine, we are interested in processing top-k queries from samples.

If all records can be processed, the top-k items can be obtained by counting the frequency of each
item. Even when the full dataset is observed, however, resources are often insufficient for such counting
so techniques were developed to overcome this issue. When we can observe only a random sample of
the records, an orthogonal complication arises: The top frequencies in the sample are biased estimates
of the actual top-k frequencies. This bias depends on the distribution and mustbe accounted for when
seeking the actual value.

We address this by designing and evaluating several schemesthat derive rigorous confidence bounds
for top-k estimates. Simulations on various data sets that include IPflows data, show that schemes
exploiting more of the structure of the sample distributionproduce much tighter confidence intervals
with an order of magnitude fewer samples than simpler schemes that utilize only the sampled top-k
frequencies. The simpler schemes, however, are more efficient in terms of computation.
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1 Introduction

Top-k computation is an important data processing tool and constitute a basic aggregation query. In many
applications, it is not feasible to examine the whole dataset and therefore approximate query processing is
performed using a random sample of the records [CCMN00, DLT03, HV03, MUK+04, JMR05, BID05].
These applications arise when the dataset is massive or highly distributed [GT01] such as the case with
IP packet traffic that is both distributed and sampled, and with Netflow records that are aggregated over
sampled packet traces and collected distributively. Other applications arisewhen the value of the attribute we
aggregate over is not readily available and determining it for a given record has associated (computational
or other) cost. For example, when we aggregate over the domain name that corresponds to a source or
destination IP address, the domain name is obtained via a reverse DNS lookups which we may want to
perform only on a sample of the records.

A top-k query over some attribute is to determine thek most common values for this attribute and
their frequencies (number of occurrences) over a set of records.Examples of such queries are to determine
the top-100 Autonomous Systems (AS) destinations, the top-100 applications (web, p2p, other protocols),
10 most popular Web sites, or 20 most common domain names. These queries can be posed in terms of
number of IP packets (each packet is considered a record), number of distinct IP flows (each distinct flow is
considered a record), or other unit of interest. We are interested in processing top-k queries from a sample
of the records. For example, from a sampled packet streams or from a sample of the set of distinct flows.
We seek probabilistic or approximate answers that are provided with confidence intervals.

It is interesting to contrast Top-k queries withproportionqueries. A proportion query is to determine
the frequency of aspecifiedattribute value in a dataset. Examples of proportion queries are to estimate the
fraction of IP packets or IP flows that belong to p2p applications, originatefrom a specific AS, or from a
specific Web site.

Processing an approximate proportion query from a random sample is a basic and well understood
statistical problem. The fraction of sampled records with the given attribute value is an unbiased estimator,
and confidence intervals are obtained using standard methods.

Processing top-k queries from samples is more challenging. When the complete data set is observed, we
can compute the frequency of each value and take the top-k most frequent values. When we have a random
sample of the records, the natural estimator is the result of performing the same action on the sample.
That is, obtaining thek most frequent values in thesampleand proportionally scaling them to estimate
the frequencies of the top-k values in the real data set. This estimator, however, is biased upwards: The
expectation of the combined frequency of the top-k items in the sample is generally larger than the value
of this frequency over the unsampled records. This is a consequence of the basic statistical property that
the expectation of the maximum of a set of random variables is generally larger than the maximum of their
expectations. While this bias must be accounted for when deriving confidence intervals and when evaluating
the relation between the sampled and the actual top-k sets, it is not easy to capture as it depends on the fine
structure of the full distribution of frequencies in the unsampled dataset, which is not available to us.

Overview of our contributions. In Sections 3 - 7 we devise and evaluate three basic methods to derive
confidence intervals for top-k estimates. The main problem which we consider is to estimate the sum of the
frequencies of the top-k values.

• “Naive” bound: Let f̂ be the sum of the frequencies of the top-k elements in the sample. We
consider distributions (datasets) for which the probability that in a sample the sum of the frequencies
of the top-k elements is at least̂f is at leastδ. Among these distributions we look for those of
smallest sum of top-k frequencies, say this sum isx. We usex as the lower end of our confidence
interval. By constructing the confidence interval this way we capture both the bias of the sampled
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top-k frequency and standard proportion error bounds. The definition of the Naive bound requires
to consider all distributions, which is not computationally feasible. To compute this interval, we
identify a restricted set of distributions such that it is sufficient to considerthese distributions. We
then construct a precomputed table providing the bound for the desired confidence level and sampled
top-k frequencyf̂ .

• CUB bounds: We use the sample distribution to construct a cumulative upper bound (CUB) for the
top-i weight for alli ≥ 1. We then use the CUB to restrict the set of distributions that must be taken
into account in the lower bound construction. Therefore, we can potentially obtain tighter bounds
than by the Naive approach. The CUB method, however, is computationally intensive, since we can
not use precomputed values.

• Cross-validation bounds:We borrow terminology from hypothesis testing. The sample is split into
two parts, one is the “learning” part and the other is a “testing” part. letS be the sampled top-k set of
the learning part. We use the sampled weight ofS in the testing part to obtain the “lower end” for our
confidence interval. We also consider variations of this method in which the sample is split into more
parts.

We evaluate these methods on a collection of datasets that include IP traffic flow records collected from a
large ISP and Web request data. We show (precise characterization is provided in the sequel) that in a sense,
the hardest distributions, those with the worst confidence bounds for a given sampled top-k weight, are those
where there are many large items that are close in size. Real-life distributions,however, are more Zipf-like
and therefore the cross-validation and CUB approaches can significantly outperform the naive bounds. The
naive bounds, however, require the least amount of computation.

Relation to previous work. Most previous work addressed applications where the complete dataset can be
observed [MM02, CM03, CCFC04, KSXZ05, KME05] but resourcesare not sufficient to compute the exact
frequency of each item. The challenge in this case is to find approximate most frequent items using limited
storage or limited communication. Examples of such settings are a data stream, datathat is distributed
on multiple servers, distributed data streams [BO03], or data that resides onexternal memory. We address
applications where we observe random samples rather than the complete dataset. The challenge is to estimate
actual top frequencies from the available sample frequencies. These twosettings are orthogonal. Our
techniques and insights can be extended to a combined setting where the application observes a sample
of the actual data and the available storage and communication do not allow us toobtain exact sample
frequencies. We therefore need to first estimate sample frequencies from the observed sample, and then use
these estimates to obtain estimates of the actual frequencies in the original dataset.

A problem related to the computation of top-k and heavy hitters is estimating the entiresize distri-
bution [KSXW04, KSXZ05] (estimate the number of items of a certain size, for all sizes). This is a more
general problem than top-k and heavy hitters queries and sampling can be quite inaccurate for estimating the
complete size distribution [DLT03] or even just the number of distinct items [CCMN00]. Clearly, sampling
is too lossy for estimating the number of items with frequencies that are well under the sampling rate. The
problem of finding top flows from sampled packet traffic was consideredin [BID05], where empirical data
was used to evaluate the number of samples required until the top-k set in the sample closely matches the
top-k set in the actual distribution. Their work did not include methods to obtain confidence intervals. The
performance metrics used in [BID05] are rank-based rather than weight based. That is, the approximation
quality is measured by the difference between the actual rank of a flow (i.e.,3rd largest in size) to its rank in
the sampled trace (i.e., 10th largest in side), whereas our metrics are basedon the weight (size of each flow).
That is, if two flows are of very similar size our metric does not penalize for not ranking them properly with
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respect to each other as two flows that have different weights. As a result, the conclusion in [CCFC04], that
a fairly high sampling rate is required may not be applicable under weight-based metrics.

We are not aware of other work that focused on deriving confidenceintervals for estimating the top-k
frequencies and the heavy hitters from samples. Related work applied maximum likelihood (through the Ex-
pectation Maximization (EM) algorithm) to estimate the size distribution from samples [DLT03, KSXZ05].
Unlike our schemes, these approaches do not provide rigorous confidence intervals.

Some work on distributed top-k was motivated by information retrieval applications and assumed sorted
accesses to distributed index list: Each remote server maintains its own top-k list and these lists can only be
accessed in this order. Algorithms developed in this model included the well known Threshold Algorithm
(TA) [Fag99, FLN01], TPUT [CW04], and algorithms with probabilistic guarantees [TWS04]. In this model,
the cost is measured by the number of sorted accesses. These algorithms are suited for applications where
sorted accesses rather then random samples are readily available as may be the case when the data is a list
of results from a search engine.

An extended abstract of this paper has appeared in [CGK06].

2 Preliminaries

Let I be a set of items with weightsw(i) ≥ 0 for i ∈ I. For J ⊂ I, denotew(J) =
∑

i∈J w(i). We
denote byTi(J) (top-i set) a set of thei heaviest items inJ , and byBi(J) (bottom-i set) a set of thei
lightest items inJ . We also denote byW i(J) = w(Ti(J)) the weight of the top-i elements inJ and by
W i(J) = w(Bi(J)) the weight of the bottom-i elements inJ .

We have access to weighted samples, where in each sample, the probability that an item is drawn is
proportional to its weight. In the analysis and evaluation, we normalize the totalweight of all items to1,
and use normalized weights for all items. This is done for the convenience ofpresentation and without loss
of generality.

Thesample weightof an itemj using a set of samplesS is the fraction of times it is sampled inS. We
denote the sample weight of itemj by w(S, j). We define the sample weight of a subsetJ of items as the
sum of the sample weights of the items inJ , and denote it byw(S, J). The sampled top-i and bottom-i sets
(the i items with most/fewest samples inS) and their sampled weights are denoted byTi(S, J), Bi(S, J),
W i(S, J) = w(S, Ti(S, J)), andW i(S, J) = w(S, Bi(S, J)), respectively.

2.1 Top-k problem definition

There are several variations of the approximate top-k problem. The most basic one is to estimateW k(I).
In this problem we are given a setS of weighted samples with replacements fromI and a confidence
parameterδ. We are interested in an algorithm that computes an interval[ℓ, u] such thatℓ ≤ W k(I) ≤ u
with probability1 − δ. That is if we run the algorithm many times it would be “correct” in at least1 − δ
fractions of its runs. We call this problemthe approximate top-k weight problem.

A possible variation is to compute a setT of k items, and a fractionǫ, as small as possible, such that
w(T ) ≥ (1− ǫ)W k(I) with probability1− δ. If we are interested in absolute error rather than relative error
then we require thatw(T ) ≥ W k(I)− ǫ with probability1− δ. We call this problemthe approximate top-k
set problem.

Note that in theapproximate top-k setproblem we do not explicitly require to obtain an estimate of
w(T ). In case we can obtain such an estimate then we also obtain good bounds onW k(I).

The relation between these two variants is interesting. It seems that approximating the top-k weight
rather than finding an actual approximate subset is an easier problem (requires fewer samples). As we shall
see, however, there are families of distributions for which it is easier to obtain an approximate top-k set.
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There are stronger versions of the approximate top-k weight problem and the approximate top-k set
problem. Two natural ones are the following. We define here the “set” versions of these problems. The
definition of the “weight” version is analogous.

• All-prefix approximate top-k set: Compute an ordered set ofk items such that with probability1 − δ
for anyi = 1, . . . , k, the firsti items have weight that is approximatelyW i(I). We can require either
a small relative error or a small absolute error.

• Per-item approximate top-k set: Compute an ordered set ofk items such that with probability1 − δ
for anyi = 1, . . . , k, theith item in the set has weight that approximately equals(W i(I)−W i−1(I))
(the weight of theith heaviest item inI). Here too we can require either a small relative error or a
small absolute error.

Satisfying the stronger definitions can require substantially more samples whilethe weaker definitions
suffice for many applications. It is therefore important to distinguish the different versions of the problem.
We provide algorithms and results for obtaining an approximate top-k weight, some of our techniques also
extend to other variants.

2.2 Confidence bounds

We say that a random variableU is a(1 − δ)-confidence upper boundfor a parameterξ of a distributionI,
if ξ is not larger thanU with probability(1 − δ):

PROB{ξ ≤ U} ≥ 1 − δ .

(The r.v.U is a function of the random samples, so this probability is over the draw of the random samples.)
We define(1 − δ)-confidence lower boundL for ξ analogously. We say that[L, U ] is a(1 − δ)-confidence
interval for ξ, if the value ofξ is not larger thanU and not smaller thanL with probability(1 − δ):

PROB{L ≤ ξ ≤ U} ≥ 1 − δ .

If U(δ1) is a(1− δ1)-confidence upper bound for a parameter, andL(δ2) is a(1− δ2)-confidence lower
bound for the same parameter, then[L(δ2), U(δ1)] is a(1 − δ1 − δ2)-confidence interval for the parameter.
Once we have a confidence interval we can think of the middle of the interval,(U(δ1) + L(δ2))/2, as the
estimate, and of the differences between the endpoints and the estimate,±(U(δ1) − L(δ2))/2, as theerror
bars.

Bounds for proportions. Consider a coin with biasq and a sampleS of s coin flips. LetSuc(s, q) be the
number of positive flips inS. Then the distribution ofSuc(s, q) is binomial with parameterss andq. Define
Suc≤(q, s, h) = PROB{Suc(s, q) ≤ h}, andSuc≥(q, s, h) = PROB{Suc(s, q) ≥ h}. It is easy to see that
Suc≤(q, s, h) is a decreasing function ofq. Whenq = 0 we have thatSuc≤(q, s, h) = 1 and whenq = 1
we haveSuc≤(q, s, h) = 0 for anyh < s. Similarly, Suc≥(q, s, h) is an increasing function ofq. When
q = 0 we have thatSuc≥(q, s, h) = 0 for anyh > 0, and whenq = 1 we haveSuc≤(q, s, h) = 1.

A proportion query is the task of estimating the biasp of a coin from a set of coin flips. So consider now
a sampleS of s coin flips obtained for a proportion query (from a coin whose bias we want to estimate).
Let h be the number of positive samples inS, and letp̂ = h/s be the fraction of positive samples. Let
U(p̂, s, δ) be the largest valueq such thatSuc≤(q, s, h) ≥ δ. The following lemma shows thatU(p̂, s, δ) is
a (1 − δ)-confidence upper bound on the proportionp.

Lemma 1. U(p̂, s, δ) is a (1 − δ)-confidence upper bound on the proportionp.
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Proof. We have to show that

s
∑

h=0

PROB{p ≤ U

(

h

s
, s, δ

)

| (Suc(s, p) = h)}PROB{Suc(s, p) = h} ≥ 1 − δ .

By Bayes rule we have that the left hand side equals

s
∑

h=0

PROB{(p ≤ U

(

h

s
, s, δ

)

) ∧ (Suc(s, p) = h)}.

Clearly PROB{(p ≤ U
(

h
s
, s, δ

)

) ∧ (Suc(s, p) = h)} = 0 for h such thatp > U
(

h
s
, s, δ

)

and PROB{(p ≤

U
(

h
s
, s, δ

)

) ∧ (Suc(s, p) = h)} = PROB{Suc(s, p) = h} for h such thatp ≤ U
(

h
s
, s, δ

)

.
Now leth′ be the largest such that

s
∑

h=h′

PROB{Suc(s, p) = h} ≤ 1 − δ .

ThenSuc≤(p, s, h − 1) ≥ δ and thereforep ≤ U(h−1
s

, s, δ). So we obtain that

s
∑

h=0

PROB{(p ≤ U

(

h

s
, s, δ

)

) ∧ (Suc(s, p) = h)} ≥
s

∑

h=h′−1

PROB{Suc(s, p) = h} ≥ 1 − δ ,

as required.

Similarly, letL(p̂, s, δ) be the smallest valueq such that a proportionq is at leastδ likely to have at least
h positive samples in a sample of sizes.1 That isq is the smallest value such thatSuc≥(q, s, h) ≥ δ. The
following lemma is analogous to lemma 1. Its proof is similar and hence omitted.

Lemma 2. L(p̂, s, δ) is a (1 − δ)-confidence lower bound on the proportionp.

Exact values of these bounds are defined by the Binomial distribution. Approximations can be obtained
using Chernoff bounds, tables produced by simulations, or via the Poisson or Normal approximation. The
Normal approximation applies whenps ≥ 5 ands(1 − p) ≥ 5. The standard error is approximated by
√

p̂(1 − p̂)/s.

Difference of two proportions. We use(1 − δ)-confidence upper bounds for thedifference of two pro-
portions. Suppose we haven1 samples from a coin with biasp1 andn2 samples from a coin with biasp2.
Denote the respective sample means byp̂1 andp̂2. Observe that the expectation ofp̂1 − p̂2 is p1 − p2.

We use the notationC(p̂1, n1, p̂2, n2, δ) for the(1 − δ)-confidence upper bound onp1 − p2.
We can apply bounds for proportions to bound the difference: It is easy to see thatU(p̂1, n1, δ/2) −

L(p̂2, n2, δ/2) is a(1 − δ)-confidence upper bound on the differencep1 − p2. This bound, however, is not
tight. The prevailing statistical method is to use the Normal Approximation (that is based on the fact that if
the two random variables are approximate Gaussians, so is their difference). The Normal approximation is
applicable ifp1n1, (1− p1)n1, p2n2 and(1− p2)n2 > 5. The approximate standard error on the difference
estimatep̂1 − p̂2 is

√

p̂1(1 − p̂1)/n1 + p̂2(1 − p̂2)/n2.

1 Whenever we use the notationL(p̂, s, δ) or U(p̂, s, δ) we assume that̂ps is an integer.
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2.3 Cumulative confidence bounds

Consider a distributionI, and letF (i) = W i(I).2 Let S be a set of points sampled fromI. We would like
to obtain a (simultaneous)(1− δ)-confidence upper bounds forF (b) for all b ≥ a, for somea ≥ 1 based on
S which we observe. Observe that this is a generalization of proportion estimation: Proportion estimation
is equivalent to estimating a single pointp = F (a) rather thanF (b) for all b > a.

Let F̂ (i) = w(S, Ti(I)) be the weight of the top-i set in the sample. Clearly the observedW i(S, I) is
an upper bound onw(S, Ti(I)) for everyi.

We define the random variableǫ(a, S) to bemaxx≥a
F (x)−F̂ (x)

F (x) . So (1 − ǫ(a, S))F (x) ≤ F̂ (x) for
x ≥ a. Let R(p, s, δ) be the smallest fraction such that, for every distributionF with F (a) = p, when
samplingS of sizes from F , then PROB{ǫ(a, S) ≤ R(p, s, δ)} ≥ 1 − δ. Intuitively, R(p, s, δ) is an upper

bound with confidence1 − δ on the relative errorF (x)−F̂ (x)
F (x) for everyF and sample of sizes, if F (x) ≥ p.

Let p̂ = W a(S, I) ≥ F̂ (a). It is easy to see that the functionf(p) = p(1−R(p, s, δ)) is monotonically

increasing. So letq be the value such thatq(1 − R(q, s, δ)) = p̂. Let G(x) = W x(S,I)
1−R(q,s,δ) (Note that

G(a) = q). We prove the following lemma.

Lemma 3. F (x) ≤ G(x) for everyx ≥ a with probability≥ 1 − δ.

Proof. Assume that for somex ≥ a, F (x) > G(x). Then by the definition ofG(x) we have that

F̂ (x) ≤ W x(S, I) < (1 − R(q, s, δ))F (x) . (1)

SinceW x(S, I) ≥ W a(S, I) = p̂ we obtain from Equation (1) that̂p < (1 − R(q, s, δ))F (x). By the
definition ofq this implies thatF (x) ≥ q. Now from the definition ofR(q, s, δ) the probability that Equation
(1) holds ifF (x) ≥ q is < δ.

We say thatG(x) is thecumulative(1 − δ)-confidence upper boundof F (x) for x ≥ a.
We also consider cumulative bounds that are multiplicative forx ≥ a and additive forx < a. We refer

to these bounds ascumulative+ bounds.Define

ǫ+(a, S) = max

{

ǫ(a, S), max
x<a

F (x) − F̂ (x)

F (a)

}

.

Let R+(p, s, δ) be the smallest fraction such that for every distributionF with F (a) = p, when samplingS
of sizes from F then PROB{ǫ+(a, S) ≤ R+(p, s, δ)} ≥ 1 − δ.

Let p̂ = W a(S, I) ≤ F̂ (a). It is easy to see that the functionf(p) = p(1−R+(p, s, δ)) is monotonically

increasing. So letq be the value such thatq(1−R+(q, s, δ)) = p̂. Let G+(x) = W x(S,I)
1−R+(q,s,δ)

for x ≥ a, and

G+(x) = W x(S, I) + qR+(q, s, δ) for x < a. The following lemma is analogous to Lemma 3.

Lemma 4. F (x) ≤ G+(x) for all x ≥ 0 with probability≥ 1 − δ.

Proof. Lety be the point such thatF (y) = q. LetA be the event where for somex ≥ y, (1−R+(q, s, δ))F (x) >
F̂ (x). Let B be the event that for somex < y, F (x) − R+(q, s, δ)F (y) > F̂ (x). By the definition of
R+(q, s, δ) the eventA ∪ B happens with probability< δ.

We show that ifF (x) > G+(x) for somex then eitherA or B happens. First ifF (x) > G+(x) for
x ≥ a then(1 − R+(q, s, δ))F (x) > W x(S, I) ≥ W a(S, I) = p̂. This implies, by the definition ofq that
F (x) > q. Sox > y and(1 − R+(q, s, δ))F (x) > W x(S, I) ≥ F̂ (x), therebyA occurs.

2One can think ofF as a cumulative distribution function: Indeed if the name of theith largest item isi. ThenF (i) =
P

x≤i
w(x).
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If F (x) ≤ G+(x) for all x ≥ a then in particularF (a) ≤ G+(a) or (1 − R+(q, s, δ))F (a) ≤
W a(S, I) = p̂. So from the definition of q follows thatF (a) ≤ q = F (y) and thereforea ≤ y. Now assume
thatF (x) > G+(x) for somex < a. ThenF (x) > W x(S, I)+ qR+(q, s, δ) or F (x)−F (y)R+(q, s, δ) >
W x(S, I) ≥ F̂ (x). Sincex < y this implies thatB occurs.

We say thatG+(x) is thecumulative+ (1 − δ)-confidence upper boundof F (x).
It is known thatR(p, s, δ) andR+(p, s, δ) are not much larger than the relative error in estimating a

proportionp usings draws with confidence1 − δ. Furthermore they have the same asymptotic behavior as
proportion estimates whens grows [LLS01]. Simulations show that we need about25% more samples for
the cumulative upper bound to be as tight as an upper bound on a proportion F (a). We computed estimates
of R(p, s, δ) andR+(p, s, δ) using simulations and prestored them for discretized values ofp andδ.

2.4 Data Sets

We use 4 data sets of IP flows collected on a large ISP network in a 10 minute interval during October
2005. We looked at aggregations according to IP source address (366K distinct values), IP destination
address (517K distinct values), source port (55K distinct values), and destination port (57k distinct values).
We also use three additional Web traffic datasets:WorldCup: Web server log from the 1998 World soccer
championship, with 4021 distinct items.Dec-64: Web proxy traces that were recorded at Digital Equipment
Corporation in 1996, with 497597 items.Lbl-100: 30 days of all wide-area TCP connections between the
Lawrence Berkeley Laboratory (LBL) and the rest of the world, with 13783 distinct items. Figure 1 shows
the top-k weights for these distributions that show an obvious Zipf-like form.
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Figure 1: top-k weights for test distributions

3 Basic bounds for top-k sampling

When estimating a proportion, we use the fraction of positive examples in the sample as our estimator. Using
the notation we introduced earlier, we can use the interval fromL(p̂, s, δ) to U(p̂, s, δ) as a2δ confidence
interval. It is also well understood how to obtain the number of samples needed for proportion estimation
within some confidence and error bounds when the proportion is at leastp.

When estimating the top-k weight from samples, we would like to derive confidence intervals and also
to determine the size of a fixed sample needed to answer a top-k query when the weight of the top-k set is
at leastp.
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The natural top-k candidate is the set ofk most sampled items. The natural estimator for the weight
of the top-k set is the sampled weight of the sampled top-k items. This estimator, however, is inherently
biased. The expectation of the sampled weight of the sample top-k is always at least as large and generally
is larger than the weight of the top-k set. The bias depends on the number of samples and vanishes as the
number of samples grows. It also depends on the distribution. To design estimation procedures or to obtain
confidence intervals for a top-k estimate we have to account for both the standard error, as in proportion
estimation, and for the bias.

3.1 Top-k versus proportion estimation

We show that top-1 estimation is at least as hard as estimating a proportion. Intuitively, we expectthis to be
the case. Estimating proportion is equivalent to estimating a single fixed item, whereas when we estimate
the top-1 we have, in a sense, to bound more than one item.

Lemma 5. LetA be an algorithm that approximates the top-1 weight in a distribution with confidence1−δ.
We can useA to derive an algorithmA′ for estimating a proportion. The accuracy ofA′ when estimating a
proportionp is no worse than the accuracy ofA on a distribution with top-1 weight equals top.

Proof. An input toA′ is a setS′ of s coin flips of a coin with biasp. Algorithm A′ translatesS′ to a sample
S from a distributionD in which we have one itemb of weightp and every other item has negligibly small
weight. We generateS by replacing each positive sample inS′ by a draw ofb and every negative example
in S′ by a draw of a different element (a unique element per each negative example). AlgorithmA′ applies
A to S and returns the result.

It is also not hard to see that the top-k problem is at least as hard as the top-1 problem. This is obvious
for the stronger (per item) versions of the top-k problem but also holds for the approximate top-k weight
problem. To see this, consider a stream of samples for a top-1 problem. Replace each sample of itemi by
a sample of an item labeled(i, x) wherex is chosen uniformly from{0, . . . , k − 1}. This is equivalent to
drawing from a distribution where each item is partitioned tok parts of the same weight. The top-k weight
in this distribution is the same as the top-1 weight in the original distribution.

4 The Naive confidence interval

Let Lk(f̂ , s, δ) be the smallestf such that there exists a distributionF , with top-k weight off , such that
when samplingS of sizes we have PROB{W k(S, F ) ≥ f̂} ≥ δ. Similarly, letUk(f̂ , s, δ) be the largest
f such that there exists a distributionF with top-k weight of f such that when samplingS of size s,
PROB{W k(S, F ) ≤ f̂} ≥ δ.

Let S be a sample ofs items from a distributionI and assume that̂f = W k(S, I). By a proof similar to
that of Lemma 1 one can show that

Lemma 6. Uk(f̂ , s, δ) is a(1−δ)-confidence upper bound on the top-k weight, andLk(f̂ , s, δ) is a(1−δ)-
confidence lower bound on the top-k weight.

We define theNaive(1− δ)-confidence intervalto be[Lk(f̂ , s, δ/2), Uk(f̂ , s, δ/2)]. Note that since the
(1− δ/2)-confidence upper bound and the(1− δ/2)-confidence lower bound are not symmetric we may be
able to reduce the length of the interval by splitting theδ confidence asymmetrically between the upper and
the lower bounds. That is, for every0 < δ′ < δ, [Lk(f̂ , s, δ′), Uk(f̂ , s, δ − δ′)] is also a confidence interval
that may be smaller than[Lk(f̂ , s, δ/2), Uk(f̂ , s, δ/2)].
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4.1 Computing the Naive confidence interval

Our definitions do not provide an immediate way to compute the Naive confidence interval, since they
require to consider all possible distributions. We now describe an algorithmto compute these bounds.

We first consider the upper bound and show that we can use the(1 − δ)-confidence upper bound for a
proportion as a(1 − δ)-confidence upper bound on the top-k weight.

Lemma 7. Uk(f̂ , s, δ) ≤ U(f̂ , s, δ).

Lemma 7 follows from the following lemma.

Lemma 8. The distribution function of the sampled weight of the sampled top-k dominates that of the
sampled weight of the top-k set. That is, for allα > 0,

Prob{W k(S, I) ≥ α} ≥ Prob{w(S, Tk(I)) ≥ α} .

In particular, E(W k(S, I)) ≥ W k(I) (the expectation of the sampled weight of the sampled top-k set is an
upper bound on the actual top-k weight.)

Proof. Observe that the sample weight of the sampled top-k is at least as large as the sampled weight of the
actual top-k set (assume top-k set is unique using arbitrary tie breaking).

Proof. [of Lemma 7] LetUk(f̂ , s, δ) = f , and letF be a distribution with top-k weight f such that
PROB{W k(S, F ) ≤ f̂} ≥ δ. By Lemma 8 we have that

Prob{W k(S, I) ≤ f̂} ≤ Prob{w(S, Tk(I)) ≤ f̂} .

Since the right hand side equals to the probability that ins tosses of a coin with success prob.f we get≤ f̂ s
successes we get that the latter probability is at leastδ. It follows thatf ≤ U(f̂ , s, δ).

We next consider how to obtain a lower bound on the top-k weight. The definition ofLk(f̂ , s, δ) was
with respect to all distributions. The following Lemma restricts the set of distributions that we have to
consider. We can then computeLk(f̂ , s, δ) using simulations with the restricted set of distributions.

Let I1 andI2 be two distributions. We say thatI1 dominatesI2 if for all i ≥ 1, W k(I1) ≥ W k(I2).
The next lemma shows that ifI1 dominatesI2 then the distribution of the sampled weight of the sampled

top-k of I1 dominates that ofI2.

Lemma 9. If the distributionI1 dominates the distributionI2 then for anyk ≥ 1, and number of samples
s ≥ 1, the distribution function of the sampled weight of the sampled top-k in a sample of sizes from
I1 dominates the same distribution function with respect toI2. That is, for anyt, the probability that the
sampled top-k in a sample fromI1 has at leastt samples is at least as large as the same probability with
respect toI2.

Proof. We prove the claim for two distributionsI1 andI2 that are identical except for two itemsb1 andb2.
In I2 the itemsb1 andb2 have weightsw1 andw2, respectively wherew1 > w2. In I1 the itemsb1 andb2

have weightsw1 + ∆ andw2 − ∆, respectively for some∆ ≥ 0. Clearly if the claim holds forI1 andI2 as
above then it holds in general. This is true since given any two distributionsI1 andI2 such thatI1 dominates
I2 we can find a sequence of distributionsI2 = I0, I1, . . . , Iℓ = I1 where for every0 ≤ j < ℓ, Ij+1

2 is
obtained fromIj

2 by shifting∆ weight from a smaller item to a larger one.
Consider a third distributionI3 that is identical toI1 andI2 with respect to all items other thanb1 and

b2. The distributionI3, similar toI1, it has an itemb1 with weightw1, an itemb2 of weightw2 − ∆ and an
additional itemb3 of weight∆.
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We samples items fromI2 by samplings items fromI3 and considering any sample ofb2 or b3 as a
sample ofb2. Similarly we samples items fromI1 by samplings items fromI3 and considering a sample
from b2 as a sample ofb2 and a sample of eitherb1 or b3 as a sample ofb1.

Suppose we sample a setS of s items fromI3 and map them as above to a sampleS1 of s items from
I1 and to a sampleS2 of s items fromI2. We show that for everyk andt, Prob{W k(S1, I1) ≥ t} is not
smaller thanProb{W k(S2, I2) ≥ t}.

Fix the number of samples of each item different ofb1, b2, andb3, fix the number of samples ofb3 to
ber, fix the number of samples ofb1 andb2 together to bem, fix m/2 ≤ j ≤ m and assume that eitherb1

or b2 getsj our of them samples. Consider only samplesS of I3 that satisfy these conditions. We look at
the probability space conditioned on these choices where the only freedomthat we have left is which ofb1

andb2 getsj samples (the other then getsm− j samples). We show that in this subspace, for everyk andt,
Prob{W k(S1, I1) ≥ t} is not smaller thanProb{W k(S2, I2) ≥ t}.

Over this conditioned probability subspace, letAj be the event where the number of samples ofb1 is j
and the number of samples ofb2 is m − j, and letAm−j be the event where the number of samples ofb1 is
m − j and the number of samples ofb2 is j. In Aj the maximum among the weights ofb1 andb2 in S1 is
max{j + r, m− j} = j + r, and the maximum among the weights ofb1 andb2 in S2 is max{j, m− j + r}
which is smaller thanj +r. On the other hand, inAm−j the maximum among the weights ofb1 andb2 in S1

is max{m−j+r, j}, and the maximum among the weights ofb1 andb2 in S2 is max{m−j, j+r} = j+r.
Consider the weight of the top-k set ofS2 in Am−j , and the weight of the top-k set ofS1 in Am−j . If both

are at leastt then they both are at leastt in Aj , and bothProb{W k(S1, I1) ≥ t} andProb{W k(S2, I2) ≥ t}
equal 1. However it could be that inAm−j the weight of the top-k set ofS2 is larger thant but the weight
of the top-k set inS1 is smaller thant. However if this is indeed the case inAm−j , then inAj the weight of
the top-k set ofS1 is larger thant but the weight of the top-k set inS2 is smaller thant.

Let a = w1/(w1 + w2 − ∆). Since

Prob{Aj} =

(

m
j

)

aj(1 − a)m−j ≥

(

m
j

)

(1 − a)j(a)m−j = Prob{Am−j} ,

it follows thatProb{W k(S1, I1) ≥ t} is not smaller thanProb{W k(S2, I2) ≥ t}.

Lemma 9 identifies the family of “worst-case” distributions among all distributions that have top-k
weight equal tof . That is, for any thresholdt and for anyk, one of the distributions in this family maximizes
the probability that the sampled weight of the sampled top-k exceedst. Therefore, to findLk(f̂ , s, δ), it is
enough to consider the more restricted set of most-dominant distributions.

The most-dominant distribution is determined once we fix both the weightf of the top-k, and the weight
0 < ℓ ≤ f/k of thekth largest item. The top-1 item in this distribution has weightf − (k − 1)ℓ, the next
k − 1 heaviest items have weightℓ, next there are⌊(1 − f)/ℓ⌋ items of weightℓ and then possibly another
item of weight1−f − ℓ⌊(1−f)/ℓ⌋. Example is provided in Figure 3. Fix the weightf of the top-k. LetGℓ

be the most dominant distribution with valueℓ for thekth largest item. We can use simulations to determine
the threshold valuetℓ so that with probabilityδ, the sampled weight of the sampled top-k in s samples from
Gℓ is at leasttℓ. Let fm = maxℓ tℓ. Clearlyfm decreases withf . The valueLk(f̂ , s, δ) is the largestf
such thatfm ≤ f̂ . This mapping from the observed valuef̂ to the lower boundf can be computed once and
stored in a table, or can be produced on the fly as needed.

Note that for the top-1 problem, there exists asingle “worst-case” most-dominant distribution, this
distribution has⌊1/f⌋ items of weightf and possibly an additional item of weight1 − f⌊1/f⌋.
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4.2 Bounding the weight of the top-k set

We now consider the problem of bounding the (real) weight of the sampled top-k set. We define a(1 − δ)-
confidence lower boundL′(f̂ , s, δ) on the actual weight of top-k set: L′(f̂ , s, δ) is the minimumℓ such
that there exists a distributionI with the following property. When sampling a setS of sizes from I then
PROB{(W k(S, I) ≥ f̂) ∧ (w(Tk(S, I)) ≤ ℓ)} ≥ δ.

It is easy to see thatL′
k(f̂ , s, δ) ≤ Lk(f̂ , s, δ) since if we restrict the distributionsI that we consider

when definingL′
k(f̂ , s, δ) to those with top-k weight at mostℓ we obtainLk(f̂ , s, δ).

Lemma 10. L1(f̂ , s, δ) is a (1 − δ)-confidence lower bound on the weight of the sampled top-1 item.

Proof. Consider a distributionI with top-1 item of weight greater thenℓ. If PROB{(W 1(S, I) ≥ f̂) ∧
(w(T1(S, I)) ≤ ℓ)} ≥ δ then PROB{(W 1(S, I ′) ≥ f̂)∧ (w(T1(S, I ′)) ≤ ℓ)} ≥ δ whereI ′ is obtained from
I by splitting all items of weight larger thenℓ into small items.

Fork > 1 we conjecture the following:

Conjecture 11. Lk(f̂ , s, δ) is a (1 − δ)-confidence lower bound on the weight of the sampled top-k set.

To prove the conjecture we need to show thatL′
k(f̂ , s, δ) = Lk(f, s, δ), that is, there is distribution that

minimize ℓ that has top-k weight that is at mostℓ. Our experiments support the conjecture as we always
observed that the actual weight of the top-k weight lies inside the confidence interval.

4.3 Asymptotics of the Naive estimator

For a given distributionI, and a givenǫ andδ, consider the smallest number of samplesm(I) such that the
sampled weight of the sampled top-1 item inm(I) samples is in the interval(1± ǫ)W 1(I) with confidence
1 − δ. The maximumm(I) over all distributionsI with top-1 item of weightf is the smallest number of
samples that suffices to answer a top-1 query for a specifiedδ andǫ, whenI has top-1 weight at leastf .

The distributionI with top-1 item of weightf that maximizesm(I) has about1/f items of weight
f . To estimateW 1(I) to within (1 ± ǫ), each of these1

f
items has to be estimated to within(1 ± ǫ) with

confidence1 − fδ. Using multiplicative Chernoff bounds we obtain that the number of samples needed
is O(f−1ǫ−2(ln δ−1 + ln f−1)), which issuper linearin f−1. One can contrast this with the number of
samples needed to estimate a proportion of value at leastf , for a givenǫ, δ, andf . From Chernoff bounds
we haveO(f−1ǫ−2 ln δ−1), which islinear in f−1.

The Naive bound is derived under “worst-case” assumptions on the distribution, and therefore the
asymptotic ofO(f−1ǫ−2(ln δ−1 + ln f−1)) applies to it. A distribution in which all items other than the
top-1 are tiny behaves like a proportion and for such distributions we obtain a good estimate of the top-1
weight afterO(f−1ǫ−2 ln δ−1) samples. Estimating the top-k weight in a Zipf-like distributions, that arise
in natural settings, is similar to estimating proportion as the distribution becomes moreskewed.

This point is demonstrated in Figure 2. The figure shows sampling from a distribution with top-1 item
of weight 0.05. It shows the sampled weight of the sampled top-1 item on a uniform distributionwhere
there are 20 items of weight0.05 each. It also shows the sampled weight of a sampled top-1 item in a
distribution where there is a single item of weight0.05 and all other items have infinitesimally small weight.
The averaging of the expected sampled weight of the sampled top-1 over 1000 runs illustrates the bias of
the estimator on the two distributions. Evidently, the bias quickly vanishes on the second distribution but is
significant for the uniform distribution. The Naive confidence bound accounts for this maximum possible
bias, so even on this simple distribution, after10, 000 samples we are only able to guarantee a 5% error
bars. The figure shows a similar situation when we measure the sampled weightof the top-5 items in a
distribution with5 items of weight0.05 each and all other items infinitesimally small. The convergence is
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similar to that of estimating a proportion of0.25; When there are 20 items of weight0.05, convergence is
much slower and there is a significant bias.
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Figure 2: Convergence of the Naive top-k estimator. The top figures are for top-1 item of weight0.05. The
bottom figures for the top-5 items of weight0.25. The curve “top-1 uniform” shows the sample weight of the
sampled top-1 item in a uniform distribution. The curve “top-1 proportion-like” shows the sample weight of
the sampled top-1 item from a distribution with a single item of weight 0.05 and all therest infinitesimally
small. The plots for top-5 are annotated similarly.

These arguments indicate that the Naive estimator gives a pessimistic lower bounds that also exhibit
worse asymptotics than what we can hope to obtain for some natural distributions. We therefore devise and
evaluate procedures to derive tighter lower bounds by exploiting more information on the distribution.

5 Using a cumulative upper bound

The derivation of the CUB resembles that of the Naive bound. We use the same upper bound and the
difference is in the computation of the lower bound. As with the Naive bound, we look for the distribution
with the smallest top-k weight that is at leastδ likely to produce the sampled top-k weight that we observe.
The difference is that we do not use the sampled top-k weight only, but extract more information from the
sample to further restrict the set of distributions we have to consider, thereby tightening the bound. The
bound is derived in two steps where we split the confidence,δ, into δ′ ≤ δ for the first step, andδ − δ′ for
the second step.
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1. Cumulative upper bound (CUB) derivation:We obtain(1 − δ′)-confidence cumulative upper bound
{K(i)} = K(1), K(2), . . . such thatK(i) is an upper bound onW i(I) for all i ≥ 1 with probability
(1 − δ′).

2. Lower bound derivation:Let f̂ = W k(S, I). We derive a(1 − (δ − δ′))-confidence lower bound
Lcub

k ({K(i)}, f̂ , s, δ−δ′) which is defined as follows. We consider all distributions that are consistent
with the CUB{K(i)}: that is distributionsJ such thatW i(J) ≤ K(i) for all (i ≥ 1). Among these
distributions we look for the distributionJ with smallest top-k weightW k(J) that is at least(δ − δ′)
likely to have a sampled top-k weight of at least̂f . The lower bound is then set toW k(J).

Correctness follows since for any distribution the probability that the cumulative upper bound obtained
for it fails (even for one value) is at mostδ′. If the distribution obeys the cumulative upper bound derived
for it in the first stage then the probability that the lower bound derived in thesecond step is incorrect is at
most(δ − δ′). Therefore, for any distribution, the probability that it does not lie in its confidence interval
is at mostδ. A formal argument for correctness of the second stage is analogous tothe one of Lemma 1,
Lemma 2, and Lemma 6.

Note also that ifK(i) = 1 for all i ≥ 1 then the CUB bound degenerates to the Naive bound. In
particularLcub

k ({1, 1, 1, 1, 1...}, f̂ , s, δ) = Lk(f̂ , s, δ).
We obtain the upper boundsK(i) either by Lemma 3 or by lemma 4. We have thatf̂ = W k(S, I).

Using Lemma 3 we letq be the value such thatq(1 − R(q, s, δ)) = f̂ and letK(i) = G(i) = W i(S,I)
1−R(q,s,δ)

for i ≥ k. We useG(i) = 1 for i < k. Alternatively, we use Lemma 4, setq to be the value such that

q(1 − R+(q, s, δ)) = f̂ and letK(i) = G+(i) = W i(S,I)
1−R+(q,s,δ)

for all i ≥ 1. Recall that we precompute

R(q, s, δ) andR+(q, s, δ) for many possible values ofq.
We compute(1 − δ)-confidence lower bound,Lcub

k ({K(i)}, f̂ , s, δ), by considering most dominant
distribution as follows. We apply Lemma 9 in a way similar to its usage in Section 4.1 forthe Naive bound.
We obtain that the most dominant distributions that satisfy the{K(i)} upper bounds is determined once we
fix the top-k weightf and the weightℓ ≤ f/k of thekth heaviest item. Fori > k, the weight of theith item
is as large as possible given that it is no larger than the(i−1)th item and that the sum of the top-i items is at
mostK(i). If K(1) = K(2) = . . . = K(k − 1) = 1, then thek-heaviest items are as in the naive bounds:
the top-1 weight isf − (k − 1)ℓ and the nextk − 1 heaviest items have weightℓ. Otherwise, let1 ≤ j ≤ k
be the minimum such thatK(j) + (k − j)ℓ ≥ f . The most dominant distribution is such that itemℓ for
ℓ < j has weightK(i) − K(i − 1) with (K(0) = 0); itemsj + 1, . . . k have weightℓ; and thejth item has
weightf − K(j − 1) − (k − j)ℓ.

Figure 3 shows most dominant distributions fork = 100 with top-k weight equal to0.4 that are con-
structed subject to CUB constraintsK(i) for i ≥ 100 andK(1) = . . . = K(99) = 1. The dotted lines
show the most dominant distributions without the CUB constraints. The figure helps visualize the benefit of
the CUB. The CUB constraints reduce the size and the number of larger nontop-k items and by doing so
reduces the bias of the top-k estimator (the sampled weight of the sample top-k).

We use simulations on these most-dominant distributions to determine the probability that the sampled
weight of the sampled top-k matches or exceeds the observed one.

Since the CUB has many parameters ({K(i)} for i ≥ 1), we can not use a precomputed table for the
lower boundLcub

k ({K(i)}, f̂ , s, δ) as we can do for the naive boundLcub
k (f̂ , s, δ). Therefore the CUB

bounds are more computationally intensive than the Naive bound.
The confidence interval that we obtain applies to the weightW k(I) of the top-k set. Using an argument

similar to the one we used in Lemma 10, fork = 1, the confidence interval also applies to the actual weight
of the sampled top-1 set. We conjecture that it also applies to the actual weightof the sampled top-k set
whenk > 1 (see Conjecture 11).
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Figure 3: Most dominant distributions fork = 100 and top-k weight 0.4. These distributions are for
ℓ = 0.004 (Uniform), ℓ = 0.002, andℓ = 0.0001. We also show the distributions subject to CUBK(i)
for i ≥ 100. The distributions with and without the CUB are identical fori ≤ 100. With CUB the straight
lines forℓ = 0.004 andℓ = 0.002 start bending at somei > 100 to obey the CUB. Without the CUB they
continue according to the lightly shaded straight lines. The distribution withℓ = 0.0001 is not affected by
the CUB.
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The CUB method is based on performing simulations based on statistics derivedfrom the sample and in
this sense it is related to statistical bootstrap method [ET93].

6 Cross validation methods

In this chapter we borrow some concepts from machine learning and use themethod of cross validation to
obtain confidence bounds. Intuitively, the methods we present in this section are based on the following
lemma.

Lemma 12. LetS′ andS′′ be two subsets of the sampleS such thatS′ ∩ S′′ = ∅. LetT be the top-k subset
in S. Then the weight ofT in S′′ is unbiased estimate of the real weight,w(T ), of T .

Proof. In fact,w(S
′′
, T ) is a random variable counting the fraction of successes when we toss a coin of bias

w(T ), |S′′| times.

We start with a simplesplit-sample validationmethod. This method gives a top-k candidate and a lower
bound on its actual weight. Then we generalize this method and describe thef -fold cross validationmethod
and theleave-mℓ-out cross validationmethod that partition the sample to more than two parts.

The expectation of all these estimators is equal to the expectation of the actualweight of a sampled top-k
set obtained in a sample of size equal to that of the learning part. Since the actual weight of any top-k set
is smaller thanW k(I) these estimators are biased down and their expectation is smaller thanW k(I). For a
larger learning set, this expectation is higher and closer toW k(I), and therefore may give tighter bound. On
the other hand, the variance of the estimate depends on the size of the testing set. We study these tradeoffs.
Since these estimators are biased down we show how to use them to obtain the lower end of a confidence
interval. We can obtain the upper end as we did for the Naive and the CUB methods.

We also study a technique to upper bound the difference between the weight of our set to that of the
actual top-k set. That is, upper bound the potential increase in weight by exchangingitems in our candidate
set with items outside it. We combine this technique with the split-sample method.

6.1 Split-sample (hold out) validation

We denote the learning part ofS by Su and the testing part bySℓ, and their sizes bymu andmℓ respectively.
We usedmu = mℓ = s/2, where|S| = s, but other partitions are possible. The sampled top-k set in the
learning sample,Ik,u = Tk(Su, I), is our top-k candidate, and its sampled weightw(Sℓ, Ik,u) in the testing
sample is thesplit-sample estimatorfor the top-k weight.

By Lemma 12, for every possibleIk,u, the expectation of the sampled weight ofIk,u in Sℓ equals to the
actual weight ofIk,u. Sincew(Ik,u) ≤ W k(I), the expectation ofw(Sℓ, Ik,u) is a lower bound onW k(I).

We obtain confidence bounds based on this estimator as follows. For an upper bound we useU(δ) =
U(W k(S, I), m, δ) as in the previous methods. Since the variance of this estimator is no larger thanthe
variance of a proportion withmℓ flips we useL(δ) = L(w(Sℓ, Ik,u), mℓ, δ) as our lower bound. For both
upper and lower bounds we take[L( δ

2), U( δ
2)] as our(1− δ) - confidence interval. Note that our estimate is

valid not only for the top-k weight but also for the actual weight of the setIk,u.

6.2 2-fold cross validation

In 2-fold cross validation we split the sampleS into two equal partsSu andSℓ. Let Ik,u andIk,ℓ be the
sampled top-k sets inSu andSℓ, respectively. The 2-fold estimator is(w(Sℓ, Ik,u) + w(Su, Ik,ℓ))/2. This
estimator is an average of two estimatorsX = w(Sℓ, Ik,u) andY = w(Su, Ik,ℓ). The expectation of each
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of these two estimators equals to the average weight of a top-k set in a sample of sizes/2. So by linearity
of expectation this is also the expectation of the 2-fold estimator. Clearly by Lemma12 the expectation of
this estimator is at mostW k(I).

We turn this estimator into a confidence interval in a way similar to what we did for the split sample
estimator. But for the lower bound we useL(δ) = L((w(Sℓ, Ik,u)+w(Su, Ik,ℓ))/2, s/2, δ). To see that this
is a(1− δ)-confidence lower bound letX = w(Sℓ, Ik,u) andY = w(Su, Ik,ℓ). Note that in general we have

V ar

(

X + Y

2

)

=
V ar(X) + V ar(Y ) + 2Cov(X, Y )

4
, (2)

whereCov(X, Y ) is the covariance ofX andY . Since

2Cov(X, Y ) = 2E(XY ) − 2E(X)E(Y ) ≤ E(X2) + E(Y 2) − 2E(X)E(Y ) ,

and in our caseE(X) = E(Y ), we have that2Cov(X, Y ) ≤ V ar(X) + V ar(Y ). Furthermore since
V ar(X) = V ar(Y ) we have thatV ar

(

X+Y
2

)

≤ V ar(X). This implies that a lower bound for a proportion
with s/2 flips applies. Although in our caseX andY are not independent we expect them to be weakly
correlated, in which caseCov(X, Y ) is small andV ar

(

X+Y
2

)

is close toV ar(X)/2 as if X andY were
independent. Our lower bound is worst-case and does not take this observation into account.

Our experiments indicate that the following conjecture analogous to Conjecture 11 may be true.

Conjecture 13. L(δ) is a (1 − δ)-confidence lower bound on the weight of the setTk(S, I).

6.3 R-fold cross validation

In general by partitioning the samples intor equal parts we get ther-fold cross validation estimator. For
each part, we compute the sampled top-k set in the union of the otherr−1 parts (the learning set). Then we
compute the weight of this set in the held-out part (the testing set). LetXj , 1 ≤ j ≤ r be a random variable
that denotes this weight when thej-th part is held out. The following lemma follows from Lemma 12.

Lemma 14. For anyj, E(Xj) ≤ W k(I).

Ther-fold estimator is
Pr

j=1
Xj

r
.

6.4 Leave-out cross validation

Leave-mℓ-out cross validation is a “smoothed” version ofr-fold cross validation. Consider some fixed
k ≤ mu ≤ m − 1. The estimatorJmu is the average, over all subsetsSu ⊂ S of size|Su| = mu, of the
sampled weight inSℓ = S \ Su of the sampled top-k subset inSu. When there are multiple items with
kth largest number of samples we average the sampled weight inSℓ of all possible top-k sets inSu. The
following lemma follows from Lemma 12 and the linearity of expectation.

Lemma 15. For all mu, E(Jmu) ≤ W k(I).

Let mℓ = |Sℓ| and assume|S|
mℓ

is an integer, then we expect this leave out estimatorJmu to have smaller

variance than of an r-fold estimator withr = |S|
mℓ

. As for r-fold withr = |S|
mℓ

, the expectation of the estimator
Jmu is equal to the expectation of the actual weight of the sampled top-k set in a sample of sizemu.
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6.5 Computing leave-out estimators

The leave-out estimator is defined as an average over all possible subsets, so its direct computation can be
prohibitive. In this section we develop a method to estimate the leave-out estimator.

We definedJmu as an average over all subsetsSu ⊂ S of size |Su| = mu, of the sampled weight in
Sℓ = S \ Su of the sampled top-k subset inSu. Alternatively, we can sum for each occurrencex of an item
i in S, the number of subsetsSu of S \ {x} wherei is in the top-k set ofSu, and then divide this by the total
number of subsets of sizemu.

Let Pk(i, m, S) be the number of subsetsS′ of sizem, of a multisetS wherei is in the top-k subset
of S′. To carefully account for subsetsS′ in which the top-k set is not uniquely defined, a more precise
definition ofPk(i, m, S) is as follows. We consider every subsetS′ of sizem of S. Let ℓ be the number of
occurrences of thekth most frequent item inS′. If the frequency ofi in S′ is larger thanℓ thenS′ contributes
1 to Pk(i, m, S). If the frequency ofi in S′ is smaller thanℓ thenS′ contributes0 to Pk(i, m, S). Otherwise,
let b be the total number of items with frequency equal toℓ, and letc be the number of such items in the
top-k set ofS′. The contribution ofS′ to Pk(i, m, S) is c/b. The following lemma gives an equivalent
formulation ofJmu .

Lemma 16. Let i be the theith most frequent item inS and letai be the number of occurrences ofi in S.
Letxi be one among theai occurrences ofi in S. Then

Jmu =

∑

i aiPk(i, mu, S \ {xi})
(

|S|
mu

)
.

For each itemi we can estimatePk(i,mu,S\{xi})

( |S|
mu

)
by sampling random subsets of sizemu from S \ {xi},

compute the contribution toPk(i, mu, S \ {xi}) of each subset, and divide by the number of subsets we
sampled. To make this computation more efficient we sample subsets of sizemu + 1 from S. For each such
subsetS′, and for each occurrence,x, of an itemi in S′, we useS′ \ {x} as a random sample fromS \ {x}

and use it in the estimation ofPk(i,mu,S\{xi})

( |S|
mu

)
.

Leave-1-out. The leave-1-out and thes-fold estimators (wheres = |S|) are the same. We can compute this
estimator efficiently from the counts of items in the sample. Consider a sampleS and leta1 ≥ a2 ≥ a3 · · ·
be the counts of the items inS. Let tk+1 ≥ 1 be the number of items with frequency equal toak+1. Let n
(0 ≤ n ≤ tk+1 − 1) be the number of items with frequencyak+1 in the sampled top-k set. The estimate is

Js−1 =

(

1

s

)





∑

i|ai>ak+1+1

ai +

(

n + 1

tk+1 + 1

)

∑

i|ai=ak+1+1

ai



 .

The first terms account for the contribution of items that definitely remain in the modified top-k set
after “loosing” the leave-out sample. This includes all items that their count inthe sample is larger than
ak+1 + 1. The second term accounts for items that are “partially” in the top-k set after loosing the leave-
out sample. By partially we mean that there are more items with that frequency thanspots for them in the
new top-k set. The hypothesis testing literature indicates that leave-1-out cross validation performs well but
has the disadvantage of being computationally intensive. In our setting, the computation of the estimator
is immediate from the sampled frequencies. This estimator has a learning set of maximal size,s − 1, and
therefore its expectation is closest to the top-k weight among all the cross validation estimators.
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6.6 Bounding the variance.

The choice of the particular cross validation estimator, selectingr for the r-fold estimators ormu for the
leave-out estimators reflects the following tradeoffs. The expectation of these estimators is the expectation
of the actual weight of the sampled top-k set in a sample of the size of the learning set. This expectation is
non-decreasing with the number of samples and gets closer toW k(I) with more samples in the learning set.
Therefore, it is beneficial to use larger learning sets (smallr, or largemu). In the extreme, the leave-1-out
estimator is the one that maximizes the expectation of the estimator. However, smallersize test sets and
dependencies between learning sets can increase the variance of the estimator. The effect of that on the
derived lower bound depends on both the actual variance and on how tightly we can bound this variance. In
our evaluation, we consider both the empirical performance of these estimators and the rigorous confidence
intervals we can derive for them.

As we did with the 2-fold estimator, we can apply proportion lower bounds to any of the cross validation
estimators to obtain the lower end of a confidence interval as follows. Since the variance of the estimator
is not larger than the variance of a Binomial random variable withmℓ = s − mu (or s/r) independent

samples we apply the proportion lower bound to it. For ther-fold method we haveL
(

Pr
j=1

Xj

r
, s

r
, δ

)

as our

1 − δ-confidence lower bound, and for the leave-mℓ-out estimator we obtainL (Jmu , mℓ, δ).
This method is pessimistic for two reasons. The first is the application of a proportion bound to a

biased quantity. The second reason is that the calculation assumes a binomialdistribution withmℓ or s/r
independent trials, and therefore does not account for the benefit of the cross validation averaging over
multiple splits into learning and test subsets. This effect becomes worse for larger values ofr. (See the
discussion in Section 6.2.)

In the experimental evaluation, we consider both the empirical performance of the estimators (in terms
of expectation and the average squared and absolute error), and the quality of the confidence intervals. For
confidence intervals, we use two approaches to derive lower bounds:The first is the pessimistic rigorous
approach. The second is a heuristic that “treats” the estimate as a binomial withs independent trials and
applies a proportionL(Z, s, δ) lower bound, whereZ is the value of the estimator. We refer to this heuristic
asr-fold with sand carefully evaluate its empirical correctness.

6.7 Weight difference to the top-k weight

We next consider the goal of obtaining a(1−δ)-confidence upper bound on the differenceW k(I)−w(Ik,u)
between the weight of our output setIk,u to that of the true top-k set. A more refined question is “by how
much can we possibly increase the weight of our set by exchanging items from Ik,u with items that are in
I \ Ik,u?” It is a different question than bounding the weight of the set. For example, in some cases we can
say that “we are 95% certain that our set is the (exact) top-k set”, which is something we can not conclude
from confidence bounds on the weight.

We use the basic split-sample validation approach, where the top-k candidate set,Ik,u, is derived from
the learning sampleSu. The testing sampleSℓ is then used to bound the amount by which we can increase
the weight of the setIk,u by exchanging a set of items fromIk,u with a set of items of the same cardinality
from I \ Ik,u.

Let Cj = C(W j(Sℓ, I \ Ik,u), mℓ, W j(Sℓ, Ik,u), mℓ, δ). Recall thatC() was define in Section 2. It
is a (1 − δ)-confidence upper bound on the difference of two proportions. To obtain Cj we apply it as if
we observeW j(Sℓ, I \ Ik,u) positive examples inmℓ draws of one proportion andW j(Sℓ, Ik,u) positive
examples of the other inmℓ draws.

Lemma 17. max1≤j≤k Cj is a (1 − δ)-confidence upper bound on the amount by which we can increase
the weight of the setIk,u by exchanging items. (Hence, it is also a(1 − δ)-confidence upper bound on the
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differenceW k(I) − w(Ik,u).)

Proof. The maximal amount by which we can increase the weight ofIk,u by exchanging items is equal to

max
1≤j≤k

W j(I \ Ik,u) − W j(Ik,u) .

It follows that if Cj is a(1 − δ)-confidence upper bound on the differenceW j(I \ Ik,u) − W j(Ik,u), then
max1≤j≤k Cj is a(1−δ)-confidence upper bound on the maximum increase (and therefore on thedifference
W k(I) − w(Ik,u).)

It remains to show thatCj is a (1 − δ)-confidence upper bound onW j(I \ Ik,u) − W j(Ik,u). We use
the samplesSℓ to obtain upper bound on the weight of the top-j elements inI \ Ik,u, and a lower bound on
the weight of the bottom-j elements inIk,u.

Let Jj = Tj(I \ Ik,u) be the real top-j set inI \ Ik,u. Let Hj = Bj(Ik,u) be the real bottom-j set in
Ik,u. ClearlyW j(I \ Ik,u) − W j(Ik,u) = w(Jj) − w(Hj).

The valuew(Sℓ, Jj) is equivalent to the fraction of positive examples inmℓ tosses of a proportionw(Jj).
Similarly, the valuew(Sℓ, Hj) is equivalent to the fraction of positive examples inmℓ tosses of a proportion
w(Hj).

SinceW j(Sℓ, I \ Ik,u) ≥ w(Sℓ, Jj) andW j(Sℓ, Ik,u) ≤ w(Sℓ, Hj) we obtain that

W j(Sℓ, I \ Ik,u) − W j(Sℓ, Ik,u) ≥ w(Sℓ, Jj) − w(Sℓ, Hj) .

SinceCj is an upper bound (with probability1 − δ) on the difference of the proportions, assuming the
outcomes from drawing the proportions areW j(Sℓ, I \ Ik,u) andW j(Sℓ, Ik,u), then it is clearly an upper
bound with probability1 − δ onw(Jj) − w(Bj) as required.

7 Evaluation Results

The algorithms were evaluated on all data sets, for top-100 and top-1, andconfidence levelsδ = 0.1 and
δ = 0.01. In the evaluation we consider the tightness of the estimates and confidence intervals. For the
heuristicr-fold with s lower bounds we also consider correctness.

7.1 Quality of different estimators

We empirically evaluated the expectation, average square error, and average absolute error of the (positively
biased) sampled weight of the sampled top-k items, and the negatively-biased split-sample, 2-fold, 10-fold,
ands-fold estimators. We also consider two combined estimators: the average of thesampled weight of
the sampled top-k items and thes-fold estimator (s-fold+upper) and the average of the sampled weight
of the sampled top-k items and the2-fold estimator (2-fold+upper). The expectation of these estimators
shows their bias, the square and absolute error reflect both the bias andthe variance of these estimators. The
results for three datasets are shown in Figures 4 and 5. We only show the average absolute error, the average
square error behaves similarly. The figures show that the bias decreases withr for the r-fold estimators.
The absolute error and variance measures vary:2-fold is always at least as good as split-sample and on
some datasets it has considerably smaller variance. In most cases, thes-fold and10-fold estimators have
smaller variance than the2-fold estimator. The sampled weight of the sampled top-k items is often worse or
comparable to thes-fold estimator. The combined estimators perform very well and in most casesthey had
the smallest error and bias.
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Figure 4: Average value (left) and corresponding average absolute error (right) of top-k estimators (averaged
over 500 runs) for destination ports.
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Figure 5: Average value (left) and corresponding average absolute error (right) of top-k estimators (averaged
over 500 runs) for the source ports and the WorldCup data sets.
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7.2 Confidence intervals

We compared the Naive bound, the CUB bound, the split-sample and 2-fold bounds (withs/2 proportion
correction), and the 10-fold bound (withs/10 proportion correction). The split-sample bound is similar to
the 2-fold bound, and therefore not shown in the plots. Figure 6 shows averaged(1 − δ)-confidence upper
and lower bounds for these methods. The upper bound is the same for all methods but the lower bound
varies.

We precomputed, using multiple simulation runs, tables for the(1 − δ)-confidence boundsU(p̂, s, δ),
L(p̂, s, δ) (for proportions, see Section 2.2), andLk(f̂ , s, δ) (for the Naive lower bound, see Section 4.1).
The tables ofLk(f̂ , s, δ) were generated using a simulations with the families of most dominant distribu-
tions. We used the table ofU(p̂, s, δ) to derive the upper bound, and the table ofL(p̂, s, δ) to derive the
lower bounds for the cross validation methods. We used the table ofLk(f̂ , s, δ) to derive the Naive lower
bound. The precomputation of this table made the implementation of the Naive methodvery efficient. The
implementation of the CUB method involved constructing and running simulations on families of most-
dominant distributions in each run of the algorithms. For the CUB method, these families depend on the
cumulative upper bounds obtained, so we could not use precomputed tables. As a result, the CUB method
is considerably more computation intensive.

We evaluated two variants of the CUB. The first one (denoted CUB in Figure6) derivesK(i) only for
i ≥ k (K(1) = . . . = K(k − 1) = 1), using the method in Lemma 3. The second one (denoted CUB+
in Figure 6) uses a cumulative+ bound of Lemma 4 and thereby derivesK(i) for all i ≥ 1. For a given
confidence level, the boundsK(i) obtained by CUB+ are tighter for (i < k) but weaker fori ≥ k than the
bounds obtained by CUB. There is a difference between CUB and CUB+ only for k > 1.

The results for selected datasets and parameters (k andδ) are provided in Figure 6. The figures also
show the top-k weightW k(I), the sampled weight of the sampled top-k set (that has expectation at least
W k(I) and gets closer toW k(I) as the number of samples grows) the actual weight of the sampled top-k
set (that has expectation at mostW k(I) and also gets closer toW k(I) as the number of samples grows).

The Naive lower bound is almost always the lowest (least tight) bound andis outperformed by the
CUB and 2-fold bounds. The 10-fold bound is sometimes below Naive, because of the pessimistics/10
proportion adjustment. In some cases, the Naive bound was tighter than the 2-fold bound. This can happen
on distributions that are closer to the “most dominant distributions” on which theNaive bound is tight and
the 2-fold method, that utilizes half the samples, is not. On our datasets, we observed that Naive is tighter on
distributions where the top-k weight is most of the total weight. The CUB boundwas tighter than the 2-fold
bound on more distributions, but there were also many distributions where the2-fold bound was tighter. The
CUB+ bounds were slightly tighter than the CUB bounds.

Observed error-rates for top-k weight. We considered the observed error rates of the(1− δ)-confidence
upper bounds and the(1 − δ)-confidence lower bounds obtained via rigorous methods (Naive, CUB,2-fold
with s/2 correction and 10-fold withs/10 correction). The observed error rate is the fraction of runs in
which the lower bound was higher (or the upper bound was lower) than thetop-k weight. Tables 1, 2,
and 3 show the error rates for the upper bound and for the Naive and CUB lower bounds. The results are
aggregated across different numbers of samples, for each dataset and k. When the number of experiments
grows to infinity the error rate should be smaller thanδ. For most instances (an instance is specified by the
dataset,k, δ, method, and number of samples), the error rate was well belowδ. This was the case since our
worst case bounds are pessimistic.

Observed error-rates for top-k set. We also considered the error rates of the(1 − δ)-confidence lower
bounds with respect to the “top-k set” metric, that is the fraction of runs in which the actual weight of the
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Figure 6:(1 − δ)-confidence upper and lower bounds, by different methods, averaged over 500 runs
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dataset,k δ = 0.1 δ = 0.01

dec64 1 0.101 0.005
dec64 100 0.005 0
destport 1 0.084 0.002
destport 100 0 0
destIP 1 0 0
destIP 100 0 0
lbl100 1 0.11 0.012
lbl100 100 0.008 0
srcport 1 0.101 0.006
srcport 100 0.016 0
srcIP 1 0.077 0.002
srcIP 100 0 0
worldcup 1 0.05 0.001
worldcup 100 0.008 0

Table 1: Observed error rate of the(1 − δ)-confidence upper bound.

dataset,k δ = 0.1 δ = 0.01
weight set weight set

dec64 1 0.003 0.003 0 0
dec64 100 0 0 0 0
destport 1 0.001 0.002 0 0
destport 100 0 0 0 0
destIP 1 0 0 0 0
destIP 100 0 0.001 0 0
lbl100 1 0.003 0.003 0 0
lbl100 100 0 0 0 0
srcport 1 0.024 0.024 0 0
srcport 100 0 0 0 0
srcIP 1 0.001 0.001 0 0
srcIP 100 0 0 0 0
worldcup 1 0 0.004 0 0
worldcup 100 0 0 0 0

Table 2: Observed error rate of the(1 − δ)-confidence Naive lower bound on top-k weight and top-k set.
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dataset,k δ = 0.1 δ = 0.01
weight set weight set

dec64 1 0.018 0.018 0 0
dec64 100 0 0 0 0
destport 1 0.022 0.022 0.001 0.002
destport 100 0 0 0 0
destIP 1 0.005 0.089 0 0.033
destIP 100 0 0 0 0
lbl100 1 0.025 0.025 0.002 0.002
lbl100 100 0 0 0 0
srcport 1 0.041 0.041 0.005 0.005
srcport 100 0.001 0.017 0 0.001
srcIP 1 0.036 0.038 0.002 0.002
srcIP 100 0 0 0 0
worldcup 1 0.007 0.011 0.002 0.004
worldcup 100 0 0 0 0

Table 3: Observed error rate of the(1 − δ)-confidence CUB lower bound on top-k weight and top-k set.

top-k set in the sample is below the respective lower bound. The real weight of the top-k set in the sample
is always smaller than the weight of the real top-k set. Therefore, the observed error rate should be higher
than for the “top-k weight” metric. Tables 2 and 3 list the observed error rates for the Naive and CUB lower
bounds. The results are aggregated across different numbers of samples, for each dataset andk = 1, 100.
We observed that across all instances, the error rates were consistent with the respective lower bounds, that
is, the error rate was belowδ or otherwise close toδ within the applicable standard error. These observations
support that a variant of Conjecture 11 holds for CUB.

Observed error-rates for split-sample and 2-fold. We compared the observed error rates for the top-k
weight of the(1− δ)-confidence lower bounds obtained via the split-sample and the 2-fold methods. Recall
that both estimators have the same expectation (and therefore the same bias).We expected the 2-fold method
to have lower variance and the observed error rates support this expectation. Forδ = 0.1, the average error
rate over split-sample instances was0.044 and was only0.015 over 2-fold instances. Forδ = 0.01, the
respective error rates were0.0016 and2.3e − 05. A more detailed summary is provided in Table 4 (error
rates are aggregated across different numbers of samples for each dataset andk).

Heuristic cross validation bounds. We evaluated the observed error rates of the heuristic cross validation
lower boundsr-fold with s. The observed error rates fors-fold with s are listed in Table 5. On the majority
of instances, the error rate did not exceed the correspondingδ value. For the weight of the top-k set, the
bounds were often too loose. Since the heuristic lower bounds are tighter than with the rigorous methods,
the results suggest that this might be a reasonable heuristic for top-k weight, but not for top-k set. The
empirically good performance of the10-fold ands-fold estimators suggests that there might be a way to
derive tighter rigorous bounds on their variance.

7.3 Bounding the difference to the top-k weight

We evaluated the method (Section 6.7) that directly bounds the difference between the weight of the observed
top-k set to the weight of the best alternative set of sizek. We used the Normal approximation to bound the
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dataset,k split-sample 2-fold
δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01

dec64 1 0.108 0.004 0.034 0
dec64 100 0 0 0.002 0
destport 1 0.079 0.003 0.029 0
destport 100 0 0 0.004 0
destIP 1 0.017 0.001 0.031 0
destIP 100 0 0 0.006 0
lbl100 1 0.107 0.003 0.034 0
lbl100 100 0.006 0 0.003 0
srcport 1 0.121 0.008 0.035 0
srcport 100 0.004 0 0.002 0
srcIP 1 0.091 0 0.037 0
srcIP 100 0 0 0.001 0
worldcup 1 0.064 0.001 0.041 0
worldcup 100 0.007 0 0.006 0

Table 4: Observed error rates of the(1 − δ)-confidence split-sample and 2-fold lower bounds on top-k
weight.

dataset,k δ = 0.1 δ = 0.01
weight set weight set

dec64 1 0.097 0.097 0.002 0.002
dec64 100 0.006 0.139 0 0.012
destport 1 0.082 0.087 0.002 0.003
destport 100 0.001 0.115 0 0.009
destIP 1 0.069 0.147 0.004 0.037
destIP 100 0 0.156 0 0.028
lbl100 1 0.102 0.102 0.001 0.001
lbl100 100 0.02 0.135 0 0.006
src4600 1 0.117 0.117 0.008 0.008
src4600 100 0.009 0.099 0 0.002
srcIP 1 0.102 0.104 0.003 0.003
srcIP 100 0.004 0.149 0 0.009
worldcup 1 0.089 0.146 0.004 0.014
worldcup 100 0.028 0.157 0 0.013

Table 5: Observed error rates of the(1− δ)-confidences-fold with s heuristic lower bound on top-k weight
and top-k set.
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differences of proportions (see Section 2.2).
Assume that Conjecture 11 and its extension to the CUB and the 2-fold (Conjecture 13) are true. That

is our confidence interval bounds not only the top-k weight but also the weight of the top-k set that we find.
Then it is easy to see that the width of the1−δ-confidence interval is a1−δ-confidence bound on the weight
difference between the weight of our candidate set and the weight of thereal top-k set. Figure 7 shows the
average width of this interval for the Naive bound, the CUB bound, and the 2-fold bound withδ = 0.2
andδ = 0.02. It also shows the bound that is derived using the direct method developed in Section 6.7
for confidence levelsδ = 0.2 andδ = 0.02. (We usedδ = 0.1 andδ = 0.01-confidence upper and lower
bounds respectively.)

The direct bounds are not always tighter than the 2-fold, CUB, and Naive bounds, but on many instances
they are significantly tighter. The bounds obtained as the width of the confidence intervals are always posi-
tive whereas the direct method can sometimes provide a negative bound on the difference. The interpretation
of a negative bound is that we are(1− δ)-confident that replacing items from our set with the heaviest items
that are not in our set will decrease the weight of the set by at least the value of the negative bound. In
particular, the direct method enables us in some cases to derive confidence interval for our set being the
unique top-k set.

8 Conclusion and future directions

We developed several rigorous methods to derive confidence intervalsand estimators for approximate top-
k weight and top-k set queries over a sample of the dataset. Our work provides basic statistical tools for
applications that provide only sampled data. The methods we developed varyin the amount of computa-
tion required and in the tightness of the bounds. Generally, methods that areable to uncover and exploit
more of the structure of the distribution which we sample provide tighter bounds, but can also be more
computationally intensive.

We plan to extend our methodology to applications where the available storage isnot sufficient to store
the entire sample. In such applications the sampled records are distributed in many locations or arrive as a
data stream. For these applications, we need to decide which information to maintain on the sample, and to
derive estimators and confidence intervals that are based on this partial information. In addition, we would
like to consider a sequential settings where the algorithm can adaptively increase the number of samples
until it can answer a query with specified precision and confidence bounds.
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