Example of Modular Decomposition

A graph, and its highest modules marked by dashed lines.
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The modular decomposition tree of the graph.
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Linear Arrangement

Input: A graph G = (V,E)
Output: An ordering of the vertices π.
 Sort the vertices of G by their degree (in linear time).

 Create a list L, of sets with V as the only set in L.

 for i = 1 to n do
v = first element of first set in L 
;        

remove v
;       

π(i) = v
;    

split and replace each Lj, into Lj ∩N(v) , Lj\N(v);

            put Lj∩N(v) before Lj\N(v);

            remove empty sets;

return π;

Find Connected Modules

Input: A graph G=(V,E) with no “clique modules”. A Linear Arrangement of G.

Output: The connected modules of G.       

i = 0; //number of stacks

for j = n to 2 do

v = π (j);


CreateStack(v);

 
while (v has a neighbor in a lower stack) do


MergeTopTwoStacks


if (STACK[i].size > 1 and STACK[i].MinDisagree > j-1) then


Declare “STACK[i] is a module”

CretaeStack(v)

i = i+ 1;

STACK[i].MinDisagree = n + 1;

STACK[i].CommonNeighbors = N(v);

MergeTopTwoStacks

S = STACK[i].CommonNeibors ∩ 
STACK[i-1].CommonNeibors;

STACK[i-1].MinDisagree = min(STACK[i].MinDisagree, 

      STACK[i-1].MinDisagree,

      



      {π(v):v
[image: image3.wmf]Î

{STACK[i].CommonNeibors [image: image4.wmf]È

 

STACK[i-1].CommonNeibors} and

        v 
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 S })

STACK[i].CommonNeibors = S;

i = i –1;

Identify Prime interval Graphs

Obtain the initial partition P of the set of maximal cliques.

Move (and delete from the clique tree) the edges in the clique tree crossing

    the two sets of maximal cliques into CrossingEdge.

While (CrossingEdge 
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 0) do

Pick and delete an edge CiCj from CrossingEdge


For each unprocessed  v 
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 Ci∩Cj do


For all sets Si
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P do
                        partition Si into maximal cliques containing v, Si’, and those that do not, Si’’.

                        If (Si’
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0 and Si’’
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0) then



Replace Si by Si’ and Si’’ according to the refinement rule.




For each edge, e, in the clique tree between a member of Si’ and a maximal


clique not in Si’, remove e from the clique tree, and add it to CrossingEdge.



 

Example of executing the algorithm:
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The linear arrangement π: a c e f d g b h I

The initial configuration:

[C6] [C5 C4 C3 C2 C1]                               CrossEdge = {C6C5}

After h on C6C5 is used for partition…    CrossEdge = {C5C1}

[C6] [C5] [C4 C3 C2 C1]

After e on C5C1 is used for partition…    CrossEdge = {C4C1,C2C1}

[C6] [C5] [C3 C1] [C4 C2]
After a, c on C2C1 is used for partition…    CrossEdge = {C4C1,C3C1}

[C6] [C5] [C3] [C1] [C2] [C4]
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We will discuss:

		   Chordal graphs and Interval graphs. 

		   Modular Decomposition of graphs. 

		   Modular Decomposition of Chordal graphs.

		   Identifying Interval graphs in linear time.









Chordal Graphs: Introduction

What is a chordal graph?

A graph G=(V,E) is a chordal graph, if it contains no induced chordaless cycle, of size more than 3, that is, if it has no hole of size more than 3.



Examples: 





































Interval Graphs: Introduction

What is an interval graph?

An undirected graph, G=(V,E), is an interval graph, if there is a set, F, of n=|V| closed intervals on the real line, F = {I1,…..,In} (the interval Ii  represents the vertex vi), such that (vi , vj) is an edge in G, iff the intervals Ii and Ij intersect. 



Let’s see an interval graph, and its interval representation….

 













Interval Graphs: Introduction cont.

An interval graph: 





And its interval representation:
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Interval Graphs: Introduction cont.

Claim: An interval graph is also a chordal graph.

Proof: Assume G is an interval graph, yet it contains a chordalles cycle (v1, v2, v3,…, vk, v1) for k > 3. We show that there is no interval representation for the vertices v1,…,vk, and thus conclude that there is no interval representation of G.













Modular Decomposition: Overview

What is a module?

Let G=(V,E) be a simple undirected graph, where V and E, are respectively, the sets of vertices and edges of G. A module in G, is a set of vertices, X, such that for every vertex, v, not in X, either v is adjacent to every vertex in X, or v is not adjacent to any vertex in X.  Notice that all the singleton sets of one vertex, and the set V, are clearly modules. We call them trivial modules. G is prime iff it contains only trivial modules.

Example: 

 b

 d

 a

 f

 c

 d















Modular Decomposition: Overview cont.

Some trivial facts about modules:

A graph may contain an exponential number of modules (consider a clique) thus we can not expect to represent all the modules explicitly.

We thus seek to find an efficient implicit representation of the modules.

We create a Decomposition Tree, where each internal node, v, represent a module, Xv, and the children of v, represent the modules of G[Xv]. We have V(G) as the root of the tree.

We now turn to a formal definition of the Decomposition Tree.













Modular Decomposition: Overview cont.

MD(G) (Definition of the modular decomposition of G)

If G has one vertex, v, then return v.

Let r, be a new internal node, in the modular decomposition tree.

If G is disconnected then, for each connected component, C, make  MD(C), a child of r. Finally mark r as degenerate.

Else if the complement of G is disconnected, then for every connected component of the complement, C, make MD(C), the child of r. Finally mark r as degenerate.

Else for every highest submodule X, make MD(G[X]) a child of r. Finally mark r as non-degenerate.













Modular Decomposition: Overview cont.

Clearly all the nodes of the tree are modules of G. It can be easily shown that the union of a set of children of a degenerate node, is also a module of G, and that any module of G that is not a node in the tree, is the union of some children of a degenerate node. We thus have an implicit representation of the modules of G.

Notice that keeping in each internal node, the vertices it consists, may require (n2) space. 

An alternative solution is to keep in each node, a pointer to a list of its children. This solution requires O(1) memory per node, thus O(n) memory for the entire tree, which is optimal. 

This solution still enables us to list the vertices of a module X, in optimal O(|X|) time, by enumerating the leafs of its subtree.

Let’s see the MD-tree of an n-clique, an n-cycle and an n-Star.













Modular Decomposition: Overview cont.

A “wild” algorithm for Modular Decomposition:

1. Create a trivial module X={v}, from an arbitrary vertex v. 

2. Add vertices to X, while it is still a module.

3. Replace X, by a marker vertex.

4. Continue recursively, on G[X] and G\X.



Stages (1) and (2) take O(n^2), thus we get:

T(n) = T(|X|) + T(n-|X|) + O(n2) = O(n3) 













Modular Decomposition: Overview cont.

 

Current solutions to the problem:

1. There are some rather complicated O(n + m) algorithms for modular decomposition on general graphs.



2. We now turn to describe a simple O(n+m) algorithm, for performing modular decomposition on chordal graphs. 













MD on chordal graphs: Strategy

 

We will identify the modules in three steps: 

		 Identify modules that form a clique.

		 Identify modules that form a connected component.

		 Identify modules that form an independent set.

		 We will perform each step in O(n+m), and thus get a linear time algorithm, for modular decomposition on chordal graphs.















MD on chordal graphs: clique modules

 

1. Create a set of doubly connected linked lists, with initially one list of the vertices of G.

2. For every vertex v: 

     Partition each list, into neighbors and non-neighbors of v.

If we have a list with more than one vertex, it is a clique module.

How can you do that in O(n+m)?













MD on chordal graphs: connected modules

 

We will first perform a linear arrangement of the vertices of G:

1. Sort the vertices of G by their degree (in linear time).

2. Create a list L, of sets with V as the only set in L.

3. For i = 1 to n do

         v = first element of first set in L

         remove v

         (i) = v

         split and replace each Lj, into Lj  N(v) , Lj\N(v)

         put Lj  N(v) before Lj\N(v)

         remove empty sets













MD on chordal graphs: connected modules

 

The following can be proved: 

Let S be a connected module, in a chordal graph with no “clique module”. If  is a linear arrangement on G then:

1. All vertices in S are ordered consecutively. 

2. -1 (u) > -1(v)  v in N(S) and u in S. That is all the neighbors of S, are ordered before S.



We can now easily identify the connected modules using the following algorithm (in the papers)….













MD on chordal graphs: connected modules

 

We maintain a stack of stacks, where for each stack we keep its size, its common neighborhood, and the smallest index on which the vertices disagree. Each stack is a candidate for module.

We must enforce two conditions:

1. No vertex in a stack is connected to a vertex in a lower stack (why?)

2. All the vertices in a stack must have the same neighbors outside the stack.

The proof of correctness, immediately follows from the lemma on linear arrangement.

We turn to prove that it indeed works in O(n+m).













MD on chordal graphs: connected modules

Complexity of finding connected modules:

 

		 Ignoring the subroutines, the main loop takes O(n).

		 Each call to CreateStack(v), takes O(|N(v)|), and a total of O(m).

		 The cost of MergeTopStacks is proportional to their neighborhoods (under what assumption?).

		 Any common neighborhood is not larger than any vertex in the stack.

		Charge the cost of a MergeTopStacks, to the highest vertex at the lower stack, and the lowest vertex in the higher stack.

		These vertices will never be at the ends of a stack, thus they will never be charged twice.

		All MergeTopStacks take O(n+m), and so does the entire stage.















MD on chordal graphs: independent modules

 

After finding all the modules that form a clique, or a connected component, we are left with modules that must be independent sets.

Finding modules that are independent sets is similar to finding modules that form a clique, and can be done in O(n+m).

We have thus shown how to find all the modules in O(n+m). 

To create the decomposition tree, whenever a module, S, is reported, replace S by a marker vertex, v,













Identifying interval graphs

 

We describe how to check if a prime graph is an interval graph in O(n+m). Together with the O(n+m) algorithm for modular decomposition on chordal graphs, we will get an O(n+m) algorithm for identifying interval graphs.

We will use the following claim:

Lemma: Given a chordal graph G=(V,E), one can create in O(n+m), a tree, T, such that the nodes of T, are the maximal cliques of G, and for every vertex, v in G, the nodes representing the maximal cliques containing v, create a connected component in T.

Let’s see an interval graph, and its clique tree…













Identifying prime interval graphs
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Identifying prime interval graphs
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We will also use the following lemma:

Lemma: A graph G, is a prime interval graph iff, its maximal cliques can be uniquely ordered, such that for every vertex v, the maximal cliques containing v, occur consecutively.













Identifying prime interval graphs

 

Refining a partition:

Let A and B, be two sets of maximal cliques, where A is left of B, in a linear maximal clique arrangement. Suppose v is shared by two cliques Ca from A, and Cb from B. If X, is a set of maximal cliques at the right of A, all cliques in X containing v, must be at the left of those not containing v.
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Chordal Graphs: Introduction

What is a chordal graph?

A graph G=(V,E) is a chordal graph, if it contains no induced chordaless cycle, of size more than 3, that is, if it has no hole of size more than 3.



Examples: 





































Identifying prime interval graphs
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Identifying prime interval graphs
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We will discuss:

		   Chordal graphs and Interval graphs. 

		   Modular Decomposition of graphs. 

		   Modular Decomposition of Chordal graphs.

		   Identifying Interval graphs in linear time.









Chordal Graphs: Introduction

What is a chordal graph?

A graph G=(V,E) is a chordal graph, if it contains no induced chordaless cycle, of size more than 3, that is, if it has no hole of size more than 3.



Examples: 





































Interval Graphs: Introduction

What is an interval graph?

An undirected graph, G=(V,E), is an interval graph, if there is a set, F, of n=|V| closed intervals on the real line, F = {I1,…..,In} (the interval Ii  represents the vertex vi), such that (vi , vj) is an edge in G, iff the intervals Ii and Ij intersect. 



Let’s see an interval graph, and its interval representation….

 













Interval Graphs: Introduction cont.

An interval graph: 





And its interval representation:
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Interval Graphs: Introduction cont.

Claim: An interval graph is also a chordal graph.

Proof: Assume G is an interval graph, yet it contains a chordalles cycle (v1, v2, v3,…, vk, v1) for k > 3. We show that there is no interval representation for the vertices v1,…,vk, and thus conclude that there is no interval representation of G.













Modular Decomposition: Overview

What is a module?

Let G=(V,E) be a simple undirected graph, where V and E, are respectively, the sets of vertices and edges of G. A module in G, is a set of vertices, X, such that for every vertex, v, not in X, either v is adjacent to every vertex in X, or v is not adjacent to any vertex in X.  Notice that all the singleton sets of one vertex, and the set V, are clearly modules. We call them trivial modules. G is prime iff it contains only trivial modules.

Example: 
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Modular Decomposition: Overview cont.

Some trivial facts about modules:

A graph may contain an exponential number of modules (consider a clique) thus we can not expect to represent all the modules explicitly.

We thus seek to find an efficient implicit representation of the modules.

We create a Decomposition Tree, where each internal node, v, represent a module, Xv, and the children of v, represent the modules of G[Xv]. We have V(G) as the root of the tree.

We now turn to a formal definition of the Decomposition Tree.













Modular Decomposition: Overview cont.

MD(G) (Definition of the modular decomposition of G)

If G has one vertex, v, then return v.

Let r, be a new internal node, in the modular decomposition tree.

If G is disconnected then, for each connected component, C, make  MD(C), a child of r. Finally mark r as degenerate.

Else if the complement of G is disconnected, then for every connected component of the complement, C, make MD(C), the child of r. Finally mark r as degenerate.

Else for every highest submodule X, make MD(G[X]) a child of r. Finally mark r as non-degenerate.













Modular Decomposition: Overview cont.

Clearly all the nodes of the tree are modules of G. It can be easily shown that the union of a set of children of a degenerate node, is also a module of G, and that any module of G that is not a node in the tree, is the union of some children of a degenerate node. We thus have an implicit representation of the modules of G.

Notice that keeping in each internal node, the vertices it consists, may require (n2) space. 

An alternative solution is to keep in each node, a pointer to a list of its children. This solution requires O(1) memory per node, thus O(n) memory for the entire tree, which is optimal. 

This solution still enables us to list the vertices of a module X, in optimal O(|X|) time, by enumerating the leafs of its subtree.

Let’s see the MD-tree of an n-clique, an n-cycle and an n-Star.













Modular Decomposition: Overview cont.

A “wild” algorithm for Modular Decomposition:

1. Create a trivial module X={v}, from an arbitrary vertex v. 

2. Add vertices to X, while it is still a module.

3. Replace X, by a marker vertex.

4. Continue recursively, on G[X] and G\X.



Stages (1) and (2) take O(n^2), thus we get:

T(n) = T(|X|) + T(n-|X|) + O(n2) = O(n3) 













Modular Decomposition: Overview cont.

 

Current solutions to the problem:

1. There are some rather complicated O(n + m) algorithms for modular decomposition on general graphs.



2. We now turn to describe a simple O(n+m) algorithm, for performing modular decomposition on chordal graphs. 













MD on chordal graphs: Strategy

 

We will identify the modules in three steps: 

		 Identify modules that form a clique.

		 Identify modules that form a connected component.

		 Identify modules that form an independent set.

		 We will perform each step in O(n+m), and thus get a linear time algorithm, for modular decomposition on chordal graphs.















MD on chordal graphs: clique modules

 

1. Create a set of doubly connected linked lists, with initially one list of the vertices of G.

2. For every vertex v: 

     Partition each list, into neighbors and non-neighbors of v.

If we have a list with more than one vertex, it is a clique module.

How can you do that in O(n+m)?













MD on chordal graphs: connected modules

 

We will first perform a linear arrangement of the vertices of G:

1. Sort the vertices of G by their degree (in linear time).

2. Create a list L, of sets with V as the only set in L.

3. For i = 1 to n do

         v = first element of first set in L

         remove v

         (i) = v

         split and replace each Lj, into Lj  N(v) , Lj\N(v)

         put Lj  N(v) before Lj\N(v)

         remove empty sets













MD on chordal graphs: connected modules

 

The following can be proved: 

Let S be a connected module, in a chordal graph with no “clique module”. If  is a linear arrangement on G then:

1. All vertices in S are ordered consecutively. 

2. -1 (u) > -1(v)  v in N(S) and u in S. That is all the neighbors of S, are ordered before S.



We can now easily identify the connected modules using the following algorithm (in the papers)….













MD on chordal graphs: connected modules

 

We maintain a stack of stacks, where for each stack we keep its size, its common neighborhood, and the smallest index on which the vertices disagree. Each stack is a candidate for module.

We must enforce two conditions:

1. No vertex in a stack is connected to a vertex in a lower stack (why?)

2. All the vertices in a stack must have the same neighbors outside the stack.

The proof of correctness, immediately follows from the lemma on linear arrangement.

We turn to prove that it indeed works in O(n+m).













MD on chordal graphs: connected modules

Complexity of finding connected modules:

 

		 Ignoring the subroutines, the main loop takes O(n).

		 Each call to CreateStack(v), takes O(|N(v)|), and a total of O(m).

		 The cost of MergeTopStacks is proportional to their neighborhoods (under what assumption?).

		 Any common neighborhood is not larger than any vertex in the stack.

		Charge the cost of a MergeTopStacks, to the highest vertex at the lower stack, and the lowest vertex in the higher stack.

		These vertices will never be at the ends of a stack, thus they will never be charged twice.

		All MergeTopStacks take O(n+m), and so does the entire stage.















MD on chordal graphs: independent modules

 

After finding all the modules that form a clique, or a connected component, we are left with modules that must be independent sets.

Finding modules that are independent sets is similar to finding modules that form a clique, and can be done in O(n+m).

We have thus shown how to find all the modules in O(n+m). 

To create the decomposition tree, whenever a module, S, is reported, replace S by a marker vertex, v,













Identifying interval graphs

 

We describe how to check if a prime graph is an interval graph in O(n+m). Together with the O(n+m) algorithm for modular decomposition on chordal graphs, we will get an O(n+m) algorithm for identifying interval graphs.

We will use the following claim:

Lemma: Given a chordal graph G=(V,E), one can create in O(n+m), a tree, T, such that the nodes of T, are the maximal cliques of G, and for every vertex, v in G, the nodes representing the maximal cliques containing v, create a connected component in T.

Let’s see an interval graph, and its clique tree…













Identifying prime interval graphs
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Identifying prime interval graphs
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We will also use the following lemma:

Lemma: A graph G, is a prime interval graph iff, its maximal cliques can be uniquely ordered, such that for every vertex v, the maximal cliques containing v, occur consecutively.













Identifying prime interval graphs

 

Refining a partition:

Let A and B, be two sets of maximal cliques, where A is left of B, in a linear maximal clique arrangement. Suppose v is shared by two cliques Ca from A, and Cb from B. If X, is a set of maximal cliques at the right of A, all cliques in X containing v, must be at the left of those not containing v.
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Chordal Graphs: Introduction

What is a chordal graph?

A graph G=(V,E) is a chordal graph, if it contains no induced chordaless cycle, of size more than 3, that is, if it has no hole of size more than 3.



Examples: 





































Identifying prime interval graphs
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Identifying prime interval graphs
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