QoS Workshop – Exercise (PERLIMINARY)

Semester 2 – 2004/5 (revised 13/2/05)

Teacher: Prof. Hanoch Levy

Teaching Assistant: David Raz

In this workshop you will write a client-server application whose major goal is to send files from client to server as fast as possible. A secondary goal would be to send multiple files simultaneously and optimize the overall sending rate. You might discover that the two goals may contradict each other.

For that purpose you will implement a transport layer mechanism and some measuring techniques that should support the transport mechanism. We do not expect you to rewrite TCP but rather suggest some new ideas, based on measurements if possible. You should try to be creative in your solution. You may take some ideas from transport protocols such as TCP/SCTP (sliding window, slow start etc) but we encourage you to think of other creative methods. As long as you can explain what you are doing and why, every solution is acceptable!!! We will give bonuses for creative solutions, even if they eventually prove to be worse then others.

We will test your solution under variety of network conditions. To do that you will use the NIST (http://www-x.antd.nist.gov/nistnet/) link emulator in order to emulate links with different characteristics between the two computers. Clearly, your goal should be to work well under as many network scenarios as possible and assure that the files will be properly transmitted.

General instructions:

1. The software will be written under Linux (because the NIST runs on Linux).

2. The client and server MUST run on separate computers.

3. The client and the server will be executed by a command line:
”client –l<Protocol TCP/UDP> –a <server IP address> -p <server port> –f <input file name>”
”server –l<Protocol TCP/UDP> –p <listen port> -d <output directory name>”
The client should write the transfer time to a file.

4. You should also provide GUI that will present some statistics and debugging information in the client, so that you (and us) will be able to monitor the transfer process on-line.

5. The protocol must deal with “out of order”, “ duplicated packets” and “losses” to ensure that the exact copy of the file you sent will reach the destination.

6. You must not use TCP as a transport layer but rather implement your own flow control mechanism over UDP.

7. You should be able to send the files using TCP as well (for comparison).

8. We will put special attention to software-design and coding. You should build your software in accordance with software-design principles and coding standards.

Evaluating your work

You will test your algorithm under a variety of network scenarios. You will examine:

1. How fast the file is transferred, when no other applications are using the link.

2. How fast TCP transfers the same file in comparison to your algorithm

3. How fast several files are transmitted simultaneously, using your algorithm.

4. How fast several files are transmitted simultaneously, using your algorithm and TCP.

5. Competing against each other: running your program against programs of other groups and comparing transfer rates.

We will put attention on documentation, software design and coding.

Submission

We will have three submissions during the course:

1. In the middle of the course, that will contain:

a. Preliminary description of the measuring techniques you will use, transport layer concepts, and some initial results of your algorithm in comparison to TCP.

b. Software design document.

c. First version of Executable files for the client and the server, installation guides and user manual.

2. Towards the end of the semester:

a. Executables to be run by other groups

3. At the end of the course:

a. Detailed documentation of your work, containing an explanation of the principles of flow control and measurement.

b. Software design documents

c. Code

d. Detailed experiments results over a set of link scenarios

At the end of the semester you will demonstrate, in a live demonstration, your program.

Good luck

