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Abstract— We propose a passive measurement methodology to
infer and keep track of the values of two important variables as-
sociated with a TCP connection: the sender’s congestion window
(cwnd) and the connection round trip time (RTT). Together, these
variables provide a valuable diagnostic of end-user-perceived
network performance. Our methodology is validated via both
simulation and concurrent active measurements, and is shown to
be able to handle various flavors of TCP. Given our passive
approach and measurement points within a Tier-1 network
provider, we are able to analyze more than 10 million connections,
with senders located in more than 45% of the autonomous
systems in today’s Internet. Our results indicate that sender
throughput is frequently limited by a lack of data to send, that
the TCP congestion control flavor often has minimal impact on
throughput, and that the vast majority of connections do not
experience significant variations in RTT during their lifetime.

Index Terms— Network Measurements, Traffic analysis, TCP

I. INTRODUCTION

TCP (Transmission Control Protocol) is the dominant end-
to-end transport protocol currently deployed in the Internet,
with a wide range of applications such as Web traffic, grid
applications, and newly emerging peer-to-peer applications
relying on TCP’s transport services. Given this reliance on
TCP, there is currently great interest in understanding TCP’s
performance and characterizing the factors (such as network
congestion, sender/receiver buffer limits, and sender data-
starvation) that can limit its behavior in practice.

In this paper we present a passive measurement method-
ology that observes the sender-to-receiver and receiver-to-
sender segments in a TCP connection, and infers/tracks the
time evolution of two critical sender variables: the sender’s
congestion window (cwnd) and the connection round trip time
(RTT ). As we will see, with knowledge of these two values,
many important characteristics of the sender, receiver, and
the network path that connects them can be determined. For
example, by comparing cwnd with the amount of data actually
sent, one can determine when a TCP connection is starved for
application-level data (i.e., that the connection could support a
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higher transfer rate, if more data were available); by carefully
observing the manner in which cwnd changes in response
to loss, one can identify non-conformant TCP senders, or
the particular conformant flavor of TCP (e.g., Tahoe, Reno,
New Reno); by monitoring RTTs, one can characterize RTT
variability within and among flows, and determine the extent
to which application-level adaptivity is needed to cope with
variable network delays.

Our work makes several important contributions. Our first
contribution is methodological. We develop a passive method-
ology to infer a sender’s congestion window by observing
TCP segments passing through a measurement point. The
measurement point itself can be anywhere between the sender
and the receiver. We only require that packets can be observed
from both directions of the TCP connection, a requirement
our previous work [11] has shown to not be overly restrictive.
In case the connection experiences losses, our methodology’s
estimate of cwnd is sensitive to the TCP congestion control
flavor (Tahoe, Reno, or New Reno) that best matches the
sender’s observed behavior. We also propose a simple RTT
estimation technique based on the estimated value of cwnd.

Our second contribution is in terms of the measurements
made, and the application of our methodology to the traces
gathered within the Sprint IP backbone. We present results
on the distributions of congestion window sizes and RTTs in
the observed TCP connections. Our study is unique in that
it examines a remarkably large and diverse number of TCP
connections. Given our passive methodology and measurement
points within a Tier-1 network provider, we are able to analyze
more than 10 million connections, with senders located in
more than 45% of the autonomous systems in today’s Internet.
We find that sender throughput is frequently limited by lack
of data to send, i.e., that lack of data, rather than network
congestion, is often a limiting factor. We find that the majority
of TCP connections reach a maximum congestion window
on the order of 10 segments but that 50 to 60% of the
packets belong to connections with windows larger than 10
segments. We find that connections do not generally experi-
ence large RTT variations in their lifetime. For example, for
approximately 80-85% of the connections, the ratio between
the 95th percentile RTT value and the 5th percentile RTT
value is less than 3; in absolute terms, the RTT variation
during a connection’s lifetime is less than 1 second for 75-
80% of the connections. Finally, we find that TCP congestion
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control flavors generally have a minimal impact on the sender’s
throughput; the vast majority of the connections would achieve
the same throughput independently of the congestion control
flavor implemented.

The remainder of this paper is organized as follows.
Section II discusses related work. In Sections III and IV
we present our methodology to keep track of the sender’s
congestion window, to infer the TCP sender’s flavor, and to
compute the RTT. In Section V we identify events that can
introduce uncertainty into our estimates and we define bounds
on this uncertainty. Section VI describes the results of the
evaluation of our methodology via simulations and real-world
experiments. Section VII presents our observations derived
from the analysis of packet traces collected in various points
in the core of the Sprint IP backbone. Finally, Section VIII
summarizes our contributions and provides directions for the
extension of this work.

II. RELATED WORK

Numerous measurement studies have investigated the charac-
teristics of TCP connections in the Internet. Many of the early
studies [17] either actively measured end-to-end properties
(e.g., loss, delay, throughput) of TCP connections, or passively
characterized a connection’s aggregate properties (e.g., size,
duration, throughput) [20].

More recently, researchers have focused their attention on
specific details of TCP implementations. [15] develops a tool
to characterize the TCP behavior of remote web servers. Their
approach involves actively sending requests to web servers
and dropping strategically chosen response packets in order to
observe the server’s response to loss. They observe the preva-
lence of various TCP implementations, the presence of TCP
options such as SACK and ECN, and identify conformant/non-
conformant congestion control behaviors. Our approach, by
contrast, is passive and is thus able to easily characterize large
numbers of TCP connections.

In [16], the author had the ability to run tcpdump over a set
of end hosts. The paper describes a tool, tcpanaly, to analyze
these traces, and reports on the differences in behavior of 8
different TCP implementations. Methodologically, our work
is alike, in the sense that both involve passive observation of
the behavior of TCP connection and the use of heuristics to
decide which flavor or implementation of TCP best matches
the connection being observed. However, the scope of [16]
is focused on highlighting the differences between various
TCP implementation stacks. Since our measurement point is
located in the middle of the end-end path, it is not possible
for us to distinguish if a particular sender behavior is due
to events in the network or end-system TCP implementation
issues. Moreover, since we track several millions of highly
diverse TCP connections, we do not concern ourselves with
implementation-level details of the senders. Our main goal
is to track the sender’s congestion window. We only seek
to detect the cases in which our estimate of the congestion
window may be different from that of the sender; we do not
perform a detailed case-by-case analysis of the reasons for
this difference. Also, in [16], the analyzed traces involve

bulk file transfers, hence the author did not have to take into
account effects of sender and application behavior. This aspect
is discussed in some detail in our work. The location of the
observation point also introduces methodological challenges in
estimating a connection’s RTT (in contrast to measurements
taken at the end hosts) and we propose a technique to address
this issue in this work. Finally, our study is much larger in
scale and more diverse.

Another work of interest is [11], which presents a method-
ology to classify out-of-sequence packets,with the same mea-
surement environment as in our current work. As discussed in
section IV, we use the methodology in [11] to identify packet
retransmissions in our traces.

[21] is the work that is perhaps most closely related to
this present work. In [21], the authors passively monitor
TCP connections and develop heuristics that are used to
classify connections according to the factor(s) that limit their
throughput. A technique is also proposed to estimate RTT
by selecting a value (from among a set of predetermined
values) that most closely matches the observed packet flight
dynamics. Our work differs from [21] in several important
respects. Most importantly, our goal is not to study the rate-
limiting factors of TCP, but more fundamentally to develop
a methodology for estimating cwnd and RTT. These are
arguably the two most important pieces of TCP sender state.
As we will see, knowledge of these values will allow us to
study many characteristics of TCP connections. These values
can be used to determine the factors that limit a TCP’s
throughput. These values can also be used to detect non-
conforming TCP senders, and to determine the extent to which
various “flavors” of TCP are used in practice. These values
can also be used to determine how often a newer version of
TCP is able to exercise its enhanced capabilities (e.g., how
often NewReno’s fast recovery mechanism is actually used
in practice). In cases where our work overlaps with [21]
(e.g., in determining the factors that limit a TCP connection’s
throughput), a direct comparison is not currently possible, as
the tools in [21] have not yet been released. We conjecture,
however, that since the techniques in [21] and in this present
work are quite complementary, their combined use will allow
for even better classification of TCP behaviors than either tool
alone.

Several recent efforts have considered the problem of es-
timating the RTT of a connection using passive measure-
ments [12], [13]. These works compute one RTT sample per
TCP connection, either during the triple-handshake or during
the slow-start phase. Our works extends these efforts in that it
computes RTT estimates throughout a connection’s lifetime.

III. TRACKING THE CONGESTION WINDOW

In this section we describe our methodology to keep track
of a sender’s congestion window, cwnd. The congestion
window represents the maximum amount of data a sender can
potentially transmit at any given point in time.

The basic idea is to construct a “replica” of the TCP sender’s
state for each TCP connection observed at the measurement
point. The replica takes the form of a finite state machine
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(FSM). The replica FSM updates its current estimate of the
sender’s cwnd based on observed receiver-to-sender ACKs,
which (if received at the sender) would cause the sender to
change state. Transitions are also caused by detecting a timeout
event at the sender. These timeouts are manifested in the
form of out-of-sequence sender-to-receiver retransmissions,
which are detected using the passive measurement techniques
from [11]. The FSM implementation is described in more
detail in [10].

Estimating the state of a distant sender poses many chal-
lenges:

• In order to process large amounts of data (i.e., hundreds
of GBytes), a replica can only perform limited processing
and maintain minimal state. Our replica thus works in a
“streaming” fashion; it can neither backtrack nor reverse
previous state transitions.

• Given its position in the “middle” of an end-to-end path,
a replica may not observe the same sequence of packets
as the sender. ACKs observed at the measurement point
may not reach the sender. Additionally, packets sent from
the sender may be reordered or duplicated on the sender-
to-measurement-point path. Here, we use use techniques
from [11] to identify and classify such out-of-sequence
packets.

• The manner in which cwnd is modified after packet
loss is dictated by the flavor of the sender’s congestion
control algorithm. We consider the 3 major flavors of TCP
congestion control - Tahoe, Reno and NewReno1 - and
instantiate three different FSMs, one for each flavor.

• Implementation details of the TCP sender, as well as the
use of TCP options, are invisible to the replica2.

All of the considerations above introduce uncertainties into
cwnd estimation, which we discuss in more detail in Sec-
tion V.

Several variables must be initialized in the replica FSM.
The sender’s initial congestion window size, icwnd, is the
maximum number of bytes that a sender can transmit after
completing the triple-handshake and before any ACKs arrive.
The typical value of icwnd can be up to twice the maximum
segment size [3]. An experimental TCP specification allows
icwnd to be as high as twice again this value [2]. We estimate
icwnd by keeping a count of the number of data packets
observed before seeing a receiver ACK. We also initialize the
slow-start threshold (ssthresh) to an extremely large value,
as it is commonly done in TCP stacks [3].3.

During normal operations, a TCP sender can either be in
slow-start or congestion avoidance. The arrival of a new ACK
increases cwnd by 1 or by 1/cwnd, respectively. If the sender
detects a loss via timeout, it sets cwnd to 1 and ssthresh
to max(min(awnd, cwnd)/2, 2), where awnd is the receiver
advertised window. The more interesting case is when packet

1There exist other implementations such as TCP Vegas [4] and TCP
Westwood [5], but we are not aware of any widely used OS stacks which
implement these algorithms, hence we drop these from our study.

2Sprint’s IPMON traces [7] only contain the first 44 bytes of all packets.
Thus, for TCP packets we have only access to the first 4 bytes of the payload.

3In some TCP implementations the sender initializes the value of ssthresh
from its route cache, an issue we discuss in Section V.

loss is detected via the receipt of three duplicate ACKs, one
event that brings out the differences between the three flavors
under consideration:

Tahoe. A Tahoe sender reacts to the receipt of three duplicate
ACKs with a so-called fast retransmit, behaving exactly as if
the retransmission timeout had expired.

Reno. Reno TCP adds fast recovery to Tahoe’s fast re-
transmit algorithm [3]. Fast recovery works on the assump-
tion that each duplicate ACK is an indication that another
packet has successfully reached the receiver. The sender ad-
justs its cwnd to account for this fact: ssthresh is set to
max(min(awnd, cwnd)/2, 2)4 and cwnd is set to ssthresh+
3. Thereafter, the sender increments the cwnd by 1 for every
new duplicate ACK received. Once the sender receives a new
ACK, it resets the value of cwnd to ssthresh, and exits fast
recovery, returning to congestion avoidance.

NewReno. NewReno introduces a simple change in Reno’s
fast recovery mechanism [6] by removing the need to detect
a loss through timeout when multiple losses occur within a
single congestion window. The change occurs when the sender
receives a new ACK while in the recovery phase. In NewReno
the sender checks whether this is a partial new ACK, i.e., it
does not acknowledge all packets sent before fast retransmit.
If the ACK is partial, the sender immediately retransmits the
packet requested by the receiver and remains in fast recovery.
This behavior ensures that the sender is able to retransmit a lost
packet after every RTT without the timeout mechanism. The
NewReno sender remains in this phase until it receives an ACK
that acknowledges all outstanding packets before the recovery
phase, at which point it returns to congestion avoidance.

A. TCP flavor identification

As noted above, the three flavors of TCP can respond
differently to loss events. In order to determine which flavor
of TCP is implemented by a sender, we exploit the fact that a
TCP sender can never have more outstanding unacknowledged
(“in flight”) packets than its usable window size. A sender’s
usable window size is the smaller of cwnd and the window
advertised by the receiver. This forms the basis for our test
to identify the sender’s flavor. For every data packet sent by
the sender, we check whether this packet is allowed by the
current FSM estimate of cwnd for each particular flavor. Given
a flavor, if the packet is not allowed, then the observed data
packet represents a “violation” - an event that is not allowed.
We maintain a count of the number of such violations incurred
by each of the candidate flavors. The sender’s flavor is inferred
to be that flavor with the minimum number of violations,
and, at any time during the life of a connection, the sender’s
congestion window is the value of cwnd as estimated for this
flavor. If no violations are observed for any TCP flavors, we
say that the flavors are indistinguishable. In section VII.B
we quantify the extent to which various flavors of TCP are
observed in our traces.

4RFC 2581 instructs that, after a loss, ssthresh should be set to
max(flightsize/2, 2), where flightsize is the number of packets currently
unacknowledged. We choose min(awnd, cwnd) instead of flightsize to
follow the current implement of TCP in Linux and FreeBSD.
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Fig. 1. TCP running sample based RTT estimation

B. Use of SACK and ECN

TCP sender behavior also depends on two options whose
deployment is reported to be growing fast [15]: Selective
Acknowledgments (SACK) [14] and Explicit Congestion No-
tification (ECN) [18].

The TCP SACK option allows for the recovery from mul-
tiple losses in a single congestion window without timeout.
SACK, by itself, does not change the congestion window
dynamics of the sender, i.e. it only helps in deciding what
to send, not when to send it. Our measurement points do not
have access to SACK blocks. In some cases, it is possible to
detect the presence of SACK blocks and/or infer the use of
SACK information during fast recovery. Detecting and using
SACK information is part of our ongoing work, and is not
considered further in this paper.

An ECN-capable sender explicitly notifies the receiver of
every reduction of the congestion window for any reason
(fast retransmit, retransmission timeout or ECN-echo flagged
acknowledgment). The measurement point could estimate the
congestion window of the sender just by looking at the ECN
bits in the TCP header. Unfortunately, ECN is still not widely
deployed by end-hosts. In the packet traces we studied, only
0.14% of the connections were ECN-aware.

IV. ROUND-TRIP TIME ESTIMATION

In this section we describe a technique to compute RTT
samples throughout the lifetime of a TCP connection, leverag-
ing the cwnd estimation techniques from the previous section.
The implementation of this method is simple and in some
cases results in as many RTT samples as would be computed
by the actual TCP sender. We only provide a brief overview
of our technique here; the reader is referred to [11] for a more
detailed description.

The basic idea behind our RTT estimation technique is illus-
trated in Figure 1. Since we are not able to directly measure
the sender’s RTT sample shown in the left of Figure 1, we
instead measure (i) the round trip delay from the measurement
point to the receiver and then back to the measurement point
(labeled d1 in the figure), and (ii), the round trip delay
between the measurement point, the sender and then back
to the measurement point (labeled d2 in the figure). The
sum of these two delays d1 + d2, as shown in Figure 1,

is our estimate of the RTT. We refer to our method as a
running RTT estimation technique, since it continuously makes
RTT estimates, based on the measured values of d1 and d2
throughout the TCP connection’s lifetime. In the case that
the transmission time of the two data packets in Figure 1 is
exactly the same, our RTT estimate will be exact. We will
investigate the magnitude of the RTT estimation error shortly.
We conclude here by mentioning two important aspects of the
running RTT estimation technique.

An important requirement of the running RTT estimation
technique is the ability to determine which data packet trans-
missions are triggered by the arrival of a particular ACK. This
requires an accurate estimate of cwnd and it is here that our
techniques from the previous section come into play.

Our technique must also be able to stop (and restart) the
RTT estimation as a sender recovers from a loss in order to
closely emulate the behavior of the actual TCP sender (which
does not compute the RTT during the loss recovery). In order
to do this, our technique relies on the knowledge of the state
of the TCP connection, i.e., if the sender is in fast recovery.

V. SOURCES OF ESTIMATION UNCERTAINTY

The idea behind replicating sender state, and tracking various
TCP flavors is not complicated. However, the measurement
point has only partial information about the TCP connections
it observes. Given its location in the middle of the path, it
may not observe the same events as the senders, and vice
versa. Moreover, it assumes complete knowledge of the TCP
stack implementations that may instead present subtle (or
malicious) differences [15], [16]. These two characteristics of
our measurement methodology can introduce uncertainties into
our estimate of sender state. A significant aspect of our work
is to understand how these issues impact our approach (or any
passive measurement approach, in the middle of the end-end
path). In order to address these issues, we start by identifying
events in the network that can result in an ambiguous or
erroneous state at the measurement point. Then, we discuss
how our methodology can detect such events, and provide a
quantitative upper bound on their occurrence.

A. Under-estimation of cwnd

The measurement point may underestimate cwnd if it
observes three duplicate ACKs that never reach the sender.
According to our methodology, the measurement point would
infer that the sender will undergo a fast retransmit and reduce
cwnd and ssthresh accordingly. The sender will eventually
timeout and then retransmit the packet. At this point the
measurement point will detect the timeout and reduce the the
value of ssthresh twice (once for the fast retransmit and then
as part of the timeout) while the sender would do so only
once.

Note that even if the measurement point detects the timeout,
it cannot later reverse its decision. Indeed, the measurement
point would observe the same sequence of packets if the third
duplicate ACK is lost (ssthresh is modified only once) or
if the packet sent due to fast retransmit is lost (ssthresh is
modified twice).
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On the other hand, detection of these cases is relatively
simple. A sender, if greedy, will transmit more packets than
the estimated cwnd would permit. That sender would then
trigger violations in all the TCP flavor FSMs. This way, the
measurement point can identify the connections for which the
congestion window is uncertain.

In order to quantify the frequency of these events, we
counted the number of senders that incur in violations in all
the flavors in the packet traces we study. Only 0.01% of all
senders show this behavior. If we focus on senders with more
than 13 packets to send5 this percentage goes up to 5%. This is
expected given that the more packets a sender transmits, higher
the likelihood that it will incur the loss scenario described
above.

B. Over-estimation of cwnd

Two events will lead to an over estimate of the congestion
window size.

Acknowledgments lost after the measurement point. Every
ACK for new data observed at the measurement point causes
an increment of cwnd. If the ACK is lost before reaching
the sender, there will not be a corresponding increment at
the sender, resulting in an over-estimation of the sender’s
congestion window. Moreover, during fast recovery, any extra
duplicate ACKs observed at the measurement point cause
cwnd to be increased by one. Again, if such ACKs are lost
before they reach the sender, the measurement point will over-
estimate the sender’s cwnd.

Entire window of data packets lost before the measure-
ment point. An entire window of packets transmitted by the
sender and dropped before the measurement point will remain
undetected. This is because, in order to detect a loss, the
measurement point needs either to observe packets from the
receiver related to the packet drops (in the form of duplicate
ACKs) or earlier transmissions of the data packets. In this case
the sender will timeout and update the values of ssthresh
and cwnd while the measurement point will maintain the old
values. The loss of the initial SYN packet is a special case of
this event that will make the measurement point over-estimate
ssthresh (set by the sender to 2) and thus incorrectly consider
the sender to be in slow-start for longer than needed.

The detection of overestimation events is particularly difficult.
In fact, a sender for which the measurement point has a larger
estimate of cwnd would just appear as a “not-greedy” sender,
i.e., with a rate limited by the application or by the kernel
sending buffer size. Not-greedy senders are not uncommon:
Zhang et al. [21] estimate that application-limited senders
account for up to 34% of all senders. Our traces tend to
confirm this estimate, with around 30% of the senders not-
greedy (see Section VII). It is important to remember that these
numbers represent very loose upper bounds on the magnitude
of this type of estimation uncertainty.

5Senders with at least 13 packets may experience a fast retransmit. In fact,
a sender with an initial window of 2 packets and in presence of delayed ACKs
would send 13 packets in 4 flights of 2, 3, 3, and 5 packets, respectively.

C. Window scaling

The sender window is the minimum of cwnd and the
receiver advertised window, awnd. Since, we collect only the
first 44 bytes of the packets and thus can not track the adver-
tised window for all connections. Indeed, for those connections
that use the window scale option [9], capturing only the first
44 bytes hides the scale factor making it impossible to know
the exact value of the receiver window.

In order to estimate how often this problem occurs we first
count the the number of connections that could be using the
window scale option; then, we count the connections for which
cwnd could exceed awnd.

The standard [9] requires end-hosts to negotiate the use of
the window scaling option during the initial connection setup.
Therefore, the size of the SYN and SYN+ACK packet can be
used to infer if those packets could accommodate the window
scale option (that consumes 3 bytes).

For these connections, given that the window scale option
can only “scale up” the window size, we have at least a lower
bound on the size of the receiver window. Therefore, we can
identify all the connections for which we are uncertain of the
sender window as those where cwnd reaches the lower bound
of awnd.

In the packet traces under study, our measurement point
is uncertain of the sender window for around 2% of the
connections. Note that these numbers refer to the case where
the window size is uncertain at least once during the lifetime
of the connection. In general, our methodology allows us to
track correctly cwnd as long as it is below the lower bound
of awnd. When cwnd exceeds the lower bound of awnd we
may underestimate cwnd, as discussed earlier.

D. Issues with TCP implementations

Several previous works [15], [16] have uncovered bugs in
the TCP implementations of various OS stacks. For example,
using the TBIT tool, the authors in [15] found that as many as
8% of web servers probed used a version of Reno which would
behave more aggressively then Reno during the recovery
phase, and about 3% of web servers simply did not cut down
their window after a loss.

Another issue that we mentioned in Section III is regarding
the initialization of the senders ssthresh value. Some TCP
implementations cache the value of the sender’s cwnd just
before a connection to a particular destination IP-address
terminates, and reuse this value to initialize ssthresh for
subsequent connections to this destination. Hence, in such
cases a TCP sender can start out with a smaller value of
ssthresh, which might result in it exiting slow-start earlier
than predicted by the FSMs.

These implementation issues affect our ability to track the
congestion window and RTT of a TCP sender. It is impractical
to detect and track all possible TCP implementations. On the
other hand, we can use the same techniques described above
to identify inaccuracies in the cwnd estimate to discover TCP
senders with non-compliant congestion control or differences
in implementation, and interrupt our RTT and cwnd estima-
tion. For example, a sender that does not react to the receipt
of three duplicate ACKs will later violate all TCP flavors and
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Fig. 2. Mean relative error of cwnd and RTT estimates in the simulations

thus be discovered by our measurement point. Also, a sender
with a smaller initial value of ssthresh which exits slow-
start earlier than predicted by the FSM could appear as a non-
greedy source, prompting us to stop computing RTT estimates.

E. Impact on RTT estimation

RTT estimation is directly affected by estimation inaccura-
cies in cwnd. Our methodology needs to know cwnd in order
to identify the data packet whose transmission by the sender
is triggered by the receipt of the ACK used in the estimation
(see Section IV). Therefore, over- (under-) estimation of cwnd
will result in an over- (under-) estimation of the RTT. For
this reason when the measurement point detects estimation
uncertainty in cwnd, it interrupts RTT estimation for that
connection.

VI. EVALUATION

We validated our methodology using both simulations and
experiments over the Internet.

A. Simulations

In our simulations we used the ns simulator, with a typical
“dumbbell” topology with a single bottleneck link. We gener-
ated long lived flows for analysis and cross traffic consisting
of 5,700 short lived flows (40 packets) with arrival times
uniformly distributed through the length of the simulation.
We did sets of experiments with the bottleneck link located
between the sender and the measurement node, and with
the bottleneck after the measurement point. We also ran
simulations with different parameters for the bottleneck link,
varying the bandwidth, buffer size and propagation delay. The
average loss rate in the various scenarios varied from 2% to
4%.

For each sender we compare the RTT samples measured
with our methodology with the values computed by the ns
sender. Estimated cwnd values are compared to those main-
tained at the sender every time the sender’s window changes.
Given a series of estimated and observed values, we compute
the average of the relative errors for each sender. Figure 2
plots the cumulative distribution of the mean relative errors
for RTT and cwnd. The estimated error for cwnd is shown
to be less than 5% for more than 95% of the senders. Only 1
sender out of the 280 under study incurred an error larger than
20%. In absolute terms, 265 senders have an average cwnd of
less than 0.5 packets, while only 1 had an error of more than
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1 packet. The RTT estimate error is less than 10% for 90%
of the senders, and never exceeds 25% of the actual value.

Simulations can also give us insight into how accurately
our methodology identifies the TCP flavor. Out of the 280
senders, the TCP flavor of 271 senders was identified correctly.
Of the remaining senders, 4 either had zero violations for all
flavors (i.e., they did not suffer a specific loss scenario that
allows us to distinguish among the flavors) or had an equal
number of violations in more than one flavor (including the
correct one). Also, we misclassified 5 connections. This can
happen if the FSM corresponding to the TCP sender’s flavor
understimates the sender’s congestion window, for example,
as in the scenario described in Section V-A. Thus, this FSM
may experience more violations in its estimate of the sender’s
cwnd and this would lead to an incorrect identification of the
sender’s flavor.

We also observed that by increasing the duration of the
simulations, we were able to increase the number of connec-
tions for which we correctly identified the flavor. This is as
expected, since the more packets a sender transmits, the higher
the probability that the sender would exhibit the behavior
peculiar to its flavor.

B. Experiments over the network

We also validated our inference techniques in an experimen-
tal testbed. Our setup consists of PCs running the FreeBSD 4.3
and 4.7 operating systems, with a modified kernel that exports
the connection variables to user space using the sysctl facil-
ity. The PCs were located at the University of Massachusetts,
in Amherst, MA and Sprint ATL, in Burlingame, CA. Traffic
between these two sites passed through an OC-3 access link
in Stockton, CA, which was also passively monitored by an
IPMON system. We carried out our experiments by setting up
200 TCP connections (divided between Reno and NewReno
flavors).

We ran a set of experiments at different times of the day,
over several days, with bulk transfers lasting between 10
seconds and 5 minutes. Given the very low loss rates (rarely
exceeding 0.2%) experienced by the connections our estimate
were very accurate. The error in cwnd was on the order of the
rounding error when converting cwnd from bytes to packets.

Given the low error rates observed in the native Amherst-
to-Burlingame connection, we ran a second set of experiments
using a dummynet bridge in front of the TCP senders [19]
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to emulate a bottleneck link (with loss rates in 3-5% range).
Figure 3 plots the mean relative error for cwnd and RTT.
The error in the cwnd estimate is less than 15% for almost
95% of the senders. In absolute terms, 182 out of the 200
senders exhibit an error of less than 0.5 packets. This level of
error is likely due to rounding errors between the measurement
point and the TCP stacks in the kernels under study. The RTT
errors are also very small: 95% of the senders have an error of
less than 15%. We note that RTT errors below 10% are to be
expected. The average RTT between UMass and Sprint ATL
is around 90ms, thus a 10% error is on the order of the kernel
clock tick in the testbed machines (set to 10ms).

In summary, our simulations and live Internet experiments
have demonstrated the accuracy of our methodology for track-
ing cwnd and RTT. The relative errors were found to be
small, often on the order of (and possibly due to) rounding
errors or clock tick precision.

VII. BACKBONE MEASUREMENTS

The IPMON infrastructure provides packet-level traces from
OC-3/12/48/192 links in several Points-of-Presence (POPs)
in the Sprint backbone6. In the following, we show results
from three data sets: i) a bidirectional OC-48 (2.5 Gbps) link
on the East Coast of the U.S. (named East Coast); ii) two
bidirectional OC-48 links connecting San Jose, CA to Relay,
VA (Transcontinental); iii) one bidirectional OC-48 link inside
the New York PoP (Intra-POP).

Table I presents a summary of the characteristics of the
data sets. All the data sets are 1 hour long and contain a
total of approximately 11M TCP connections. We believe
these traces provide a representative sample of the Internet
traffic. For example, we retrieved the BGP table from Sprint
backbone routers during trace collection, and used the AS path
information to derive the source and destination ASes of the
observed TCP connections. Overall, the data sets contain TCP
connections originating in 5,819 unique ASes. This represents
around 45.3% of the total number of allocated ASes at the
time of the trace collection (we counted 12,848 ASes as of
November 21st, 2002).

A. Congestion window

A first metric of interest is the maximum window that a TCP
sender reaches during its connection lifetime. As mentioned
earlier, the maximum window size is limited by several factors,
including the receiver’s advertised window7. Figure 4 shows
the empirical cumulative distribution function of the maximum
window size during the lifetime of the connections. The five
curves correspond to different thresholds for the size of the
flows.8 The curve with the minimum threshold, 5 data packets,
has the steepest slope since it includes many small connections
that do not have the opportunity to expand their window sizes.

6For more details see http://ipmon.sprint.com
7As discussed in Section V, we remove senders for which we are unsure

of the receiver window from this analysis
8We have combined data from all the three traces for this analysis, since

the distributions of window size were similar across the traces. Please refer
to [10] for a per-trace analysis.
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Fig. 4. Cumulative fraction of senders as a function of the maximum window

The median value of the maximum window for these flows is
8, while 80% of the flows have a maximum window size of
less than 11.

We observe that as the flow size threshold increases, the
distribution of the curves become more similar, with a median
maximum window size of approximately 10 to 12 packets.
This could be because as the connections become larger, they
have a higher probability of either incurring a loss, or being
restricted by the receiver-advertised window. Additionally, the
distributions show a set of spikes at values corresponding to
maximum window sizes of 6, 12, or 16 packets. These values
correspond to connections that are restricted by commonly-
used advertised window values of 8 and 16 Kbytes, with an
MSS of either 536 or 1460 bytes.

Although most of the senders have a relatively small maxi-
mum window size, most of the packets belong to connections
with large window sizes. Figure 5 plots the cumulative dis-
tribution of packets that belong to a connection with a given
maximum window size. Looking at the curve for flows with
at least 5 data packets, we observe that although 80% of
such flows have a maximum window size of less than 11
data packets, they carry only 45% of the packets. We also
observe similar spikes in the distribution of Figure 5 as in the
previous figure, again corresponding to commonly used values
for receiver-advertised windows.

Overall, the throughput of 4% of the connections is limited
by the receiver-advertised window at some point in their
lifetime. These connections account for about 40% of the
packets. If we look at connections with at least 10, 25 and
50 data packets, we observe that 44%, 62% and 72% of such
connections, respectively, are limited by the receiver window.

B. TCP flavors

As described in Section III, congestion window evolution
can depend on the flavor of TCP congestion control. Table II
gives the number of connections and packets in the three data
sets that conform to a specific flavor. The flavor of a particular
TCP sender is defined to be that flavor whose estimated cwnd
values resulted in the minimum number of observed viola-
tions, i.e., packets sent that exceeded the estimated available
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East Coast Intra-POP Transcontinental
Link Speed OC-48 (2.5Gbps) OC-48 (2.5Gbps) OC-48 (2.5Gbps)
No. of links 1 1 2
Unique source ASes 1,565 4,945 2,326
Unique network prefixes 7,359 25,133 11,218
TCP connections 844K 6M 4.9M
Percentage of all TCP connx 18.76% 51.98% 38.76%
TCP Data packets 18M 74M 110M

TABLE I

SUMMARY OF THE TRACES
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Fig. 5. Cumulative fraction of packets as a function of the sender’s maximum
window

window. Senders with no window violations are classified as
“indistinguishable”, indicating that the specific flavor does not
affect the connection throughput. In case of parity between
TCP Reno and NewReno violations, we count the sender as a
Reno sender.

In Table II we consider only those senders that transmit
more than 13 data packets. This way we only consider
connections that have the opportunity to experience a fast
retransmit. These senders account for about 8% of all senders
but contribute to almost 78% of data packets. Interestingly,
the behavior of 97.05% of these senders does not allow us
to distinguish a particular flavor of congestion control. This
is because the congestion control flavors manifest differences
only in the way in which they respond to the receipt of
three duplicate acknowledgments. In our traces, this event is
relatively rare: only 5% of the senders experience a triple
duplicate ACK. Moreover, even after a fast retransmit the
three flavors will exhibit different behavior only in presence
of specific loss patterns. Overall, only 2.95% of the senders
have the opportunity to make use of this flavor-manifesting
behavior over their lifetimes.

Table II also shows the number of packets that belong to
connections of different flavors. Using this metric, the number
of packets that belong to the “indistinguishable” category
drops to 67.5%. This is expected, given that large connections
have a higher probability of experiencing losses that allow us
to classify the flow as a specific flavor of TCP.

Also, the NewReno connections seem to carry a dispropor-

TCP Senders Data Packets
Senders ≥13 pkts 1,56M 139M
Indistinguishable 1,51M (97.05%) 94M (67.51%)
Tahoe 640 (0.04%) 340K (0.17%)
Reno 28K (1.84%) 18.5M (13.33%)
NewReno 17K (1.10%) 26M (19.17%)

TABLE II

TCP FLAVORS
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Fig. 6. Percentage of Reno/NewReno senders (above) and packets (below)
as a function of the data packets to transmit

tionately large number of packets when compared to Reno
senders. But this is expected as well, given that the difference
between Reno and NewReno manifests itself only in presence
of multiple packet losses in the same window of data. The
likelihood of such event happening is higher for long connec-
tions with large windows.

In order to confirm our conjectures we plot in Figure 6
the percentage of senders and packets classified as Reno or
NewReno as a function of the number of data packets sent.
As expected, the number of senders that fall in the “indistin-
guishable” category decreases as the number of packets sent
increases. Also, as the number of data packets sent increases,
NewReno appears to be the more prominant TCP flavor both
in terms of senders and packets.

C. Greedy senders

A sender is defined as “greedy” if at all times the number of
unacknowledged packets in the network equals the the avail-
able window size. Under normal conditions, the measurement
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point would observe a full window of data being sent, a set of
acknowledgments being returned, a new (larger) full window
of data packets being sent, and so on. In this model of sender
behavior, a “flight” is a set of packets sent “together” separated
from subsequent flights by the ACKs from the receiver.

Using our estimate of the window available to the sender,
and this notion of flights of packets, we propose a simple
heuristic to identify not-greedy senders: if the number of
unacknowledged packets (also defined as flight-size), at the end
of a flight, is less than the available window at the beginning
of a flight, then the sender is not greedy. The measurement
point identifies the beginning of a new flight (and the end of
the current flight) as the first data packet observed after an
ACK that acknowledged a data packet in the current flight9.

The basic assumption of this heuristic is that a set of
packets sent in a “flight” by the sender is never interleaved
with acknowledgments for packets in that flight, i.e. that all
acknowledgments that arrive in the “middle” of a flight cover
data packets belonging to previous flights. The validity of
this assumption depends on the position of the measurement
point with respect to the sender and receiver. Indeed, if the
measurement point is very close to the receiver, each data
packet will be immediately acknowledged (or every other data
packet in presence of delayed acknowledgments). Hence, the
measurement point will estimate a flight size of one or, at
most, two packets and deem the sender as not-greedy. In
order to identify those connections for which the measurement
point is “too close” to the receiver, we define the “ACK-time”
as the time between the observation of a data packet and
the observation of the acknowledgment that covers that data
packet. In our discussion, we use the ratio between the ACK-
time and the RTT (called the ACK-time ratio) as an indication
of the proximity of the measurement point to the receiver.

To summarize, we split the lifetime of a connection into
“flights”, and test, at the end of each flight, if the number of
packets sent is equal to the sender’s window at the beginning
of the flight. We only examine senders that transmit more than
4 flights (i.e., send more than 13 data packets). Nearly 54%
of these senders are greedy.

In order to test the impact of the proximity to the receivers
on our classification, we group the senders into four categories
depending on their ACK-time ratio (Figure 7). The figure
shows that the fraction of greedy senders is largest in the cate-
gory with an ACK-time ratio of at least 0.75 (the measurement
point is far from the receivers). In this category, as much as
68% of all senders are greedy for all the flights, and nearly
79% of senders are greedy for 75% of the flights transmitted.

We can consider the greediness of these senders to be
a close approximation of the percentage of actual greedy
senders. However, it is important to know whether this is a
representative set of senders. In order to address this question,
we compare the distribution of size of the connections with an
ACK-time ratio greater than 0.75 with that of all other connec-
tions. Figure 8 plots the quantile-quantile plot of the log of the
connection sizes. We can observe an almost perfect linear fit

9In the presence of packet losses, the measurement point needs to wait for
the end of the recovery phase.
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for flow sizes until 100 data packets (which corresponds to a
little more than 90% of all flows in these two populations), and
a linear-seeming trend for the higher percentiles. This lends
confidence to our assumption that the connections with large
ACK-time ratio are representative of the total population of
connections in our traces.

D. Round trip times

Figure 9 plots the minimum and median values of the RTTs
of the connections in the three data sets. We only plot RTTs
for those connections with at least 10 RTT samples (in both
directions). We choose this threshold to discount the effects
of single erroneous values, and also to have enough samples
to examine the variability of the round trip time within the
lifetime of a flow.

We observe that for 50% of the examined senders the
minimum value of the RTT is less than 150-200 msecs. Note,
however, that the RTT can range from less than 10 msecs, to
as high as 10 secs. The distribution of the median value of the
RTT in the lifetime of the flow is similar in shape to that of
the minimum RTT, and in 50% of the senders, this value is
less than 300-400 msecs.

Next, in Figure 10 we look into the RTT variability within
a connection. To this end, we consider the 95th-percentile
and the 5th-percentile of the RTT samples. In the top plot of
Figure 10 we look at the ratio between these two values. Quite
consistently across the three data sets, for as much as 50-60%
of all connections, the 95th-percentile RTT is less than two
times the 5th-percentile, while for nearly 40% of all senders,
this can range between 2-6 times. In absolute terms, 50% of
the connections exhibit an RTT variability of less that 200-
300ms (bottom plot in Figure 10). Similar observations about
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Fig. 9. Top: CDF of minimum RTT; Bottom: CDF of median RTT
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the variability in TCP round-trip times have also been recently
reported in [1], using measurements taken at a university
access link.10 In their work, the authors report that for 40%
of the senders, the ratio between the 90th-percentile and the
minimum RTT sample of a connection is less that 2, and for
about 50% of the senders, this ratio ranges between 2 − 10.

E. Efficiency of slow-start

TCP’s slow-start mechanism is intended to quickly identify
the “equilibrium” point of a connection so that a sender can
run stably with a full window of data in flight [8]. Once the
connection reaches the equilibrium, congestion avoidance is
used to keep the connection operating around that point. The
assumption behind this overall approach is that the first loss
event is a valid estimator of the available bandwidth.

In order to verify this assumption we compare the maximum
window reached by a sender with the window right before
exiting slow-start (called sswnd). Figure 11 plots the CDF
of the ratio between the maximum window and sswnd. We

10Given the fact that the measurement point is close to the sender in [1],
the authors compute a RTT to be the time difference between a data packet
and its corresponding ACK.
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Fig. 11. Ratio of maximum sender window to the window size before exiting
slow-start

only consider senders with more than 13 packets to transmit
and divide them into three categories based on the packets
sent after exiting slow-start (50%, 75% and 90% of all sent
packets).

We observe that 25% to 55% of the senders reach a max-
imum window that is two or more times larger than sswnd.
Note that a TCP connection assumes that the data rate reached
during slow-start is at most twice the available bandwidth.
Figure 11 shows that a large portion of the connections
actually reach rates that are four times the estimated available
bandwidth.

This may indicate that TCP connections are overly con-
servative and may operate at rates far from the available
bandwidth. Once in congestion avoidance, a TCP connection
could spend many RTTs to move away from the slow-start
dictated operating point. Further investigation is needed to
understand the impact of slow-start on application performance
and to identify how to improve the bandwidth estimation (or
quickly reverse an incorrect decision). This will be part of our
future work.

VIII. CONCLUSIONS

We have presented a passive measurement methodology that
observes the segments in a TCP connection and infers/tracks
the time evolution of two critical sender variables: the sender’s
congestion window (cwnd) and the connection round trip
time (RTT ). The measurement point itself can be anywhere
between the sender and the receiver. This allows us to apply
our methodology to packet traces collected in the middle of
a backbone, providing a significant advantage in comparison
to traditional active end-to-end measurements. We are able to
monitor millions of TCP connections originated and destined
to a large portion of the entire Internet.

We have also identified the difficulties involved in tracking
the state of a distant sender and described the network events
that may introduce uncertainty into our estimation, given the
location of the measurement point. We have also defined
bounds on these uncertainties and investigated how frequently
they occur in the traces under study.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



Our results lead to the following observations:
• The sender throughput is often limited by lack of data to

send, rather than by network congestion.
• In the few cases where TCP flavor is distinguishable, it

appears that NewReno is the dominant congestion control
algorithm implemented.

• Connections do not generally experience large RTT vari-
ations in their lifetime. The ratio between the 95th and
5th percentile of the RTT is less than 3 for approximately
80-85% of the connections.

As part of our future work, we would like to investigate the
efficiency of TCP slow-start, specifically, the issue that the
first packet loss a connection experiences is not a particularly
good estimator for the available bandwidth along the path.

Looking further, our work represents a fundamental building
block for addressing a wide range of research questions about
Internet traffic, such as identifying the root causes behind
packet losses (i.e., congestion, routing, network failures). The
methodology proposed in [11] to classify out-of-sequence
packets represented a first building block. This work comple-
ments [11] with a technique to accurately estimate the sender’s
state and the connection flavor.

The next step is to correlate the behavior of different TCP
connections to identify common patterns. This would allow us
to understand if connections experience congestion in one or
multiple points in the network. It would also allow us to iden-
tify the Autonomous Systems that contribute significantly to
connection loss, and thus drive down connection throughput.
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