Bounded statements in the theory
of algebraically closed fields with distinguished
automorphisms

By Dan Haran*) and Moshe Jarden at Tel-Aviv

Introduction and notation

Let R be a countable integral domain and #(R) the first order language of the
theory of rings augmented by constant symbols for the elements of R. For a positive
integer ¢ we add e unitary operation symbols 2y,..., Z,, and denote the new language
by Z,(R). One can form a countable set of axioms in .%,(R) such that a structure

(F’ O-):<F7+7 s Ofse oy O, [7>ueR

is its model if and only if {F, +, > is an algebraically closed field containing the
homomorphic image R ={ala € R} of R and o,..., 6, are automorphisms of F fixing
the elements d of R. We denote by .#(R) the class of these structures. If R=K is a
field, which is the case of our prime interest, and (F, o) € .#(K), then F is an extension

of K.

In addition to %, (R) we shall consider formulae and sentences in other languages,
whose interpretation is linked with the models of .# (R):

1. The language .#(R) may be used to speak about the fixed field F(a) of
(F, 0) € #(R). This has been done in [7] and [2].

But F(o) is definable in (F, o), in the language %,(R), hence we may assign to
every sentence 0 in ¥ (R) its relativization 0’ to F(o). We denote

T'={0"e€ %, (R)|0is a sentence in F(R)}.
2. Let m2=1 and let (F, 0) € #(R). We put M = F(o) and define
M™M= {aeFI[M(x): M]<m}.

*) This work is a version of a part of the doctoral dissertation of the first author done in Tel-Aviv
University under the supervision of the second author. The first author was partially supported by the
Minerva Foundation while visiting at the Heidelberg University.
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A bounded formula @ is a formula in Z,(R), on whose quantifiers appear as
superscripts positive integers, so-called bounds. Thus in the prenex normal form ¢ is
written as

(Q{mXI) (Q:Iﬂan) [l//(Xl" DR Xm Yla' ) Yk)] 9

where Qs are 3 or ¥V and y is a quantifier free formula in £(R). As to its meaning:
for (F, o) € #(R) and f,. .., € F we write (F, oV E= @By, .., B iff for M =F(0)

(Qr0q € M™) -+ (Q, 0, € M™) [(F, o) = (o, B)] -
(These formulas are definable in the language Z,(R), as we show later.)

3. In the next section we discuss two types of so-called Galois formulae and
sentences and show how to identify them as bounded formulae and bounded sentences
of Z(K), where K is a field.

We denote by T(R) the theory of all bounded sentences of Z.(K) true in all
models of A#(R).

Let K be a field. Let K (resp. K,) be the algebraic (resp. separable) closure of K.
The absolute Galois group G(K)=Aut (KIK)=%(K/JK) endowed with the Krull
topology has a unique (normalized) Haar measure p= p; this may be extended to its
direct product G(K)*. For 4, B G(K)* we shall write 4~ B if u(4 — B)=u(B—A)=0.

For a sentence 0 in Z,(K) we define
AO)=Ag(0)={o=(01,...,0,) € GEK)|(K, o) =0}

We denote by 7(K) the theory of all sentences 0 for which A(0)~G(K)*®
(i.e., pu(4(0))=1). Then two sentences 0y, 0, are equivalent modulo T(K) if and only
if 4(0,)~ A(0,).

Our aim in this note is to compare bounded sentences with a certain type of
Galois sentences, a modification of the Galois sentences introduced in [2]. Instead of
conjugacy domains of subgroups of the Galois groups we use here the conjugacy domains
of e-tuples of elements of the Galois groups. We show that for an arbitrary field K,
every Galois sentence is equivalent to a bounded sentence of ., (K). The converse of
this statement is our main result: Every bounded sentence of Z,(K) is equivalent
modulo 7(K) to a Galois sentence.

Having this result we consider a countable Hilbertian field K with elimination
theory and use Cebotarev fields instead of the Frobenius fields of [2]. Then we proceed,
in principle, with the Galois stratification procedure and achieve in this way a primitive
recursive procedure for the theory of all bounded sentences in T(K).

In the second section we extend the transfer principle of [6] to bounded sentences.
We consider the ring of integers R of a global field K and a bounded sentence 6 of
Z(R). For every prime ideal P #0 of R we denote Fp=R/P and let @, be the Frobenius
automorphism @p(x) = MP. It is shown that the Dirichlet density of

{(PI(Fp, @p) =0}

is equal to the Haar measure of the set Ag(0).
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It can be shown that the bounded sentences of #,(K) do not exhaust all the
sentences of Z,(K): there exist sentences in #,(K) which are not equivalent modulo
T(K) to a bounded sentence. One may therefore ask about the decidability of the
theory of all sentences in .%,(K) which are true in (K, o) for almost all ¢ € G(K)®. This
is yet an open problem.

1. Galois stratifications

Let R be a ring. We show some immediate connections between formulae in
Z(R), Z,(R) and bounded formulae.

Lemma 1. 1. 4 bounded formula ¢ =@(Yy,..., Y) in L(R) is equivalent modulo
T(R) to a formula p=(Yy,..., V) of LAR), i.c., for (F,0)e MR) and By,..., feF
(Fa O-)F(p(ﬁl" LR ﬂk) ¢>(F7 U)’:(?)(ﬂla' LIRS [jk)

Proof. Assume that ¢ is ("X) [y (X, Yy,..., Y})], where ¢ (X, Y) is a formula
of Z,(R). Define ¢ to be

i=1 j=1

/\(Xm_i__Xlanr-l+...+Xr’”:0)J_

Then @ is obviously the desired formula. Thus the Lemma follows by induction on the
structure of ¢ (also observe that

VX)) (WX, V]= @) [ e

Lemma 1. 2. To every formula ¢ =q@(Yy,..., Y,) in L(R) there exists a bounded
formula @=¢'(Yy,..., Y,), equivalent to ¢ in the following sense: for a couple
(F, o) € M/ (R) and Py,. .., By € F(o) we have

(F, o) = @' (B) < F(o) = @(f).
Proof. By induction on the structure of ¢. If ¢ is atomic, put
P'=¢; (P1Vve)' =0iver; (@) =719
and finally (3X) @) =3"'X) ¢". |
Let T'={0'e T(R)|0 is a sentence in ¥ (R)}.
The converse to Lemma 1.2 is not valid, as we shall see later.

We now turn to the main subject of this section: Galois stratification and sen-
tences were originally introduced in [4] to solve diophantine problems modulo every
prime; in [2] they appear — in the context of a decision procedure for Frobenius
fields — in a form which is very similar to the one which we describe below.

We need some preliminary definitions: Let K be a field. A non-empty construc-
tible set 4 over K in the n-dimensional affine space A" is a basic set, if A=V -1V (g),
where V' is a K-irreducible closed set and ge K[X;,..., X, ]. If x=(xy,...,x,) Is a
generic point of ¥ over K, we call it also a generic point of A; K[A]1=K[x, g(x) '],
resp. K(A)=K(x) are the co-ordinate ring, resp. the field of functions of A. A basic set
A is normal, if K[A] is integrally closed.
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Let C< A", A<A™ be basic normal sets, and let ¢:C— A be an epimorphism
defined over K, defined by an m-tuple (f;,. . ., f,) of polynomials in K[X,. .., X,]. Now,
if x is a generic point of C, y={(fi(x)... .. [(x)) is a generic point of 4 and ¢ induces
a K-embedding K[A4]— K[C], which we regard for simplicity as a ring inclusion. If
K[Cl=K[A][u], with u integral over K[A], such that discrgeyxu)(v) € K[A4] * we
say that @: C— A is a basic set cover with a primitive element u. (Note: K[C] is then
the integral closure of K(4) in K(C), cf. [107, p. 264.) If K(C)/K(4) is a Galois exten-
sion, we call the cover a Galois cover, and denote G(ClA) =9 (K(C)/K(A)).

Assume that ¢: C— A is a Galois cover over K. Let (F, oc=(0y,..., o*e))e,/%([()
and put M = F(oy,...,0,). A pointa e A(M) defines a K-homomorphism pg: K{4]— M,
which may be extended to p : K[C'] — M (=the alg. closure of M). Then pK[C]/pKI[A]
is an extension of rings, its corresponding extension of quotient fields K{(c)/K{(a) is a
finite Galois extension. Now p induces an isomorphism between f&’(K(c)/K(c/)) and the
decomposition group of ¢ (cf. [8], Chpt. IX, Prop. 15). Its inverse, composed with
the restriction to K(c¢) defines a continuous homomorphism

p* G(M) — G (C]A)

defined explicitly by the formula

(1) p((p* o) (w)=1(pu), e G(M).

We lift p* in the obvious way to a map

p* i G(M)* — G(CIA) .
The extension p of pg is not unique; however, the set
(2) Aty p la)=1{pfalp: K[C]— M extends po} = {(p*0)*|t € G(C[A)}

is uniquely determined by «. We call it the Artin symbol of a with respect to (F, o)').
The conjugation on (Cl4)¢ (by clements 7€ G(CIAY) (1 1) =T Ty 77h1,7)
defines an equivalence relation on %(C/A)°; the Artin symbol is a conjugacy class.

A Gualois stratification of the n-dimensional (n=0) affine space A" over K 1s a
structure

(3) o = (A G Ay Con (A ier
where A"= () 4, is a finite disjoint union of K-normal basic sets, and for every i€/

iel

C; 25 4, is a Galois cover and Con (4) & G(C,A)° is a conjugacy domain (i.e., a subset
closed under conjugation by elements of G(CJAD).

We define an atomic Galois formula to be
(4 Ar(X;,..., X,yeCon (.«/),
and for a=(ay,...,a,) e A" (M) we write
(F,o)EAr (3= Con ()
if for the unique i€/, such that ¢ € 4,

Ary (@)= Con (4)).

'y As in [2], Section 3 we suppress the reference to the cover ¢ in the Artin symbol.
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Using disjunctions, negations and quantification one may form general Galois
sentences from these formulae.

Remark. Galois formulae may be seen as formulae of an appropriate first order
language. In fact, this is the language, which has for every n=0 and every Galois
stratification <7 of A" over K one n-ary relational symbol (4), — and no other relational
symbols (including equality) apart from these. :

A structure (F, o) € #(K) may then be viewed as a relational structure for this
language in the following way: its domain is M = F(a), and the relation corresponding
to the symbol (4) is defined above.

For a detailed treatment of Galois stratifications the reader is referred to [2],
Section 3. Here we only comment on some minor changes.

First, one may with no loss assume that all the stratifications involved In a
Galois sentence 0 are associated with the same affine space A". Then using the concept
of refinement (see [2], paragraph preceding Lemma 3. 3) and of complementary strati-
fication ([2], Lemma 3. 5) one converts ¢ to an equivalent (modulo 7(K)) sentence 0’
in the following prenex normal form:

(5) (Ql Xl) (Qan) [Ar (Xlw- ) Xn) gcon ('M)] »
where 0,,..., Q, are quantifiers and < Is a Galois stratification.

Next, note that in [2] we define Con (4) and Ar, p , (=Ar,  in [2]) as conju-
gacy domains of subgroups of 4(C|A), while here we take the e-tuples of the generators
of these subgroups. This is somewhat a stronger concept, however all of Section 3
(except Cor. 3. 9) goes through, if the couple (M, o) has the Cebotarev property (which
parallels to being a Frobenius field in [2]):

(*) Let C— 4 be a Galois cover over M, such that M (4)/M is a regular extension.
Let N be the algebraic closure of M in M(C), and let 1=(1y,...,T,) E4(ClA). If
Resy t=Resy 0, then there exists an M-epimorphism p: M[C]— M, suchthat pM[A]=M,
and p*(0)=T1. :

Theorem 1.3. (i) If M is a PAC field and G (M) admits a set of e free generators
Gyy. .., O, then the couple (M, o) has the Cebotarev property.

(i) Let K be a coLvmtable Hilbertian field. Then for almost all o€ G(K)® the
couple {K(0), o) has the Cebotarev property.

Proof. See [2], Cor. 1.4 (and the Remark following it) and Cor. 1. 6. 1

Lemma 1. 4. Every Galois formula 0(Yy,.. ., Y,) is equivalent to a bounded formula
0(Y,,..., Y of LK) in the following sense: for every (F, o) e M (K)and fy,. .., B, € F(o)

(F, o) E0(By..... B) <= (F, ) EO(Br,.... B

Proof. It suffices to prove the Lemma for an atomic formula. Indeed, in the
general case replace the atomic components of © by appropriate equivalent bounded
formulae, and the quantifiers 3,V by 3! v!; the resulting formula clearly satisfies the
requirements of this Lemma.
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Let therefore .o = (A, C; —2 A;, Con (A4,));; be the underlying stratification for
the atomic formula 0(Y,,..., Y,). For every jel and t=(7,..., 7) € Con (4;) let

Pi +
oA = A, C— A, Conj,t(Ai)>ieI

be a Galois stratification of A, where
{(t'1e9(C,lA)} j=i,
0 i
Also let 0; . be the corresponding Galois formula; then, from definitions, 6 is equivalent
modulo T(K) to \/ '\ 0. Henceit suffices to prove the Lemma for a formula

jel teCon(4;)

0:01',1( Y],. s Yk)

Con; (4)) :{

In that case C;j=V(fi,.... /) = V(g), where fi,.... /. g € K[X,,...,X,], is a nor-
mal subset of an affine space A™; there are also hy,..., e K[Xy,. .., X,.], such that
P;j(x)= VI EY N I (x)) for every x e C;. Let x be a generic point of C; over K; then
K[C;1=KlLx, g(x)7'] and there is a primitive element ze K[C;] for the cover
o s A Let po,proe. s Pe € K[Xi,...,X,, U] be such that

c=pole, g(0)7), Tz=pilvg@ ™), =1, e
Finally define 0 to be
n k
(39X - (3X,) QD) [/\f;(X):‘—O/\g(X) U=1r N\ h(X)=Y,
s=1

=1

A 211)0(X> U):/)I(Xa U)]7
=1

where d=[K(C): K(A)].

For (F, o)e #(K) and B,..., fr e M=F(o) we have (F, a)}:(j(/f) iff there is a
K-homomorphism p: K[C;]— F, such that Resg4,1p defines f3 (in particular pK[A4;]1€ M)
and o(pz)=p(r;z) for I=1,..., e This is equivalent to Ary, p (ff) £ Con; (4)). Thus
0 is equivalent to 0. |

Lemma 1.4 tells us, that our Galois formulae may be identified as formulae in
the language Z,(K).

Theorem 1. 5. Every bounded sentence o of Z(K) is equivalent modulo T(K) to a
Galois sentence 6 (i.e., for every (F, o) € 4 (K) we have (F, o) E=w <= (F, 0) }:0).

To prove this theorem we use a new concept which generalizes Galois strati-
fications:

Let C —%» B—" A be a pair of K-morphisms of K-normal basis sets. We call it

. . LAl |/°(p . .
a restricted Galois cover, 1if "% 4 is a Galois cover.

Let (F, 0) € #(K), M =F(0). Denote
B(M, ) =1{be B(F)|W(b)eA(M)}.
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A point be B(M, ) defines a K-map p,: K[B]-— F such that p,K[A]J= M.
Since K[C] is integral over K[B], p, can be extended to p: K[C]— F, which induces
a group homomorphism

pr i G(M)Y — %G (C/A)
(as explained earlier for Galois covers). One easily verifies that

(6) {ptalps: K[C]— F extends po}={(p*o)'l1 € 4(C/B)}
and we call this restricted conjugacy class (= an equivalence class with respect to the
relation of conjugation by elements of %(C/B)) of %(C|A)° the Artin symbol of b,
denoted by Arp p ,(b).

Let B/ 2 4/, j—-1 ,n be K-epimorphisms of K-constructible sets; denote
B=B'x-xB' A=A"x xA” and define : B— 4 by

Wby, ... b)) = (By),..., 9" (b,).
A restricted Galois stratification of the set B is a structure
(7) B = (B, C;—2 B~ 4;, Con (B)>ie;

where B= 1)) B; is a finite disjoint union of K-normal basic sets, and for every ie [
iel
C, -2 Bi——'/'—‘»Ai is a restricted Galois cover with ;,=Resgy, and Con(B;) is a
restricted conjugacy domain (= a union of restricted conjugacy classes) of %(C;/A4;)¢
with respect to B;. (It follows that 4= () 4,.)
iel

An atomic restricted Galois formula over B is an expression

(8) [Ar (Xy,..., X)) Con (%4)].
For (F,0)e #(K) and b=(b,,..., b,) € B(M, ), where M =F(o), we write

(F. o) = [Ar ()= Con (#)] i Ary, ;. ,(b) < Con (B,)

for the unique /e [ such that b€ B,

From these formulae one forms general restricted Galois formulae over B by
negations, disjunctions, conjunctions and quantifications. However, it is important to
notice that there are n distinct types of variables, according to their location in atomic
formulae, and a variable of type i/ (1 £i<n) may appear in atomic components at
i-th place only (i.e. instead of X; in (8)). The interpretation of such formulae in
(F, o) € M(K) is obvious: a variable of type i is quantified in B(F(0), ¢).

Before going on we want to comment on the process of refinement of restricted
Galois stratifications (see also [2], a remark preceding Lemma 3. 3). Assume that for

some i€l in (7) B;= |J B; and that there are lestllcted Galois covers
kel’

[ Wi
G- B4y, kel

where ;= Resy, ;. For every ke I' the inclusion B,< B; defines a Khomommphlsm

Uo 2 K[B;] _+K[Bk] which may be extended to p,: K[C] — K(Bk) Assume that
,ukK[C]gK[Ck] Then 1, induces a group homomorphism pf 1 G(Cp/A) — G(C,/A)°.

2%
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This may depend on our choice of the extension p, however

Con(Bp)= U [w~' Con(B)T

1e G(Cl/BL)
depends on p, , only. Now if (F, 0) € A(K), M =F(o) and b e Bi(M, ), then
Ary p ,(b)cCon (B) < Ary, p ,(0) < Con (By) .

Therefore the refinement %' of % obtained by replacing (C; — B;— 4;, Con (B)> in
(7) by (Ci— B}~ A}, Con (B;)),.; is equivalent to # in the sense indicated above.

Now, if B/< B, is a K-basic set, we can find — by subtracting hypersurfaces from
the sets under consideration — two K-normal basic open subset B € B; and (i < C,
such that A7 = (B!) is also a K-normal basic set and (Y Res o B Res Al is a
restricted Galois cover. Moreover, if L2K(C{)2K(A4;) is a finite Galois tower of field

"ot

extension, we can find — again, replacing C7, B{, .4 by their open subsets — a re-

’

stricted Galois cover D} —— B Resty A7, such that K(D{)=L and K[D/]J< K[({].

Thus, using the stratification Lemma (see [2], Lemma 2. 13) we may replace a
given restricted Galois stratification over B by a refinement (7), where the sets B; of 4,
which are obtained by partition of the corresponding sets in the original stratification,
may be chosen to have certain additional desirable properties and the fields of functions
K(C,) of their covers C; may contain certain given extensions of K(A;). The new
formula (3) obtained in this way is equivalent to the formula associated with the
original stratification, for all structures in .#(K).

As an application consider two restricted Galois stratifications %', %" of a set B.
Using their refinements we may assume with no loss that they have the same restricted
Galois covers {C;— B;— A;};.; and hence differ only in the restricted conjugacy do-
mains: Con’ (B;) for #' and Con" (B) for #", il It is then clear, that the formula

[Ar (X) g Con (B)] v I[Ar(X)<Con (B")]
is equivalent modulo 7(K) to a formula (8) associated with (7), where
Con (B)=Con’(B;) w Con"(B), i€l.
Moreover, the formula — [Ar (X) < Con (#4)], associated with (7), is equivalent

modulo T(K) to an-atomic formula [Ar(X)< Con (#°)], where 2 is the complementary
stratification (cf. [2], Lemma 3. 5):

(9) B¢ = (B, C;—2 B, A;, Con (B)Yie
with Con‘(B;,) =% (C;/A4;)¢—Con(B;), i€l
Thus a restricted Galois sentence over B is equivalent modulo the theory of all

restricted Galois sentences over B, which ar~ true in all structures in .#{(K), to a
sentence of the form

(]0) (Ql)(l) (Qan) [Af (/\/lﬁ' c s Xn]gcon (B)] »

after a possible permutation of the components B',.... B" of the set B.
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Remark 1. 6. If ¢ =id, (10) is equivalent to a Galois sentence. Indeed, for every

1<j=n, B/ is in some affine space A™, hence BS A=A x --- x A™. We may represent
A — B as a disjoint union () B; of K-normal sets and for je I’ define 4,=B,, ¢,=id,
iel’

Con (B;) =0. One may in an obvious way identify A with A™ where m=m; + - +m,.

Then the Galois sentence

(O1Y11) (1 Y1,,) (0, Vo) (@Yo ) AT (Yinse oy Yigse s Yoo ooy Y ) Con (8],
where

B = A", A; = B, Con (B))icrors
is obviously equivilent to (10).

Lemma 1. 7. Lvery restricted Galois sentence 0 is equivalent to a Galois sentence 0
in the following sense: (F, o) k= 0 < (F, 6) =0, for every (F, 6) € 4 (K).

Proof. With no loss we may assume that 6 is (10) and % given by (7).
Let 1<r<nandput B=B"x -+ x B"™ x A" x B""! x --- x B". Define epimorphisms
iB—A by =y x - xyIxidxy ™ ix o xy" and ¢: B— B by
=idx - xid x " xid x -+ x id.
(Thus f o ¢ =)

By the refinement process described above we may assume that there is a par-

tition B= U B, into K-normal basic sets B, such that for every i e/ there is a unique
kel

k e I with ¢(B,)=B,. For every k e I pick up an ie I such that $(B,) =B, ; then there
is a restricted Galois cover Ck——/)ﬁ—» BkMAAk, where C,=C,, A=A = (B, and

@ =(Resp, @) o ;. By a further refinement we may even assume, that f01 every i'el
with @(B;) = B, we have C. = C;=C,, hence this cover is indeed well-defined (i.e. in-
dependent of the choice of ieI).

Suppose that we have defined for every kel a restricted conjugdcy domain
Con (B,) in 9(C,/A,)°. Then we obtain a restricted Galois stratification of B3

(11) B =B, " B, 2% 4, Con (By)y.i
and a corresponding sentence
(12) (01 Xy) - (Q,X,) [Ar (X,,..., X,) =Con (#)].

We claim that there is a way to define {Con (B,)},.; such that the following two
formulae are equivalent

(13) (Q.X)[Ar(X,,..., X,)<Con (%)]
(14) (QrXr) [Ar (le' R Xn)g n( )]

hence also (10) will be equivalent to (12).
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However, it suffices to take Q,=3. Indeed, if the claim has been proved in this
case, then
(VX,) [Ar (X)cCon (#)]=1(3X,) [Ar (X) < Con (%]
. (3X,) [Ar (X) < Con (#)]= (¥ X,) [Ar (X) = Con (B)°)],
where —¢ denotes complementary stratifications defined in (5).

Let therefore Q,=13. Define for every k € I

(15) Con(BYy= U \J Con (B
iel  1e9Ci/BiO
@(Bi):ﬁk

Let (F, 0) € M (K), M=F(o) and let b;e Bi(M, ), j=1,...,r—=1,r+1,....n Then
it is enough to show that the following two statements are equivalent:

(16) (F’ 6) ;:(HXI) [Ar (bl" AR br~1’ Xr’ br'i'lv' R} bn)gcon ('%)]a
(17) (F’ O-) }:(EX") [AI (bl" v br—l’ ‘)(r7 br+1»- B bn)gcon (%):I

Now, if (16) holds, there is a b, € B"(M, "y such that b=(by,...,b,,. .., b, € B,
for some i€l and Arp r ,(b) < Con (B)). Then b, =y"(b,) € A(M, id) and

b =(bysr s by ts bl byrrs. s by) € B(B) =B,
for a unique k € I. Since Arl;k,F,(,(/)/),_C:Ar,h,F’(,(b), and since Arg, p (b)) is @ restricted
conjugacy class of 4(C,/4,)° with respect to By, we have that

Arﬁk,l’,o‘(b/) = U N AI‘B,«,F,(T(b)la

16‘.4(5,(/13,‘)
hence (17) follows.

If(17) is true, there is a b, € A"(M, id) such that ' =(by,.. .. b, 1. bl bpiy,s. .. D)) € Bk
for some k e I, and Arj,_p ,(0)<Con (B,).Thus the K-map po: K[B,] — K[b'] may be
extended to p: K[C]— K(b') and (p*o)' € Con (B;) for some i e with ¢(B;) = B, and
some 1 € ¥(C,/B,). Without restriction 1 =1d, otherwise replace p by p 1. Now Resgp 0
defines a point b e B; with Ary p ,(b) < Con (B). Since @(b)=>~’, we have

b:(bl,. N /7,._1., b’., br+1,. N bn)
where y'(b,) =b.e€ A" (M), hence b, € B"(M, Y"). Thus (16) follows.
This ends the proof of this Lemma, by induction and by Remark 1. 6. 1

Let m be a positive integer and let i : A™ — A™ be defined by /(z) = (51(2)s . s (D)
where s,,...,s, are the elementary symmetric polynomials in m variables. Then for
every z=(z,,. .., z,) € A" the extension K(z)/K(¥(z)) is normal, its automorphisms per-
mute z,...,z, and [K{/(2), zy): K (y(2)]=m. This extension need not be separable;
however, it is easy to find a K-constructible set B< A™, large enough for our purposes,
such that K(Z)/K(l//(:)) is Galois for every z € B. For example

m

B={J [V(Z,H,...,Z,,,)—V( I (Za—Z,,)>].
r=0 a, p=1
a®f

The image A= /(B) of B is a K-constructible subset of A™.
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Thus we obtain (in a notation suited for a later application) the following

Lemma 1. 8. Let m; be a positive integer. There are K-constructible sets B, 4'< A™
. . oo : .
and a K-epimorphism B' —— A’ such that for every z=(zy,. .., z,,,) € B! and every K< M:

(a) K(2)/K(W'(2)) is a Galois extension and [K(Y/(z), z;): K(Y /()] <m;;
(b) every te G(K(2)K(Y/(2) permutes zy,.. ., z,,;
(C) lf Z EBJ(M, l//j), then Zi € M("lj);

(dy if z{ e M), there is some (z,. .., Zyy) e BI(M, Yy with z,=z{. (E.g., let
zy =121, Z,..., z, be all the distinct conjugates of z{ over M and z,,,=--=z,=0.)

Proof of Theorem 1.5. By adding new, suitably quantified variables we may
assume that the bounded sentence w is constructed by disjunctions, conjunctions, nega-
tions and bounded quantifications from formulae of the form

(i f(X,....X,)=0
where fe K[X,,...,X,], and
(i) ZX;=X;.

Indeed, e.g. instead of 2,2, X; =X, we write (3"Y)[Z, X, =Y, A2, Y, =X,],
where m is the bound on the quantifier of X . Instead of 2 f{ (X{,..., X,) £L(X(,..., X))
we insert

@"Y) @) [V~ f(X)=0A Y, —L(X)=0A"(2, Y, =1))],

where the bound m; (resp. m,) is determined from the bounds on quantifiers of
X\,..., X, and the polynomial f; (resp. f;). (Note that for oy € M™), o, € M*> we
have o, +a,, coy o, € M*“#) for every ¢ € M; thus by induction on the structure of f;
one can find m; € N such that for Kg M

e MW, j=1,...,n=filo,. .., a)eM™)
Therefore w may be written in the prenex normal form as

(18) (Q{'”Xl) (Qr'l""Xn) V [(Xla' s Xn) EDA/\ a)l(Xla- f e Xn)]s

Aed

where Qy,..., Q, are 3 or V and D,€ A" for each 1¢ 4 is a K-constructible set and
w; is a conjunction of formulae of type (ii) and negations of such formulae. By
considering intersections of D,’s and their complements we may assume that the D,’s

are disjoint. Moreover, with no loss ) D, =A" (otherwise add index A’ to A for which
Aed

Dl’:An_ U DA and wl' IS ZIXI :XIAZIXI:‘:XI)'

red

For every 1 <j<n let y/: B — 4’ satisfy the conditions of Lemma 1.8. Let
B=B'x - xB" A=A"x - x A", Y=y x - xy"
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Consider the sets
4 e z b - Jd e
D}t: {(411,. s Alml),. A (an, PP an") S Bl(/_“, Zolse - s ‘/“nl) S D/l}

for every J € A. Their intersections with sets V(Zj 0, —Z i) and V(Z; —Z,1,)¢ define

a K-constructible stratification of B. By the stratification Lemma ([2], Lemma 2. 13)

we can find a refinement B= () B; of this stratification (i.c., for every ie/ there is a
iel

unique A€ 4 with B, D; and for every 1<y, jp<n, 1<k Smy, 1Sk, =my, either

B V(Z;x,— Zjx) OF B V(Z;k, ~ijk2):®) such that for every iel

J jaka

B, 0 4= y(B)

is a Galois cover. If K(B)=K(z), where z={(Zi1s- s Zvm)re - o» (Gurse oo Zamy)) IS @
generic point of B;, denote Z= (Z11s Za1s- - > Zy1) and let

(19) Con(B;)={t €9 (Bi4)°| (K(By), 1) = w,(Z) for the unique A such that B; < D3}

(More rigorously we should write instead of (K(B),t) perhaps (m), %), where

A~ ,
7 e (Aut(K(B)) is some extension of 7.) Then
(20) %= (B, B, —% B, %% Ay, Con (B))ies

is a restricted Galois stratification of B. By Lemma 1. 7 to end this proof it suffices
to show that the corresponding sentence (10) is equivalent to (18).

Let, therefore, (F, 0) € A (K), M=F(o). Let 0<r=n and

bj:(bjl""7bjmj)EBj(M’ lp,), j:1,. R

Claim. The following two statements are equivalen!

(Fa G)F(Q:'Kfl r+1) ”'(Q)']"’]Xn) \/ [(blla'-wbrl’Xr-i-lw",Xn)EDl
(21) Aed
/\wl(bll?' Ca brlﬂ Xr+1" ey Xn)])

(22) (F7 J) t:(Qr—FIZr—FI) (ann) [Ar (bl,- LR br, Z,.+1,. ey Zn) gCon (e@)] .

Assume first r=n. There is a unique i€l such that b=(by,..., b, € B; and a
unique A€ A such that B < Dj, hence (byy,...,by) € D;. The point b defines a K-
homomorphism p: K[B;]— Kbl M, and pK[4]c M. Let 1=p* g e G(B,[4)". Then
(21) is equivalent to

(21/) (F» O—) :wi(bllv' R} bnl)'a
and (22) is equivalent to Ary, . ,(b)cCon (B, hence to
(229 (K(B)). )= (21150 - 5 Zut) s

by the definition (19).
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So with no loss we may assume that o, is 2, X;=X;. By Lemma 1. 8 (b) there
is 1<k €m; such that 7,(z;) =2z u; hence a,(bj1) =bj- But since B,SV(Z;,—Z ;) or
B, " V(Zy—Z;1) =0, we have: £, =2, <> by =b;. Hence 1,2y =2, < by =bj,
which proves the equivalence (217) < (22').

We now proceed by induction on n—r (the case r=0 being our aim) which is
very easy by the conditions (c), (d) of Lemma 1.8. |

For the benefit of the reader we now recapitulate the main features of the proof
of Theorem 1. 5:

(I) We show that a bounded sentence is equivalent to a restricted Galois sentence,
whose covers

C; - B - 4

satisfy ¢;=1id.
(I) We “push the B/s one by one down”, i.e. show by induction, that this

restricted Galois sentence is equivalent to another one, whose covers

w! Wi
;L5 B —> A4;

have | =1d. ‘
(II) This sentence is equivalent to a (proper) Galois sentence.

Corollary 1.9. Let w be a bounded sentence in FLAK). Then we can find (effectively,
if K is a field with elimination theory) a finite Galois extension L|K and a conjugacy
domain Con of elements in 9(L|K)¢ such that for an e-free Ax field M withGIM) = {oy,. .., 0,

(M, o) =0 < Res o eCon.

Proof. This follows from Theorem 1. 5 and an appropriate analogue of Theorem 3. 8
in [2]. |

Corollary 1. 10. Let w be a bounded sentence in L,(K) such that w e T(K) and let
(F, 6) be a model in A (K) such that F(o) is an e-free Ax field. Then (F, o) .

Corollary 1. 11. Let K be a countable Hilbertian field with elimination theory. If o
is a given bounded sentence in Z,(K), then its measure p(Ag(w)). can be effectively
computed. In particular T(K) is a primitive recursive theory.

In the following Corollary we show that, in a sense, the language Z,(K) is
stronger than the language Z(K):

Corollary 1. 12. Let K be a countable Hilbertian field. Then there is a bounded
sentence @ in £, (K) not equivalent modulo T{K) or even modulo T(K) to any sentence
of T'. (Recall the definition of 7" from Lemma 1.2.)

Proof. If @ is a bounded sentence in Z,(K), by Cor. 1.9 there are L/K and Con
(as there) such that Ag(w)={r€e % (L(K)*|Res; 7 e Conj (in particular Ag(w) is measur-
able). Conversely, for every finite Galois extension L/K and a conjugacy domain
Con< %(L/K) there is a Galols sentence [Ar < Con ()], where o = (A°, C— A°, Con)
such that K[C]=L, hence by Lemma [.4 there is a bounded sentence we.%,(K)
with Ag(o)={re G(K)*|Res, e Con}. :
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If 0’ € T", we obtain by Lemma 1. 2 the same characterization of Ax(6); however,
from [2], Theorem 3.8 we see that Con also satisfies the following condition:

fr=(T1..., T T =(T1,. .., T E G(LIK), Ty Te)=LThs o s 7,y and 7t e Con,
then also t" € Con.

Conversely, from [2], Cor. 3.9. it follows that for every finite Galois extension
and a conjugacy domain Cong %(L/K)* satisfying this condition there is a sentence
0 e #(K) such that

Ax(0) ~ {c e G(K)*|Res, g e Con}.
Now K, as a Hilbertian field, certainly possesses a cyclic extension L of degree

=2 (cf. [3], Lemma 4.3). Let 7y, 7{ be two distinct generators of %(L/K), and let
Con={(1;,1d,. .., id)}. Then

(r),id,...,id) ¢ Con, but (zi,id,...,id)= {1y,1d,. .., idy =% (L[K).
Hence the Corollary follows by the characterization above. (E.g., if K=0, put o to be

N X*+ X+ X+ X +1=0A2X=Xx7]) 1

2. The transfer principle

Let R be an integrally closed integral domain with a quotient field K. The
treatment of models .#(K) in section 1 is based on rings finitely generated over K;
however, one may replace them by rings finitely generated over R. E.g., if 4=V -V(g),
where V< A" is a K-irreducible set defined by polynomials over R, with a generic
point x over K and ge R[X,,..., X,], we let R[4]=R [x, g(x)~'] be the coordinate
ring of A. We shall say that A4 is an R-normal basic set if R[A] is integrally closed 3.

Let @: R — R be an epimorphism onto a ring R with a quotient field K. Extend
it in the obvious way to polynomials over R. Now if A=V(fi..... [ —V(g) is a
K-constructible set defined by polynomials over R, we put

AP =V (/0. f) =V (&),

which is a K-constructible set defined over R.
Assume, in addition, that A is an R-normal basic set in A"

Let O be some universal domain over R. Define

A ¢ =1{ae Q| can be extended to a homomorphism R[47] — R[a] such that x —a} .

%) Let R=2, K=0Q; then A4, = V(X2 +4) and A= V(X?+4)—V(2) are equal as sets over Q. but
7[4,]=2Z[2i] differs from 7[A,]=2[2i,2""}=2Z[i]. Moreover: A, is Z-normal, while 4, is not. This
peculiarity is rigorously explained, in the terms of modern algebraic geometry, by observation, that we
actually have here two different affine schemes over SpecZ, and then consider their fibres over their generic
points, which turn out to be equal. In what follows we consider the reductions of these schemes over primes

in Z (cf. [5], p- 89).
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The sets 4%, A ? are not necessarily equal. However, one may show, that there is a
constant 0+ y € R, such that 4% = A4 ?, whenever @(y) #0. Furthermore, by [2], Cor. 2. 9,
y may be chosen such that if ¢(y) #0 then: 4 is also a non-empty set; it has the same
number of components over K as ¥ has over K; given another R-normal set B, then
B?c A% iff B 4 (of course, y depends on B t00).

Following this idea one may generalize the theory of Galois stratification: Let
C-5 4 be a Galois cover of sets defined over R (i.e. R[A]J<R[C] are integrally
closed, R[C]=R[A] [z], z integral over R[A], discrgyz€ R[4]™) and let a e A?(M),
where M is a field extension of K. Then R -5 R ¢ M can be extended to a map
po: R[A]— M[a] =M, and its extension p : R[C] — M induces a group homomorphism
p* G(M)— g(C/A):“J(K(C)/K(A)). This p* is used to define the Artin symbol, etc.

This is, in fact, the approach, in which Galois stratification have been originally
defined by Fried and Sacerdote in [4]. Since a rigorous exposition is not very difficult
but rather lengthy, we here content ourselves only with the statement of the relevant
results and some comments upon them.

Theorem 2. 1. Let 0 be a bounded sentence in £,(R). Then one can find — effec-
tively, if R is presented — a Galois sentence \ (associated to a Galois stratification over R)
and an element 0=y € R such that for every (F, o) e #{(R) with ¢: R — F(0) we have:
if @(y)+0, then

(F,o)=0< (F, o).

If M=F(o) is a Cebotarev field, one can find a quantifier free Galois sentence
o and 0=Fvy" € R such that if (y')=+0, then

(F, o)y < (F, o)k ,.

Actually it is even not necessary that M in Theorem 1 be Cebotarev: it suffices
that M have the Cebotarev property of Section 1 with respect to all the regular Galois
covers C'— A’ over M, whose Cebotarev property is actually used in the proof of:
(M, 0) =y <y (see [2], Lemma 3.1). In all of these covers A’%/\I—V(g) with
geM[Y] and degg and deg(C’ are bounded by some constant dependent on the
sentence .

Such is the situation in the finite fields: if M has ¢ elements, then G(M) is
(topologically) generated by @,,, where @, (x)=x%, Vx € M; the above-mentioned condi-
tion is summed up in

Theorem 2. 2. Let d =1 and let M be a field with g elements, g>d*. Let A=A~V (g),
where ge ML Y], degg<d, and let C— A be a Galois cover with deg C <d. Denote
N=M n M(C). If an element 1€ %(C|A) satisfies Resy 1=Resy @), then there
exists an M-homomorphism p: M[C] — M such that pM[A] =M and p* ®,, =1. (This
theorem also follows from [1], Proposition 2 which is proved by analytic methods.)

3%
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Proof. Denote E=M(A), F=M(C). Since F, M are linearly disjoint over N, we
can extend 7 to a unique element 7 € G(FM/E) such that Resgyr=®,,. Let D= FM ().
Since the map Resy: fjl’(FM/ ) — G(M) maps a generator T on a generator @,, and
since G(M)=%9(M|M)= 7, it is clearly an isomorphism. Hence D and M are linearly
dlSJOlnt over M, whence D/M is regular and [D:E]= [FM:EM]<[F:E]<d, also
DM =FM.

Let n be the number of M-rational places of D. By the Riemann hypothesis for curves

In—(g+1)|<2g(D) /g,

where the genus g (D) satisfies (cf. [9])

¢(D)=5(C) 3 (d~1) (d=2) <3 W1

Now
Vazd?=(d—1>+1,

hence

n=(g+1)—2g(D) YVazlqg+1) —(d—D>Vg=1+Yq[)/g—d=1D*]21+/gz 1+ &>
Thus there are at least % +1 M-rational places of D. There are also at most (1+deg g) =d
non-equivalent places of E, which are not finite on M[A]; each of them has at most
[D: E]<d extensions on FE. Hence there is at least one M- place po:D— M finite
on M[A]. Extend it to a place p DM — M such that Resg p =id and denote p =Resy ).

Then p: M[C] — M is an M-homomorphism, p(M[4]) =M, M, and it follows from defini-
tions that for every x € M or x e D finite under p

P(Tx) =Dy (p,).
In particular for every xe M[C]g DM this gives

p(tx) =Py (px),

hence p* @, =rt. 1
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We apply this to the following situation: Let K be a global field and R its ring
of integers. Let 0 be a bounded sentence in %, (R). By Theorem 2.1 find the corre-
sponding equivalent Galois sentence ¥, with no quantifiers. Thus by Theorem 2. 2 there
is a finite Galois extension L/K and a conjugacy domain Con in %(L/K) and an
clement 0=y € R such that:

1.) If P is a prime ideal in R and M is a finite extension field of F,=R/P and
y ¢ P, then :

(M, D) =0 < (51/)-[—<>eCon.

2) If 6eG(K) and M =R(0) is a Cebotarev field, then
(M, o) =0 < Res; o € Con.

In particular we obtain the following strengthening of Theorem 3.17 of [6]
(which has been proved by ultraproduct methods):

Theorem 2. 3. Let R be a ring of integers of a global field K and let 0 be a bounded
sentence in Ly (R). Then:

1) (K, o) =0 for almost all o€ G(K) — in the sense of the Haar measure p
on G(K) — <>

(Fp, @; ) = 0 for almost all primes P in R (i.e., except Jor a finite subset of them) <

(M, ®,,) =0 for all finite extensions M of almost all residue fields of K.

2) Let AB)={ceGK)|(K,o)=0}, B(0)={0=P e Spec (R) [(Fp, D) =0}

Then A(0) is p-measurable, B(0) has a Dirichlet density & and p(A(0))=35(B(0))
= « rational number in [0, 17.
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