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The aim of this note is to determine certain closed subgroups of the 
absolute Galois group G(Q) of Q, in particular subgroups generated by 
involutions (=elements of order 2). 

Geyer [3,4.1] has shown, in a far more general set-up, that subgroups 
generated by finitely many involutions are almost always free profinite 
products of copies of Z/22. To be precise, fix an involution E E G(Q); for 
almost all (in the sense of the Haar measure) e-tuples (cl, . . . . a,) in 
G(Q)e= G(Q) x .+. x G(Q) (e copies) we have 

(EC’, . ..) EbC) = (Em’) * . . . * (P) Z 8, = Z/2Z * . . . * Z/2Z (e- times). 

The above measure-theoretic restriction is necessary, since any closed 
subgroup of 6, generated by finitely many involutions also appears as a 
closed subgroup of G(Q). However, the following characterization of 
virtually projective closed subgroups of G(Q) shows that nothing worse 
can happen. (Recall that a protinite group G is virtually projective if it 
contains an open subgroup that is projective.) 

THEOREM. Let G be a profinite group. The following conditions are 
equivalent: 

(a) G is isomorphic to the absolute Galois group of an algebraic 
extension of Q and G is virtually projective; 

(b) G is a closed subgroup of D,, where 3 <e d w; 

(c) G is real projective (Definition 1.1) and countably generated. 

Moreover, if G is generated by involutions (but not necessarily by a 
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finite number of them !) then (b), (c), and the following condition (a’) are 
equivalent. 

(a’) G is isomorphic to the absolute Galois group of an algebraic 
extension of Q. 

The essential ingredients of the proof are the Local-Global Principle for 
Brauer groups and the Strong Approximation Property for algebraic 
number fields on one hand and some new group-theoretic results about 
real projective groups on the other hand. In particular, we succeed in 
characterizing real projective groups essentially by their Sylow subgroups. 

1. REAL PROJECTIVE AND REAL FREE GROUPS 

In this section we explain the equivalence (b) = (c) of the main theorem 
and fix the notation. 

DEFINITION 1.1 (cf. [S, p. 4721 and [4, Definition 4.11). Let G be a 
protinite group for which the set Inv(G) of involutions in G is a closed 
subset of G. 

(1) An embedding problem for G consists of a continuous 
epimorphism a:B-+A of profinite groups and a continuous 
homomorphism rp: G --+ A. It is finite if B and A are finite groups. It is said 
to be real if 14 cp(Inv(G)) and for every involution XE G there exists an 
involution be B such that a(b)= q(x). A solution of the embedding 
problem is a continuous homomorphism y: G + B such that CI 0 y = cp. 

(2) G is projective if every finite embedding problem for G is solvable. 
(3) G is real projective if every finite real embedding problem for G 

is solvable. 
(4) A finite Inv(G)-embedding problem (cp, CI, C) for G consists of an 

epimorphism c(: B -+ A of finite groups, a continuous homomorphism 
cp: G + A such that 14 cp(Inv(G)), and a set C of involutions in B closed 
under the conjugation in B such that cp(Inv(G)) z LX(C). Its kernel is Ker CI. 
A solution of such a problem is a continuous homomorphism y: G --) B such 
that y(Inv(G)) E C and ~10 y = cp. 

Remark 1.2. (a) Let G be real projective and let cp: G + A, LX: B-P A 
be a finite embedding problem for G such that for every involution x E G 
with q(x) # 1 there exists an involution b E B such that a(b) = q(x). Then 
(q, IX) is solvable. Indeed, since Inv(G) is closed (that is, 1 is not in its 
closure), there exists an open normal subgroup N of G disjoint to Inv(G). 
Therefore cp factors into 4: G + a = GIN and cp,,: a -+ A. Put i = B xA A^ 
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and let oi:B+A and $,:B + B be the coordinate projections, so that 
‘pOooi = cl0 &. It is easy to see that (4, oi) is a finite real embedding 
problem for G. A solution y^ of (4, oi) gives a solution y = & 0 y^ of (cp, a). 

This shows that our definition of real projective groups is the same as the 
one given in [IS]. 

(b) A group G (with Inv(G) closed in G) is projective relative to the 
family X of all subgroups of order 2 of G (in the sense of [4, Defini- 
tion 4.11) if and only if every finite Inv(G)-embedding problem for G is 
solvable. 

Indeed, Inv(G) is closed, so it is a Boolean space. If E,, Ed E Inv(G) are 
not equal then there exists a clopen subset U of Inv(G) such that 
s1 E U, Ed $ U. As both U and Inv(G) \ U are closed in G, the subsets 
IJ E E U (E ) and U, + U (E ) of G are closed; thus X is separated [4, Delini- 
tion 3.11. Furthermore, as in (a), it is enough to consider only those finite 
X-embedding problems (cp, tl, Con(B)) for G that satisfy 14 cp(Inv(G)). 
Thus our assertion easily follows from the identification of a subgroup of 
order 2 in X with its generator in Inv(G). 

We shall use without mention the fact that a closed subgroup of a real 
projective group is real projective (see [S, Corollary 10.51) and that a real 
projective group with no involution is projective (clear from the definition). 

As an example of real projective groups we consider real free groups: 

DEFINITION 1.3 (cf. [6, Definition 1.1 I). Let V be a full family of finite 
groups, let X be a Boolean space, and S a set. A pro-$? group B = 6,(X, S) 
is real free on (X, S) if it contains X and S as disjoint subsets such that X 
is closed in Inv(b), S converges to 1, and 

(*) every map cp from Xv S into a pro-Q? group G, continuous on X, 
such that q(x)’ = 1 for every x E X and q(S) converges to 1, extends to a 
unique homomorphism of 6 into G. 

(The group B&X, S) is, in fact, the free pro-$? product of the free pro-% 
group of rank ISI with the free pro-V product of copies of Z/22 over the 
space X. ) 

If %’ is the family of all finite groups, denote 6,Y= b&X, S), where 
1 XI = e and JSI = f; if f = 0 write 6, for 6,,. If X, is the Cantor “middle 
thirds” set (cf. [7, Lemma 1.21) and ISI =NO write 6,, for 6,(X,, S) (cf. 
[J’, Section 21). If %? is the family of all a-groups, write 6,(X, S) for 
&4x 9. 

We note that the set X is a complete system of representatives of the 
conjugacy classes of involutions in B( X, S) (see [6, Corollary 3.21). 

PROPOSITION 1.4. Every closed subgroup ef B,, ,- is real projective. 
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Conversely, every countably generated real projective group can be embedded 
in L?,, in a, with e 2 3, and in fir, f with e 2 1 and f > 1. 

Proof The first assertion follows from [6, Theorem 3.61. By [7, 
Proposition 2.31 (take H= 1 there) every countably generated real projec- 
tive group can be embedded in a,,,, and hence, by [7, Corollary 4.41, also 
in de,,, where e> 1 and f 32. If e>3 then fi<,rfi, 2 * b’2, and 2 is a 
closed subgroup of 8, (see Lemma 1.5), hence [9, Proposition 41 
8, i z iZ/22 * 2 can be embedded in fi’, ; clearly 6 ,, , can also be embedded 
in ‘6 <,., with e 3 1 and f 3 1. Thus it suffices to show that Bi,, contains 
e,,,. But, by [7, Lemma 4.31, cl,, contains fi,,, for some e 3 3, and 
D, , z 8, 2,, * 8, contains fi,,, * .Zz8,.2. 1 

The restrictions posed on e and f in the Proposition are the least 
possible. Indeed, d,, contains no involutions, the group Lj, = Z/2Z is finite 
and the closed subgroups of d, containing involutions are dihedral groups. 

We call a profinite group G dihedral if it is generated by two elements E 
and t such that s2 = 1 and ti: = 7-I (according to this definition cyclic 
groups are not excluded). Note that G is the semi-direct product of (E) 
with (z). The following (well known) property relates them to our subject: 

LEMMA 1.5. (a) A profinite group is dihedral if and only (f it is 
generated by two elements of order 62. 

(b) An infinite profinite group containing involutions is dihedral if and 
only if it is a subgroup of d,. 

Proo$ (a) If G=(&,t), and ~‘=l, r’=z-‘, then G=(E,E~) and 
(ET)*= (z’)t= 1. Conversely, if G= (si, e2) and ET=&;= 1, then G= 
(E,, E,E~) and (E,.Q)~I=E~E, = (EKES))‘. 

(b) Let D=(&cr), where (S)zZ/22, (a)r& and c*=rr ‘. 
Clearly every dihedral group G = (E, r ) is an epimorphic image of &i (by 
6 H E, r~ H z), hence by (a) and [2, Proposition 15.41 we have D E D,. 

Note that D is the disjoint union of (a) and (a)6, and all o0 E (a) and 
s0 E (a)6 satisfy E: = 1, aio = a; ‘. Thus if G is a subgroup of D containing 
involutions, and z,, is a generator of G, = G n (a), then G = GO(sO), 
where s0 E G n (a)6, so G = (Ed, zO) is dihedral, Conversely, if G = (E, z) 
is an infinite dihedral group with e2 = 1, rE = t-i, there exist embeddings 
(T) + (a), (E) + (6); these give rise to an embedding G+ D. 1 

2. REAL EMBEDDING PROBLEMS 

Our aim is to find simpler conditions for a group to be real projective. 
We begin with some results on finite groups. 
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DEFINITION 2.1. Let C,, . . . . C, be e distinct conjugacy classes of involu- 
tions in a finite group G. Let G* = G*(C,, . . . . C,) be the intersection of all 
groups in 

M={MIMisamaximalsubgroupofGandMnC,#~fori=l,...,e}. 

(If e = 0 then G* is nothing but the Frattini subgroup of G.) 

PROPOSITION 2.2. Let K # 1 be a minimal normal subgroup of a finite 
group G contained in G*. Then K is an elementary abelian p-group. If G is 
a p-group then Kg Z/p77 and K is contained in the center of G. 

Proof: We first show that K is a p-group for some prime p. 
Let p be a prime that divides the order 1 KI of K, such that p = 2 if 1 KI 

is even. Let P < K be a Sylow p-subgroup of K (whence P # 1) and let n = 
{ PR ) g E G} = (P” 1 k E K) be the family of all Sylow p-subgroups of K. 
Then IZ7 = (K:N,( P)) divides (K: P) and therefore is odd. Thus the action 
of an involution E E G on n by conjugation must have a fixed point, i.e., 
Pg” = P” for some g E G, whence g&g-’ E N,(P). 

We deduce that every maximal subgroup A4 of G containing N,(P) is in 
M, and so KN,(P) 6 G*N,(P) < 44. But since KiV,( P) = G (the Frattini 
argument), there is no such group M. Thus N,(P) = G, whence P is a 
normal subgroup of G. By the minimality of K we get that K = P, so that 
K is a p-group. 

Using the minimality again we note that K equals its center, hence K is 
abelian. Finally, K equals {(T E K I ap = 1 }, whence K is an elementary 
abelian p-group. (Cf. [2, Lemma 20.9-J.) If G is a p-group then the 
G-conjugacy classes of K \ { 1 } have p-power orders, hence at least one of 
them is of order 1, say (0); thus c is in the center of G and K= (a) by 
the minimality of K. 1 

PROPOSITION 2.3. Let G be a profinite group and assume that Inv(G) is 
closed in G. The following conditions are equivalent: 

(a) G is real projective. 

(b) Every finite Inv(G)-embedding problem for G is solvable. 

(c) Every finite Inv( G)-embedding problem for G with minimal normal 
elementary abelian p-subgroup as kernel is solvable. 

Proof (b) = (a) and (b) = (c) are clear. 
(a) * (b) follows from [S, Corollary 6.21: Given a finite Inv(G)- 

embedding problem (4, a: B -+ A, C) for G, there exist a finite group B’ and 
an epimorphism 0: B’ + B which maps the involutions of B’ \ Ker 6 onto 
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C. Thus (cp, ~10 0) is a finite real embedding problem for G; its solution 
y: G -+ B’ produces the solution 8 0 y of our Inv( G)-embedding problem. 

(c) * (b): It suffices to solve every finite Inv(G)-embedding problem 
(cp, c(: B + A, C) for G in which the kernel Ker a is a minimal normal sub- 
group of B. Indeed, otherwise let 1 #K 6 Ker CI be a minimal normal sub- 
group of B; let rcn: B -+ B= B/K be th e canonical epimorphism, C = n(C); 
and let cl: B -+ A be the map induced by a. Then (rp, cl, C) is a finite Inv(G)- 
embedding problem for G. Suppose, by induction on the order of B, that 
it has a solution ?/: G + B; in particular y(Inv(G) s C. Then (7, TL, C) is a 
finite Inv(G)-embedding problem with kernel K for G; its solution also 
solves (cp, CI, C). 

Assume therefore, that the kernel K is a minimal normal subgroup of B. 
Let C,, . . . . C, be the distinct conjugacy classes in C. If K $L B*(C,, . . . . C,) 
then there is a maximal subgroup A4 of B such that Mn Cj # @ for 
i = 1, . . . . e, and K g M, whence cc(M) = a(MK) = a(G) = A. Thus 
(cp, res, CI, C n M) is a finite Inv(G)-embedding problem for G; its solution 
also solves (cp, a, C). If KG B*(C, , . . . . C,) then K is an elementary abelian 
p-group by Proposition 2.2, so the problem is solvable by assumption. 1 

Remark 2.4. Let G be a pro-p-group with Inv(G) closed in G. It easily 
follows from the Sylow theory that G is real projective iff G is real projec- 
tive in the category of pro-p-groups (i.e., every finite embedding problem 
for G consisting of pro-p-groups is solvable). Carrying the proof of 
Proposition 2.3 in the category of pro-p-groups we obtain that the 
following are equivalent: 

(a) G is real projective. 
(b) Every finite Inv(G)-embedding problem (cp, a: B --+ A, C) for G, 

in which B is a p-group, is solvable. 
(c) Every finite Inv(G)-embedding problem (cp, a: B --f A, C) for G, 

in which B is a p-group and Ker a z Z/pZ lies in the center of B, is 
solvable. 

3. FIELDS WITH REAL PROJECTIVE ABSOLUTE GALOIS GROUP 

In this section we present some field-theoretic properties of a field whose 
absolute Galois group is real projective. 

DEFINITION 3.1. Let G be a prolinite group such that Inv(G) is closed 
in G. We say that G has the Strong Approximation Property (SAP) if for 
every proper clopen subset Z of Inv(G) closed under the conjugation in G 
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there exists an open normal subgroup N of G such that (G:N) = 2 and 
Z = Inv(G) n N. The motivation for this definition is explained below. 

Remark 3.2. The absolute Galois group G of a field K has the SAP if 
and only if K satisfies the following Strong Approximation Property for 
fields: 

For all a, b E K” there exists c E K” such that in every 
ordering P on K, a, b are positive if and only if c is 
positive. 

Indeed, the set X(K) of all orderings on K is a Boolean space in the 
topology given by the subbase of clopen sets of the form 

H(a) = {Q E WK) I a is positive in Q}, where aE K” 

(see [12, Section 61). In this notation the SAP can be written as For all 
a, b E K” there exists c E K” such that H(a) n H(b) = H(c). The clopen sub- 
sets of X(K) are the Boolean combinations of the subbasic sets. It is an 
easy exercise in the theory of Boolean spaces to see that K has the SAP if 
and only if every clopen subset of X(K) is in the subbase. 

To every involution E in G there corresponds the ordering P(E) of K that 
extends to the unique ordering of the (real closed) fixed field of E in R, the 
algebraic closure of K. The map P: Inv(G) + X(K) is surjective and P(E~) = 
P(Q) iff E~ is conjugate to E* (see [lo, Chapter XI, Section 2, Theorems 4 
and 33). Moreover, P is clearly continuous, hence a closed map, but it is 
also open (if U is open in Inv(G) then U’ = lJ,, G U” is also open, so 
X(K) \ P(U) = X(K) \ P( U’) = P(Inv(G) \ U’) is closed), so it induces a 
bijection between the clopen subsets of Inv(G) closed under the conjuga- 
tion in G and the clopen subsets of X(K). Thus the SAP for K is equivalent 
to: 

If Z is a clopen subset of Inv(G) closed under the conjugation then there 
exists CEK~ such that Z= P-‘(H(c)), i.e., all aEInv(G) satisfy 

4~, = fi iff EEZ 

This is obviously equivalent to SAP for G. 

PROPOSITION 3.3. A real projective group G has the SAP. 

Proof: If G is real free, say G =6(X, S), and Z is a proper clopen 
subset of Inv(G) then the map cp: Xu S+ 2/22 defined by q(S) = 
cp(Xn Z) = 1, cp(X \ Z) # 1, induces a homomorphism cp: G + Z/22. Its 
kernel N has the required property. 

In the general case let X0 be a closed system of representives of the 
conjugacy classes of Inv(G), and let X be a homeomorphic copy of X0. 
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For a suitable set S we have an epimorphism U: 6(X, S) -+ G extending the 
given homeomorphism X --, A’, . Thus c( maps nonconjugate involutions of 
D = d(X, S) into nonconjugate involutions in G; therefore a right inverse 
y: G --+ D of a (see [6, Lemma 3.51) maps nonconjugate involutions into 
nonconjugate involutions. Put Z’ = U dtn y(Z)$ then Z’ is a proper closed 
subset of D and y ~ ‘(Z’) = Z. Let N be an open subgroup of D of index 2 
such that Nn Inv(D) = Z’; then y I’ n Inv(G) = y-‘(Z’) = Z. 1 

LEMMA 3.4. Let K be a ,field, denote G = G(K), and let { R,}i,, be a 
set of real closed extensions of K inducing the orderings on K (one,for each 
ordering on K). The following conditions are equivalent: 

(a) Every ,finite real embedding problem (cp: G -+ A, a: B-+ A) with 
Ker CI z Z/22 contained in the center qf B is solvable. 

(b) Every central extension of profinite groups 

0+2/2Z+E~G-t1 

splits tf Inv(G) E fi(Inv(E)). 
(c) The natural map 

fP(c, n/22)+ n HZ(G(R~), n/22), 
rsl 

where the groups act trivially on Z/2& is injective. 

(d) The natural map 

H’(G, kX)2 = (a E H2(G, Rx) 1 2a = 0} + fl H2(G(R,), ii,?) 
IEl 

is injective. 

Moreover, if K is formally real and G(K(,/- 1)) is projective then (a)-(d) 
are also equivalent to 

(e) The natural map 

H’(g(K(JSi)IK), K(fl)“) + n H’(G(Ri), Rr) 
isl 

is injective. 

( f ) Every totally positive element of K is a sum of two squares in K. 

Proof (a) = (b): Choose an open normal subgroup N of E such that 
N n Ker /? = 1 and P(N) n Inv(G) # fa. Put B = E/N and A = G/fi( N). We 
obtain the following commutative diagram with a Cartesian square: 
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G 

/I 
0 - 2122 - E p. G - 1 

and (cp: G -+A, IX B-+ A) is a finite real embedding problem with 
Ker CI r Z/22 contained in the center of B. Its solution y: G -+ B, together 
with the identity G -+ G, induces a right inverse 19: G + E of fl (such that 
poO=y). 

(b)=(a): LetE=Bx,Gandletp:E+Bandp:E+Gbethecoor- 
dinate projections. Check that Ker /l lies in the center of E. By asumption 
04!/2Z+E+, G + 1 splits via some 8: G -+ E; then po 0 solves 
(cp:G+A, a:B-+A). 

(b) o (c): This follows from the correspondence of H*(G, Z/22) with 
the isomorphy classes of central extensions of G by Z/22 (see [ 13, p. 1001). 
An extension 0 -+ Z/22 + E + G + 1 corresponds to 0 iff it splits, and its 
restriction to G(R,) corresponds to 0 in H2(G(Ri), Z/Z??) iff the restriction 
splits, i.e., resEEi, where si is the generator of G(R,), is the image of an 
involution in E. Recall also that { resE E~}~,, represents the conjugacy 
classes of involutions in G; therefore the condition “Inv(G) c /?(Inv(E))” in 
(b) is equivalent to “(resR Ed} ie, E b(Inv(E))“. 

(c)o (d): The short exact sequence of G-modules 

l+{il)+P ;:P+l, 

where ~(a) = a*, and Hilbert’s Theorem 90 induce the exact sequence 
O+H2(G,Z/2Z)+H2(G,R")-r Ic A2(G, Rx), which yields the isomor- 
phism H*(G,2/22)zH*(G,~"),. 

Analogously H2(G(R,),Z./2Z)~H2(G(R,),~~),= H*(G(R,), Wr) for 
every i E I (the last group is annihilated by 2 by [ 13, p. 1381). 

(d)o (e): Assume that G(K(fl)) is projective. Then B(K(dq)) 
=H*(G(K(fl)),K")=O ( see [13, p. 263]), hence the inflation 
H*(%(K(fl)/K), K(n)“) -+ H2(G, Rx) is an isomorphism (see [ 13, 
p. 2491). In particular, the elements of H*(G, Rx) are of order < 2, whence 
H2('SK(fi)/K),K(fl)")rH2(G,~")~. 

(e) o (f): There is a natural isomorphism 

H2(WK(fi)IK)> K(fi)“) 2 W’,,vri-,,,K(t/-r)x 

(if Y(K(fl)/K) = (E) th en this isomorphism is induced by the 
homomorphism a ++ x, from K" to Z*( (E), K(G)") given by 
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x,(1, 1) = ~,(a, 1) =x,(1, E) = 0,x,(&, E) = a)and analogouslyH’(G(R,), R:) 
z R:/N~,,~,iir for every iE I. Note that aE Ry is in N~,,~,j?r iff it is 
positive in the unique ordering on R;. Thus the map in (e) is injective iff 
every totally positive element a E K” is in N,Cn,IKK(fl)“, i.e., a~ K” 
is a sum of two squares in K. 1 

COROLLARY 3.5. Let K be a field such that G(K) is real projective and 
let L be a formally real algebraic extension of K. Then L has the SAP, 
G(L( 0)) is projective and every totally positive element of L is a sum of 
two squares. 

ProoJ The subgroup (G(L) of G(K) is real projective. Apply Proposi- 
tion 3.3 and Lemma 3.4. 1 

4. REAL PROJECTIVE PRO-I&GROUPS 

For a prolinite group with no involutions the notions of projectivity and 
real projectivity coincide, by definition; likewise freeness and real freeness 
coincide. Thus if G is a pro-p-group for an odd prime p then G is real free 
if and only if G is real projective (cf. [2, Proposition 20.371). We now 
extend this result to pro-2-groups. 

PROPOSITION 4.1. Let G be a real projective pro-2-group, and let X be a 
closed system of representatives of the conjugacy classes of involutions in G. 
Then there exists a subset S of G converging to 1 such that G is the free 
pro-2-group B,(X, S). 

Proof: This is essentially proved in [4], in a more general setting, 
though only for countably generated groups. We give here a simplified 
proof for our case. 

Let rc6: G + G denote the Frattini map (= the quotient map modulo the 
Frattini subgroup) of G, and denote 8= z&X). Note that 14 X, since there 
is an open subgroup of G of index < 2 not meeting Inv(G) (see [S, 
Proposition 7.71). There is a closed subgroup F of G such that G= 
(R) x F (see [4, Lemma 9.21). Let F be a minimal closed subgroup of G 
mapped by x6 onto R Then the restriction of rc6 to F is a Frattini cover 
F -+ R (Cf. [2, Section 20.61 for the notion of Frattini cover.) Moreover, F 
is the Frattini quotient of F, since the Frattini subgroup of Fis trivial. Now 
F is projective, since it is contained in the real projective group G and 
has no involutions (the involutions of G are mapped by rc6 onto & 
and Xn F= a). Therefore F is a free pro-2-group of the same rank as F, 
say m. Fix a free set S of generators of F converging to 1. 

Fix a space X’, a set S’, a homeomorphism <: X’ + X, and a bijection 
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cr: S’ + S and denote D = 6,(X’, S’). Recall that D is the free pro-2 product 
(x’ ) * (S’ ), where (X’ ) is the free pro-Zproduct of copies of C2 over x’, 
and F’ = (S’ ) is the restricted free pro-Zgroup of rank m. Let 6: D -+ G 
denote the unique homomorphism extending 5 and 0. Note that 6 maps F’ 
isomorphically onto F. We claim that 6 is an isomorphism. 

Indeed, 6 is onto, since rc6 0 6 is clearly surjective and rc6 is a Frattini 
cover (cf. [2, Lemma 20.27(b)]). By [6, Lemma 3.51 we know that 6 has 
a right inverse y: G -+ D. Thus it suffices to show that y(G) = D. 

For this purpose we consider the Frattini quotient map rrD: D -+ D and 
show that the homomorphism & d + G induced by 6 is an isomorphism. 
It then follows that the right inverse 7: G + b of S, which is induced by y, 
is necessarily surjective, hence zD 0 y = 7 0 ‘its is surjective, whence y is onto, 
since rcD is a Frattini cover. 

Put x’= rrD(X’) and P’ = xnD(F’); then (see [4, Lemma 9.31) D = 
(x’ ) x F’. Clearly S(x’) = X, and 6 maps F’ isomorphically onto E But 6 
extends 5, hence it maps nonconjugate involutions in D onto nonconjugate 
involutions in G. Thus if XE X’ then 7(6(x)) and x are conjugate in D, 
whence their images in D are equal. Therefore 7: R+ 8’ is the inverse of 
S: X’ -+ X, which implies that & (x’) + (X) is an isomorphism. But S 
maps P’ isomorphically onto i? Therefore & b = (R’ ) x F’ + G = (x) x F 
is an isomorphism. 1 

PROPOSITION 4.2. Let G be a pro-Zgroup and assume that Inv(G) is 
closed in G. The following conditions are eqivalent: 

(a) G is real free in the category of pro-2-groups. 
(b) G is real projective. 

(c) 1. Every finite real embedding problem (cp: G -+ A, CC: B + A) with 
Ker c( g Z/22 contained in the center of B is solvable, and 

2. G has the SAP. 

Proof. (a) * (b): The pro-2 analogue of [6, Corollary 3.31 shows that 
G is real projective in the category of pro-2-groups, whence G is real 
projective (Remark 2.4). 

(b) * (a): This implication is Proposition 4.1. 
(b) * (d): This is clear from the definition of a real projective group 

and from Proposition 3.3. 
(c) * (b): It suffices to solve elvery finite Inv(G)-embedding problem 

(cp, LX: B -+ A, C) for G in which B is a 2-group and K= Ker c1 E Z/22 lies 
in the center of B. By assumption there exists $: G -+ B such that CI 0 $ = cp. 
We shall modify $ to ensure that it maps Inv(G) into C. 
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Inv(G) n $ -‘(xi), for i= 1, . . . . n. The sets X,, . . . . X, are clopen in Inv(G), 
closed under the conjugation in G, and Inv(G) is their disjoint union. Let 
1 < i< n. As G has the SAP, there is a continuous homomorphism 
pi: G + KrZ/22 such that p,(X,) is the generator, say E, of K, and 
p,(X,)=l forj#i. Let m,=O if XicC, and let mi= 1 if Xj g C (in which 
case Rje c C, since (cp, LX B + A, C) is an Inv(G)-embedding problem). 
Define I++‘: G --+ B by t+V( g) = I//(g) p,(g)“’ . p,( 8)““. Since K is in the 
center of B, it is easy to see that $’ is a continuous homomorphism 
such that MO IJ = cp and @‘(Xi) E C for 1 6 i6 n. Thus $’ solves 
(cp, cc: B -+ A, C). 1 

COROLLARY 4.3. Let K he a ,formally real field such that G(K) is a 
pro-2-group. Then G(K) is a real free pro-Zgroup iff K has the SAP, 
G(K(fl)) is a ,free pro-2-group, and every totally positive element of K 
is a sum of two squares. (The last condition can be replaced by any qf the 
equivalent conditions sf Lemma 3.4.) 

Proof: The conditions are necessary by Corollary 3.5. Conversely, if the 
conditions hold, then G(K) has the SAP (Remark 3.2) and every finite real 
embedding problem (cp: G + A, a: B + A) with Ker a E Z/22 contained 
in the center of B is solvable (Lemma 3.4). Thus G(K) is a real free 
pro-2-group. 1 

THEOREM 4.4. Let K be an algebraic extension of Q such that G(K) is a 
pro-p-group. Zf G(K(J-l))) is a free pro-p-group then G(K) is a real free 
pro-p-group. 

Proof: If K is not formally real then G(K) is torsion free, and hence a 
free pro-p-group, by a theorem of Serre ([ 14, Corollaire 21). Assume that 
K is formally real, whence G(K) is a pro-Zgroup. For each valuation v on 
K let K, be the completion of K with respect to v. Then H’(G(K), Rx) -+ 
n, H*(G(K,.), &) is injective ([Ill, Satz II]). 

The group G(K,) may be identified with a subgroup of G(K), so its 
subgroup G( K,(o)) is a subgroup of G(K(fi)), and hence real free. 
Thus if K, is not formally real then again by Serre’s theorem G(K,) (and 
hence also every closed subgroup of it) is projective; in particular, B(K,) = 
H2(G(K,), Kr) = 0 in this case (cf. [ 13, p. 2631). But if K, is formally real 
then K,, E K [w is a real closed extension of K, it induces an ordering on K 
via the embedding K + [w, and nonequivalent valuations induce distinct 
orderings on K. Therefore condition (d) in Lemma 3.4 is satisfied. As 
K has the SAP ([ 12, Corollary 9.2]), our assertion follows from 
Corollary 4.3. m 
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5. CHARACTERIZATION OF REAL PROJECTIVE GROUPS 
BY THEIR SYLOW SUBGROUPS 

A prolinite group is projective iff its Sylow p-subgroup is a free pro- 
p-group for every p ([Z, Proposition 20.471). The straightforward analog 
of this is not valid for real projective groups. E.g., the direct product of 
Z/22 and Z, is not real projective, although Z/22 is a real free pro-Zgroup 
and Z, is a (real) free pro-3-groups. However, the correct statement 
(Proposition 5.5) is not very far from this. 

LEMMA 5.1. Let A he an abelian normal subgroup of a finite group G and 
let H be a subgroup of G containing A such that (G: H) is prime to #A. 
Suppose that A has a complement K in H. Then A has a complement L in 
G with the followng property: If 6 is an involution in G such that 

~“EH=s-~~E u Kh, for every g E G (1) 
htH 

then 6 has a conjugate in L. 

Proof (after Brandis [ 1, Section 21). For x, y E G such that xy -’ E H 
let k(x, y) denote the unique element of K that satisfies k(x, y)A = xy- ‘A. 
Fix a system @ of representatives of the right cosets of G modulo H. Then 
the set 

where the product ranges over pairs (r,, r2) E @ x @ with rl gr;’ E H, is a 
complement of A in G [l, Satz 2.61. 

Let 6 E Inv(K) satisfy (1). If we replace @ in the above definition by 
another system @’ of representatives of the right cosets of G modulo H 
then the resulting complement L’ is a conjugate of L in G [ 1, Lemma 2.71. 
Using (1) we may choose @’ so that for all r E @’ we have 

Hro # Hr * r, r6 E @‘, 

Hr6=Hr=r&~‘EK. 

(Indeed, the condition Hr6 = Hr implies that r& ~ ’ E H, hence r6r ’ E Kh 
for some h E H, by (1); replace r by hr to obtain rW ’ E K.) 

If r,,rZE@’ and Hr,d=Hr, then either Hr,S#Hr, or Hr,a=Hr,. In 
the first case rlBE@‘, and Hr,6=Hr,, so r,6=r,. Thus k(r,d,r,)=l, 
whence [(r-,6)-‘k(r,6, r2)r2] = (t-,6))’ r2= 1. In the second case 
Hr, = Hr,, so r, = r2. In particular Hr, 6 = Hr, , hence by the choice of @’ 
we have r,&;’ EK. Thus k(r,6, r,)=r,&;‘, whence (r,6)-‘k(r,& r,)rl 
= 1. It follows that 6 EL’, whence a conjugate of 6 is in L. m 

481'129.'2-10 
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We shall need a slight generalization of [8, Lemma 2.41. The set 
Subg(G) of closed subgroups of a prolinite group G is a Boolean space: it 
is the inverse limit of the finite sets Subg(G/N), where N runs through the 
open normal subgroups of G. Let G continuously act on a Boolean space 
X. Denoting by D(x) the stabilizer of x E X we get a map D:X+ Subg( G). 
Note that if N a G then G/N acts on X/N, and D(xN) = D(x) N for every 
x E x. 

LEMMA 5.2. Let G he a profinite group continuously acting on a Boolean 
space X. [f the map D :X + Subg(G) is continuous then there exists a closed 
system X0 qf representatives of the G-orbits in X. 

Proof. Assume first that G is finite, whence D is locally constant. (This 
case is due to M. Jarden.) Then for every XE X there exists a clopen 
neighbourhood U G X such that 

(i) D(y) = D(x) for every y E U and 

(ii) x0 4 U for each (T $ D(x). 

Replace U by I/\ U,,4n(Y) U”, if necessary, to assume that U” n U = Q5 for 
all (T 4 D(x). 

From this point one may proceed as in the proof of [g, Lemma 2.41. i 

LEMMA 5.3. Let G be a profinite group such that Inv(G) is closed in G 
and 

{LEG 1 C’=E} = {E, 1) for every sEInv(G). (2) 

(a) There exists a closed system X of representatives of the conjugacy 
classes of Inv(G). 

(b) Let G, be a closed subgroup of G. If X is as in (a) and @ is a 
closed system of representatives of the left cosets of G, in G then 

X,={x’Ix~X&r~@}n7~ (3) 

is a closed system of representatives of the conjugacy classes of involutions 
in G,. Moreover, if r, s E @ and x, y E X such that x’ = y” E X, then x = y 
and r = s. 

Proof (a) G acts on Inv(G) by conjugation, and the map 
D: Inv(G) -+ Subg(G), given by D(x) = { 1, x}, is obviously continuous. 
Apply Lemma 5.2. 

(b) For the existence of @ see [ 13, p. 311. 

Clearly X, is a closed set. If E E Inv(G,), there are XE X and gg G such 
that E = xg. Write g as ry, where r E Q, and y E G,; then E is conjugate in G, 
to xr E X,. If r, s E @ and x, y E X such that y’ E X, and x’ is conjugate in 
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G, to y”, then x and y are conjugate in G, hence x= y. Thus xs = xry 
for some y E GZ. By assumption, rys-’ E (x), whence ry E s(x’). But 
xs = y” E X, E G,. Therefore rG, = sG,, whence r = s. 1 

For the next lemma let G, G,, X, @, X, be as in Lemma 5.2. Further- 
more assume that Gz is a Sylow 2-subgroup of G and that G, is a real free 
pro-2-group. Fix a subset S of G, converging to 1 such that G, = 
6,(X2, S); it exists by Proposition 4.1. Consider a finite Inv(G)-embedding 
problem (cp, c(: B--f A, C) for G such that q(G) = A; then A, = cp(G,) is a 
Sylow 2-subgroup of A. Assume that B, = a-‘(A,) is a Sylow 2-subgroup 
of B, i.e., Ker c( is a 2-group. 

LEMMA 5.4. (a) There exist continuous maps rclx: X--+ C, $s: S-t B,, 
andp:@-+Bsuch that txoIC/.=res,cp, ao$,=res,cpandrxop=res,cp. 

Let $,,,, $s, and p he maps as in (a). 

(b) There exists a unique continuous homomorphism $*: G2 + B, 
extending $s and satisfying 

Ic12(x’) = IcIx(xY”‘, forall xEXandrE@suchthatx’EG2. (4) 

(c) We have c( 0 $* = resG, cp. 
(d) Let N= cp-‘(A,). For every yEInv(N) there is gg N such that 

~“EG~. 

(e) Let X~E X2 and be B. If IC~S(XZ)~EB~ then $2b-2)b~ 
U b’s B2 $AGJb’. 

(f) Let L be a subgroup of B mapped by c1 isomorphically onto A, and 
let b E L. Zf there is c E C such that cr(b) = E(C) and c has a conjugate in L 
then b E C. 

Proof (a) We have q(X) c a(C). Let 1: A -+ B be a set-theoretic right 
inverse of c(: B + A such that A(cp(x)) E C for every XE X. Then 
1” 0 cp(G,) E B,, and the respective restrictions of IO cp to X, S, and @ satisfy 
the requirements. 

(b) By Lemma 5.3 there is a unique continuous map $*: X, + B that 
satisfies (4). A fortiori $*(X2) c B,; indeed, if x E X, r E @ such that xr E X2, 
then 

c(o$~(x’) = a[$x(x)P’r’] = (Pi”‘= c/$x’) E cp(G,) = A,. 

Thus $z together with tis extend to a unique homomorphism 
I)~: G2=&(X2, S)+ B,. 

(c) Clearly cl0 resxz $* = resx, cp; also, c( 0 resS $ = c( 0 tis = res, cp. 
Therefore CI 0 $2 = resG, q. 
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(d) Consider the left cosets space G2\N. The supernatural number 
(N: G,) is odd, since (N: G,) divides (G : G2). But gG, -+ ygG, is a permuta- 
tion of G,\N of order 62. Therefore it has a fixed point, say gGz, with 
g E N, clearly y” E G,. 

(e) Write x2 as x,‘, where x E X and s E @, and put c1= q(s) cc(b) E A. 
It suffices to find Y E G such that q(r) A, = a,4, and xr E Gz. Indeed, then 
without loss of generality r E @, and p(r) B, = p(s) bB,, since B, = CI -‘(A~). 
Let b’ E B, such that p(r)b’= p(s)b; then 

+2(x2)’ = I)~(x)~‘~)~ = $x(~)p(r’h’ = ij2(xr)” E $2(G2)h’, 

as claimed. 
Choose g, E G such that cp( g,) = a and let y = xRo. Then 

cp( y) = q(x)” = (a 0 ljX(X))+‘E’b’ 

1 LX(~~(X)~“‘~) = a($2(x2)“)~ a(B,) = A,, 

so by (d) there is gEN such that cp(g)EA, and yReG2. Thus r=g,g has 
the required property. 

(f) There is a conjugate c’ E L of c; a fortiori c’ E C. Thus cr(b) and 
CL(C’) are conjugate in A, hence b and c’ are conjugate in L, and therefore 
also in B, whence b E C. 1 

PROPOSITION 5.5. A profinite group G is real projective if and only if 

(a) For every prime p the Sylow p-subgroup G, of G is a real free 
pro-p-group; and 

(b) For every sEInv(G) we have {osG 1 E~=E} = (E, l}. 

Proof: If G is real projective then G, is real projective for every p. For 
(b) see [6, Corollary 3.2 and Theorem 3.61. 

Conversely, assume (a) and (b). Then Inv(G) is closed in G, since it is 
the image of the compact Inv(G,) x G under the continuous map (E, a) + 
Ed. By Proposition 2.3(c) it suffices to solve every finite Inv(G)-embedding 
problem (cp, CI: B + A, C) for G in which Ker c( is an elementary abelian 
p-group. Without loss of generality q(G) = A. Fix a Sylow p-subgroup G, 
of G; then A, = cp( G,) and B, = c1 -‘(A,) are Sylow p-subgroups of A and 
B, respectively. Choose (Lemma 5.3(a)) a closed system X of representa- 
tives of the conjugacy classes of involutions in G. 

If p = 2, let @ be a closed system of representatives of the left cosets of 
G, in G containing 1 and define X2 by (3). Also choose tix: X-, C, 
$s: S -+ B,, and p: @ + B satisfying Lemma 5.4(a). Let G2: G, + B, satisfy 
Lemma 5.4(b); then c( 0 ti2 = resG, cp. If p # 2, there exists $,: G, + B, such 
that CI 0 tip = resG, cp, since G, is real projective. In both cases K= $,(G,) is 
mapped via r onto A,. We first make the following 
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Assumption. a is injective on K, that is a complement to Ker CI in B 

Note that (B: BP) is prime to p, hence to IKer ~11. By Lemma 5.1, Ker tl 
has a complement L in B such that if p = 2 and 6 E K is an involution and 

db~BZdb~ u Kb’, for every b c B (5) 
b’eB2 

then 6 has a conjugate in L. Let CI’: A -+ L be the inverse of resL ~1: L + A. 
Then $=a’ocp: G + B satisfies a o $ = cp. To complete the proof it is 
enough to show that rl/(x) E C for every x E X. 

Case I. p is odd. By assumption there is CE C such that cl0 $(x) = 
q(x) = a(c). As (B: L) = IKer aI is odd, L contains a Sylow 2-subgroup of 
B, whence c has a conjugate in L. Thus $(x) E C by Lemma 5.4(f). 

Case II. p = 2. There is r E G such that X” E G,; without loss of 
generality Y E @. Then xr E Xz, so 6 = ti2(xr) = $x(x)P”’ E C, since 
$,(X) c C. By Lemma 5.4(e), 6 satisfies (5), therefore 6 has a conjugate in 
L. But a(6) = a 0 t+bJx’) = cp(x’) = a 0 $(xr), hence $(x)~ = +(x’) E C by 
Lemma 5.4(f). Thus $(x) E C. 

To eliminate the above made assumption, let N be an open normal 
subgroup of G such that N n G, G Ker II/,. Define a = GIN, b = B xA A, 
let 8: b -+ a and 71: B + B be the projection maps, and put C= 
{s~Inv(fi) ( no C). We obtain the diagram 

Clearly (+, a: fi + ,& C) is a finite Inv(G)-embedding problem for G with 
kernel isomorphic to Ker a, and a solution 4: G + B of it gives a solution 
7co$ of the original problem. Now let Alp= $(G,), ~P=&oi’(~P). Let 
~,:G,~B,~,:X~~,~,:S~B,andd:~~Bbetheuniquemapsthat 
satisfy 
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Then $,(G)s jII, GX(X)c e’, and gs(S) cgp,, and $,, is the unique 
map defined by $X, $s, and /j in Lemma 5.4(a). But oi is injective on 
g=$,(G,): if &o$,(g)=l then $(g)=l, hence gEN, whence also 
~0 r,&,(g) = 1; therefore 6,(g) E (Ker oi) n (Ker n) = 1. Thus replacing 
c(: B -+ A, cp, C, K by ~1: 6 -+ a, @, c’, k we obtain the desired property. 1 

6. REAL PROJECTIVE SUBGROUPS OF G(Q) 

THEOREM 6.1. Let K be an algebraic extension of Q. The following 
conditions are equivalent: 

(a) G(K) is real projective; 

(b) G(K) is virtually projective; 

(c) G(K(& 1)) is projective. 

Proof: If G(K) is real projective then its subgroup G(K(fl)) is real 
projective, but has no involutions, and hence is projective. If G(K) is vir- 
tually projective then, obviously, so is G(K(fl)); but the latter is torsion 
free, hence G(K(fi)) is projective ([2, Proposition 20.471 and [ 14, 
Corollaire 21). Thus only (c) * (a) remains to be shown. 

Assume that G(K(fi)) is projective. By the Artin-Schreier theory we 
know that {oeG(K)) s” = E} = {E, 1 } for every E E Inv(G). Thus by 
Proposition 5.5 we may replace G(K) by its Sylow p-subgroup, and hence 
assume that G(K(fl)) is a free pro-p-group. The assertion now folows 
from Theorem 4.4. 1 

COROLLARY 6.2. Let K be an algebraic extension of Q. If K(G) con- 
tains the maximal abelian extension Qeoh of Q then G(K) is real projective. 

Proof One can deduce from [ 13, p. 3031 that cd,(G(QUh)) = 1 for every 
1, i.e., G(Quh) is projective. 1 

COROLLARY 6.3. Let G be a closed subgroup of G(Q) generated by 
involutions. Then G is real projective. 

Proof: All involutions in G(Q) are conjugate, therefore their restrictions 
to Qub are equal. Let E E G(Q”h/Q) be this restriction and let K, c QUh be 
its fixed field; then s2 = 1 and s(n) = - fl, hence K,(c) = Wh. 
Let K be the fixed field of G in G(Q). Then Kn Yeah = K,, hence 
Wh(s) c K, whence Qah z K(n). Thus G = G(K) is real projective by 
Corollary 6.2. 1 
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We conclude with an open problem. Note that though we have necessary 
and sufficient conditions for the absolute Galois group of a field K to 
be real projective, we do not know to what extent these conditions are 
essential. In particular we may even ask: 

Problem 6.4. Let K be a field of characteristic 0 such that G(K(J- 1)) 
is projective. Is G(K) real projective? 
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