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Abstract

We define and develop the rudiments of a cohomology theory suitable for the treatment
of the absolute Galois groups of formally real fields. Although these groups have torsion,

a sensible notion of cohomological dimension can be defined in the above theory.

Introduction

As is well known from the Artin-Schreier theory, the absolute Galois group G(K) of a
field K has no elements of finite order except elements of order 2. The torsion - which
occurs if and only if K is formally real (= admits an ordering) causes problems in
applications, e.g. in the Galois cohomology. For instance, the cohomological dimension
of G(Q) is infinite, which is not very illuminating, while the cohomological dimension
of G(Q(+v/—1)) is 2.

This note pursues the idea that the presence of elements of order 2 is just a minor
beauty flaw that can be dealt with.

To be more precise, we propose that in dealing with Galois extensions of (formally
real) fields one should consider not only the field automorphisms, but also their action
on the extensions of orderings from the ground field. This structure - called Artin-
Schreier structure - though apparently richer than the Galois group, has the pleasant
property that in the case of the absolute Galois extension of a field it can be read off
from the absolute group. (If the field is not formally real then its absolute Artin-Schreier
structure is just its absolute Galois group.)

Artin-Schreier structures have been first defined in [6] to solve the problem of
characterization of the absolute Galois groups of pseudo real closed fields. In [3] we
have used them in a slightly modified form to show that the elementary theory of
real pseudo real closed fields is undecidable. Other model theoretic results have been
obtained via Artin-Schreier structures (under the name e-structures) in [1]. Analogues
of this concept have proved to be very useful in the Galois theory of pseudo-p-adically

closed fields ([7]) and in the theory of free products of profinite groups ([4]).
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Since projective Artin-Schreier structures have turned out to be an adequate ana-
logue of projective profinite groups, and since projectivity of profinite groups may be
considered a cohomological property, it has became only natural to seek a suitable coho-
mology theory of Artin-Schreier structures. The present paper does this by generalizing
the (Galois) group cohomology to the cohomology theory of Artin-Schreier structures.
(Thus if an Artin-Schreier structure is just a group then its cohomology is precisely the
group cohomology.) No attempt has been made to cover all the possible aspects of the
theory, e.g. products; in contrary, we have tried to limit the material to the minimum

necessary to obtain some interesting results. We mention two of them:

(1) Let K be a field. Then the group G(K) is real projective if and only if the

cohomological dimension of the Artin-Schreier structure G(K) is at most 1.

This follows as the second cohomology group H?(G, A) of the Artin-Schreier struc-
ture G with coefficients in A classifies the extensions of G by A (Proposition 3.3).
Next consider an algebraic extension K of Q, and let p be a prime. If p > 2 or
K is not formally real then a well known result of the class field theory ([9], Theorem
IV.8.8) states that the p-cohomological dimension of G(K) is 0,1 or 2, and an algebraic
criterion is given to compute it. But if p = 2 and K is formally real then cdoG(K) = oo,
which gives no similar classification into distinct cases. However, if we now consider the
absolute Artin-Schreier structure G(K) instead of G(K) then we get (Theorem 7.3):
(2) The p-cohomological dimension of G(K) is 0,1 or 2 for every prime p, and there

is an algebraic criterion to compute it.

We intend to use in a subsequent paper the theory developed here to show that
a pro-2-group that is an absolute Galois group of a field and contains an open free
pro-2-group is, in fact, a free pro-2-product of a free pro-2-group with copies of Z/27Z.
This result seems to be inaccessible without the cohomology theory.

The main ingredient of the paper is the "right” definition of the cohomology func-
tors H™, for n > 1. This task is usually accomplished by choosing a reasonable functor
as HY, which (if there are enough injectives) already determines H™, for n > 1. In our

case, however, the H -functor is somewhat mysterious and complicated, and its choice
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is not entirely natural. Furthermore, some results that in the case of group cohomology
are true in all dimensions do not hold in the zero dimension for the cohomology of
Artin-Schreier structures, even though they are valid in higher dimensions. This causes
complication in the proofs, in comparison with standard arguments in the cohomology
of groups. It is not inconceivable that another choice of H?, still leading to the same
H™, for n > 1, might be more transparent; alas, we have not been able to improve on
this point.

The author is indebted to Moshe Jarden for the suggestion to try to define a
cohomology theory for Artin-Schreier structures and for many remarks concerning the

presentation of this work.

1. Artin-Schreier structures

Consider a profinite group G with a continuous left action on a Boolean space X (pos-
sibly empty) and an open subgroup G' < G of index 1 or 2 such that

(i) Gy ={0 € G| oz =z} is of order 2 and G, NG’ = 1, for every x € X;

(ii) the map d : X — G, where d(z) is the generator of G, is continuous.
We call G = (G,G’, X) an Artin-Schreier structure and d its forgetful map.

Note that d(oz) = od(z)o ! for all 0 € G, € X, and d(X) NG’ = () (thus
X =0if G'=@q).

For the elementary properties of Artin-Schreier structures the reader is advised to
see [6], Section 3. (There G is acting on X from the right; we have switched the sides
to be consistent with the customary notation of action in the cohomology theory.) We
recall only a few notions, for the convenience of the reader.

Let H = (H,H',Y) be another Artin-Schreier structure. A morphism of Artin-
Schreier structures ¢ : G — H is a continuous homomorphism ¢ : G — H such that
¢ 1(H') = G', together with a continuous map ¢ : X — Y preserving the group action.
Note that (denoting by d’ the forgetful map of H) d'op = pod. A morphism¢: G — H
is an epimorphism if o(G) = H and p(X) =Y.

If K is a closed normal subgroup of G, contained in G', then G/K = (G/K,G' /K, X/ K)}}
is an Artin-Schreier structure, and the pair of quotient maps G — G/K, X — X/K is
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an epimorphism G — G/K; a cover is an epimorphism isomorphic to such an epimor-
phism. Thus (cf. [6], 4.1) an epimorphism ¢ : G — H is a cover if and only if for all
T1,29 € X

o(r1) = (x2) = 9 = ox; for some o € G .

Assume that H is a closed subgroup of G. We say that H is a substructure of G
(and write H < G) defined by H if H = HNG' and Y = {zx € X|d(z) € H}.
If L is a Galois extension of a field K and v/—1 € L, let X(L/K) be the space of

maximal ordered subfields of L containing K (cf. [6], Section 2). Then
G(L/K) = (Gal(L/K), Gal(L/K(v=T)), X(L/K))

is an Artin-Schreier structure. If K is the separable closure of K then G(K) = G(K/K)
is called the absolute Artin-Schreier structure of K. The elements of X (K /K) are the

real closures of K (with respect to all the orderings on K), and hence the forgetful map

of G(K) is a bijection of X (K/K) onto the involutions in G(K) = Gal(K/K).

2. Cohomology groups of Artin-Schreier structures

Let G = (G, G, X) be an Artin-Schreier structure, and let d : X — G be its forgetful
map. We denote by GUX the disjoint union of G and X. As GG also acts on itself by
multiplication from the left, we get a continuous action of G on the space GUX.

Let A be a discrete G-module. For each n > 1 let C™"(G, A) be the set of contin-
uous (i.e. locally constant) functions f: G" ! x (GUX) = G"U(G" ! x X) — A (thus
f:GUX — Aifn = 1) satisfying f(g1,.-.,9i-1,1,9ix1,---,9n) = 0 forevery 1 < i < n.
Let C°(G, A) = Ad C% (G, A), where C% (G, A) is the set of locally constant functions
f: X — A satisfying f(gx) = gf(z) for every g € G’ and every zz € X. Then C" (G, A)
are abelian groups under addition.

Define the coboundary operator " : C"~1(G, A) — C"(G, A): for n > 2 by

(0" F) (g1, 9n) = 91f (92, -, gn)+

n—1
+ Z(il)zf(gh <3 9i—-1,9i9i+15 9i4-25 - - - 7gn) + (71)nf(gl7 . -;grz—l),
=1
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and for n =1 by

0 (a, f)(g1) = gra —a , for every g1 € G ,
0 a, f)(x) = f(z) +d(x)f(z) —a, foreveryze X .

This gives a complex
C*(G, A): 0— C%G,A) = CHG,A) - -

Define H"(G, A) to be the n-th homology group of this complex; thus (to fix nota-
tion) H"(G,A) = Z"(G,A)/B"(G, A), where Z"(G, A) = {f € C"(G,A)| o"t'f =
0}, B°(G,A) =0 and B"(G, A) = 9"C" (G, A), for n > 1.

We briefly explain the homological background of the definition. (The arguments
will be more or less obvious modifications of the routine arguments in the cohomology

of groups, e.g., [2], Chapter I, §5 and Example 3 on p. 59.) But first notice the obvious

REMARK 2.1: If X is empty then C*(G,A) = C*(G, A), and hence H"(G, A) =
H"™(G, A) for every n > 0.

REMARK 2.2: (cf. [9], Proposition I1.4.1): Let (G;);esr be an inverse system of Artin-
Schreier structures and (A;);cr a compatible direct system of G;-modules. If G = lgn G;
and A = li_r>n A; then the natural map 1i_1>n C*(G;, A;) — C*(G, A) is an isomorphism,
whence H" (G, A) :lgn H™"(G;, Ay).

Also recall that every Artin-Schreier structure is an inverse limit of finite Artin-
Schreier structures ([6], Lemma 4.4).

Because of Remark 2.2 it suffices to consider only a finite Artin-Schreier structure
G = (G,G',X). For each n > 1 let F, be the free ZG-module generated by the
n-tuples [g1|g2|- - -|gn], where g1,...,9n—1 € G and g, € GUX; let F; be the free Z-
module generated by the elements of GUX (thus Fj is also a ZG-module in an obvious
way, though usually not free). The boundary map 0y, : F,, — F,,_; is the homomorphism
of ZG-modules defined as follows: for n > 2 let

Onlgrl---1gn] =galgal - - lgnl+

n—1

+ 3 1 g1l lgicalgigiealgival - gn] + (-D[g1] - lgnor] |
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and let 01 : F1 — Fj be given by

Olg1) =91 — 1, for every g1 € GUX .
Then the sequence
F, : o= Fy,— o= Fy, —» F1 — Fy .

called the standard (bar) G-resolution, is exact. (To see this check that the maps of

Z-modules h,, : F, = F,+1 given by

b (golg1] -+ - lgn]) = [g0lg1| -+ |gn], forn > 1,

ho(go) = [go], where go € GUX |

constitute a contracting homotopy of F, : --- — Fy — F; — Fy as a complex of
Z-modules.)

Also consider the normalized standard bar G-resolution F, = F,/D.,, where D,
is the subcomplex of F, generated by the elements [g1] - - -|g,] such that g; = 1 for some
i (and Dy = 0). The homotopy h defined above carries D, into itself and hence induces

a contracting homotopy of F,, so again

F,: s F, - s Fy 5 F1 — Fo = F
is an exact sequence of ZG-modules. Clearly Fi, Fy, F3, ... are free.

However, Fy need not be free; so we embed it in a free ZG-module ﬁoz

Let G act on the space X = X x {£1} by g(z,6) = (g, gd), where g6 = § if
g € G', and g0 = —4§ if g € GNG'. This action is regular (i.e., gz =z < g = 1, for
every I € )?) Therefore the free Z-module ﬁ() generated by the elements of GUX is a
free ZG-module. We embed F, in Fy via g— g, for g € G, and z — (z,+1) + (z, 1),

for z € X.
Thus, putting ﬁn =F, forn>1

F*: ---—)Fn—>---—>ﬁ2—>ﬁ1—>ﬁ0

is a free resolution of ﬁo/ﬁlﬁl over the ring ZG.
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Let A be a G-module. It is clear from the definition of ﬁn that Homg(ﬁn, A) =
C" (G, A) for n > 1, and that the boundary maps 09, 03, ... in F, induce the coboundary

maps 02,0%,... in C*(G, A). Furthermore, under obvious identifications,

Homg (Fy, A) = Homg(ZG, A) & {¢p: X — Al (g7) = g¢(Z) for all g € G, T € X}
=A@ {y: X = Al P(gz,1) = go(x,1) and P(x, 1) = d(2)p(x,1),9 € G', = € X}
=Ae{y: X x {1} = Al ¢(g9z,1) = g(z,1) for all g € G', z € X}

=Ad{p: X = Al p(gzr) = gp(x) forall g€ G', z € X} = CYG, A) ,

where the map ¢ — ¢ is induced by z +— (z,1). It is easy to verify that under these

identifications 01 : Fy — Fy induces 0 : CY(G, A) — C1(G, A).

3

LEMMA 2.3:
(i) H(G, —) is a positive cohomological functor (cf. [9], Definition I1.5.1).

3

(ii)) H(G, —) is effaceable by the injectives of Mod(G) (cf. [9], Definition I1.5.4).
Proof: (i) In the view of Remark 2.2 we may assume that G is finite. Let 0 - A —
B — C — 0 be a short exact sequence of G-modules. Then the corresponding sequence

0— Homg(ﬁn,A) — Homg(ﬁn, B) — Homg(ﬁn, C)—=0

is exact for every n > 0, since F), is a free ZG-module. Thus we have a short exact

sequence of complexes
0—-C*"(G,A)—-C"(G,B)—C"(G,C)—0.

The assertion now follows from [8], Theorem I1.4.1.

(ii) Again, with no loss G is finite (cf. the proof of [9], Theorem I1.5.10). If A is
injective then the exactness of F, implies that C* (G, A) = Homg(F,, A) is exact. Thus
H"(G,A)=0forn > 1. 1

As a consequence we get that H(G, —) is uniquely determined by HY(G, —) (cf.

[9], Theorem I1.5.5). In fact, we have even more:
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LEMMA 2.4: Let E = (E™) be a positive cohomological functor on Mod(G) effaceable
by the injectives, and let A" : E™ — H"(G,-), n = 0,1,2,... be a morphism of
cohomological functors. Assume that for every A € Mod(G) and every w € E°(A) we
have \°(w) = (0,¢) € H°(G, A) such that for every x € X there exists a € A satisfying
o(x) =a —d(z)a. Then \ =0 for n > 1.

Proof: Enough to show that A! = 0, since then (A% 0,0,...) is a morphism of co-
homological functors £ — H(G, —), and hence the assertion follows by [9], Theo-
rem II.5.5. Now A! is the unique morphism such that for every short exact sequence

00— A— B— C — 0 of G-modules the diagram

E°(C) —7  EY(A)

)
A0 Al
V V
HY(G,C) 7 HY(G, A),

where § denotes the connecting homomorphisms, commutes. Therefore it suffices to
show that in such a situation 6 o A% = 0.
We recall that 6 : H*(G,C) — H(G, A) is calculated in the following way (“snake

lemma”). We have short exact sequences
0—-C"(G,A)—>C"(G,B)—>C"(G,C) =0

for every n > 0. Therefore an element (c,p) € Z°(G,C) can be lifted to (b,p) €
C°(G, B). There is a unique f € C'(G, A) mapped to 9'(b, p) € C'(G, B), i.e., (think-
ing of A as a subset of B)

(1) gb—b= f(9), for all g € G

(2) p(z) +d(z)p(x) — b= f(x), forall z € X .

A fortiori f € Z'(G, A), and 6(c, ) is defined as the class of f in H' (G, A).
Now let w € EY(C), and let \°(w) = (0,¢) € H°(G,C). By assumption there

is a map ¢’ : X — C such that ¢(z) = ¢'(x) — d(x)¢'(z) for every x € X. As ¢ is
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locally constant, we may take ¢’ to be locally constant. We may also assume that ¢’ is
G'-equivariant, otherwise restrict it first to a system of representatives of the G'-orbits
in X and then extend it to a G'-equivariant map. Fix a lifting (0, p’) € C°(G, B) of
(0, ¢") and define p(x) = p'(z) — d(x)p'(x); then (0, p) is clearly a lifting of (0, ¢). But
p(x) + d(z)p(z) = 0, hence our claim follows from (2). 1

3. H?>(G, A) and extensions of Artin-Schreier structures
Let
G =(G,G, X)

be an Artin-Schreier structure, and let A be a finite G-module. An extension of G by A
is a cover 7 : G — G of Artin-Schreier structures with Ker 7 = A. Another extension
G = G of G by A is isomorphic to 7 : G — G if there is an isomorphism
a: G — G’ such that ©’ o & = 7 and the restriction of a to A is the identity of A. A
morphism § : G — G of Artin-Schreier structures splits the extension 7 : G - G if
a o =1dg; we also say that the extension splits.

Let f € Z2(G, A), i.e. a locally constant function f : G x (GUX) — A satisfying
df =0and f(g,1) = f(1,2) =0 for every g € G and every z € GUX.
We associate with f the Artin-Schreier structure
AsG = (A5G, A;G', Ax X)

where

(i) the group A¢G is the group extension of G by A associated with the restriction of
the cocycle f to G x G; it is the topological space A x G with the multiplication

rule

(1) (a1,91)(az, 92) = (a1 + g1a2 + f(91,92)), 9192);

(i) AyG" ={(a,9) € AyGl g€ G'};



(iii) AfG acts on A x X by

(2) (b.9)(a,z) = (b+ga+ f(g,z),9z) .

LEMMA 3.1:
(a) AyG is indeed an Artin-Schreier structure.

(b) The projection on the second coordinate w : AyG — G is a cover.

Proof: (a) The semidirect product A;G is a group; its unity is (0,1). Clearly (A;G :
A;G') = (G : G') < 2. Condition df = 0 ensures that (2) is an action, i.e.,

((b1,91) (b2, g2))(a, ) = (b1, 91)((b2, 92)(a, %)) -

Now let (b,g) € A¢G and (a,z) € A x X. Write G, = {€,1}. Then

(b,9)(a,z) = (a,2) & gz ==, b+ga+ f(g9,2) =a
&eitherg=1land b+a+ f(1,2) =a or g=cand b+cea+ f(e,x) =a
& either (b,g) = (0,1) =1 or (b,g9) = (a —ea — f(e,x),e) .
Thus {1, (a —ea — f(e,x),e)} is the stabilizer of (a,x), and (a —ea — f(e,x),¢e) € AfG".
(b) Clearly 7 is an epimorphism of Artin-Schreier structures and Ker 7 = A. If

(a1, 1) = w(ag, T2) then 1 = x5, and hence

(ag — a, 1)((11,331) = (02,332) .

As expected, Z'(G, A) classifies the splitting morphisms of the extension 7 :
AyG — G: Every splitting morphism g : G — G of the extension 7 : 490G — G is
given by

B(z) = (f(z),2) for all z € GUX

where f € Z1(G, A) is uniquely determined by S. Indeed, every continuous left inverse
B:G — G of 7 is given by B(z) = (f(2), z), where f: GUX — A is a continuous map.

It will be a morphism of Artin-Schreier structures if and only if
B(gz)) = B(g)B(2) forall g € G,z € GUX.
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This is equivalent to f(gz) = f(g) + gf(z), that is, f € Z' (G, A).

LEMMA 3.2: Every extension 6 : G — G of G by A is isomorphic tom : AyG — G for
some cocyle f € Z*(G, A). The cocycle f is unique modulo B*(G, A).

Proof: Write G = (G,G’, X) and G = (@@’,)?> We shall write the group law of G
multiplicatively, but its restriction to A additively. Choose continuous sections u : G —
Gofr:G— Gandu: X — X of 7: X — X such that u(1) =1 (cf. [9], Proposition
1.3.5 and [6], Lemma 9.1). The first one of them turns A into a G-module by

(4) ga = u(g)a(u(g))™",

and both sections define f: G x (GUX) — A by

(5) u(g1)u(gz) = f(g1,92)u(g192) for all g1 € G and ¢ € GUX .

It is easy to see that 0f = 0 due to the fact that

(u(go)u(g1))u(ge) = u(go)(u(g1)u(gse)) , for all go, g1 € G and g2 € GUX .

Also, u(1) = 1 implies that f is normalized. Thus f € Z?(G, A).
Deﬁnea:AfG%(A}anda:AxX—))?by

a((a,g)) = au(g), foralla € A and g € GUX .

It is easy to check that both of these maps are continuous bijections, and a(A;G’) = G’
We show that (o, ) : 4G — G is a morphism of Artin-Schreier structures.
Indeed, for all g € G and g2 € GUX
a((a1, g1)(az2, g2)) = a((ar + g1a2 + f(91, 92), 9192)) = (a1 + g1a2 + f(g1, g2))u(g1, g2)
= (a1 + u(gr)azu(gr) Hu(gr)ulgz) = aru(gi)azu(gs) = a((a1, 91))a((az; g2))-

Clearly the following diagram commutes

4,6 % &
TN\ 0
G
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The isomorphism A;G — G constructed above depends on the (arbitrary) choice
of the sections v : G — G and u : X — X. But obviously any isomorphism o’ :
ArG — G of the extensions AfG — G and G — G must be of the above form,
possibly defined by other sections, say v’ : G — G and v’ : X — X. These define
another cocycle f' € Z?(G, A). As in the case of group extensions (cf. [9], p. 102),
f'— f=0W —u) € B3G,A). 1

Combining the two lemmas and the observation that split extensions are isomor-

phic we obtain:

PROPOSITION 3.3: Themap f — (7 : AfG — G) induces a bijection between H*(G, A)|j
and set of isomorphy classes of extension of G by A. The zero of H?(G, A) corresponds

to the class of split extensions.

Recall ([6], Section 7) that a (finite) embedding problem for an Artin-Scheier struc-
ture G consists of a cover 5 : C — B of (finite) Artin-Scheier structures and a morphism
¢ : G — B. Its solution is a morphism 9 : G — C such that So1 = . We call G
projective if every finite embedding problem for G has a solution, in which case every

embedding problem for G has a solution.

COROLLARY 3.4: An Artin-Schreier structure G is projective if and only if H*(G, A) =

0 for every finite G-module A.

Proof: et ¢ : G — B, f: C — B be a finite embedding problem for G. Let
G = C x G and let 7 : G — G be the coordinate projection. By the properties of
fibred products ([6], Lemma 4.6) ¢ : G — B, : C — B has a solution if and only if
the embedding problem id : G — G, 7 : G — G has a solution, i.e., w splits. Thus G

is projective if and only if every extension of G by a finite G-module splits. The rest

follows from Proposition 3.3. ]
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4. Special maps

Let G1 = (G1,G), X1) and Go = (G2, G4, X2) be Artin-Schreier structures. A mor-
phism « : G; — Gy induces continuous maps « : GTI"*1 X (G1UXq) — G’;fl X (GaUX3y).
Let Aj be a discrete Gi-module, ¥ = 1,2 and let o/ = Ay — A; be a homomorphism

compatible with «, that is
o' (a(gr)as) = g1 (az), for every g, € G1 and every as € A, .

It is then easy to see that the maps C™(«, /) : C"(Gg, A3) — C™(Gy, A1), defined by
f — o' o foa, constitute a homomorphism of complexes C*(a, ') : C*(Go, Ay) —
C*(G1, A1), and therefore induce homomorphisms H"(«, ') : H"(Ga, A2) — H"(G1, A1),}}

for every n > 0.

ExAMPLE 4.1: (a) Let G; be a substructure of an Artin-Schreier structure Gg, and
let A be a discrete Gi-module. Thus the embedding G; — Go and the identity of A
induce the restriction resgj : H*(Gy, A) —» H*(Gq, A). Clearly, if Gy < G1 < Gy then
resgg o resgf = resgz.

(b) Let G be an Artin-Schreier structure, and let A be a discrete G-module. Let
K be a closed subgroup of G’ normal in G. The quotient map G — G/K together
with the inclusion A¥ — A induce the inflation infg/K : H*(G/K, A¥) — H*(G, A).
Clearly, if L < K then infS/% o infgjf( = infS/"

Corestriction.

Let H < G be Artin-Scheier structures, say G = (G, G', X) and H= (H,H',Y),
such that H is an open subgroup of G. Recall that H = HNG', and Y = {z €
X|d(z) € H}, where d is the forgetful map of G. Let ® be a set of representatives of
the left cosets of H in G. For every x € X choose a finite set ®(z) of representatives of
the double classes of (d(x))\G/H, such that:

(i) if 2’ € X is near to x then the elements of ®(z’) are near to the elements of ®(z):
(ii) ®(ox) = o®(x) for every x € X and every o € G'.
(To achieve this, choose a closed system X, of representatives of G’-orbits in X. First

define ®(x) for z € Xy so as to satisfy (i), say, by putting ®(z') = ®(z) if (d(x))\G/H =
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(d(z"))\G/H. Then extend the definition to X by ®(ox) = c®(x) for every x € X, and
every o € G'.)

Denote
®y(x) ={r € ®(z)| d(z)rH =rH} = {r € ®(z)| d(r 'z) € H} =
={red)| (rlzeY},
Oy(z) ={r € ®(z)| d(z)rH #rH} .
Then conditions (i) and (ii) hold also with ®; and ®, instead of ®.
Our choice ensures that the union ¥(z) = ®4(x) U Po(x) U d(x)P2(x) is disjoint
and it is a set of representatives of the left cosets of H in G.

Let A be a discrete G-module. We define a natural map (a,p) — (a,9) from
H°(H, A) to H°(G, A) in the following way:

(1) a= Zra,

(2) o(z) = Z ro(r~tr) + Z ra, for every z € X .
red®; (z) re®,(x)

By (i), ¢ is continuous. If o € G’ then by (ii)

slox)= 3 (or)p((or)lox)+ Y (or)a=op(x) .

re®, (z) re®, ()

Thus (a,p) € C°(G, A). We check that (a,p) € H°(G, A). Clearly, the definition of
a is independent of the choice of @, and @ € A%. If r € ®(z) then 7~ 'z € Y, hence

o(rtz) +d(r'z)o(r 'z) = a, whence
(3) r e ®(x) = ro(r—tr) +d(z)ro(r 'z) =ra .

As a € A we have

d:Zra: Z ra = Z ra + Z ra+ Z d(z)ra

red rev(z) re®q (x) re®,(z) re®,(x)

14



and thus by (3)
@ = p(z) + d(z)p(x) ,
whence (a, ) € H(G, A).

As in [9], p. 136, H'(H, A) — H°(G, A) extends to a unique morphism of coho-
mological functors corg : H*(H, A) — H*(G, A).

Unfortunately, the morphism H°(H, A) — H°(G, A) depends on the choice of
®(z). However, if ®'(z) is another choice of representatives of the double classes of
(d(z))\G/H then for every r € ®(x) there is h € H such that either rh € ®'(z) or
d(x)rh € ®'(z). If ¢’'(z) is defined by (2) with respect to ®'(x) then ¢'(xz) — ¢(z) is a

sum of expressions of the form
rha — ra, d(x)rha —ra, rho(h™'r~'z) — rp(r~'z), d(z)rhp(h™'r12) — ro(r~'z),

where r € ®(z) and h € H. But

(a) ha = a;
(b) if rlz € Y and h € H' then o(h lr 1z) = h lo(r lz);
(¢c) if r™'z € Y and h € H~H' then h='d(r~'z) € H', hence

oh 7 tz) = d(r ) e(r T ) = b Y d(a)re(rT )
Therefore ¢’ () — ¢(z) is a sum of expressions of the form
0, d(x)ra —ra, d(z)ro(r~'z) —ro(r~'z),

where r runs through ®(z), whence ¢'(z) — @’'(z) = b — d(z)b for some b € A. Thus by
Lemma 2.4 the morphisms cor@l : H"(H, A) — H"(G, A), for n > 1, do not depend on
the choice of ®(x).

PROPOSITION 4.2: For n > 1 the composed map cor& oresG : H"(G, A) — H"(G, A)

is the multiplication by (G : H).

Proof: Let (a,) € H°(G, A), and denote its restriction to H°(H, A) also by (a, ®).

3

Write G as (G,G’, X), and let x € X. If r € G’ then ro(r 'z) = ¢(z); furthermore
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ra =a = p(x) + d(z)e(z) for every r € G. Thus by (2) we can write

pa)= Y Sp@)+ Y el)+d)e(r) .

re® (z) r€®y(x)

where §, € {1,d(z)}. Therefore

Thus the assertion follows by Lemma 2.4. ]

COROLLARY 4.3: H"(G, A) is a torsion group for every G-module A and n > 1. More-
over, the order of every ¢ € H"(G, A) divides |G|.

Proof: Cf. 9], Corollary I1.6.7. 1
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5. Induced modules and spectral sequences

Let G = (G,G’, X) be an Artin-Schreier structure. Define a continuous action of G on
the product space X = X x {1, -1} by o(z,0) = (6x,0), where o +— ¢ is the unique
epimorphism from G onto {1, —1} with kernel G’. Let H < G and let A be a G-module.
Define

C%(G,A) = {f: GuX — A| f continuous, f(hoo)= hf(cy), he€ H, oy € GUX} .
For ¢ > 1 define
CH(G,A) ={f: G'%(GuUX) — A| f continuous, f(og,01,...,04) = 0if 0;,_1 = o; for somej
1<i<gq, f(hoo,hoi,...,hoy) = hf(oo,01,...,04), h€ H,00,01,...,04-1 € G, 0, € GUX}
Define 9 : C% (G, A) — CL(G, A) by

(0f)(g0,91) = f(91) — f(90), go, 91 € G
(0f)(g90,z) = f(z,1) + f(z,~1) — f(g0), 90 € G,z € X,

and define 8 : C%4 (G, A) —» C4T (G, A) for ¢ > 1 by

(af)(g()v.qlv cee 7gq+1) - f(QL gz, ... 7gq+1)_f(g()7927 sy gq—i—l)"" T (_1)(1-{-1](‘(907 gi,---, Qq) I

Then (Cy(G, A),0) is clearly a complex. Moreover, let M (A) be the induced G-
module (cf. [9], p. 142)

ME(A) = {f:G — A| f continuous and f(hg) = hf(g) for all h € H, g € G}

on which G acts by (vf)(g9) = f(97), g.v € G. Then we have:

LEMMA 5.1: (i) The complexes Cy (G, A) and C(G, MY (A)) are isomorphic;
(ii) The complexes Cq (G, A) and C(G, A) are isomorphic;
(iii) H% (G, A) = H™(G, MY (A)) for every n > 0.

Proof: (i) The maps
®:CL(G,A) = CUG, MH (A) and ¥ : C1(G, MF (A)) — CL(G, A) given
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(a) for ¢ = 0 by:
(®f) = (A, ), where A(o) = f(0) and ¢(z)(0) = f(ox,0), forc € G, x € X
YA @) = f, where f(0) = Ao), f(z,1) = @(x)(1), f(z,-1) = p(x)(d(z)) ;
(b) for ¢ > 1 by:
(@F)(01,...,00)(0) = f(0,001,00100, ..., 00102 - 74),
(Vh)(00,01,...,04) = h(og ‘01,07 0,0 04)(00)

are morphisms of complexes, inverse to each other.
(ii) - follows from (i), since M (A) = A.

(iii) - is a consequence of (i). 1

SHAPIRO’S LEMMA 5.2: Let G = (G,G', X) be an Artin-Schreier structure,
H = (H,H'|Y) a substructure of G, and let A be a G-module.

(i) There is a natural short exact sequence
0— R(A) — H(G,MH(A)) - H'(H,A) =0,

where R(A) is the additive group of all continuous ¢ : X — A satisfying

o(hz) = he(z) forallz € X, h e H'
w(hz) = —hp(x) forallz € X, he H\H' .
(ii) There is a natural isomorphism H™(G, M (A)) = H"(H, A) for each n > 1.

Proof: (i) We may replace H*(G, MH (A)) by HY% (G, A) = Z%(G, A). Furthermore,
7% (G, A) may be naturally identified with the additive group D° of all pairs (a,¢)

3

where a € A” and ¢ : X — A, such that for all z € X

(1) o(hz) = ho(z) for all h € H'

(2) o(hz) + hp(r) =a forallhe HNH' .
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Indeed, let f € Z% (G, A). Put a = f(1) and define ¢ : X — A by ¢(z) = f(z,1).
Then (a, ) € DY, since:

(a) We have 0 = (0f)(1,9) = f(g) — f(1), hence f(g) = a for all ¢ € G. But
f(hg) = hf(g), forall g€ G, h € H, hence a € AY.

(b) p(hz) = f(hz,1) = f(h(x,1)) = hf(x,1) = hp(z) for all z € X and h € H'.
Furthermore 0 = (0f)(1,z) = f(x,1) + f(x,—1) —a. Thus for h € HNH' we get

o(hz) = f(hx,1) = f(h(z,—1)) = hf(x,—1) = ha — hf(z,1) = a — hp(z) .

The map Z% (G, A) — DO is clearly injective; its inverse is given by (a, ¢) — f, where
F(g) = aforall g € G, and f(z,1) = p(x) and f(z, ~1) = a — p(a)
Note that if (1) holds then (2) is equivalent to

(2" w(nz) + ne(z) =a for some n € HNH' .

(If n € H~H' satisfies (2’) then for every h € H'

@(hnz) + hne(z) = h(emz) + ne(z)) =ha =a .

But H~\H' = nH', hence we get (2).) In particular, if z € Y then we may take n = d(x)

b

and hence (2’) is equivalent to

(2") p(x) +d(x)p(r) = a .

This permits us to define a map D° — H°(H, A) by (a, ¢) — (a,resyp).

To show that D° — HO(H, A) is surjective, we may assume that G is finite, since
G is an inverse limit of finite Artin-Schreier structures. Let (a,¢) € H°(H, A). We
have to extend ¢ : Y — A to a function ¢ : X — A satisfying (1) and (2) for all z € X.
This is possible, since H acts fixed-point-freely on X\Y.

Finally, the kernel of DY — HY(H, A) is clearly R(A).

(ii) Let 0 - A — B — C — 0 be an exact sequence in Mod(H). Then

0— R(A)— R(B)— R(C)—0
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is also exact. Hence the top and the bottom row in the following commutative diagram

are exact.
0 0 0
3 ) 3
0—  R(A) — R(B) — R(C) - 0 — 0 =
3 \J 3 \J 3
0—HY(G, MHE(A)) — HYG, MH(B)) — HY(G,MH(C)) % H\(H,A) » HI(H,B) - -
N 16 l 0 bid }id
0o— H°H,A) — H'H,B) —  H'HC) iHl(H,A) — H'(H,B) = ---
3 \J 3 \J 3
0 0 0 0 0

By (i) the columns are exact, hence the middle row is also exact.

This shows that

(HO(G:Mg(_)) Hl(Hv _): H2(H7 _): o )

3

is a cohomological functor on Mod(H); by Lemma 2.3 it is effaceable by the injectives
of Mod(H). But if A € Mod(H) is injective, then M (A) is injective in Mod(Q)
([9], Proposition 11.7.3), hence H"(G, M (A)) = 0 for n > 1 (Lemma 2.3). Thus the
cohomological functor H*(G, M (—)) is also effaceable by the injectives of Mod(H).

Therefore our assertion follows from [9], Theorem II.5.5 and Corollary 11.5.7. I

Let G = (G,G’, X) be an Artin-Schreier structure and A a G-module. Let N be
the substructure of G defined by a closed normal subgroup N of GG. Consider the action
of G on C% (G, A), for ¢ > 0, given by

(0f)(00,01,...,04) = af(aflag,a*lal, .. _’0710(1)7 feCL(G,A), c€q.

3

Clearly of = f for 0 € N, hence the above induces a G/N-action on C% (G, A).
Since this action commutes with the coboundary map 9, G/N also acts on the groups

H (G, A). By Lemma 5.1 and Lemma 5.2, H% (G, A) = HI(N, A) for ¢ > 1.

20



We have HY(G /N, C% (G, A)) = 0 for ¢ > 0. Indeed, given f € C(G/N, CX (G, A))}
i.e. a homogenous function f : (G/N)? — C¥ (G, A), such that 9f = 0, define
y € CTYG/N,C (G, A)) in the following way. If p = 0, choose a closed system

X of representatives of the G-orbits in )~(, and put

y(oo,...,04-1)(7) = flo0,...,00-1,7)(7)

y(oo,...,0q-1)(tz) = f(00,...,04-1,7T)(TT), TE€G, € X

If p > 0, define y as in [9], Lemma III.5.2

Y(oo, .. 0q-1)(T05- - s Tp) = f(00, -, 0qg—1,7T0)(T0s- - - Tp) -

It is easy to see that 0y = +f.
Therefore (cf. [9], Theorem I11.5.3) we get:

THEOREM 5.3: There exists a spectral sequence E such that EY'? = H? (G /N, H1(N, A))j}
for ¢ > 0, and EY'? = H"(G, A).

6. Cohomological dimension

DEFINITION 6.1: Let G be an Artin-Schreier structure and p a prime number. We
write ¢d,(G) = n if n is the smallest nonnegative integer such that

H1(G,A)(p) =0 for all ¢ > n and all torsion G-modules A.
If no such n exists we write cd,(G) = oc. We also put cd(G) = sup,, cd,,(G).

PrROPOSITION 6.2: The following conditions are equivalent:
(i) ¢dp(G) < m;
(ii) H"*1(G, A) = 0 for all p-primary G-modules A;
Ho
1

(iii) (G, A) = 0 for all finite G-modules A annihilated by p;

(iv) (G, A) = 0 for all finite simple G-modules A annihilated by p.

Proof: Follow the proof of [9], Proposition IV.1.5, (keeping in mind that every finite
simple p-primary G-module A # 0 is annihilated by p, since pA is a proper G-submodule

of A). 1
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ProproSITION 6.3: Let H < G be Artin-Schreier structures and p a prime number.
Then cd,(H) < c¢d,(G). Moreover, equality holds in either of the following cases:

(1) p does not divide (G : H);

(2) H is open in G and cd,(G) < oo.

Proof: See the proof of [9], Proposition IV.2.1. Use Proposition 4.2 for (2). I

COROLLARY 6.4: Let G, < G be the Artin-Schreier structures such that G, is a p-
Sylow subgroup of G. Then cd,(G) = c¢d,(G,) = cd(G,).

COROLLARY 6.5: Let G = (G,G’, X) be an Artin-Schreier structure. If p is odd or
X =0 then cd,(G) = cd,(G).
Proof: Write G, as (G, G, Y). In both cases Y = {) (if p is odd there are no involutions

in G), hence ¢d,(G,) = ¢d,(Gp) by Remark 2.1. Apply Corollary 6.4. 1

EXAMPLE 6.6:
(a) Let G = (G,G', X) be an Artin-Schreier structure such that G is a pro-2-
group. Then cdy(G) = 0 if and only if G = 1 (and hence X =0) or |G| =2, | X| = 1.
Indeed, by Proposition 6.2, cd2(G) = 0 if and only if H'(G,Z/2Z) = 0. Let
f: GUX — Z/2Z be a continuous map. Then
Of ©f(oz) = f(o)+ f(z) for all 0 € G and all z € GUX
&resgf is a homomorphism, f(d(z)) =0 and f(ox) = f(o) + f(x)

forall o € G’ and all x € X

Thus
ZYG,7/27) ={f : GUX — Z/27Z| f is continuous, f(1) =0 and 9f =0}

=Hom(G/N,Z/2Z) & {f : Xo — Z/2Z| f is locally constant} ,

where N is the smallest closed normal subgroup of G containing d(X), and X is a
closed system of representatives of the G-orbits in X.
Furthermore, it is easy to see that under this identification
BY(G,Z/27) =0 {f : Xg — Z/27Z] f is constant} .
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Therefore Z'(G,Z/2Z) = B'(G,Z/2Z) if and only if Hom(G/N,Z/2Z) = 0 and | X,| <
1. Since G is a pro-2-group, the first condition means that G = N, and hence G =
(d(Xyp)); if also Xo = 0 then G = 1; if | Xo| = 1 then |G| = 2. Thus HY(G,Z/2Z) = 0 if
and only if either G =1 or |G| =2 and | X| = 1.

(b) Let G = (G,G', X) be an Artin-Schreier structure such that |G| = 2. Then
cda(G) =0 if | X| =1, and c¢d2(G) = oo otherwise.

Indeed, let C denote the group of continuous maps from X into Z/2Z and let Cy
denote the subgroup of constant maps. Write G = {1,e}. Then C°(G,Z/2Z) = 7./2Z &
C' by definition, and C1(G,Z/27) = 7/27 & C for g > 1, the isomorphism being given
by f + (a,v), where a = f(e,...,e) and ¢(x) = f(e,...,e,x). Furthermore, under
this identification the coboundary map 9 : C4(G,Z/27) — CI1TY(G,Z/27) is given by
(a,1) — (0, pa), where p, is the constant map of value a. Thus Z9(G,Z/27) = C, and
BY(G,Z/2Z) = Cy, for ¢ > 1. Note that C = Cj if and only if |X| = 1, hence the

assertion follows from Proposition 6.2.

COROLLARY 6.7: Let G = (G,G’, X)) be an Artin-Schreier structure. If cda(G) < oo

then the forgetful map d : X — G is a bijection of X onto the involutions of G.

Proof: Let € € G be an involution. The Artin-Schreier substructure H of G defined by
(e) satisfies cd2(H) < oo by Proposition 6.3. We have |[d~'(¢)| = 1 by Example 6.6(b).

1
COROLLARY 6.8: (i) Let p be an odd prime. Then c¢d,(G) = 0 if and only if p does
not divide |G'|.
(ii) cd2(G) = 0 if and only if 2 does not divide |G'| and the forgetful map of G is a

bijection of X onto the involutions of G.
Proof: (i) ¢d,(G) = c¢d,(G) by Corollary 6.5. By [9], Corollary IV.2.3, ¢d,,(G) = 0 if
and only if p does not divide |G|, i.e., p does not divide |G'|, since (G : G') is prime to

.
(ii) By Corollary 6.4 we may assume that G = Gy and then apply Example 6.6(a).
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7. An application to algebraic extensions of Q

Let G be a profinite group such that the set X of involutions in G is closed in G. We
say that G is real projective (cf. [6], p. 472) if for every epimorphism o : B — A of
finite groups and every continuous homomorphism ¢ : G — A there exists a continuous
homomorphism 1 : G — B such that a o1 = ¢, provided that for every z € X such
that ¢(x) # 1 there exists an involution b € B such that «a(b) = ¢(z).

The concept of cohomological dimension of Artin-Schreier structures may be used

to characterize real projective groups.

PROPOSITION 7.1: A profinite group G in which the set X of involutions in G is closed is
real projective if and only if there exists an open subgroup G’ of G such that (G : G') < 2
and G' N X = (), and for every (or for some) such G’

G = (G, ¢, X)
is an Artin-Schreier structure and cd(G) < 1. (Here G acts on X by conjugation. If G is

the absolute Galois group of a field K, this is the result announced in the introduction.)

Proof: By Proposition 3.4 and Proposition 6.2, and Artin-Schreier structure G is pro-
jective if and only if cd G < 1. Apply this to [6], Proposition 7.7. I

Our next aim is to determine the cohomological dimension of the absolute Artin-

Schreier structures of algebraic extensions of Q.

PROPOSITION 7.2: Let G be an Artin-Schreier structure and let N be a normal closed

subgroup of G. Let p be a prime. Then
cdy(G) < ¢dp(N) +cd,(G/N) .

Proof: This follows from Theorem 5.3. Cf. [9], Proposition IV.2.6. 1

THEOREM 7.3: Let K be an algebraic extension of (Q, and let p be a prime number.

Then cd,G(K) = 0,1 or 2. More precisely,
(i) ¢d,G(K) = 0 < p™{K : K].
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(ii) ¢cdpG(K) =1 < p™ | [K : K] and p®|[K, : Q,] for every non-archimedian place
v of K.

(iii) ¢d,G(K) =2 < p™ | [K : K] and p®{[K, : Q,] for some non-archimedian place
v of K.

Proof: We may assume that p = 2 and K is formally real (i.e., X (K /K) # 0)); otherwise
cd,G(K) = c¢d,G(K) by Corollary 6.5, and the theorem coincides with [9], Theorem
IV.8.8. It follows from the Artin-Schreier theory that the forgetful map of G(K) is
a bijection of X(K/K) onto the involutions in G(K) = Gal(K/K). Denote K' =
K(v).

(i) By Corollary 6.8, cdyG(K) = 0 if and only if 2{[K : K']. This is equivalent to
2°{[K : K'], since G(K’) is a torsion free group.

(ii) The condition on the right side does not change if we replace K by K', and
therefore by [9], Theorem IV.8.8, is equivalent to cdoG(K') = 1. In the view of (i) we
have to show that cdoG(K) < 1 if and only if cdoG(K’) < 1. To this end we may, by
Corollary 6.4 and [9], Corollary IV.2.2, replace G(K) by its Sylow 2-subgroup, and thus
we have to prove that cd G(K) < 1 if and only if cd G(K') < 1. By Proposition 7.1

cd G(K) <14 G(K) is real projective

< cd G(K') <1 ([5], Theorem 6.1).

(iii) By (i) and (ii) it suffices to show that cd2G(K) < 2.

Without loss of generality [K : Q] < oo. By [9], Lemma IV.8.7 there is a Galois
extension L/K such that G(L/K) = Zy and 2*|[L, : K,] for all non-archimedian v on
L. By (i) and (ii), cdaG(L) < 1. One knows that cdsZs = 1. Thus cdaG(K) < 2 by

Proposition 7.2. 1
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