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Introduction

Let G be a pro-p-group and let G’ be an open subgroup of G. Assume that G’ is a
free pro-p-group. If G is torsion free, then a celebrated theorem of Serre ([S], Corollaire
2) states that G itself is a free pro-p-group. This is especially useful in Galois theory,
when G is the absolute Galois group G(K) of a field K and G’ = G(L), where L is a
finite extension of K. Indeed, if p # 2 then G is torsion free. However, if p = 2 then G
may contain elements of order 2 (called involutions; henceforth Inv(G) will denote the
set of involutions of G). Ershov ([E], Theorem 4) has shown, using a field theoretical
characterization of such groups by quadratic forms due to R. Ware ([W], Corollary 3.3),
that in this case G is what we call a real free pro-2-group, i.e., the free pro-2-product
of copies of Z/27Z with a free pro-2-group.

The purpose of this work is to generalize this result to arbitrary profinite (not
necessarily absolute Galois) groups. To avoid new definitions at this stage, we mention
here only the most significant case of pro-2-groups; the complete results and some

applications are listed in section 2.

THEOREM A: A pro-2-group G is a real free pro-2-group if and only if either G itself
is a free pro-2-group or G contains an open free pro-2-subgroup G’ of index 2 and the

centralizer of every involution € in G is {1,¢}.

If G is the absolute Galois group G(K) of a field K then Artin-Schreier theory
guarantees the centralizer condition of Theorem A. Furthermore, if an open subgroup
of G(K) is a free pro-2-group then so is its intersection with the torsion free group
G = G(K(v/-1)), and hence also G’ is free, by the above mentioned Serre’s theorem.
Thus the above mentioned result of Ershov follows as a special case of Theorem A.

The proof of Theorem A is an analogue of our proof of Serre’s theorem [H3] in
the cohomology of groups and it requires several ingredients:

(i) Artin-Schreier structures (Definition 1.3) instead of profinite groups. The reader
should consult [HJ1] for the basic properties of Artin-Schreier structures. The

main reason for their use is that the real projectivity of a groups translates to the
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projectivity of a corresponding Artin-Schreier structure, which can be easier dealt
with.

(ii) The cohomology theory of Artin-Schreier structures, developed in [H2]. We shall
give its essentials below for the convenience of the reader.

(iii) Projective resolutions of profinite G-modules (see Section 1), as given in [H3].
Use of this machinery yields the following result in the theory of Artin-Schreier

structures:

THEOREM B: Let G = (G,G’, X) be an Artin-Schreier structure. If X = Inv(G) then
cd, G = ¢d,,G' for every prime p.

In particular we have:

COROLLARY: An Artin-Schreier structure G = (G, G’, X)) is projective if and only if G’

is a projective profinite group and X = Inv(G).

This yields a new characterization (Proposition 2.2) of real projective groups, from

which also Theorem A will be derived.

1. Cohomology of Artin-Schreier structures

We shall be concerned with structures of the form
(1) G:(G,G’,X),

where (G is a profinite group with a continuous left action on the Boolean space X
(possibly empty) and G’ is an open subgroup of G of index 1 or 2. Associate with G
the disjoint union X = {z* |z € X}u{z~ |z € X} of two homeomorphic copies of X.
Let G act on X by

o (gr)T ifge @ o (gz)~ ifged
97V (gr)~ ifge G G I T\ (go)* if g € GG

As G also acts on itself by multiplication from the left, we get a continuous action of G
on the disjoint union GUX.
Let p be a prime and put F, = Z/pZ. In the Galois cohomology one usually

works with discrete G-modules (cf. [R], Definition II.1.1). We, however, shall be more
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interested in the category C,(G) of inverse limits of finite (discrete) F,[G]-modules.
One might call these objects profinite G-modules annihilated by p, or profinite F, [G]-
modules. More details on this category can be found in [H3], especially information
about free and projective objects in C,,(G); nevertheless, a reader with some experience

in the theory of profinite groups will have no difficulties in understanding the operations

in C,(G) used in this paper.

DEFINITION 1.1: Assign to G the profinite F,[G]-module M,(G) = (F, & F, X)/ By,
where IFp)? is the free F-module on X and By is the closed G-submodule of F, @ pr(
generated by T + 2~ — 1, for all z € X.

To elucidate the definition, assume first that G is finite, i.e., G, G’ and X are
finite. The IF,-vector spaces I, and IFP)? = D, 5 Fpe are F,[G]-modules: the former
with the trivial G-action and the latter via the action of G on X. Then the definition

reads
(2) M,(G) = (F, ®F, X)/ > Fp(zt +a= —1).

If G is not finite, then it is the inverse limit of finite structures G; = (G;, G}, X;), that
is, G = limG;, G’ =1lim@G}, X = lim X; and the G-action on X is induced from the
— — —
Gi-actions on X; (cf. [HJ1], Proposition 1.5). In this case M,(G) = li(_m M,(G;).
By abuse of notation, the elements of IF,, @Fp)z will denote their images in M, (G)

as well.

REMARK 1.2: Let G be finite. Suppose that X is the disjoint union of three subsets
Xy, X and Xy, and let zg € Xo. Then by (2) the following set

{at|ze X JU{os |z e X JU{aT |2g#2€ XotU{zF}u {1}

is a linear basis of M,(G) over F,. It will remain a basis after subtracting its element

.773' from some other elements. Thus also

{zt|re X Ju{z” [ze X _YuU{(at —zf) |20 #x € Xo}U{z], 75}
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is a linear basis of M,(G) over F,.

DEFINITION 1.3 (see [HJ1], section 3; also cf. [H2], section 1): The structure G is an
Artin-Schreier structure if
(i) the stabilizer G, = {0 € G | oz = x} is of order 2 and G, N G’ = 1, for every
r € X; and
(ii) the forgetful map d : X — G, where d(z) is the generator of G, is continuous.
It follows from (i) and (ii) that

(iii) d(oz) = od(z)o~ for all 0 € G, © € X, and d(X)NG' = @ (thus X = 0 if

Our aim is to define the cohomology functor of Artin-Schreier structures and to
identify it with a certain Ext-functor. The presentation is not the same as in [H2],

section 2, nevertheless it leads to the same definition in our context. Again, assume

first that G is finite. Consider the following sequence of F,[G]-modules

F,: o= b, —F, 1 — -+ — F1 — Fp,
On An—1 B2 2

where
Fy=TF,[Gl®F,X,

F,, for n > 1, is the free F,[G]—module @ F,[G](91,---,9n):

g1,--39n—1€G
gn€EGUX
_ ) g1 — 1 ifgreG

31((91)) = {.77+-|-m1 if g =1 € X,
8n(glv .- /(Jn) = 91(927 R /Qn)+

n—1

+ 2(71)1(.917 -y 9i-1,9i9i+1, 9i+2,5 - - - 7gn) + (71)”‘(91, cee 7g’n—1)=
=1

for n > 2.

Observe that Fj is also a free F, [G]-module: by 1.3(i), gz = = < g = 1, for every
i e X. (Cf. also Lemma 3.1 (a).)
It is quite standard to check that Fi is a complex. To show that it is exact, notice

that
{go(gla"'7gn) ‘ go,---,9n—1 € G: gn € GUX}
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is a basis of F,, for n > 1, as a vector space over F, (do not confuse between go(g1)
and (gog1) in F1), and GUX is a basis of Fy. This enables us to define F,-linear maps
hp + Fry, = Fry1 by

hn(g()(gla- "7g’n)) = (90791:' '-7971)7 for n > ]-:
h’O(gO) = (90)7 if Jo € G,

ho(zt) = (z), and ho(z~) =0, if z € X.

These maps constitute a contracting homotopy of Fi, that is, they satisfy 9,41 0 h,, +
hp 100, =id, for n > 1. Thus F, is exact (cf. [P], Lemma 10.3.10).

Let F,, = F,/D,, where D,, is the F,[G]-submodule of F, generated by the
elements (g1, ..., g,) such that g; = 1 for some i (and Dy = 0). Clearly F,, is free for

every n > 0. Since 0,(D,,) C D, for every n > 1, we obtain the quotient complex

F,: ooms F, —F,_1 — - —F, —F,.

On On—1 02 01

The homotopy h, defined above carries D, into itself and hence induces a contracting
homotopy of F,. Thus F, is also an exact sequence of free F, [G]-modules.

If G is not finite, then it is the inverse limit of finite Artin-Schreier structures (cf.
[HJ1], Lemma 4.4). The corresponding inverse limits of the sequences F, and F, are
exact sequences (since lgn is an exact functor), in the category C,(G).

Let A be a finite object in C,(G), that is, a finite F,[G]-module. Then F induces
the complex

Homg(F*,A) : e HomG(Fn,A) — Homg(Fn_hA) “— ...

6n 6117'1

: T Homg(Fl,A) <6— Homg(Fo,A)) ~—0
2 1

where Homg (F, A) denotes the group of C,(G)-morphisms from F to A, and 4§, (¢) =
@ o 0, for every ¢ € Homg(F,,, A). One easily sees that:

(i) For n > 1, Homg(F',,, A) can be identified with C"(G, A), the set of continuous

functions f : G"™! x (GUX) — A satisfying f(g1,---,9i-1,1,Git1,-- -5 9n) = 0 for

every 1 <3 < n.



(ii) Homg(Fo, A) can be identified with the set of continuous functions f' : GUX — A
such that f'(gz) = gf'(z) for every g € G and every z € GUX. The latter set
may be identified with C°(G, A) = A ® Cx (G, A), where Cx (G, A) is the set of
continuous functions f : X — A satisfying f(gz) = gf(x) for every g € G' and
every € X. (The element a + f € C°(G, A) that corresponds to f’ is given by
a= f'(1) and f(z) = f'(z*).) (cf. [H2], section 2).

(iii) Under the above identifications 6, : C"~ (G, A) — C"(G, A) is given by

( 1(a, )(g)—gla—a for every g; € G,
(51 (0, £)) (@) = (&) + d(z)f(a) —a for every z € X,

and for n > 2 by

(Onf)(91, - 9n) = glf(gz, o gn)t

+ Z f(915- -5 9im1, 9igit1. Gitae - Gn) + (=1)" f(g1, -+ gn—1).

We define the cohomology group H™(G, A) as the n-th homology group of the
above complex C*(G, A).

REMARK 1.4: In [H2], section 2 we have defined H" (G, A) for all discrete G-modules

A. If Ais a finite F, [G]-module, that definition coincides with the above definition.

Let M be a profinite F,[G]-module and let A be a finite [, [G]-module. In [H3],
section 3 we have defined Exts (M, A) to be the n-th homology group of the complex
Homg (P, A), where P, is any projective resolution of M in the category C,(G).

LemMA 1.5: H*"(G, A) = Extg(M,(G), A) for all n > 0. In fact,
(a) M,(G) is the cokernel of the map 0, : F1 — Fy in Fy;
(b) M,(G) is the cokernel of 0y : F1 — Fy in F;

(¢c) F, is projective, for every n > 0.

Proof: 1f (b) and (c) hold then F, is a projective resolution of M,(G), and hence the
first assertion follows.

(a) If G is finite, this is clear; the general case follows by a standard limit argument.
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(b) As Fy = Fy and 0,(F;) = 01(F}), the cokernels of 9; and 0; are equal.

(c) We have G = 1<i£n G;, where G; = (G;, G}, X;) are finite Artin-Schreier structures.

By the definition, F,, = lim F,, ;, where F,, ; is a free, and hence a projective F,[Gi]-
$— 7 )

module. Thus the assertion follows from the following technical lemma. 1

LEMMA 1.6: Let P be a profinite F,[G]-module. Assume that G = lién G; and P =
lgn P;, where G; is a finite group and P; is a projective F,, |G;]-module, for every i. Then

P is a projective profinite F, [G]-module.

Proof: By [H3], Lemma 3.2 we have to show that for every epimorphism of finite F, [G]-
modules a : B — A and every morphism ¢ : P — A there exists a morphism ¢ : P — B
such that o o9 = ¢. For i sufficiently large, A and B are F,[G;]-modules and the map
¢ : P — A factors through P; (since A is finite), say into ¢’ : P — P; and ¢; : P, — A.

As P; is a projective F, [G;]-module, there is an F,, [G;]-morphism ¢; : P, — B such that
O{owvz(p7 ThuSO{O(in(p/):(p_ 1

Recall ([H2], Definition 6.1 and [H2], Proposition 6.2) that cd,(G) is the smallest
nonnegative integer n such that H"*1(G, A) = 0 for all finite F, [G]-modules (and if no
such n exists then cd,(G) = 00).

Using this criterion we obtain:

PROPOSITION 1.7: ¢d,(G) < oo if and only if M,(G) has a projective resolution in

C,(G) of finite length.

Proof: By the definition, cd,(G) < oo if and only if there is n such that H"(G, A) =0
for all finite IF,[G]-modules A, i.e. (by Lemma 1.5), Extgs(M,(G), A) = 0 for all finite

3

F,[G]-modules A. By [H3], Proposition 3.6 this is equivalent to the required condition.

3

We remark that Proposition 1.7 is an analogue of

ProrosiTiON 1.7" ([H3], Corollary 3.7): Let G be a profinite group. Then cd,G < oo
if and only if F,, has a projective resolution in C,(G) of finite length.



2. Main results.

In the preceding section we have explained all the notions that appear in the statement
of Theorem B. We postpone the proof of Theorem B to section 4; our present aim is to
draw some consequences from it, especially Theorem A mentioned in the introduction.

Notice, however, that for a prime p # 2 the assertion of Theorem B is not new.
Indeed, ¢d, G = ¢d,G by [H2], Corollary 6.5. If G contains no elements of order p then
by Serre’s theorem cd,G = c¢d,G’; if G contains elements of order p then so does G,
since (G : G') < 2, whence ¢d,G = oo = ¢d,,G".

Also notice that the condition X = Inv(G) in Theorem B is essential: if the
forgetful map d : X — Inv(G) is not a bijection then cdaG = oo (see [H2], Corollary
6.7).

Recall the definition of a projective Artin-Schreier structure. A morphism of

Artin-Schreier structures
a:B=(B,BY)—> A= (AA"7)

is a cover if A = B/K, A’ = B'/K and Z = Y/K, where K is a normal subgroup
of B contained in B’, and « is the quotient map ([HJ1], Definition 3.3 and 4.1). An
Artin-Schreier structure G is projective if for every cover of Artin-Schreier structures
a : B — A and every morphism ¢ : G — A there exists a morphism ¢ : G — A
such that « ot = ¢ ([HJ1], Definition 7.1). We have shown ([H2], Corollary 3.4 and
Proposition 6.2) that an Artin-Schreier structure G is projective if and only if ¢d, G <1

for every prime p. On the other hand, a profinite group G’ is projective if and only if

cd,G' <1 for every prime p (cf. [G], Theorem 4). Thus Theorem B yields:

THEOREM 2.1: An Artin-Schreier structure G = (G, G’, X) is projective if and only if

G' is a projective profinite group and X = Inv(G).

Recall ([HJ1], section 7) that a profinite group G is real projective if Inv(G) is
closed in GG and for every epimorphism of finite groups o : B — A and every continuous
homomorphism ¢ : G — A that satisfies ¢(Inv(G)) C «(Inv(B)) there exists a con-

tinuous homomorphism v : G — B such that a« oy = ¢. Equivalently ([HJ2], Theorem

b
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3.6), G is a closed subgroup of a free profinite product of a free profinite group with

copies of Z/27.
PROPOSITION 2.2: A profinite group G is real projective if and only if either G is
projective or GG contains an open projective subgroup of index 2 and

(1) {o€G|oeo =€} =(e) forevery e € Inv(G).

Proof: [HJ1], Proposition 7.7 states that G is real projective if and only if there is an

b

open subgroup G’ of G of index < 2 such that the structure
G = (G,G', Inv(@))

is a projective Artin-Schreier structure. Let G’ < G be of index < 2. Then G is an
Artin-Schreier structure if and only if G’ NInv(G) = () and (1) holds. By Theorem 2.1,
G is projective if and only if G’ is projective. Finally notice that a projective group is

torsion free, in particular contains no involutions. 1

Theorem A of the Introduction is a corollary of Proposition 2.2. Indeed, a pro-2-
group is projective if and only if it is free (see [R], Theorem IV.6.5), and on the other

hand it is real projective if and only if it is real free (see [H1]|, Proposition 4.2).

COROLLARY 2.3: Let a group {1,d} of order 2 act on a free pro-2-group F'. Then the
corresponding semidirect product G = Fx{1,0} is a real free pro-2-group if and only if

(2) =71 o7 =¢° — o=1, forall o, T€ F .

Proof: Notice that Inv(G) C G\ F, since a projective profinite group is torsion free.

Therefore (1) is equivalent to
(1) {o € F|oco =€} =(1) for every ¢ € Inv(G).

Let 0,7 € F'. Then clearly

76 € Inv(G) —= 1°=71""
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and

o(td)o =76 = (0*1)771 = (o 1)°.
Therefore (17) is equivalent to (2). 1

Proposition 2.2 can also be interpreted in Galois theory. Let K be a field, and
let G = G(K) be its absolute Galois group. The involutions of G correspond via
the Galois correspondence to the real closures of K. Condition (1) is satisfied: it is
equivalent to the well known statement that every real closure of K admits no non-
trivial K-automorphism. Furthermore, K (1/—1) has no real closures, and hence G’ =

G (K (v/—1)) contains no involutions; this implies that the structure
G(K) = (G(K), G(K(v-1)), Inv(G(K)))

is an Artin-Schreier structure (cf. [HJ1], Section 3). We call it the absolute Artin-
Schreier structure of K.

Proposition 2.2 yields the following result, which answers in affirmative Problem

6.4 of [H1].

PROPOSITION 2.4: Let K be a field such that G(K(\/—1)) is projective. Then G =
G(K) is real projective.

This has been shown in [H1], Theorem 6.1 only for an algebraic extension K of
Q. However, if one replaces the use of [H1], Theorem 4.4 in the proof by [E], Theorem
4, the assertion of Proposition 2.4 follows as well. The author would like to thank Efrat
and Ershov for pointing out this to him.

Next we obtain information about the change of cohomological dimension of Artin-

Schreier structures under transcendental extensions.

THEOREM 2.5: Let K(t) be the field of rational functions over a field K. Then
cd, G(K (t)) < cd, G(K)+ 1 for every prime p. Moreover, equality holds if cd, G(K) <
oo and p # char K.

Proof: Put K' = K(y/—1). By Theorem B
cd,G(K)) = ¢d,G(K') and cd,G(K (1)) = cd,G(K'(t)).
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Therefore the assertion of the theorem is equivalent to [R], Proposition V.5.2. 1

COROLLARY 2.6: If R is a real closed field then the absolute Galois group of R(t) is

real projective.

Proof: Let p be a prime. By [H2], Corollary 6.8 we have c¢d,G(R) = 0. Therefore
cd, G(R(t)) = 1. By [HJ1], Proposition 7.7 the group G(R(t)) is real projective. 1

We should remark that a stronger result is true: the group G(R(t)) is real free,
i.e, a free profinite product of a free profinite group with copies of Z /27 (see [HJ2], 4.1).
However, the proof of the latter result is based via the Riemann Existence Theorem on
the analytic theory of Riemann surfaces. On the other hand, the proof of Corollary 2.6

above is purely algebraic.

3. Auxiliary results

We recall some elementary facts needed later. In this section let F' be a field and G an
abstract group (the reader may assume that they are finite). For an element z of a left

F[G]-module M denote

Gy, ={oc€eG|o(x) ==z}

LEMMA 3.1: Let M be an F[G]-module, and let A be a G-invariant linear basis of M
over F'.
(a) If G acts freely on A (that is, G, = 1 for every x € A) then M is a free F|G]-
module. In fact, M = @,c 4, F |G|z, where Ay C A is a system of representatives
of the G-orbits in A.

(b) Let N be the linear subspace of M generated by A" = {x € A| G, # 1}. Then
N is an F|G]-submodule of M, and M /N is a free F|G]-module.

Proof: (a) Clear.

(b) The first assertion follows as A’ is G-invariant. The complement A” = {z € A |
G, = 1} of A" in A is mapped injectively by the quotient map M — M /N onto a linear
basis of M/N. Since G acts freely on this basis, M/N is free by (a). 1
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By ‘®’ we denote the tensor product over F. If My and Ms are (left) F[G]-modules
then so is M1 ® Ms, via the “diagonal” action of G on it: o(m; ® mg) = omy ® ome

(cf. [Bro], p.5b).

LEMMA 3.2: Let My, My be two vector spaces over a field F'. Let A be a linear basis
of My, and for every x € A let B(z) be a basis of My. Then

(a) {z®y|x e A, ye B(x)} is a basis of M1 @ Ms.

(b) Its elements satisty: t @y =2'Q®y" <= x=2a"and y=1y'.
Assume that My, My are F[G]|-modules as well, and that A is G-invariant. Let Ay be
a system of representatives of the G-orbits in A, and assume that B(z) is G,-invariant

for every © € Ay. Then
(c) B={o(z®y)|oeG, ve Ay, ye B(x)} is a G-invariant basis of My ® M, over
F.

(d) Its elements satisfy Gy (sgy) = 0(Gz N Gy)o™ .
e) Let N be the F'|G|-submodule of My ® My generated by
8

{rey|ze Ay, yeBx), GyNG,y # 1}.

Then (My, ® M3)/N is a free F|G]|-module.

Proof: (a), (b) - elementary linear algebra.
(c) Define B'(ox) = oB(z), for every 0 € G,z € Ag. The definition is good, since B(z)
is G -invariant. Clearly B'(x) is a linear basis of My, for every x € A. It is easy to see

that
B={z@y|ze A, yeB'(z)}.

By (a) this is a linear basis of My ® M.
(d) Let z € Ap,y € B(z),7 € G. Then 7(z ® y) = 7x ® Ty, hence by (b),

T(rQy)=2Qy < Te=zand Ty =y < 7€ G, NG,.

(e) By (d), N is the linear subspace of M7 ® My generated by the elements of B with

nontrivial stabilizers. Therefore the assertion follows from Lemma 3.1(b). I
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4. Proof of Theorem B.

Let G be as in Theorem B and let p be a prime. To be able to quote results from [H2],
put H = (G',G’, ). This is an Artin-Schreier structure, and c¢d,H = c¢d,G" by [H2],
Corollary 6.5. By [H2], Proposition 6.3 we have cd,H = ¢d,G if either ¢d,H = oo or
cd, G < oco. Therefore to prove Theorem B it suffices to show that if ¢d,G' < oc then
cd, G < oc.

Furthermore, we may assume that p = 2 and Inv(G) # 0. Otherwise ¢d,G = ¢d,,G
by [H2], Corollary 6.5, and G is torsion free, since G’ is torsion free and (G : G') < 2.
Therefore the assertion of the proposition follows from Serre’s Théoreme in [S]. This

reduces Theorem B to the following assertion:

PROPOSITION 4.1: Let G = (G,G', X) be an Artin-Schreier structure such that X =

Inv(G) is not empty. Assume that cdoG' < co. Then cdyG < oc.

Proof:  (From now on p = 2 and thus ‘profinite Fo [G]-module’ is an object in C3(G).)

By Proposition 1.7’ there exists an exact sequence of profinite Fo[G']-modules

P, : =P, — P, —-- — P — P —F; =0
On e} b1 d

n—1 82
such that Py is a projective profinite Fy[G']-module for every k& > 0 and P, = 0 for
k> 0. We shall construct from P, a projective resolution of finite length of M2(G) in
the category of profinite F3 [G]-modules; this will give the desired result, by Proposition
1.7.

We need to recall the notion of the complete tensor product and some constructions
from [H3]. Let Ay,..., A, be inverse limits of finite vector spaces over Fy (i.e., objects

in C2(1)), say A; = lim Aj;. Their complete tensor product A1®---®A, € Cy(1) is
i€l

defined as 4:8 - --®A,, = l<i£n A1;® - -®A,;, where ‘®’ denotes the tensor product over

Fo (cf. [Bru], section 2 and [H3], section 4).

Choose and fix an element § € Inv(G); as in [H3], Section 5, the representatives

1,6 of G/G" define functions hq, hy: G — G’ by the equations
hi(o) = o, ha(o) = dod, for oed,

hi(o) = o4, ho(o) = do, for o€ G\NG.



Given a sequence Py, Py, Py, ... of profinite Fy[G']-modules, this defines a profinite

Fy [G]-module structure on

(1) Qn =Qn(FPo,...,P,) = @ Pi@)PjG@(l)

i+5=n
in the following way. If v; € P; and v; € P; (such that i 4+ j = n), let

(2) o(v;Qv;) = h1(”)“i(§)h2(a)vj = 01)i<§(506)1)j € P,-@Pj ifoed,
iQU; hi(o)v;®ha(0)v, = odv;@dov, € P;QP; if o € GG

(see [H3], Lemma 5.1; here we omit the sign, since we are in characteristic 2).

3

Then the sequence

Q. : =2 Qn = Q1 s = Q1 — Qo —Fe 0,
72 Y1 Y

Tn Tn—1

where

Y(v;®v;) = 0(v;)9(v;),

fyn(vz@mj) = 8,-(1)1-)&2\)1)]- + 1),-@8]-(1)]') € P,-_1<§)Pj &) Pi@)Pj_l,
is exact (see [H3], Lemma 4.3). It is easy to see that v,gami, gams,..., are homo-
morphisms of profinite Fy[G]-modules. Clearly @,, = 0 for n > 0, since P, = 0 for
1> 0.

Notice that if A and B are profinite Fy[G]-modules then ARB also carries a
structure of a profinite Fy [G]-module via the diagonal G-action: g(a®b) = ga®gb. Thus
tensoring @, with the profinite Fo[G]-module M2(G) we get the following sequence of
profinite Fy [G]-modules

5 Q@M (G) = Qo 1®M3(G) — - -

= QoM (G) = Fy @My (G) = My(G) — 0,

which is of finite length. This sequence is exact by [H3], Lemma 4.3, since it is the
tensor product of Q. with the exact sequence 0 — My(G) — M3(G) — 0.

We have therefore reduced Proposition 4.1 to the following:
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PROPOSITION 4.2: Let G = (G,G',X) be an Artin-Schreier structure and let
Py, Py, ..., P, be profinite Fo [G']-modules. If

(*) X =TInv(G)
and Inv(G) # 0 then Q,,(Py, ..., P,)®M,(G) is a projective profinite Fy [G]-module.

Proof of Proposition 4.2: We may assume that Py, Py, ..., P, are free profinite Fy [G']-
modules. Indeed, each P; is a direct summand of a free profinite Fy[G']-module F}
([H3], Lemma 3.3(c)). Now Q,,(Py, ..., P,) is a direct summand of Q,,(Fy, ..., F,) ([H3],
Lemma 5.3), and hence by the defining universal property of the complete tensor product
Qn(Po,. .-, P,,,)@Mz(G) is a direct summand of @, (Fy,..., Fn)@)Mz(G) Therefore
([H3], Lemma 3.3(c)) the projectivity of Q,,(Fy, ..., F,,)®M,(G) implies the projectivity
of Qn(Py, ..., Py)@M,y(G).

Let therefore P; be Fg(S;), the free profinite F5 [G’]-module on a Boolean space
Sj, for 0 < j < n (see [H3], Definition 2.1). Then we may assume that Sy,...,S, are

finite. Indeed, writing S; as lién Sji, where Sj; is a finite space, we get P; = lién Fei(Sji)s
iel i
and from this clearly

Qn = Qn(PO: .. '7Pn) = thn(FG’(S(h), .. '7FG’(Sni))-

Hence

Qu®M5(G) = lim Qy, (Fer(Soi), - - - - Fr (Sni)) ©Ma(G).
el

Thus Q,®M>(G) is projective by [H3], Lemma 3.3(d).

The next step should be a reduction to a finite Artin-Schreier structure. How-
ever, although G is an inverse limit of finite Artin-Schreier structures, the latter need
not satisfy (x). To circumvent this crucial obstacle we use below two tricks. First,
we generalize the so-far reduced problem from Artin-Schreier structures to arbitrary
(i.e., not necessarily Artin-Schreier) structures, that have been introduced in section 1
precisely for this purpose. Secondly, we replace Q,®M;(G) by a certain quotient profi-
nite Fy[G]-module, which turns out to be Qn,®M2(G) itself if G is an Artin-Schreier

structure.
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From now on let G = (G,G’, X) be a structure with a continuous bijection d :

X — Inv(G) satisfying
(3) d(ox) = od(z)o ™" for every 0 € G, z € X.

(Thus X can be identified with Inv(G) via d, whence G is simply G = (G, G, Inv(Q)),
where G acts on Inv(G) via conjugation. We have not put it this way merely to avoid
ambiguity in notation: if g € G, x € X = Inv(G), then gz could be either the product
of g and z in G or the result of acting with g on z in X, that is, gzg~!' € G.)

Let So, ..., Sy be finite disjoint sets, and for every 0 < 57 < n let P; be the free
profinite Fy [G']-module on S;. Assume that there is an involution § € GNG’, fix it,
and define Q,, = Q. (P, ..., P,) as above (with respect to 0).

For every ¢ € Inv(G) let X(¢) = {x € X | ex = z}, and denote by z. the unique
element of X such that d(z.) =e. Then z. € X(¢) by (3). Furthermore, the group ()
acts regularly on X\ X (¢), hence it is possible to choose subsets X (¢) and X _(g) of
X such that eX () = X _(e) and X is the disjoint union of X (g), X, (g), X _(e).

Let
(4)

R R o~ i € 85,8, €8, env(G),z. X
B:{Si®555.7®($+—$j)EQW,®M2(G)|S’€ s, €8S, e e Inv(G),z. #x € (g)}

such that i + j = n and s; = s;

(Thus B = 0 if nis odd.) Let N(G) be the closed G-submodule of Q,, @ M(G) generated
by B. If G is an Artin-Schreier structure then B = (}, and hence N(G) = 0. This reduces

Proposition 4.2 to the first assertion of the following lemma:

LEMMA 4.3: R(G) = (Q.®M>(G))/N(G) is a projective profinite Fy[G]-module.
Moreover, if G is a finite structure then R(G) is a free Fo[G]-module.

Proof of Lemma, 4.3: - divides into two parts.

PART I: Reduction to a finite structure.  Let {K;} be the directed set of open normal
subgroups of G contained in G'. Put G; = G/K;, G, = G'/K; and X; = Inv(G;). Then
G; = (G, G}, X;) is a finite structure, for every i, and G = 1<i£1 G;. It follows that

2

M,(G) = l<i£nM2(G1;) and Pj; = Fg (S;) = lgnFGQ(Sj), for every 0 < j =0 <n.

2
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Futhermore let §; be the image of § in GG;. Taking only sufficiently big 2 we may assume

that §; € G,\G}. Define Q,, (FG;(SO), - FG;(Sn)) using ;. It follows that

Qn = lgnQn(FGi(SO), . :FG;(Sn)),

7

N(G;), and hence R(G)=I1limR(G;).

<—

2

N(G) = lim ,
: =

Therefore by Lemma 1.6 it suffices to show that R(G;) is projective for every i.

PART I1: A linear basis of QQ,, ® M3(G). We may assume that G is a finite structure.

In this case, of course, P; = P Fy[G']s, the complete tensor product ‘® is just

SESJ‘

‘®’, the tensor product over Fy, and finite (free) profinite Fs[G]-modules are precisely
finite (free) Fy[G]-modules. Since free profinite Fo [G]-modules are projective (cf. [H3,
Lemma 3.3]), it suffices to prove the second assertion of the lemma.

As {hs | h € G', s € S;} is a basis of P;, by Lemma 3.2(a) the following set is a
basis of @),,:

A= {hlsi & hQSj ‘ hl,hg € G,, S; € Si, 8 € Sj, Z—|—7 = TL}
Its elements satisfy, by Lemma 3.2(b),

!/ !/ / / !/ !/
(5) hisi @ has; = his; ® hys; <= h1=hy, ha = hy, s; =s;, s; = sj.

Notice that A is G-invariant. In fact, by (2), G acts on A in the following way:

ohis; ® dodhss; ifo e G,
00has; ® dohys; if o € GNG'.

(6) o(h1s; ® has;) = {
It follows from (6) and (5) that the set
0=1{h1si@hasj € A|hy =1}
={s;®desj | s, €8, s; €8, i+j=n, e € GNG'}
is a system of representatives of the G’-orbits in A. TLet Ay C A{, be a system of
representatives of the G-orbits in A. Denote

A = {si ®@desj € Ay | si = s, € € Inv(G)}.
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Looking at (5) and (6) we see that

(7) a :{{1,5} if w=s; ®des; € Ay

1 if we AjNAs.

Observe that A; C Ag. Indeed,
A1 ={we Ay | GG, =G} ={w € A, | G'w = Guw},

and hence every w € A; is the unique element of Ajf, in the G-orbit G'w of w.
For every w € Ay choose a basis B(w) of My(G): for w € Ag~\.A; in an arbitrary
way, and for w = s ® des € A, let B(w) be the disjoint union B(w) = By (w) U B_(w) U

By(w), where
Bi(w)={2" |z e Xy (e)}U{zl}

B_(w)={x" |z e X_(e)}U{x_}
Bo(w) = {2t —at |z. £ 2 € X(e)}.
This is a basis by Remark 1.2. Notice that the set B of generators of N(G) defined by

(4) can be written in this notation as
B={w®y|we A, ye By(w)}.

If w=5s® des € Ay then eB,(w) = B_(w) and eB_(w) = By (w). Also, as —1 =1 in

Fo, every z € X (e) satisfies

ezt —al)=2" 2. =01 -2") -1 -2)=2T 2.

1

Therefore, by (7), B(w) is Gy, -invariant and for every y € B(w)

if y € By(w)

B _ J{L¢€}
Gmey_{lvg}mGy_{l lfyeB+(w)UB,(w)

Thus
B={w®y|weA, yecBw), G,NGy, #1}.

By Lemma 3.2(e), the Fy [G]-module Q,, ® M2(G)/N(G) is free. 1
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