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Abstract

We study a profinite group G of finite cohomological dimension with (topologically)
finitely generated closed normal subgroup N . If G is pro-p and N is either free as a
pro-p group or a Poincaré group of dimension 2 or analytic pro-p, we show that G/N
has virtually finite cohomological dimension cd(G) − cd(N). Some other cases when
G/N has virtually finite cohomological dimension are considered too.

If G is profinite, the case of N projective or the profinite completion of the funda-
mental group of a compact surface is considered.

Introduction

The purpose of this paper is to study profinite groups of finite cohomological dimension
having finitely generated normal subgroups. (In this paper, subgroups are always closed and
homomorphisms are continuous; finitely generated is meant in the topological sense.) Our
work is inspired by Bieri [2], [3] where the case of discrete groups of finite cohomological
dimension 2 is treated. Bieri’s approach is based on a spectral sequence argument that
helps to study the cohomology groups Hi(G, Z[G]) for i ≥ 1. The latter can be viewed as a
higher dimensional analogue of ends of groups, a theory that by now has not been developed
in the profinite and in the pro-p cases. Our approach is close to [2] in the sense that we
study spectral sequences and different in the sense that we do not rely on profinite (pro-p)
analogues of the above cohomology groups.

We say that a profinite group G has virtually a given property if there is an open subgroup
H of G which has the given property. Let vcd(G), vcdp(G) denote the virtual cohomological
dimension and the virtual cohomological p-dimension of G, respectively.

Our first result is about projective normal subgroups in profinite groups of finite coho-
mological dimension.

Theorem 1. Let G be a profinite group of finite cohomological dimension cd(G) = n and N
be a finitely generated normal projective subgroup. Then vcdp(G/N) ≤ n for every prime p.
Moreover, denote by N(p) the maximal pro-p quotient of N and let T̄ be a finite p-subgroup
of G/N . Then rank(N(p)) > |T̄ | (= the order of T̄ ), provided N(p) is not procyclic. If N(p)
is procyclic, then T̄ is cyclic. In particular, N(p) = 1 implies T̄ = 1.
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In particular, in the pro-p case we have

Theorem 2. Let G be a pro-p group of finite cohomological dimension cd(G) = n and N
be a non-trivial finitely generated normal subgroup that is free as a pro-p group. Then G/N
has virtually finite cohomological dimension n− 1.

Zelmanov [16] has shown that a torsion pro-p group (i.e., group whose elements are of
finite order) is locally finite (every finitely generated subgroup of it is finite). This allows
us to obtain more precise information as to when G is finitely generated of cohomological
dimension 2. We note that it is a long standing open problem whether a torsion pro-p group
has finite exponent.

Corollary 3. Let G be a pro-p group of finite cohomological dimension cd(G) ≤ 2 and N
be a non-trivial finitely presented (as a pro-p group) normal subgroup. Then either G/N is
torsion or N is free as a pro-p group with G/N virtually free pro-p.

In particular, if G is finitely generated, either N is open in G or N is free as a pro-p
group with G/N virtually free pro-p group.

Using the description of finitely generated virtually free pro-p groups obtained in [5] we
can deduce

Corollary 4. Let G be a finitely generated pro-p group of cohomological dimension 2 and
N be a non-trivial free finitely generated normal subgroup of G. Then G is the fundamental
group of a finite graph of finitely generated free pro-p groups. Furthermore, G is finitely
presented. If N is procyclic, then vertex and edge groups are procyclic.

In fact, our proof starts with considering pro-p case first, where in general cohomology
techniques work better. The proofs are based on examining the differentials in the Lyndon-
Hochschild-Serre spectral sequence in pro-p cohomology for the extensions 1→ N/Φ(N)→
G/Φ(N) → G/N → 1 and 1 → N → G → G/N → 1 where Φ(N) is the Frattini subgroup
of N . Theorem 2 is a corollary of the following more general result.

Theorem 5. Let G be a pro-p group of finite cohomological dimension and N a non-
trivial finitely generated normal subgroup of G. Let k = cd(N). Suppose that the inflation
Hk(N/Φ(N), Fp) → Hk(N, Fp) is surjective. Then G/N has virtually finite cohomological
dimension cd(G)− cd(N).

As corollaries we also obtain the following two results.

Theorem 6. Let G be a pro-p group of cohomological dimension cd(G) = n and N be a
normal subgroup of G, such that N is a Poincaré group of dimension 2. Then G/N is
virtually of finite cohomological dimension n− 2.

The profinite version of this theorem (when N is a profinite surface group) can be found
in Section 5.

Theorem 7. Let G be a pro-p group of cohomological dimension n and let N be a normal
subgroup of G such that N is analytic pro-p of dimension k ≥ 1. Then G/N has virtually
finite cohomological dimension n− k.

2



We briefly compare the case of discrete groups of finite cohomological dimension with the
profinite one. By [2, Thm. B], if G is a discrete finitely generated group with cd(G) = 2 and
N a normal finitely presented subgroup, then N is either free or of finite index in G; this
is a discrete counterpart of Corollary 3. Further, a discrete counterpart of Corollary 5.10
is given in [3, Thm. 8.8(b)] and a higher dimensional version of Corollary 3 for a discrete
Poincaré duality group in [3, Prop. 9.22]. We do not know of the existence of any version of
Theorem 5 for discrete groups beyond the cases stated above.

The paper is structured as follows. In Section 1 the basic properties and definitions
used in the paper are collected. Section 2 is dedicated to Theorem 5. The cases of N free
pro-p, a Demushkin group and analytic pro-p are treated in Sections 3 and 4, respectively.
The profinite case is treated in Section 5, where some other consequences of Theorem 1 are
obtained.

When the paper was submitted the fourth author learned that similar results were an-
nounced (but never written) by O.V. Melnikov at Ukranian Mathematical Congress in Kiev
(2001).

1 Preliminaries

In this section we collect all the basic properties and definitions of homological nature about
profinite and pro-p groups that will be needed in this paper.

1. By definition, a pro-p group G has cohomological dimension cd(G) ≤ n if for every
discrete G-module A and all k > n we have Hk(G, A) = 0. By [10, Cor. 7.1.6]

cd(G) ≤ n if and only if Hn+1(G, Fp) = 0,

where Fp is the cyclic group with p elements.

By definition, the cohomological p-dimension cdp(G) of a profinite group G is the
smallest non-negative integer n such that Hk(G, A)p = 0 for all k > n and every discrete

[[Ẑ G]]-module A, where [[Ẑ G]] denotes the complete group ring. The cohomological
dimension cd(G) of G is the supremum of cdp(G) over all primes p.

2. A profinite group has cohomological dimension ≤ 1 if and only if it is projective (see
Proposition 7.6.7 in [10]). Projective pro-p groups are free pro-p, so pro-p groups of
cohomological dimension ≤ 1 are free pro-p groups [10, Thm. 7.7.4], [15, Cor. 11.2.3,
11.2.4].

3. Let H be a subgroup of a profinite group G. Then cdp(H) ≤ cdp(G). If either
cdp(G) < ∞ and H is open in G or (G : H) is prime to p then cdp(H) = cdp(G) [10,
Thm. 7.3.1]. For example for H a p-Sylow subgroup of G i.e. a subgroup of G such
that #H is a p-number and (G : H) is a p′-number cdp(H) = cdp(G). For every prime
p there are p-Sylow subgroups in G and they are all conjugate in G.
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4. For a profinite group G with no subgroups of order p and an open subgroup H of
G we have cdp(G) = cdp(H) [10, Thm. 7.3.7, p. 274]; thus vcdp(G) = cdp(G). In
particular, if G is torsion-free, of finite virtual cohomological dimension vcd(G) = n,
then cd(G) = n.

5. In general, if N is a normal subgroup of a profinite group G with both cdp(N) and
cdp(G/N) finite, then cdp(G) ≤ cdp(N) + cdp(G/N), but the inequality can be strict
[15, Prop. 11.3.1]. Still, if N is pro-p and Hk(N, Fp) is finite for k = cdp(N) or N
is inside the center of G, there is equality, i.e., cdp(G) = cdp(N) + cdp(G/N) [10,
Prop. 7.4.2].

6. A pro-p group is a Poincaré group of dimension n if all of the following conditions hold:

1. H i(G, Fp) is finite for every i;

2. Hn(G, Fp) ' Fp;

3. H i(G, Fp) = 0 for i > n;

4. For every 0 ≤ i ≤ n the cup product

H i(G, Fp)×Hn−i(G, Fp)→ Hn(G, Fp)

is a non-degenerated bilinear form.

A Poincaré group is finitely generated, since H1(G, Fp) is finite. There is only one
Poincaré group of dimension 1, the procyclic group Zp.

7. Poincaré groups of dimension 2 are called Demushkin groups.

8. An example of Poincaré group of dimension n is a uniformly powerful pro-p group
with a minimal set of generators of cardinality n. By a result of Lazard, for such
groups the cohomology algebra

⊕
i≥0

H i(G, Fp) is the exterior algebra of H1(G, Fp)
[15, Thm. 11.6.1], [7].

9. In general, a pro-p group G has the structure of an analytic pro-p group if and only
if it has an open subgroup which is uniformly powerful pro-p group [4, Thm. 9.34].
Hence an analytic pro-p group has an open characteristic subgroup which is uniformly
powerful pro-p. The direct product Zn

p is uniformly powerful.

2 The pro-p case in full generality

In this section G is a pro-p group such that cd(G) = n is finite, N is a normal finitely
generated subgroup of G and Φ(N) is the Frattini subgroup of N . Set N̄ = N/Φ(N) and
Ḡ = G/Φ(N). Then N̄ is abelian and Ḡ/N̄ ' G/N . From now on we identify Ḡ/N̄ with
G/N . Denote by Fp the field of p elements.

Let E r,s
t and Ē r,s

t be, respectively, the groups of the Lyndon-Hochschild-Serre spectral
sequences such that E r,s

2 = Hr(G/N, Hs(N, Fp)) and Ē r,s
2 = Hr(G/N, Hs(N̄ , Fp)). Ob-

serve first that the canonical projection N → N̄ induces an isomorphism of G/N -modules
H1(N, Fp) ' H1(N̄ , Fp). Therefore E r,s

2 = Ē r,s
2 for s = 0, 1.
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We shall first assume that the exact sequence

1 −→ N̄ −→ Ḡ −→ G/N −→ 1 (†)

is central and splits, i.e., gives a decomposition of Ḡ as N̄×G/N . In the next lemma we show
that the differentials of the spectral sequence associated to this decomposition are trivial for
every t ≥ 2.

Lemma 2.1. Let M̄, N̄ be pro-p groups and let Ḡ = M̄ × N̄ . Let Ē r,s
t be the Lyndon-

Hochschild-Serre spectral sequence such that Ē r,s
t = Hr(M̄, Hs(Ḡ/M̄ , Fp)). Then the differ-

ential map d̄ r,s
t : Ē r,s

t → Ē r+t,s+1−t
t is zero for all t ≥ 2.

Proof. This is a very special case of the fact that the Lyndon-Hochschild-Serre spectral
sequence with second term Hp(G, Hq(H, B)) that converges to Hp+q(G×H, B) degenerates
for all profinite groups G and H and any discrete H-module B, regarded as a (G×H)-module
via the trivial G-action [6].

In the general case, (†) is virtually central and splits:

Lemma 2.2. If N is finitely generated, there exists an open subgroup U of G containing
Φ(N) such that NU/Φ(N) is the direct product of N/Φ(N) and U/Φ(N).

Proof. As Ḡ is Hausdorff, we can find for every a ∈ N̄ r {1} an open subgroup Ua in Ḡ
that does not contain a. Let U be the preimage in G of ∩a∈N̄\{1}Ua. Then U ∩ N = Φ(N).
As N̄ is finite, U is open in G. Furthermore, G acts on N̄ via conjugation and this gives a
homomorphism θ : G→ Aut(N̄). The kernel of θ is an open subgroup in G. Replacing U , if
necessary, by U ∩ Ker θ, we may assume that the elements of U/Φ(N) commute with the
elements of N/Φ(N).

Proof of Theorem 5

By Lemma 2.2 we may replace G by an open subgroup containing N to assume that
G/Φ(N) ' N/Φ(N)×G/N . As N/Φ(N) is a finite abelian p-group, all cohomology groups
H i(N/Φ(N), Fp) are finite. By assumption, the inflation Hk(N/Φ(N), Fp) → Hk(N, Fp) is
surjective, hence Hk(N, Fp) is finite. Substituting G by another open subgroup containing
N we may assume that G acts trivially on Hk(N/Φ(N), Fp) and Hk(N, Fp). Also, Hk(N, Fp)
is a direct sum of m copies of Fp, for some m.

We now consider the following two Lyndon-Hochschild-Serre spectral sequences Er,s
2 =

Hr(G/N, Hs(N, Fp)) and Ē r,s
2 = Hr(G/N, Hs(N/Φ(N), Fp)). We show that for k = cd(N)

and n = cd(G) we have E n+1−k,k
2 = E n+1−k,k

∞ . As E n+1−k,k
∞ is a subquotient of Hn+1(G, Fp) =

0, we deduce that E n+1−k,k
2 = 0. Thus

⊕m
i=1

Hn+1−k(G/N, Fp) = Hn+1−k(G/N, Hk(N, Fp)) =

E n+1−k,k
2 = 0. In particular, Hn+1−k(G/N, Fp) = 0. Thus G/N is of finite cohomological

dimension that is not larger than n − k. As Hk(N, Fp) is finite, we may use the additive
formula cd(G/N) = cd(G)− cd(N) of (1.5).

We consider in more detail the spectral sequence E r,s
2 . First note that it has only k + 1

non-trivial lines, i.e., E r,s
2 = 0 for s ≥ k + 1 and hence E r,s

k+2
= E r,s

∞ = 0 for all r, s. We show

that the differential dn+1−k,k
t : E n+1−k,k

t → E n+1+t−k,k−t+1

t is zero for 2 ≤ t ≤ k + 1. Since
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k+t−1 ≥ k+1, we have E n+1−k−t,k+t−1

t = 0, hence the differential that enters E n+1−k,k
t is zero

and the above property will imply that E n+1−k,k
2 = E n+1−k,k

3 = · · · = E n+1−k,k
k+2

= E n+1−k,k
∞ .

Finally, we prove that dn+1−k,k
t = 0, t ≥ 2. The essential case is t = 2. By Lemma 2.1

and the commutative diagram

Ē n+1−k,k
2

d̄ n+1−k,k
2

=0

−−−−−−→ Ē n+3−k,k−1

2

yπ n+1−k,k
2

yπ n+3−k,k−1

2

E n+1−k,k
2

d n+1−k,k
2−−−−−−→ E n+3−k,k−1

2

it is sufficient to show that πn+1−k,k
2 is an epimorphism.

Viewing the inflation map θ : Hk(N/Φ(N), Fp) → Hk(N, Fp) as a map of finite dimen-
sional vector spaces, it has a right inverse λ, which is a map of trivial G/N -modules. Then
the induced map

π n+1−k,k
2 : Hn+1−k(G/N, Hk(N/Φ(N), Fp))→ Hn+1−k(G/N, Hk(N, Fp))

has a right inverse induced by λ.
Now, let t > 2. Assume we have proven that dn+1−k,k

i = 0 for 2 ≤ i ≤ t − 1. Then
E n+1−k,k

t = E n+1−k,k
2 . By Lemma 2.1 all the differentials of Ēt for t ≥ 2 are trivial and

hence Ē n+1−k,k
t = Ē n+1−k,k

2 and π n+1−k,k
t = π n+1−k,k

2 is surjective. Finally, we consider the
commutative diagram

Ē n+1−k,k
t

d̄ n+1−k,k
t =0

−−−−−−→ Ē n+1+t−k,k−t+1

t

yπ n+1−k,k
t

yπ n+1+t−k,k−t+1

t

E n+1−k,k
t

d n+1−k,k
t−−−−−−→ E n+1+t−k,k−t+1

t

As π n+1−k,k
t is surjective, we deduce that dn+1−k,k

t = 0, as required. 2

Corollary 2.3. Let G be a pro-p group of finite cohomological dimension cd(G) = n, N
a finitely generated normal subgroup of G such that H∗(N, Fp) is generated as a ring by
H1(N, Fp). Then G/N has virtually finite cohomological dimension cd(G)− cd(N).

Proof. First note that all H i(N, Fp) are finite dimensional as images of ∧iH1(N, Fp). Con-
sider the commutative diagram for k = cd(N)

∧kH1(N/Φ(N), Fp)
α1−−−−−−→ ∧kH1(N, Fp)

yβ1

yβ2

Hk(N/Φ(N), Fp)
α2−−−−−−→ Hk(N, Fp)

where the horizontal maps are induced by the projection N → N/Φ(N) and the vertical
maps are given by the ∪-product. By assumption, β2 is an epimorphism; obviously α1 is an
isomorphism. Hence α2 is an epimorphism and we may apply Theorem 5.
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3 N is a free group

In this section we discuss the case when N is a non-trivial free subgroup of a pro-p group G
with cd(G) = n <∞.

Theorem 2 follows immediately from Theorem 5, since for k = 1 θ is always surjective
(actually, an isomorphism).

In particular, if n = 2, then G/N is virtually free. Hence, by Serre’s result [12] or its
generalization (1.4), G/N is either free or has elements of finite order.

Under some additional conditions we can get more than the general result Theorem 2 for
the quotient group G/N . This is the content of the next three propositions. In particular,
we discuss the cases where rank(N) is bounded above by p. In the case N of rank 1,
Proposition 3.3 below is a special case of Theorem 1 for pro-p groups.

Lemma 3.1. If (†) is central and splits, then dn−1,1
2 : E n−1,1

2 → E n+1,0
2 is zero.

Proof. We have noticed that E n−1,1
2 ' Ē n−1,1

2 and E n+1,0
2 ' Ē n+1,0

2 , so it suffices to show
that d̄n−1,1

2 : Ē n−1,1
2 → Ē n+1,0

2 is zero. This is the content of Lemma 2.1, with M̄ = Ḡ/N̄ =
G/N .

Proposition 3.2. Assume that N is a non-trivial finitely generated free pro-p group and
that (†) gives a direct product decomposition of the middle group. Then cd(G/N) = n− 1.

Proof. By Lemma 3.1, dn−1,1
2 = 0. Therefore E n+1,0

3 = Ker(E n+1,0
2 → E n+3,−1

2 = 0) =
E n+1,0

2 . On the other hand, E r,s
2 has only two non-trivial lines, i.e. E r,s

2 = 0 for every s ≥ 2,
because cd(N) = 1. This implies E n+1,0

3 = E n+1,0
∞ , and hence E n+1,0

2 = E n+1,0
3 = E n+1,0

∞ .
By ([10, Prop. A2.2, p. 406]), there is an injection E n+1,0

∞ ↪→ Hn+1(G, Fp). Since
cd(G) = n, we have Hn+1(G, Fp) = 0 and hence E n+1,0

∞ = 0. By the preceding paragraph,
Hn+1(G/N, Fp) = E n+1,0

2 is trivial. Hence cd(G/N) is finite. Also, H1(N, Fp) ' H1(N̄ , Fp)
is finite. So (1.5) implies that cd(G/N) = cd(G)− cd(N) = n− 1, as desired.

Proposition 3.3. Let G be a pro-p group of cd(G) = n and let N be a normal subgroup
of G isomorphic to Zp. Then G/N has virtual cohomological dimension n− 1 and all finite
subgroups of G/N are cyclic. If N 6⊂ Φ(G), then cd(G/N) = n− 1.
Moreover, if n = 2, the following conditions are equivalent:

(i) N 6⊂ Φ(G).

(ii) G/N is a free pro-p group.

(iii) G ' N o F , for some free pro-p group F acting on N .

Proof. First, vcd(G/N) = n − 1 follows from Theorem 2. Next, we show that every finite
subgroup T̄ of G/N is cyclic. Indeed, the preimage T of T̄ in G is virtually procyclic and of
finite cohomological dimension. By (1.4) T is of finite cohomological dimension 1, hence is
free. As T is virtually procyclic and free it is procyclic itself. Hence T̄ is cyclic.

It follows from N 6⊂ Φ(G) that there exists a subgroup H of G such that (G : H) = p
and N 6⊂ H. Thus (N : H ∩N) = (G : H) = p. Therefore H ∩N = Φ(N). It follows from
this that the exact sequence (†) splits. Furthermore, Ḡ acts trivially on N̄ ' Fp. Hence, by
Proposition 3.2, cd(G/N) = n− 1, as required.

In the case n = 2, (i) =⇒ (ii) =⇒ (iii) =⇒ (i) follow trivially.
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Proposition 3.4. Let G be a pro-p group of cohomological dimension n and let N be a
normal free subgroup such that 2 ≤ rank(N) ≤ p. Then cd(G/N) = n − 1. Moreover, if
n = 2 then G/N is free and G ' N o (G/N).

Proof. Suppose that G/N has torsion element c of order p. Then the preimage L of 〈c〉 in
G is virtually free and of finite cohomological dimension. In particular, L is torsion free. By
(1.4), L is free. If rank(L) ≥ 2, by Schreier’s formula [10, Thm. 3.6.2], rank(N) ≥ p + 1, a
contradiction. If rank(L) = 1 then L and hence N are procyclic, a contradiction. Thus G/N
is torsion-free. By Theorem 2, vcd(G/N) = n− 1. By (1.4), cd(G/N) = n− 1.

Proof of Corollary 3

If cd(G) = 1, by Theorem 2, G/N is finite.
The case cd(G) = 2, cd(N) = 1 has been done in Theorem 2.
Assume that cd(G) = cd(N) = 2. We shall now show that every element of G/N has

finite order. It follows from this that if G is finitely generated, then by [16] G/N is finite.
Note that by [10, Prop. 4.2.6] every subgroup of finite index in a finitely generated pro-p
group is open, hence N is open, as desired.

Assume, by contrary, that there is x ∈ G such that its class xN in G/N is not of finite
order. Therefore the subgroup 〈xN〉 of G/N , generated by xN , is isomorphic to Zp. Let

S = 〈x〉N . Then S/N ' Zp. Since N is finitely presented, H2(N, Fp) is finite by Thm. 7.8.3
(p. 290) of [10]. Since N has cohomological dimension 2, we may apply (1.5) to S. Hence
cd(S) = cd(N) + cd(S/N) = 3, contradicting cd(S) ≤ cd(G) = 2 of (1.3). 2

Proof of Corollary 4

By Theorem 2, G/N has virtual cohomological dimension 1, i.e. is virtually free. By [5],
G/N is the fundamental group of a finite graph of finite p-groups (GN , Γ). Hence G is the
fundamental group of the finite graph of pro-p groups (G, Γ), where every edge and vertex
group is a finite extension of N . Since G is torsion free, it follows by (1.2) and (1.4) that
every edge and vertex group is finitely generated free pro-p. 2

4 N is a Demushkin group or analytic pro-p

Lemma 4.1. Let N be a pro-p group. Assume that the cup product map

n︷ ︸︸ ︷
H1(N, Fp)× · · · ×H1(N, Fp)→ Hn(N, Fp)

is surjective. Then the inflation

θ : Hn(N/Φ(N), Fp)→ Hn(N, Fp)

is surjective. In particular, θ is surjective if N is either a Demushkin pro-p group or a
uniformly powerful pro-p group of dimension n.
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Proof. Put N̄ = N/Φ(N). Consider the commutative diagram

H1(N̄ , Fp)× · · · ×H1(N̄ , Fp)
ᾱ

−−−−−−→ Hn(N̄ , Fp)

yθ1

yθ

H1(N, Fp)× · · · ×H1(N, Fp)
α

−−−−−−→ Hn(N, Fp)

where the horizontal maps are the cup product maps and θ1 comes from the inflation.
By assumption, α is an epimorphism. Obviously, θ1 is an isomorphism. Hence θ is an
epimorphism.

The assumption on the cup product is satisfied if N is either a Demushkin group (1.7)
or uniformly powerful (1.8).

Proof of Theorem 6

Follows from Theorem 5 together with Lemma 4.1. 2

Proof of Theorem 7

By (1.9) an analytic pro-p group has a characteristic subgroup that is uniformly pow-
erful. Hence we can assume that N is uniformly powerful. Then Theorem 5 together with
Lemma 4.1 completes the proof. 2

5 The profinite case

For a profinite group G denote by G(p) the maximal pro-p quotient of G.
We first state a technical lemma.

Lemma 5.1. Let G be a profinite group. Let K be the kernel of the epimorphism of G onto
its maximal pro-p quotient G(p) and let Gp be a p-Sylow subgroup of G. Then:

(i) GpK = G.

(ii) If K is abelian, then its order is prime to p and Gp ' G(p).

(iii) Let N be a normal subgroup of G containing K. Then N/K is the maximal pro-p
quotient of N .

Proof. Condition (i) follows from [10, Exer. 2.3.3(b)]; condition (iii) follows from [10, Lemma
3.4.1(d)]. We prove (ii). For every prime ` let K` be the unique `-Sylow subgroup of K.
Then K '

∏
` K`. Hence K ' L×Kp, where L =

∏
6̀=p K`.

The epimorphism G → G(p) induces the epimorphism G/L → G(p) with kernel K/L.
Both G(p) and K/L ' Kp are pro-p, hence so is G/L. By the maximality, K = L, that is,
K is of order prime to p.

By (i), G→ G(p) maps Gp onto G(p). As the orders of K and Gp are coprime, K∩Gp = 1.
Thus Gp → G(p) is an isomorphism.

The following straightforward generalization of (1.3) reduces the computation of the
virtual cohomological dimension to pro-p groups.
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Lemma 5.2. Let G be a profinite group, let p be a prime, and let S be a p-Sylow subgroup
of G. Then vcdp(G) = vcd(S).

Proof. By (1.3), cdp(G) = cd(S).
Suppose that vcd(S) ≤ n. Then there is an open subgroup S0 of S such that cd(S0) ≤ n.

There is an open normal subgroup G0 of G such that S ∩G0 ⊆ S0. As S ∩G0 is a p-Sylow
subgroup of G0, we have cdp(G0) = cd(S ∩G0) ≤ cd(S0) ≤ n. Therefore vcdp(G) ≤ n.

Conversely, suppose that vcdp(G) ≤ n. Then there is an open subgroup G0 of G such
that cdp(G0) ≤ n. As S ∩ G0 is an open subgroup of S and cd(S ∩ G0) ≤ cdp(G0) ≤ n, we
have vcd(S) ≤ n.

The next lemma generalizes [10, Prop. 7.7.7].

Lemma 5.3. Let G be a profinite group and p a prime. Let K be the kernel of the epimor-
phism G→ G(p). Assume that cdp(K) ≤ 1. Then cd(G(p)) ≤ cdp(G).

Proof. Put n = cdp(G). We may assume that n < ∞. Then Hn+1(G, Fp) = 0. The
assumption on K implies that Hi(K, Fp) = 0 for all i ≥ 2. Furthermore, as K has no non-
trivial pro-p quotients ([10, Lemma 3.4.1(e)]), we also have H1(K, Fp) = Hom(K, Fp) = 0.
By [10, Cor. 7.2.5(a)] the inflation Hn+1(G/K, Fp) → Hn+1(G, Fp) = 0 is an isomorphism.
Thus Hn+1(G/K, Fp) = 0. As G/K is pro-p, this implies cd(G/K) ≤ n.

The next two propositions prove Theorem 1 and slightly more.

Proposition 5.4. Let G be a profinite group and N a finitely generated normal subgroup.
Assume that vcdp(G) = n < ∞ and vcdp(N) ≤ 1. Then n − 1 ≤ vcdp(G/N) ≤ n. If the
maximal pro-p quotient N(p) of N is not trivial, then vcdp(G/N) = n− 1.

Proof. Replacing G by a sufficiently small open subgroup G0 and N by N ∩ G0 we may
assume that cdp(G) = n and cdp(N) ≤ 1. (If N(p) is infinite, then so is (N ∩G0)(p).)

A p-Sylow subgroup of G/N is of the form S/N , where S is a subgroup of G containing
N . By (1.3), cdp(S) = cdp(G) = n. Let K be the kernel of the epimorphism of S onto
its maximal pro-p quotient. Then K is a subgroup of N and cdp(K) ≤ cdp(N) ≤ 1. By
Lemma 5.3, cd(S/K) ≤ n.

By Lemma 5.1(iii), N/K = N(p). Therefore by Lemma 5.3, cd(N/K) ≤ cdp(K) ≤ 1, that
is, by (1.2), N/K is a free pro-p group. We have two cases. If N(p) = 1, that is, N = K, then
cd(S/N) ≤ n. If N(p) = N/K 6= 1, we may apply Theorem 2 to the normal subgroup N/K
of S/K. Then vcd(S/N) = cd(S/K)− 1 ≤ n− 1. Again, replacing G by an open subgroup
G0 and N by N ∩ G0 we may actually assume that vcd(S/N) = cd(S/N). On the other
hand, by (1.5) in both cases cd(S/N) = cdp(S/N) ≥ cdp(S)− cdp(N) = n− cdp(N) ≥ n− 1.
By Lemma 5.2, vcdp(G/N) = cd(S/N), so we are done.

Proposition 5.5. Let G be a profinite group and N a finitely generated normal subgroup.
Assume that cdp(G) <∞ and cdp(N) ≤ 1. Let T̄ be a finite p-subgroup of G/N . Then

(i) If N(p) is procyclic, then T̄ is cyclic. In particular, N(p) = 1 implies T̄ = 1.

(ii) If N(p) is not procyclic, then its rank (as a free pro-p group) is larger than the order of
T̄ .
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Proof. We have T̄ = T/N , where T is a subgroup of G containing N . Replace G by T to
assume that G/N = T̄ .

Let K be the kernel of the epimorphism G → G(p). Then K is a subgroup of N and
hence cdp(K) ≤ cdp(N) ≤ 1. By Lemma 5.3, G/K has finite cohomological dimension.
Hence G/K is torsion free.

As in the proof of Proposition 5.4, N/K = N(p) is a free pro-p group. It is of finite
index (G : N) in G/K. If N(p) = 1, then G/N = G/K is finite and torsion free, and
hence trivial. If N(p) 6= 1, by (1.4), G/K is a free pro-p group. By Schreier’s formula [10,
Thm. 3.6.2(b)], rank(N(p))− 1 = (G : N)(rank(G/K)− 1). So if N(p) is of rank 1, that is,
procyclic, then so is G/K, and hence its finite quotient G/N is cyclic. If rank(N(p)) > 1,
then rank(N(p)) > (G : N), as desired.

Under some additional conditions we may improve on Theorem 1 stating bounds for
vcd(G/N). Part of the proposition is about pro-C groups for a class of finite groups C i.e.
groups that are inverse limits of surjective systems of groups from the class C.

Proposition 5.6. Let G be a profinite group of finite cohomological dimension cd(G) = n
and N be a finitely generated normal projective subgroup. Then n − 1 ≤ vcd(G/N) ≤ n in
all of the following cases:

(a) G/N has an open torsion free subgroup;

(b) for all but finitely many primes p, a p-Sylow subgroup S̄p of G/N is torsion free.

(c) N is pro-π, where π is a finite set of primes;

(d) for all but finitely many primes p, N(p) is not infinite procyclic;

(e) N is a free pro-C group of rank > 1, where C is a class of finite groups containing Z/pZ
for every prime p and closed under quotients, subdirect products and extensions.
Moreover, if N(p) 6= 1 for every p such that cdp(G) = n, then in all the above cases
vcd(G/N) = n− 1.

Proof. Let p be a prime. By Lemma 5.3, cdp(N(p)) ≤ 1; by (1.2), N(p) is a free pro-p group.
In particular, it is torsion free. So N(p) is finite if and only if N(p) = 1.

(a) Let Ū be an open torsion free subgroup of G/N . By (1.4), vcd(Ū) = cd(Ū). The
preimage U of Ū in G is open, hence by (1.3), cd(U) = cd(G) = n. Apply Proposition 5.4 to
U to get n− 1 ≤ cd(Ū) ≤ n in general, and cd(Ū) = n− 1 under the additional assumption.

(b) For each prime p choose a p-Sylow subgroup S̄p of G/N . Let π be the set of primes
p with S̄p not torsion free. Let p ∈ π. By Lemma 5.2, vcd(S̄p) = vcdp(G/N). By Propo-
sition 5.4, vcdp(G/N) ≤ cdp(G) ≤ n. So there is an open subgroup Ūp of S̄p such that
cd(Ūp) ≤ n. In particular, Ūp is torsion free. Since π is finite, there exists an open normal
subgroup Ū of G/N such that Ū ∩ S̄p ≤ Ūp for all p ∈ π. Since Ū is a normal subgroup and
Ūp is torsion free, Ū has no p-torsion for every prime p ∈ π. Therefore Ū is p-torsion free for
every prime p and so Ū is torsion free. By (a) we get the desired conclusions.

(c) If p /∈ π, then N(p) = 1, and hence by Proposition 5.5(i), S̄p is torsion free. By (b)
we get the desired conclusions.
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(d) Let d be an integer larger than the minimal number of generators of N such that for
every p > d, N(p) is not infinite procyclic.

For a prime number p > d, Proposition 5.5(ii) implies that a finite p-subgroup T̄ of G/N
has order smaller than the rank of N(p) which is bounded above by d and hence by p. Thus
T̄ has to be trivial. So the assertion follows from (b).

(e) Let r > 1 be the rank of N . By assumption, the direct product A of r copies of a
group of order p is in C. It is an epimorphic image of N , and hence an epimorphic image of
N(p). Therefore rank(N(p)) ≥ rank(A) = r. So the assertion follows from (d).

Proposition 5.7. Let G be a profinite group and A an abelian normal subgroup of G. If
G/A is torsion free, then cd(G/A) ≤ cd(G).

Proof. We may assume that cd(G) is finite.
Fix a prime p. Let S/A be a p-Sylow subgroup of G/A and S/K be a maximal pro-p

quotient of S. Then K ⊆ A is an abelian group. By Lemma 5.1(ii), S/K is isomorphic to
a p-Sylow subgroup of S. As (G : S) = (G/A : S/A) is prime to p, the latter subgroup is a
p-Sylow subgroup of G. By (1.3), cd(S/K) = cdp(G) ≤ cd(G) <∞.

Since S/K is a pro-p group of finite cohomological dimension, so is A/K. Furthermore,
A/K is abelian. By [13, Ex. 1, p. 40], A/K is the direct product of finitely many copies
of Zp. In particular, A/K is analytic (1.9). Also S/A is torsion free. This, together with
Theorem 7, implies cd(S/A) = vcd(S/A) = cd(S/K) − cd(A/K) ≤ cd(S/K) ≤ cd(G). By
(1.3), cdp(G/A) = cd(S/A) ≤ cd(G). This holds for every prime p, and hence cd(G/A) ≤
cd(G).

Lemma 5.8. Let G be a virtually projective profinite group and let B be a profinite [[Ẑ G]]-
module. Then H2(G, B) is periodic, i.e. for some m ∈ N we have mH2(G, B) = 0.

Proof. Let N be an open projective normal subgroup of G. Put d = (G : N). The dual

A of B is a discrete torsion [[Ẑ G]]-module. By [1, Satz 4.7] there is an exact sequence
H2(G/N, AN)→ H2(G, A)→ H1(G/N, H1(N, A)). By [10, Corollary 6.7.4], dH2(G/N, AN)
= dH1(G/N, H1(N, A)) = 0. Therefore d2H2(G, A) = 0. It follows that d2H2(G, B) = 0.

Theorem 5.9. Let G be a profinite group of finite cohomological dimension cd(G) = n
having central normal subgroup N . For every prime p such that G/N has a non-trivial p-
Sylow subgroup we assume that cdp(N) = cdp(G)− 1. Then the commutator subgroup G′ is
projective.

Proof. Let S/N be a p-Sylow subgroup of G/N and let Gp, Np be some p-Sylow subgroups
of S, N , respectively. Assume S/N is not trivial. Since (G : S) is prime to p, Gp is a p-Sylow
subgroups of G. Let S/K be the maximal pro-p quotient of S. As a subgroup of N , K is an
abelian group. Hence, by Lemma 5.1(ii), Gp ' S/K and Np ' N/K.

Thus cd(S/K) = cd(Gp) = cdp(G) < ∞ and cd(N/K) = cd(Np) = cdp(N) < ∞.
Therefore, as in the proof of Proposition 5.7, N/K is an analytic pro-p group. Then by
Theorem 7, vcd(S/N) = cd(S/K)− cd(N/K) = cdp(G)− cdp(N) = 1 i.e., S/N is virtually
free pro-p. By the preceding lemma, H2(S/N, Zp) is periodic.
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This holds for every prime p. We now claim that H2(G/N, Ẑ) is generated by its torsion.
The corestriction H2(S/N, Zp)→ H2(G/N, Zp) is an epimorphism (the dual statement of it
for cohomology is the subject of [10, Cor. 6.7.7]). So H2(G/N, Zp) is periodic. Note that

Ẑ '
∏

p Zp where the product is over all primes p. As profinite homology commutes with

inverse limits [10, Prop. 6.5.7] it commutes with direct products. Hence H2(G/N, Ẑ) '
H2(G/N,

∏
p Zp) '

∏
p H2(G/N, Zp) is the direct product of torsion profinite groups, as

claimed.
Consider the 5-term Lyndon-Hochschild-Serre exact sequence ([10, Corollary 7.2.6])

H2(G, Ẑ)→ H2(G/N, Ẑ)→ H1(N, Ẑ)G/N → H1(G, Ẑ)→ H1(G/N, Ẑ)→ 0.

Since G acts trivially on N and on Ẑ, we have H1(N, Ẑ)G/N = H1(N, Ẑ). Taking into

account that H1(G, Ẑ) = G/G′ and H1(N, Ẑ) = N/N ′ = N (cf. [10, Lemma 6.8.6]), one

gets that the kernel of the natural homomorphism N → G/G′ is the image of H2(G/N, Ẑ),
hence is generated by torsion. Since cd(N) ≤ cd(G) < ∞, N is torsion free, and so this
kernel is trivial. Then N × G′ is a subgroup of G and hence for every prime p we have
cdp(G) ≥ cdp(N × G′) = cdp(N) + cdp(G

′) (1.5), whence cdp(G
′) ≤ cdp(G) − cdp(N). So

if there is a non-trivial p-Sylow subgroup of G/N , by assumption cdp(G
′) ≤ 1. Otherwise,

cdp(G/N) = 0 and by (1.5), cdp(G/N) = cdp(G) − cdp(N), so cdp(G
′) = 0. It follows that

cd(G′) ≤ 1 , i.e. G′ is projective.

In particular, by (1.2):

Corollary 5.10. Let G be a pro-p group of finite cohomological dimension cd(G) = n having
central normal subgroup N of cohomological dimension cd(N) = n−1. Then the commutator
subgroup G′ is free.

Proposition 5.11. Let G be a profinite group of finite cohomological dimension n and N
a normal subgroup of G. Suppose N is the profinite completion of the fundamental group
Π of a compact surface of genus g, where g > 0 if the surface is orientable and g > 1 if
not. Then vcdp(G/N) ≤ n − 2 for every prime p. Moreover, if G/N is torsion free, then
cd(G/N) = n− 2.

For the reader’s convenience we collect in the next lemma properties of a surface group.

Lemma 5.12. Let N be the profinite completion of the fundamental group Π of a compact
surface M of genus g, where g > 0 if the surface is orientable and g > 1 if not. Let p be a
prime. Then:

(i) The maximal pro-p quotient N(p) of N is the pro-p completion of Π and N(p) is a
Demushkin group.

(ii) cdp(N) ≤ 2.

(iii) For every simple p-primary discrete N-module A, the natural maps Π → N and Π →
N(p) induce isomorphisms

Hj(N, A)→ Hj(Π, A) and H j(N(p), A)→ Hj(Π, A),

for every j ≥ 0. Consequently, the inflation H j(N(p), Fp) → H j(N, Fp) is an isomorphism
for every j ≥ 0.
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Proof. (i) It is easy to see that N(p) is the pro-p completion of Π. By [13, Exer. 2, p. 40]
N(p) is a Demushkin group.

Observe first that if M is the torus, (ii) and (iii) are trivially true. Thus we assume
that g > 1 for the rest of the proof. We need a more convenient description of Π. By [8,
p. 132–135], Π admits a presentation with one relation, more precisely:

If M is orientable, Π = 〈x1, . . . , x2g | r〉, where r = [x1, x2][x3, x4] . . . [x2g−1, x2g]. There-
fore, as in [10, Example 9.2.11], we can write Π as the amalgamated free product F1 ∗ZF2,
where F1 is the free group on the generators {x1, x2} and F2 is the free group on the generators
{x3, x4, . . . , x2g}. The amalgamated subgroup is Z ' 〈[x1, x2]〉 ' 〈[x3, x4] · · · [x2g−1, x2g]〉.

For M non-orientable, Π has a presentation as 〈x1, . . . , xg | r〉, where r = x2
1x

2
2 · · ·x

2
g.

Therefore, Π = F1 ∗Z F2, where F1 is the free group on {x1} and F2 is the free group on
{x2, . . . , xg}. The amalgamated subgroup is Z ' 〈x2

1〉 ' 〈x
2
2x

2
3 · · ·x

2
g〉.

Observe that the profinite completion N of Π has exactly the same presentation and so
N ' F̂1 ∗bZ F̂2 is a profinite amalgamated free product of two finitely generated free profinite
groups with a procyclic amalgamated subgroup. In fact, this profinite amalgamated free
product is proper (see [11, Proposition 3.2]) in the sense that F̂1, Ẑ and F̂2 are naturally
embedded in N .

We now consider the Mayer-Vietoris sequence associated with the above description of Π
and N as amalgamated free products (see [10, Proposition 9.2.13] in the profinite case and
[3, Theorem 2.10] in the discrete case),

. . .→ Hj−1(Ẑ, A) → Hj(N, A) → Hj(F̂1, A)⊕Hj(F̂2, A) → . . .y
y

y
. . .→ Hj−1(Z, A) → Hj(Π, A) → Hj(F1, A)⊕Hj(F2, A) → . . .

where A is a simple p-primary discrete N -module and the vertical arrows are induced by the
canonical maps Z→ Ẑ, Fi → F̂i, i = 1, 2 and Π→ N .

Now, (ii) follows from the sequence on the top of the above diagram. On the other hand,
for the finitely generated free groups the above vertical arrows are clearly isomorphisms for
every j and so Hj(N, A)→ Hj(Π, A) is also an isomorphism.

Applying the same argument to N(p) we also get the isomorphisms Hj(N(p), A) →
Hj(Π, A).

Proof of Proposition 5.11

The proof depends essentially on the fact that the pro-p completion of Π is a Demushkin
group and an open subgroup of a Demushkin group is also a Demushkin group [13, Corollaire,
p. 38].

For the profinite completion N of Π denote by K the kernel of the natural map of
N → N(p). We shall see that Hj(K, Fp) = 0 for all j > 0. Indeed, cd(K) ≤ cd(N) = 2,
hence Hi(K, Fp) = 0 for all i ≥ 3. As K has no nontrivial p-quotients ([10, Lemma 3.4.1(e)]),
also H1(K, Fp) = Hom(K, Fp) = 0. Hence it remains to be seen that H2(K, Fp) = 0.

Let U be the family of open subgroups of N containing K. Recall that K is the inter-
section of all Ui ∈ U and hence can be regarded as the inverse limit K = lim

←−
Ui. Therefore

H2(K, Fp) = lim
−→

H2(Ui, Fp), the direct limit.

14



Consider U2 $ U1 in U . Then U2/K is an open subgroup of the Demushkin group U1/K
and by [13, Exer. 5(a), p. 41] the restriction H2(U1/K, Fp)→ H2(U2/K, Fp) is the zero map.

On the other hand, any subgroup of finite index of Π is also a surface group. Therefore
any open subgroup U of N is the profinite completion of the surface group Φ = U ∩ Π.
Moreover for U ∈ U , U/K is the closure of Φ in the pro-p completion N/K = N(p) of Π,
and hence U/K is the pro-p completion of Φ. Therefore, by the lemma above applied to U ,
U/K and Φ, the inflation H2(U/K, Fp)→ H2(U, Fp) is an isomorphism. We then conclude,
for U2 $ U1 in U , that the restriction H2(U1, Fp)→ H2(U2, Fp) is the zero map.

Therefore, all maps in the direct limit lim
−→

H2(Ui, Fp) are 0-maps. Hence H2(K, Fp) = 0.

Now let S/N be a p-Sylow subgroup of G/N . Observe that S/K is a pro-p group. As
H i(K, Fp) = 0 for all i > 0, the spectral sequence in cohomology collapses, i.e., Hi(S, Fp) '
H i(S/K, Fp) for all i ≥ 0. Then cd(S/K) ≤ cdp(S) ≤ cdp(G) ≤ cd(G).

Since N(p) = N/K is a Demushkin pro-p group, we can apply Theorem 6 to S/K and
N(p). Then S/N has virtually finite cohomological dimension vcd(S/N) = cd(S/K) − 2 ≤
n− 2. Thus, Lemma 5.2 implies that vcdp(G/N) ≤ n− 2, as required.

Moreover, the additional assumption yields S/N torsion free. By (1.4), cd(S/N) =
vcd(S/N) ≤ n − 2. We show that for some prime p, cd(S/N) = n − 2. Indeed, choose a
prime p such that cdp(G) = n and observe that a p-Sylow subgroup of S is also a p-Sylow
subgroup of G. Then cdp(S) = n and (n−2)+2 ≥ cdp(S/N)+cdp(N) ≥ cdp(S) = n. Hence
cdp(S/N) = n− 2 and by (1.3) cdp(G/N) = n− 2, as needed. 2
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