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Introduction

A field K is said to be Hilbertian if for every irreducible polynomial f € K[X] there
exist infinitely many a € K such that f(a,X) is irreducible in K[X]. The name derives
from the classical Hilbert Irreducibility Theorem [Hi] which states that Q possesses this
property.

Hilbertian fields are essential in the investigation of the Inverse Galois Problem.
It is therefore mostly desirable to know of an ambient field whether it is Hilbertian.

The question, when a separable algebraic extension M of a given Hilbertian field
K is Hilbertian, has been addressed by Kuyk [Ku|, Uchida [U], Weissauer [W], Jarden-
Lubotzky [JL], and in [HJ] and [J1]. The hitherto accumulated knowledge has been
summarized as follows in [JL]. In the following cases an extension M of a Hilbertian
field K is Hilbertian:

(F1) M/K is a finite separable extension.

(F2) M/K is Galois and G(M/K) is finitely generated.

(F3) M is a proper finite separable extension of a Galois extension of K.

(F4) M/K is abelian.

(F5) M is the compositum of two Galois extensions of K, neither of which contains the

other.

(F6) M is contained in a pronilpotent extension of K and [M : K] is divisible by at
least two primes.

(F7) M/K is separable and [M : K] = Hpa(p), with all a(p) finite.

In the present paper we exhibit a quite general sufficient condition for an algebraic
separable extension M of a Hilbertian field K to be Hilbertian. The precise criterion
(Theorem 3.2) is somewhat technical; it roughly states that certain embedding problems
over K should have no solution contained in some Galois extension of K containing M.

The criterion is general in the sense that it can be used to prove all the above men-
tioned cases (F1) — (F7). But, furthermore, it provides a new large class of extensions

that are Hilbertian. Our main result is:

THEOREM 4.1: Let K be a Hilbertian field and let My, M, be two Galois extensions
of K. Let M be an intermediate field of My M, /K such that M ¢ M, and M € M,.
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Then M is Hilbertian.

The method also provides some insight into the Twinning principle of [JL], but
this will be dealt with elsewhere.

The starting point of this investigation was M. Fried’s proof of Weissauer’s The-
orem [FJ, Lemma 12.13 and Proposition 12.14], that looked like a disguised group
theoretical method, similar to that of [HJ]. It took some time, however, to realize that
the group theoretical construction behind it was not the usual wreath product, but the

so-called twisted wreath product discussed in Section 1.

ACKNOWLEDGEMENT: The author thanks M. Jarden for helpful discussions and sug-

gestions concerning the presentation of the paper.



1. Twisted wreath products

Let G and A be finite groups and let G' be a subgroup of G. Assume that G’ acts
on A (from the right). Let

(1) IndS, (4) = {f: G — A| f(op) = f(0)?, foralloec @, pcG'}

with the standard multiplication rule (fg)(o) = f(o)g(o). (We do not require that A
be commutative.) Then G acts on Ind$, (4) by the formula

(2) (f7)(e) = f(ro) T0€.

Definition 1.1: Let Awrg G be the semidirect product G Indg,(A). Explicitly, each
element of Awrgr G is a pair (o, f) with 0 € G and f € Indg,(A), and the product and

the inverse in A wrg: G are given by

(3) (0, f)(m,9) = (o7, f79) ~and  (o,f) " =(c"1,F77 ).
Let pr: Awrg: G — G be the projection (o, f) — o.

We call both pr: Awrg: G — G and Awrg G the (twisted) wreath product
of A and G with respect to G' (see [Hp, p. 99]). |

Embed A in Indg,(A) by identifying each a € A with the function f,: G — A

. _Ja? ped _ G n —

given by fo(p) = {1 bEGNG . Then A = {f € Ind&(4)] fF(GNG') =1}. If
o € G,then A7 ={f € IndG,(A)| f(G~a7*G@") = 1}. In particular, if G'c = G't, then
A% = A7. Let X be a set of representatives of the right cosets of G' in G. It follows that
Ind$, (A) (as a group) is the direct product Ind&, (4) = []
to the product of (G : G') copies of A.

In another words, Indg,(A) =l ez Indg,(A)/N”, where

sex A7, which is isomorphic

(4) N ={felnd&(4)| fle)=1}= ] 4

Here N is the kernel of the epimorphism Ind$, (A) — Agiven by f — f(o~1). (Observe
that N = N! is G'-invariant.)



Remark 1.2: Interpretation of generalized wreath products in Galois theory.

First a piece of notation: Let K'/K be a separable algebraic extension and let
F/K' be a Galois extension. Fix a separable closure K, of K that contains F'. For an K-
embedding o: K' — K, we denote by F the field F?, where 6 € G(K) = Aut(K,/K)
extends o. This is well defined. Furthermore, let £(K'/K) be the collection of K-
embeddings K' — K.

(i) Let Awrg G = G x Ind& (A) and let N be as in (4).

Let F'/K be a finite Galois extension such that G(F/K) =~ Awrg G. Let L, K',
F, K, be the fixed fields of the subgroups IndG,(A), G’ IndG,(A), N, G, respectively. It
then follows from Galois theory that

(a) KCK'CLCFCF,
(b) L/K, F/K' and F/K are finite Galois extensions,
(c) {F°}, for o € £(K'/K), are linearly disjoint over L and F = Haee(K'/K) Fe.
(d) There is a field K such that KN L = K and LK = F.
(e) There is a field F' such that LN F' = K' and F = LF'.
Notice that condition (e) follows from conditions (a)—(d) with F' = F N (K'K), the
fixed field of G' in F.

FO’
L A F — F
G' G' G'
K' " F! K'K
K K

(ii) Conversely, consider a tower (a) of fields that satisfies conditions (b), (c), (d), for
some field K. Put F' = Fn (K'K), G = G(F/K) = G(L/K), G' = G(F/K'K)) =
G(F/F') ~ G(L/K'), and A = G(F/L) = G(F'/K'). Then G' < G(F/K') acts on
A < G(F/K') by conjugation in G(F/K'). We claim that there exists an isomorphism
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o: Awrg G — G(F/K) which is identity on G and maps Ind$, (4) onto G(¥/L). We
say in this setup that the fields K, K', L, F, F' realize the wreath product 4 wre G.

Proof: By (c), F'/L is a Galois extension of degree |A|(G:G) | Tt follows from (d) that
G(F/K)=G(F/K)x G(F/L)=G x G(F/L).

Extend each o € E(K'/K) to an element of G = G(L/K). This gives a system %
of representatives of the right cosets of G’ in G. Let o € ¥. The group Ind&, (4) acts
on F7 by

(5) zf — ((za_l)f(a_l))a’ z € F°.
This does not depend on X: If p € G', then F*° = F7, since F/K' is Galois, and

p e p T =fleT ) = fle T p) = flo7)

from which it follows that ((z(p”)_l)f((p")_l))pg = ((z”_l)f("_l))g.

Observe that action (5) fixes L, since f(oc~!) € A fixes L. Thus (5) defines a
homomorphism ¢, : IndG,(A) — G(F?/L) = A. Clearly, Kerp, = N°.

Using (c), the ¢,’s define a homomorphism

o' IndGi(4) — [[ 6(F°/L) = G(F/L).

oEX

As Kery' = (N,eny = 1, and |Ind&, (4)| = |A|®! = |G(F/L)|, we get that ¢’ is an
isomorphism.

Now, let z € F7 and 7 € G. Then 27 € F(°™") and so

1t T I\ (ro? f("'o'_l) (UT_I) T o1 o )\ o
) = (@)Y ey
G
and hence 771/ (f)T = ¢'(f7). Thus ¢’ together with the identity map of G = G(L/K)
gives an isomorphism Awrg: G — G(F/K). |

Remark 1.3: Let K,K' L,F,F realize Awre G. Let K be a field that satisfies con-
dition (d) of Remark 1.2. If Fp is a Galois extension of K' such that L C Fy C F, let
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Ao = G(Fo/L) and Fo = HUE2 F§. Then Fy is a Galois extension of K contained in F.
Furthermore, let Ko =F;NK. Then LN Ko = K and LK, = Fj. By Remark 1.2(ii),
K,K' L, Fy, F, realize Ao wrer G, as above. |

Our central application requires the following property of twisted wreath products:

LEMMA 1.4: Let m: Awrg: G — G be a twisted wreath product, where A # 1. Let
B =1nd&, (A) = Kerw. Let Hy <« Awrg: G and hy € Awrg G. Let Gy = n(H,).
(a) If m(hy) ¢ G' and (G1G' : G') > 2, then there is f € B N H; such that f*2 ¢ (f).
(b) If Gy € G' and w(hs) ¢ G1G', there is f € B N Hy such that f* ¢ (f)* for each
B en Y G G').
In particular, in both cases [f,hs] # 1.

Proof: Let oy = w(h2). Consider oy € G7 and g € B. There is f; € B such that
(01,f1) € Hy. Let f = glefi)g=1, Then f € [H;,B] C H; N B. We have

f(r) = ((g”l)fl)(T)g(T)_1 = g(a'lT)fl(T)g(T)_l, for every T € G.
There is fo € B such that hy = (03, f2). Let 7 € G and f' € B. Then

Fr2(1) = (£72)2(1) = f(02) 2O = gloray) 120 g ) =121,
(6)  f700) = f(1)O = glorr) O Wg(r)7 1O,

FQQ) = g(o1)*Mg(1)7".

We now use these general formulae in special cases (a) and (b), with a particular
choice of o7 and g.

(a) Since (G1G' : G') > 2, there are 71,7 € Gy such that G',7, 'G', 7, 'G" are
distinct. Let o7 be 7 if oy € Tz_lG', and 7 otherwise. Then o; € G; ~G' and
oy ¢ o7 'G'.

So none of the cosets 01G',0:G',010:G' is G'. Therefore we may choose g € B
such that g(1) = a™!, where 1 # a € A, and g(01G") = g(02G") = g(0102G") = 1.
By (6), f*2(1) = 1, while f(1) = a # 1. It follows that f ¢ {f*2), which implies that
¢ ()



(b) As G2 = G4 € G, we have Gy € (G')°2 . Thus Gy NG’ and G, N (G')°2
are two proper subgroups of G;. Since no group is the union of two proper subgroups,
there is o1 € G such that o1 ¢ G' and o4 ¢ (G')"2_1. Then oy ¢ 0103G'. Recall that
o9 ¢ G1G'. Therefore we may choose g € B such that

g(GlGI) = 1a 9(0'10'2) = 1a 9(02) = a_la

where 1 # a € A. Let 7 € G1G' and f' € B. By (6), f*2(1) = a2(!) £ 1, while
f(T’f')(l) = 1. It follows that f*z ¢ <f>(T’f'). Thus fh2 ¢ <f>h' for each b’ € 771 (G, G").
|



2. A Hilbertianity criterion

Observe that if E/K is a separable extension of fields such that F has a K-rational
place, then E/K is regular. Indeed, a K-place ¢: E — K U {oo} maps the algebraic
closure L of K in E into K. But the restriction of ¢ to L is an embedding of fields,
whence L = K.

Let K be a field and let ¢ be transcendental over K.

Definition 2.1: We say that a Galois extension F/K(t) is K-rationally split, if there
are field extensions L/K and E/K(t) such that F' = EL and E has a K-rational place,
unramified over K(t). In particular, E/K is regular and L/K is Galois. |

LEMMA 2.2: Let K be an infinite field and let F/K (t) be a finite Galois extension. Then
there exists a finite K -rationally split Galois extension F'/K(t) such that F C F".

Proof: As K is infinite, there is a K-rational place K(t) — K U {oo} that extends to
a place p: F' — K, U {oco}, unramified over K(t). Let L be the residue field of ¢; this is
a Galois extension of K. Let F' = FL. Extend ¢ to a place ¢: F' — K, U {o0}. Then
@' is unramified over K (t) and L is its residue field [FJ, Proposition 2.14].

Let E be the decomposition field of ¢'. Then resg ¢’ is a K-rational place, un-
ramified over K(t). This implies that E/K is regular. Hence [EL : E] = [L : K]. But
[L : K| = [F' : EJ, since the decomposition group of ¢’ is isomorphic to the Galois
group of the residue field extension. Thus F' = EL, and so F' is K-rationally split.
|

Let L be a field. An irreducible polynomial f € L[X] is said to be Galois over
L if a root of f generates a Galois extension of L, that is, the field L[ X]/(f) is Galois

over L.

Remark 2.3: Let L/K be a Galois extension of fields, and let f € K[X]|. Assume
that f is irreducible and Galois over L. Let # = z1,22,...,z, be the roots of f (in
an algebraic closure of L). Then L(z)/K is Galois. Indeed, L(z) is the compositum of
two Galois extensions of K, namely, L and K(z1,...,2,). Furthermore, K(z) and L
are linearly disjoint over K. Hence G(L(z)/K) = G(L/K) x G(L(z)/L). In particular,
G(L/K) acts on G(L(z)/L). |



LEMMA 2.4: Let M be a field and let t be transcendental over M. Then M is separably
Hilbertian if and only if the following condition holds:
(*) Given an absolutely irreducible polynomial f € M|[T,X], monic in X, and a
finite Galois extension M' of M such that f(t,X) is Galois over M'(t), there are
infinitely many a € M such that f(a,X) € M[X] is irreducible over M'.

Proof: The condition is necessary, by [FJ, Corollary 11.7].

To show that it is sufficient, let g(T,Z) € M|T, Z] be monic and separable in Z
and irreducible over M(T'). Let z be a root of g(¢, Z) in some algebraic closure of M(t).
Each a € M defines a specialization ¢ — a that extends to an M-place ¢: M(t,z) — M,.
There is 0 # h(T) € M[T] such that M|t, z, h(t)~!] is the integral closure of M[t, h(t) ]
in M(t,z) [FJ, Lemma 5.3]. Thus for all a’s, except for the finitely many zeros of h,
the residue field extension of M(t,z)/M(t) with respect to ¢ is M(p(z))/M. We have
deg, g(t,Z) = [M(t,2) : M(t)] and ¢(z) is a root of g(a, Z). It therefore suffices to find
infinitely many a € M for which the extension M(¢,z)/M(t) is inert, i.e., the residue
field degree is the degree of the extension.

By Lemma 2.2 there is a a finite M-rationally split Galois extension F/M(t) such
that z € F'. Thus there is a Galois extension M'/M and a regular extension E/M such
that M(t) C E and FF = EM'. Let f(t,X) be the irreducible polynomial of a primitive
element z for E/M(t). Then f is absolutely irreducible and f(¢, X) is Galois over M'(t).

By (*) there exist finitely many a € M such that f(a,X) € M[X] is irreducible
over M'. For each such a let p: FF — M, U {co} extend ¢t — a; then ¢(z) is of degree
[F: M'(t)]-[M': M] =[F: M(t)] over M. Hence F/M(t) is inert with respect to ¢.
Therefore so is the subextension M (t,z)/M(t). |



3. Twisted wreath products over fields of rational functions and specializa-

tions

We now realize the twisted wreath products of Section 1 over fields of rational functions

in several variables.

LEMMA 3.1: Let L/K be a finite Galois extension, let K' be an intermediate field of
L/K, and let c1,...,c, be a basis of K' over K. Let f € K'[T,X] be an absolutely
irreducible polynomial, monic in X and Galois over L(T), and let A = G(f,L(T)).
Let t = (t1,...,ts) be an n-tuple of algebraically independent elements over K'. Put
G =G(L/K)=G(L(t)/K(t)) and G' = G(L/K') = G(L(t)/K'(t)). Then G' acts on A
and there exist fields F, F' such that

(a) K(t), K'(t),L(t), F, F realize Awrg: G and F is regular over L.

(b) F = L(t)(2), where irr(z, L(t)) = f(>.1, citi, Z) € K'[t, Z].

i=1
Proof: Fix aroot z of f(T,X) € K'[T]|[X] in an algebraic closure of L(T). Identify G’
with G(L(T,z)/K'(T,z)) to define the action on A = G(L(T,z)/L(T)) (Remark 2.3).
Let ¥ be the family of cosets G'o of G' in G. For C € ¥ and a € K' let a® denote

a®, where o € C}; also, let f© denote f°, where o € C.

L(u®,29|C' £ C) —— L(u)(z°' | C' £ C) —2— L(u®,2° | C' e )= F
L(u®|C'"#C) ——— L(t) = L(u) = Q —2A— L(u,2%)= F°
L L(u®) A L(u®,2°)
K'C K'C(uc) K'C(uc,zc)
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Choose a set {u®] C € X} of algebraically independent elements over K and
put @ = L(u®] C € ¥). For each C € ¥ let 2€ be a root of f¢(u,Z) in a fixed
algebraic closure of @ and let FC = Q(2°). As fC is absolutely irreducible, the field
K'9(u%,2%) is a regular extension of K'C. Hence L(u%,2°) is a regular extension of
L. As (L(u%,2%)| C € X) are free over L, they are linearly disjoint over L, and their
compositum F' = L(u%,2°| C € ) = Q(29] C € X) is a regular extension of L [FJ,
p. 112]. It follows [FJ, Lemma 9.3] that any two fields in the above diagram are linearly
disjoint over the field that lies in the lower left corner of the rectangle determined by
them. In particular, F©/Q is a Galois extension with Galois group isomorphic to A4,
the set of all F© is linearly disjoint over @, and F is their compositum. Therefore F /Q
is Galois.

Let t},...,t, be the unique solution of the following system of linear equations:
(1) TicC + -+ Tpel =u, Cex.

As the matrix (¢¢) € Mn(L) is invertible [L, p. 212], L(t},...,t.) = L(x°| C € ) = Q.
Since n is the transcendence degree of @ over L, the elements t],. .., are algebraically

independent over L and hence also over K. So we may assume that ¢, = t;, for 1 =

1,...,n. Hence @ = L(t).

Extend the action of G on L to an action on F' in a natural way: (u%)” =4 and
(29)7 = 297, In particular, T permutes the equations of the system (1). As (t7,...,t7)
is also a solution of (1), it coincides with (¢1,...,t,). Thus 7 fixes ¢1,...,¢,. It follows

that the action of G on @ = L(t) is the unique extension of the given action on L that
fixes t1,...,t,. In particular, K(t) is the fixed field of G in Q.

Let F = FG1. Then FC = F° for each o € C. Therefore F' = [I, F?, where o
runs through a system of representatives of X.

As F/L(t) and L(t)/K(t) are Galois, and every T € G = G(L(t)/K(t)) lifts
to an automorphism of F, we obtain that F/K(t) is Galois. Similarly, F/L(t) and
L(t)/K'(t) are Galois, and every 7 € G' = G(L(t)/K'(t)) lifts to an automorphism of
F,so F/K'(t) is Galois.

Let K be the fixed field of G in F. Then K N L(t) = K(t), the fixed field of G in
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L(t), and KL(t) — F. By Remark 1.2, K(t), K'(t), L(t), F, F realize Awrg G.
Put v = u%! and z = 2¢'1. By (1), w =Y~ cit; € K'(t). Now, f(u,2z) =0 and

i=1
f(u, Z) is irreducible over K'(u). As Q = L(u) and K'(u,z) are linearly disjoint over
K'(u), we get that f(u,Z) is irreducible over = L(t). This shows (b). |

We now apply the above construction to prove that certain separable extensions
of separably Hilbertian fields are separably Hilbertian. Recall [FJ, Proposition 11.13
and Proposition 11.16] that a field is Hilbertian if and only if it is separably Hilbertian
and either imperfect or of characteristic 0. Therefore in the rest of this section we could

replace ‘separably Hilbertian’ by ‘Hilbertian’.

THEOREM 3.2: Let M be a separable algebraic extension of a separably Hilbertian field
K. Suppose that for every o € M and every B € M, there exist:

(i) a finite Galois extension L of K that contains 3; let G = G(L/K);

(ii) a field K' such that K C K' C M N L and K' contains a; let G' = G(L/K');

(iii) a Galois extension N of K that contains both M and L,
such that for every finite nontrivial group Ao and every action of G' on Aq there is no
realization K,K',L,FO,FO of Ao wrgr G with Fy C N.
Then M is separably Hilbertian.

Proof:

PART A: Preliminaries. We will apply the criterion of Lemma 2.4. Solet f € M[T, X|
be an absolutely irreducible polynomial, monic in X, and let M'/M be a finite Galois
extension such that f(7,X) is Galois over M'(T), We have to show that there are
infinitely many a € M such that f(a,X) € M[X] is irreducible over M'. Let A =
G(f, M'(T)) = G(f, My(T))

There is @ € M such that f € K(a)[T, X] and there is 8 € M, such that M' C
M(B) and f(T,X) is Galois over K(8)(T). For these a,3 let K', L, and N be as in (i)
- (iii). Then f € K'[T, X] and f(T, X) is Galois over L(T).

As K' C M and M' C N, it suffices to find infinitely many a € K' such that
f(a,X) is irreducible over N.
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PART B: Specialization of the wreath product. Let cy,...,c, be a basis of K’ over K.

By Lemma 3.1 there are fields P and P such that

(a) K(t),K'(t),L(t),P,p realize Awrg G (with respect to some action of G’ on A).
(b) P = L(t)(z), where irr(z, L(t)) = f(>_ 1, cits, X).

As K is separably Hilbertian, for infinitely many n-tuples b = (b1,...,b,) € K™
the specialization t — b gives an L-place of P onto a Galois extension F' of K with
group isomorphic to g(ﬁ/K(t)), that is, there are fields F and F' such that

(a') K,K' L,F,F realize Awrg: G (with respect to some action of G' on 4).

(b') F = L(y), where irr(y, L) = f(> 1 ¢ibi, X).
For simplicity, fix such b and let a = Y-, ¢;b;. Then a € K', so f(a,X) € K'[X].
PArRT C: L= NN F. Indeed, let Ffy = NN F. This is a Galois extension of K'. Let
Ao = G(Fo/L). By Remark 1.3 there is a Galois extension Fy of K such that

(a') K,K', L, Fy, Fy realize Ag wregr G (with respect to some action of G' on Ay).
In particular, Fy is the Galois closure of Fy over K. As Fy C N, and N/K is Galois,

we have Fy C N. By assumption, this is possible only if 49 = 1, that is, if L = NN F.

PART D: Conclusion. By Part B, f(a,y) = 0. By Part C, [N(y) : N] = [NF : N| =
[F: L] =[L(y) : L]. Thus f(a,X) =irr(y,N). In particular, f(a,X) is irreducible over
N. |
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4. Applications

Our main result is the following theorem, that could be considered a generalization of
Weissauer’s Theorem [W, Satz 9.7] on one hand and [HJ, Theorem 2.4] on the other
hand. It answers [J1, Problem 2.3(a)].

THEOREM 4.1: Let K be a Hilbertian field and let My, M, be two Galois extensions
of K. Let M be an intermediate field of My M, /K such that M ¢ M, and M € M,.
Then M is Hilbertian.

Proof: By [FJ, Corollary 11.7] we may assume that [M : K] = oo.

PART A: We may assume that
(a) either My N My = K or [M : (M, N M)] > 2.
Indeed, we cannot have [M : (M; N M)] = 1, since M ¢ M;. Suppose that
[M : (M; N M)] = 2. Then there is d € M; N M such that M = (M; N M)(§), where
either 62 — § = d (in characteristic 2) or §2 = d (otherwise). Observe that M; and K (4)
are Galois extensions of K(d), their intersection is K(d), and K(d) C M C M;K(4).
Furthermore, M ¢ K(§), since M/K is infinite. Replace K by K(d) and M, by K(4)

to achieve (a).

PART B: Construction of N and L. 'We apply the criterion of Theorem 3.2. Let « € M
and B € M,. Let Lo be the Galois closure of K(a,3) over K, and let N = Lo M; M.
Then N/K is Galois, and G(N/M;),G(N/M,) <« G(N/K).

Choose a finite Galois extension L/K such that Ly C L C N, let G = G(L/K),
and let o: G(N/K) — G be the restriction map. Let Gy, G3, and G’ be the images in
G of G(N/My), G(N/M,), and G(N/M), respectively, under . Put K' = M N L; then
a € K'and G' = G(L/K'). Then

(b) G1,G, < G.
Condition M ¢ M; means that G(N/M;) € G(N/M), for i = 1,2. Thus if L is suffi-
ciently large (that is, if @ is a sufficiently large finite quotient of G(N/K)) then

(c) G1,Gy L G'.
Similarly, [M : K| = oo implies, with L sufficiently large, that

(d) (G:G") > 2.
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Finally, (a) implies, with L sufficiently large, that
(e) either G1Ga = G or (G1G': G') > 2.
In particular,
(¢') either Gy € G1G' or (G1G': G') > 2.
Indeed, otherwise G, C G1G' and (G1G' : G') < 2. By (e), G1G> = G, and therefore
G = G1G'. Hence, by (d), (G1G' : &) > 2, a contradiction.

PART C: A realization. Let A # 1 be a finite group on which G' acts, and let H =
Awrg G. By Theorem 3.2 it suffices to show that there is no realization K, K', L, F, F
of H with F C N.

Suppose there is such a realization. Identify H with g(ﬁ/K) so that the restriction
map g(ﬁ/K) — G(L/K) coincides with the projection m: H — G. Then wores; = resg,
where resy, : G(N/K) — G and resy : G(N/K) — H are the restriction maps.

Fori =1,21let H; = res;(G(N/M;)). Then H;<H and w(H;) = resy,(G(IN/M;)) =
G;. We claim that there are hy € H; NKerm and hy € Hj such that [hy, hy] # 1. Indeed,
if the first statement of (e') holds, then there exists hy € Hy such that w(hy) ¢ G1G'.
The claim then follows from (c¢) and Lemma 1.4(b) with h; = f. If the second statment
of (¢') holds, then by (c) there exists hy € Hs such that w(hy) ¢ G'. The claim then
follows from Lemma 1.4(a) with hy = f.

Fori = 1,2 choose y; € G(N/M;) such that resz(v;) = h;. Thenresy vy = w(h1) =
1 and

(1) [71a72] # L.

However, as G(My M, /My N M) = G(M1 M /M;) x G(M1 My /M,), the subgroups
G(M1My/M,y) and G(M; My /Ms) of G(M1 M, /k) commute. Therefore

Te€Sn, M, [71a72] = [reSMle Y1,T€SA, My 72] = 1.
Furthermore,

resy,[v1,72] = [resp y1,resp ¥2] = [1,resg v2] = 1.
As N = (M, M,)L, it follows that [vy1,72] = 1, a contradiction to (1). ]
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Put M = M, M, in the preceding theorem. The main ingredient in the proof is
the fact that there are two normal subgroups G(M /M;) and G(M /M) of G(M /K) that
commute. That is, for every v, € G(M /M) and every v5 € G(M/K) we have v;? = ;.
However, we can considerably weaken this condition:

An automorphism o of a profinite group G is said to be families preserving if,
for all g € G, the closed subgroup (¢7) generated by g7 is conjugate in G to (g) [JR].

In particular, every inner automorphism is families preserving.

THEOREM 4.2: Let K be a Hilbertian field and let M, C M be two Galois extensions
of K. Assume that there is v, € G(M/K)~ G(M/M;) such that conjugation by 7,
induces a families preserving automorphism of g(J\ZI/Ml) Let M be an intermediate
field of M/K such that M ¢ My and My N M ¢ M(vy2), the fixed field of v5 in M.
Then M is Hilbertian. In particular, M is Hilbertian.

K— MnM—M
Proof: We apply the criterion of Theorem 2.2. Let « € M and 8 € M,. Let Lo
be the Galois closure of K(a,8) over K, and let N = LoM. Then N/K is Galois,
G(N/My) « G(N/K), and G(N/M;) ¢ G(N/M). Extend 4, to & € G(N/K). Then
&y ¢ G(N/My N M) = G(N/M1)G(N/M).

Let L be a finite Galois extension L/K such that Ly C L C N, let G = G(L/K),
and let : G(N/K) — @ be the restriction map. Let Gy, o3, and G' be the images in
G of G(N/My), 85, and G(N/M), respectively, under . Put K' = M N L; then a € K’
and G' = G(L/K'). If L is sufficiently large then G; ¢ G and o3 ¢ G1G'.

CLAIM: For each é; € G(N/M,) such that res; 81 = 1 there is § € G(N/M,) such
that 5?2 € (6%). Indeed, by assumption there is § € G(N/M;) such that res yy 5?2 €
(resy; 89). Clearly resg, 82 =1 =resy 8%. As N = LM, the claim follows.

Let A # 1 be a finite group on which G' acts, let H = Awrg: G, and suppose
there is a realization K,K',L,F,ﬁ1 of H with ' C N. As in the preceding theorem
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identify H with G(F/K) and the restriction G(F/K) — G(L/K) with the projection
m H — G.

Let Hy = res;(G(N/M;)) and hy = resz(63). Then Hy < H, n(H;) = G1, and
7(hz) = o3. By the above Claim, for each f € H; N Kern there is h' € Hy such that
f* € (f*). This contradicts Lemma 1.4(b). |

COROLLARY 4.3: Let M; be a proper Galois extension of a Hilbertian field K. Then

its absolute Galois group G(M;) has outer automorphisms.

Proof: Put M = M = K, in Theorem 4.2 and let Y2 € G(K)~G(M1). Then ~,
induces an outer automorphism of G(M;). Otherwise, by Theorem 4.2, M = K, is

Hilbertian, a contradiction. |

Remark 4.4: Examples of fields with whose absolute Galois group has no outer auto-
morphisms. The famous theorem of Ikeda, Iwasawa, Uchida [J2, Section 8.5] states
that each automorphism of G(Q) is inner.

More generally, let L be a number field that is Galois over no proper subfield
(e.g., L = Q(v/2)). Let a be an automorphism of G(L). By a theorem of Uchida and

1

Iwasawa [J2, Section 8.5] a is of the form 7 — o7 '70, where 0 € G(Q). In particular,

G(L)° = G(L), and hence L° = L. As L is Galois over the fixed field L(o) of ¢ in L,
we have L(o) = L. Thus o € G(L), whence a is inner.

Thus by Corollary 4.3, G(L) % G(M;) for each proper Galois extension M; of Q.

We now show how cases (F1)-F(6) from the Introduction can be deduced from

Theorems 3.2 and 3.3. First, we slightly generalize (F2):

ProOPOSITION 4.5 (cf. [FJ, Proposition 15.5]): Let M be a separable extension of a
Hilbertian field K. Let M be its Galois closure over K and assume that G(M/K) is
finitely generated. Then M is Hilbertian.

Proof: Apply the criterion of Theorem 3.2. Let &« € M and 8 € M;. Let Ly be the
Galois closure of K(a,f) over K, and let N = LoM. Then N/K is Galois and G(N/K)
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is finitely generated. Let K' = K(a) and let A¢ be a non-trivial finite group. Put
n=[K': K]and m = |4o| > 1.

As G(N/K) is finitely generated (and hence small), there are only finitely many
extensions of K of degree at most [K' : K| -|Aq| contained in N. Their compositum L
is a finite Galois extension of K and K C K' C L C N.

Let G = G(L/K) and G' = G(L/K'), and let G' act on Ag. Suppose that there are
fields F', F, F' C N such that K, K', L, F, F realize Ao wrg: G over K. By Remark 1.2(e)
there is a field F' such that LN F' = K' and F = LF'. Then [F': K'] = |Ao|, and
hence [F' : K| = [K': K]|-|Ao|, whence F' C L. A contradiction to LN F' = K'. |

Proposition 4.5 also implies case (F1). Cases (F3) and (F5) follow from Theo-
rem 4.1. So does (F6): For each prime p let K, be the maximal pro-p-extension of K.
If p1,p2|[M : K|, then M C HPK = M, M,, where M, = K,, and M = Hp;épl K,,
but M & My, M,.

Case (F4) can be deduced from (F2) and (F3) [FJ, Proposition 15.6], but also
directly from Theorem 3.2 (in the spirit of the original proof of Kuyk [Ku] that uses
wreath products). The essential point is that Ao wrgr G is not commutative, if (G :
G') > 2. This follows, e.g., from Lemma 1.4(a) with G; = G.

Finally, we remark that the peculiar case (F7) could be deduced from a slight
generalization of Theorem 3.3. However, the original proof [JL, Proposition 5.2] is more

straightforward.
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