
IntroductionHarbater introduced "patching" in [H1] to prove that each �nite group occurs asa Galois group over the �eld of rational functions K(z), where K is the �eld offractions of a complete local ring. In particular, this holds if K is any discretecomplete valued �eld. Harbater's work is phrased in the language of formalgeometry (i.e., formal schemes). Liu [Li] and Serre [Se, Theorem 8.4.6] translatedit into the language of rigid analytic geometry. Both approaches rely on generalGAGA theorems relating formal (resp., rigid analytic) geometry to algebraicgeometry.In the present paper we give an elementary proof of this theorem thatreplaces these general GAGA principles by a simple ring-theoretic \GAGA" cor-respondence based on the so-called \Cartan's Lemma". This approach also yieldsa short proof of a recent result of Harbater [H5] and Pop [Po]: If K is a count-able algebraically closed �eld, then the absolute Galois group of K(z) is the freepro�nite group F̂! of countable rank. This implies that F̂! is the absolute Galoisgroup of every function �eld L of one variable over K, since such L is �nite overK(z) (Corollary 4.7).Cartan's Lemma is basic for the development of rigid analytic geometry.Matrix factorizations as in Cartan's Lemma have also been used by Harbater([H2] and [H3]) in his formal geometry approach. One of the contributions ofthis paper lies in isolating a particularly weak variant of Cartan's Lemma thatsucceeds to render our ring-theoretic version of GAGA.Further development of Harbater's patching method has culminated in (the�rst part of) the proof of Abhyankar's Conjecture given by Raynaud [Ray] andHarbater [H4]. (The second part uses other methods from reduction theory).The material in this paper is presented from a slightly di�erent point ofview in Chapter 11 of the forthcoming book [V].Acknowledgement: We thank M. Jarden for many stimulating conversationsand suggestions on the topic of this paper. Further, we acknowledge a helpfultalk of M. van der Put (Ober
ockenbach, February 1994) on the proof of Serre1



and Liu.1. Rings of convergent power seriesThe results of this and the next section are well known. The reader may �ndthem scattered in [BGR] and [FP]. We reprove them here in order to be selfcontained, without relying on the whole machinery of rigid analytic geometry.Let R be a commutative ring with unity equipped with a non-trivialultrametric absolute value j j. That is, a 7! jaj is a map R! R satisfying:(a) jaj � 0, and jaj = 0 if and only if a = 0;(b) there is a 2 R with 0 < jaj < 1;(c) jabj = jaj � jbj; and(d) ja+ bj � max(jaj; jbj).By (a) and (c), R is an integral domain. By (c), the absolute value of Rextends to an absolute value on the quotient �eld of R (by jab j = jajjbj ). It alsofollows that j � aj = jaj, and(d0) If jaj < jbj, then ja+ bj = jbj.Assume, furthermore, that(e) R is complete with respect to j j, i.e., every Cauchy sequence in Rconverges.It then follows from (d) that a series P1n=0 an of elements of R converges if andonly if an ! 0.Remark 1.1: If a 2 R and jaj < 1, then 1 � a 2 R�. Indeed, 1 + a + a2 + � � �converges, say, to b 2 R. As (1 � a)(1 + a + � � � + an) = 1 � an+1 ! 1, we have(1� a)b = 1.Example 1.2: (i) Let p be a prime. The �eld Qp of p-adic numbers is completewith respect to the p-adic absolute value.(ii) Let K0 be a �eld, and let 0 < " < 1. The �eld K0((t)) of formal powerseries P1i=N aiti with coe�cients in K0 and N 2 Z is complete with respect tothe absolute value jP1i=N aitij = "min(ij ai 6=0).2



See Lemma 1.3 below for additional examples.Let z be a free variable over R. De�neRfzg = f 1Xn=0anznj an 2 R; limn!1an = 0g;Rfz; z�1g = f 1Xn=�1anznj an 2 R; limjnj!1an = 0g;These sets are commutative rings under the obvious addition and mul-tiplication. Indeed, if Pi aizi;Pj ajzj 2 Rfz; z�1g, then Pi+j=n aibj con-verges for each n 2 Z, say, to cn 2 R, and cn ! 0 as �n ! 1. ThusPi aizi �Pj bjzj =Pn cnzn 2 Rfz; z�1g.View Rfzg as a subring of Rfz; z�1g.De�ne the norm jf j of f =Pn anzn 2 Rfz; z�1g by jf j = max(janj).Lemma 1.3:(i) The norm is an ultrametric absolute value on Rfz; z�1g, extending that onR.(ii) Both Rfzg and Rfz; z�1g are complete with respect to the norm.(ii) Each c 2 R with jcj = 1 de�nes an evaluation homomorphismRfz; z�1g !R given by f =Pn anzn 7! f(c) =Pn ancn.(iv) Each c 2 R with jcj � 1 de�nes an evaluation homomorphism Rfzg !R given by f =Pn anzn 7! f(c) =Pn ancn.(v) For each f 2 Rfz; z�1g there are f+ 2 Rfzg and f� 2 Rfz�1g such thatf = f+ + f� and jf+j; jf�j � jf j.Proof: (i) We check that jfgj = jf j�jgj for f; g 2 Rfz; z�1g. Let f =P1i=�1 aiziand g =P1i=�1 bizi. We may assume f 6= 0 and g 6= 0. Clearly jfgj � jf j � jgj.Conversely, let n;m be the largest indices such that janj = jf j and jbmj = jgj,let ` = n + m, and consider the coe�cient c` of z` in fg. If i + j = ` and(i; j) 6= (n;m) then i > n or j > m. Hence jaij < jf j or jbj j < jgj, and thereforejaij�jbjj < jf j�jgj. Thus maxi+j=`(jaibj ) = janj�jbmj = jf j�jgj, and this maximum3



it obtained only when (i; j) = (n;m). Hence jc`j = jPi+j=` aibj j = jf j � jgj (by(d0) above), and so jfgj � jf j � jgj.Axioms (a), (b), and (d) for an ultrametric absolute value hold trivially.(ii) Consider a Cauchy sequence (fn) in Rfz; z�1g. This yields a Cauchysequence in each coe�cient, hence (fn) converges coe�cientwise to some formalsum f =Pn anzn. It is easy to show that actually f 2 Rfz; z�1g and jf�fnj !0. If fn 2 Rfzg for each n, then f 2 Rfzg.(iii) and (iv) are straightforward.(v) If f = P1n=�1 anzn, let f+ = P1n=0 anzn and f� = P�1n=�1 anzn.De�nition 1.4: For f =P1n=0 anzn 6= 0 in Rfzg de�ne the pseudodegree off to be the integer d = max(n : janj = jf j). Call f regular, if ad is invertible inR.Remark 1.5: The map z 7! z�1 de�nes a norm-preserving R-automorphism !of Rfz; z�1g of order 2. It maps Rfzg onto Rfz�1g. Thus Rfzg �= Rfz�1g.Furthermore, ! maps R[z] onto R[z�1], and R[z; z�1] onto itself.Theorem 1.6 (Weierstrass Division Theorem): Let f 2 Rfzg and let g 2 Rfzgbe regular of pseudodegree d. Then there are unique q 2 Rfzg and r 2 R[z] suchthat f = qg + r and deg r < d. Moreover,(1) jqj � jgj � jf j and jrj � jf j:Proof:Part I: Estimates (1). Assume that f = qg + r, where deg r < d. If q = 0,then (1) is clear. Assume that q 6= 0 and let l be the pseudodegree of q. Thenjqgj = jqj�jgj equals the value of the coe�cient of zd+l in qg; this coe�cient is alsothe coe�cient of zd+l in f = qg + r, since deg r < d+ l. Therefore jqj � jgj � jf j.It follows that jrj = jf � qgj � max(jf j; jqgj) � jf j.4



Part II: Uniqueness. Assume that f = qg+r = q0g+r0, where deg r;deg r0 < d.Then 0 = (q� q0)g+(r� r0). By Part I, jq� q0j = jr� r0j = 0. Hence q = q0 andr = r0.Part III: Existence if g is a polynomial of degree d. Write f as P1n=0 bnzn.For each m � 0 let fm = Pmn=0 bnzn 2 R[z]. As g is regular of pseudodegreed, its leading coe�cient is invertible. Euclid's algorithm for polynomials over Rproduces qm; rm 2 R[z] such that fm = qmg+rm and deg rm < deg g. Thus for allk;m we have fm�fk = (qm�qk)g+(rm�rk). By Part I, jqm�qkj�jgj; jrm�rkj �jfm�fkj. Thus fqmg1m=0 and frmg1m=0 are Cauchy sequences in Rfzg, and hencethey converge to q 2 Rfzg and r 2 R[z]. Clearly f = qg + r and deg r < d.Part IV: Existence for arbitrary g. If g =P1n=0 anzn, put g0 =Pdn=0 anzn 2R[z]. Then jg � g0j < jgj. By Part III with g0 and f there are q0 2 Rfzg andr0 2 R[z] such that f = q0g0 + r0 and deg r0 < d. By Part I, jq0j � jf jjgj andjr0j � jf j. Thus f = q0g+ r0+f1, where f1 = �q0(g�g0), and jf1j � jg�g0 jjgj � jf j.Put f0 = f . By induction we get, for each k � 0, elements fk; qk 2 Rfzgand rk 2 R[z] such that deg r < d andfk = qkg + rk + fk+1; jqkj � jfkjjgj ; jrkj � jfkj; and jfk+1j � jg � g0jjgj jfkj:It follows that jfkj ! 0, whence also jqkj; jrkj ! 0. Therefore q = P1k=0 qk 2Rfzg and r =P1k=0 rk 2 R[z]. Clearly f = qg + r and deg r < d.Corollary 1.7: Let f 2 Rfzg be regular of pseudodegree d. Then f = qg,where q is a unit of Rfzg and g 2 R[z] is a monic polynomial of degree d withjgj = 1.Proof: By Theorem 1.6 there are q0 2 Rfzg and r0 2 R[z] of degree < d suchthat zd = q0f + r0 and jr0j � jzdj = 1. Put g = zd� r0. Then g is monic of degreed, and g = q0f . Clearly jgj = 1. It remains to show that q0 2 Rfzg�.Notice that g is regular of pseudodegree d. By Theorem 1.6 again, there areq 2 Rfzg and r 2 R[z] such that f = qg + r and deg r < d. Thus f = qq0f + r.5



But f = 1f + 0 as well. By the uniqueness in Theorem 1.6, qq0 = 1. Henceq0 2 Rfzg�.For the rest of this section let K be a �eld complete with respect to anon-trivial ultrametric absolute value. Every non-zero g 2 Kfzg is regular. Ifg 2 K[z] is monic of degree d and jgj = 1, then g is of pseudodegree d.Corollary 1.8: Let g 2 K[z] be monic of degree d, irreducible in K[z], andjgj = 1. Then g is irreducible in Kfzg.Proof: The irreducibility of g in K[z] implies that d > 0. Therefore g is nota unit in Kfzg, otherwise the two presentations 1 = gg�1 + 0 and 1 = g0 + 1contradict the uniqueness in Theorem 1.6.Suppose that g = g1g2, where g1; g2 2 Kfzg are not units. By Corollary 1.7we may assume that g1 is a monic polynomial in z, say, of degree d1, and jg1j = 1.Hence g1 is of pseudodegree d1. By Euclid's algorithm there are q; r 2 K[z] suchthat deg r < d1 and g = g1q + r. But g = g1g2 + 0 as well. The uniquenessin Theorem 1.6 gives g2 = q 2 K[z]. Thus either g1 2 K[z]� � Kfzg� org2 2 K[z]� � Kfzg�, a contradiction.Lemma 1.9: Let A be either Kfzg or Kfz; z�1g. Each f 2 A can be written asf = pu with p 2 K[z] and u 2 A�.Proof: For A = Kfzg the claim follows from Corollary 1.7 (with R = K).Let A = Kfz; z�1g, and let f = P1n=�1 anzn 2 A. We may assume thatf 6= 0, and �1 = min(n : janj = jf j) (after multiplying f by a power of z, whichis a unit of A).Set R = Kfzg, and introduce a new variable w. Consider the ring Rfwg ofpower seriesP1j=0 �jwj with �j 2 R and j�j j ! 0. Setting �0 =P1n=0 anzn and�j = a�j for j > 0 we obtain an element f̂ =P1j=0 �jwj of Rfwg that is regularof pseudodegree 1. By Corollary 1.7 (with w instead of z) we have f̂ = p̂û, whereû is a unit of Rfwg and p̂ = w + � for some � 2 R.In particular, û is a unit of Afwg. We have jz�1j = 1. The evaluationhomomorphism � : Afwg ! A given by F 7! F (z�1) maps û onto a unit u0 of6



A. Thus f = �(f̂ ) = �(p̂)�(û) = (z�1 + �)u0 = (1 + z�)z�1u0. Replacing f byf 0 = 1 + z� 2 R = Kfzg reduces us to the case that f 2 Kfzg. But this casehas already been dealt with.Theorem 1.10: The rings Kfz; z�1g, Kfzg, and Kfz�1g are principal idealdomains. Each ideal is generated by an element of K[z; z�1].Proof: Let A be either Kfzg or Kfz; z�1g. By Lemma 1.9, each ideal I of A isgenerated by I 0 = I \K[z]. This I 0 is an ideal of K[z], hence I 0 = pK[z] for somep 2 K[z] (since K[z] is a principal ideal domain). Thus I = pA is a principalideal. The case of Kfz�1g follows by Remark 1.5.LetQ1, Q2, and Q̂ be the �elds of fractions ofKfzg,Kfz�1g, andKfz; z�1g,respectively. View Q1; Q2 as embedded into Q̂.Corollary 1.11: The intersection of Q1 and Q2 inside Q̂ equals K(z).Proof: We have K[z] � Kfzg and K[z�1] � Kfz�1g, hence K(z) � Q1 \ Q2.For the converse, let f 2 Q1 \ Q2. By Corollary 1.7, f = f1=p1 with f1 2 Kfzgand 0 6= p1 2 K[z]. By Remark 1.5, f = f2=p2 with f2 2 Kfz�1g and 0 6=p2 2 K[z�1]. There are n;m 2 N such that znp2 2 K[z] and zn�mp1 2 K[z�1].Then the element g = (znp2)f1 = zm(zn�mp1)f2 lies in Kfzg, and z�mg lies inKfz�1g. Clearly this implies that g 2 K[z] (of degree � m). Thus f = f1=p1 =g=(znp2p1) 2 K(z).2. GAGAAs in section 1, let K be a �eld complete with respect to a non-trivial ultrametricabsolute value j j. Let R1 = Kfzg, R2 = Kfz�1g, and R = Kfz; z�1g. Let Q1,Q2, and Q̂ be their �elds of fractions, respectively. View Q1; Q2 as sub�elds ofQ̂. For a matrix A = (aij) 2 Mn(R) de�ne the norm jjAjj = maxij jjaij jj of A.7



Lemma 2.1:(i) Every Cauchy sequence in Mn(R) converges.(ii) jjA+Bjj � max(jjAjj; jjBjj);(iii) jjABjj � jjAjj � jjBjj;(iv) if jjAjj < 1, then In �A 2 GLn(R) = �Mn(R)��.(v) Let 0 < c < 1. Let (Ai) be a sequence of matrices in Mn(R) such thatjjAijj � c for each i, and jjAijj ! 0. Let Pi = (In � A1) � � � (In � Ai), fori � 1. Then the sequence (Pi) converges to a matrix in GLn(R).Proof: Assertions (i), (ii), and (iii) follow from the properties of j j. The proofof (iv) is a straightforward analogue of Remark 1.1.(v) Put P0 = In. By (ii) and (iii) we have jjPijj � 1 for each i. Hence(2) jjPi � Pi�1jj = jjPi�1(In �Ai � In)jj � jjPi�1jj � jjAijj � jjAijj ! 0:Thus (Pi) is a Cauchy sequence, and hence converges so some P 2 Mn(R).Furthermore, by (ii) and by (2), jjPj�Injj = jjPji=1(Pi�Pi�1)jj � max jjAijj � c.Hence jjP � Injj < 1, and therefore P 2 GLn(R) by (iv).Lemma 2.2 (Cartan's lemma [FP, III.6.3]): Let B 2 Mn(R) such that jjB �Injj < 1. Then there are B1 2 GLn(R1) and B2 2 GLn(R2) such that B = B1B2.Proof: Deduce from Lemma 1.3(v) that for each A 2 Mn(R) there are A+ 2 R1and A� 2 R2 such that A = A++A� and jjA+jj; jjA�jj � jjAjj. Let A1 = B�Inand c = jjA1jj. Then 0 � c < 1. The conditionIn +Aj+1 = (In �A+j )(In +Aj)(In �A�j )de�nes recursively a sequence (Aj)1j=1 in R. FromAj+1 = A+j A�j �A+j Aj �AjA�j +A+j AjA�jit follows that jjAj+1jj � jjAj jj2. By induction, jjAj jj � cj , and hence Aj ! 0.Further,(3) In +Aj+1 = (In �A+j ) � � � (In �A+1 ) B (In �A�1 ) � � � (In �A�j ):8



We have jjA�j jj � jjAj jj � c < 1 and jjA�j jj ! 0. Hence by the Lemma 2.1(v),the partial products (In � A�1 ) � � � (In � A�j ) converge to some B02 2 GLn(R2).Similarly, the products (In�A+j ) � � � (In�A+1 ) converge to some B01 2 GLn(R1).Passing to the limit in (3) we get In = B01BB02. Hence B = (B01)�1(B02)�1.Corollary 2.3: Let B 2 GLn(R). Then there are B1 2 GLn(R \ Q1) andB2 2 GLn(R \Q2) such that B = B1B2.Proof: As K[z; z�1] is dense in R, there is A 2 Mn(K[z; z�1]) such that jjB�1�Ajj < 1jjBjj . Then jjBA � Injj = jjB(A � B�1)jj � jjBjj � jjA � B�1jj < 1. ByLemma 2.1(v), BA 2 GLn(R). In particular, A 2 GLn(R) is a regular matrixover K(z), whence A 2 GLn(Q2). By Cartan's lemma there are B1 2 GLn(R1)and B02 2 GLn(R2) such that BA = B1B02. Thus B = B1B2, where B1 2GLn(R1) � GLn(R \Q1) and B2 = B02A�1 2 GLn(R) \ GLn(Q2).3. PatchingFix a �eld Q̂ and a �nite group G. Let IndG1 Q̂ = fPg2G aggj ag 2 Q̂g be thefree Q̂-module with basis G. Then G acts on IndG1 Q̂ from the left by �(ag) =a(�g). Turn IndG1 Q̂ into a commutative Q̂-algebra by Pg2G agg �Pg2G bgg =Pg2G agbgg. (Thus, as a ring, IndG1 Q̂ is the direct product of jGj copies of Q̂.)The G-action on IndG1 Q̂ preserves this multiplication. The unity of IndG1 Q̂ isPg2G 1g, and Q̂ (and every sub�eld of Q̂) embeds into IndG1 Q̂ via a 7!Pg2G ag.For a Galois extension P=Q contained in Q̂ such that its Galois group H isa subgroup of G we de�ne(4)IndGH P = fXg2G agg 2 IndG1 Q̂j ag 2 P; ag� = ��1(ag) for all g 2 G; � 2 Hg:If 
 is a system of representatives of G=H, then(40)IndGH P = fXg2G agg 2 IndG1 Q̂j a! 2 P; a!� = ��1(a!) for all ! 2 
; � 2 Hg:9



Lemma 3.1: IndGH P is a subring of IndG1 Q̂. Moreover,(a) IndGH P is G-invariant.(b) (IndGH P )G = Q.(c) IndGH P is isomorphic over Q to the direct product of (G : H) copies of P .(d) dimQ IndGH P = jGj = dimQ̂ IndG1 Q̂.Proof: (a) Let � =Pg2G agg 2 IndGH P and � 2 G. Then � =Pg2G a��1g��1gand a��1g� = ��1(a��1g) for all g 2 G and � 2 H. As �(�) = Pg2G ag(�g) =Pg2G a��1gg, the last condition implies �(�) 2 IndGH P .(b) The group G �xes � =Pg2G agg 2 IndGH P if and only if a�g = ag forall �; g 2 G, that is, ag = a1 for all g 2 G. Thus(IndGH P )G = fXg2G a gj a 2 P; a = ��1(a) for all � 2 Hg = fXg2G a gj a 2 Qg = Q:(c) Let 
 be a system of representatives of G=H. It follows from (40) thatPg2G agg 7!P!2
 a!! is a Q-isomorphism IndGH P ! P
.(d) The assertion follows from (c).Remark 3.2: A basis of IndGH P over Q. Let � be a primitive element for P=Q,and let 
 = f!1; : : : ; !mg be a system of representatives of G=H. Let �1; : : : ; �lbe an enumeration of the elements of H. The following sequence of jGj elementsof IndGH P C = ( lXi=1 ��1i (�j�1)(!k�i)j 1 � k � m; 1 � j � l)(say, with the lexicographical order) is a basis of IndG1 Q̂ over Q̂.Indeed, let S = (1gj g 2 G) be the standard basis of IndG1 Q̂ over Q̂, andlet B 2 Mn(Q̂) be the transition matrix from S to C, that is, the matrix de�nedby C = SB. Of course, B depends on the order of the sequence S, but only up tothe order of its columns, which will not be important in the sequel. For instance,write S as (1(!k�i)j 1 � k � m; 1 � i � l), (with the lexicographical order).Then C consists of m identical diagonal blocks B0 = ���1i (�j�1)� 2 Ml(Q̂).10



These are Vandermonde matrices, and hence detB0 = Q �;�02H� 6=�0 [� (�) � � 0(�)] =�discrQ � 6= 0. Thus B 2 GLn(Q̂), and therefore C is a basis of IndG1 Q̂ over Q̂.By Lemma 3.1(d), C is also basis of IndGH P over Q.Moreover, let R be a subring of Q̂ that contains all conjugates � (�) of �overQ and such that discrQ � is invertible in R. Then the entries of the transitionmatrix B lie in R, and detB 2 R�. Hence B 2 GLn(R).De�nition 3.3: Let I be a set of indices, jIj � 2.Patching data E = (E;Fi; Qi; Q̂;Gi; G)i2I consist of �elds E � Fi; Qi �Q̂ and �nite groups Gi � G, for each i 2 I, such that(i) Fi=E is a Galois extension with group Gi, for every i 2 I;(ii) Fi � Tj 6=iQj , for every i 2 I;(iii) Ti2I Qi = E; and(iv) the subgroups Gi generate G.For each i 2 I put Pi = FiQi, the compositum of Fi and Qi in Q̂. Con-ditions (ii) and (iii) imply that Fi \Qi = E. Hence Pi=Qi is a Galois extensionwith group isomorphic (via the restriction of automorphisms) to Gi = G(Fi=E).Identify G(Pi=Qi) with Gi via this isomorphism.Let N = IndG1 Q̂ and Ni = IndGGi Pi � N , for each i 2 I. Let F = TiNi.Call E 0 = (E;Fi; Qi; Q̂;Gi; G; Pi;N;Ni; F )i2I the full patching data associatedwith E.Fix, for the rest of this section, a full patching dataE 0 = (E;Fi; Qi; Q̂;Gi; G; Pi;N;Ni; F )i2I :Proposition 3.4: Assume that:(COM) There is a linear basis of N over Q̂ contained in each Ni.Then(a) F is a Galois �eld extension of E with group G (via restriction from N);(b) for each i there is a linear basis of F over E that is a basis of Ni over Qi.11



Ni N��� ���Qi Pi Q̂���F -� F 0��������E Fi QjProof: By Lemma 3.1, F is an E-algebra. De�nition (4) gives an explicitpresentation of F as(5)F = fXg2G agg 2 IndG1 Q̂j ag 2 \i2I Pi; ag� = ��1(ag) for all g 2 G; � 2 [i2IGig:(b) Let C = (�1; : : : ; �n) be the basis mentioned in (COM). Then �1; : : : ; �n 2F . By Lemma 3.1(b), Ni is a Qi-algebra, and by Lemma 3.1(d), dimQi Ni =dimQ̂N = #C. Therefore C is a basis of Ni over Qi. Moreover, C is a basis of Fover E. Indeed, every b 2 N can be uniquely written as b = a1�1 + � � � + an�nwith a1; : : : ; an 2 Q̂. Then b 2 Ni if and only if a1; : : : ; an 2 Qi. Hence b 2 F ifand only if a1; : : : ; an 2 TiQi = E.(a) We �rst show that F is a �eld. Let � = Pg2G agg 2 F . Assume that� 6= 0. Then the setX = fg 2 Gj ag 6= 0g is not empty. By (5), X = X(Si2I Gi).Hence X = XhGij i 2 Ii = XG = G. Let �0 = Pg2G a�1g g. By (5), �0 2 F .Clearly ��0 = 1. Thus � is invertible in F , which proves that F is a �eld.By Lemma 3.1(a), the Ni are G-invariant, and hence so is F . By Lemma3.1(b), FG = TiNGi = TiQi = E. By (b), [F : E] = jGj, and hence G actsfaithfully on F . By Galois theory G(F=E) = G.Condition (COM) is crucial for Proposition 3.4. We will achieve it only ina very special situation. 12



It will be convenient to identify the �eld F constructed in Proposition 3.4with a sub�eld of Q̂:De�nition 3.5: Consider the homomorphismof Q̂-algebras �: IndG1 Q̂! Q̂ givenby Pg2G agg 7! a1. Then �jF is an isomorphism. We call �(F ) the compoundof E 0. We now list some properties of the patching.Lemma 3.6: Assume that E 0 satis�es (COM), and let F 0 be its compound. Then(a) F 0=E is a Galois extension with group G.(b) Pi = F 0Qi, and the restriction G(Pi=Qi)! G(F 0=E) is the given inclusionGi ! G, for each i 2 I.(c) Let L=E be a �nite Galois extension, and let �: G ! G(L=E) be an epi-morphism. Assume that L � Ti2I Pi and that resPi=L �i = �(�i), for every�i 2 Gi � G and each i. Then L � F 0 and resF 0=L � = �(�) for each � 2 G.(d) Let I = f1; 2g. If G is the semidirect product G1�jG2, then F2 = (F 0)G1and resF 0=F2 is the projection �: G ! G2 (that is the identity on G2 andG1 = ker �).(e) Fix i 2 I. Let v be a discrete valuation of E. Assume that it extends to avaluation vi of Qi such that the extension Qi=E is immediate. Then(i) v rami�es in F 0 if and only it rami�es in Fi;(ii) a decomposition (resp. inertia) group of v in F 0 is contained in Gi.Proof: Let N = IndG1 Q̂, and for each i 2 I let Pi = FiQi and Ni = IndGGi Pi �N . Let F = TiNi, and let �: IndG1 Q̂! Q̂ be the projection Pg2G agg 7! a1.(a) This follows from Proposition 3.4(a). The restriction from N to Fis an isomorphism G ! G(F=E). The isomorphism �: F ! F 0 induces theisomorphism G(F=E)! G(F 0=E) by � 7! � � � � ��1. Thus G acts on F 0 by(6) �(�(�)) = �(�(�)); � 2 G; � 2 F:(b) By (5), F 0 � Pi. Let � 2 Gi = G(Pi=Qi), and � = Pg2G agg 2 F .Then � (�(�)) = � (a1) = a��1 = �(Pg2G a��1gg) = �(� (�)). By (6), resF 0 � = � .13



In particular, G(Pi=Qi)! G(F 0=E) is injective, and hence Pi = F 0Qi.(c) De�ne an embedding �: L ! N by �(a) = Pg2G �(g�1)(a)g. Clearly� � � = idL. If g 2 G and � 2 Gi, then�((g� )�1)(a) = �(��1)��(g�1)(a)� = ��1��(g�1)(a)�:By (4), �(L) � Ni for each i, and hence �(L) � F . Thus L = �(�(L)) � �(F ) =F 0. Identify G(F=E) with G via restriction to F . If � 2 G and a 2 L, then�(�(a)) =Xg2G �(g�1)(a) (�g) =Xg2G �((�g)�1)��(�)(a)� (�g) = �(�(�)(a)):Hence, by (6), �(a) = �(�(�((a))) = �(�(�((a))) = �(�(�(�)(a))) = �(�)(a).(d) Let L = F2. If �1 2 G1 = G(P1=Q1), then �(�1) = 1, and resP1=L(�1) =1, since L = F2 � Q1. If �2 2 G2 = G(P2=Q2), then �(�2) = �2, and resP2=L(�2) =�2, by our identi�cations. Hence the assertion follows from (c).(e) All the information comes from completions: Extend vi to Pi and letP̂i=Q̂i be the completion of Pi=Qi (that is, P̂i be the completion of Pi, and Q̂i bethe closure of Qi in P̂i). Let v̂i be the extension of vi to P̂i. Then the restrictionG(P̂i=Q̂i) ! G(Pi=Qi) maps G(P̂i=Q̂i) onto a decomposition group of vi in Pi,and the inertia group of v̂i onto an inertia group of vi in Pi.As Qi=E is immediate, and, by (b), Pi = F 0Qi, we get that P̂i=Q̂i is thecompletion of F 0=E. Thus a decomposition (resp. inertia) group of v in F 0is contained in the image Gi of the restriction map G(Pi=Qi) ! G(F=E). Inparticular, v rami�es in F 0 if and only if vi rami�es in Pi.Similarly, since Pi = FiQi, we get that v rami�es in Fi if and only if virami�es in Pi. Thus v rami�es in Fi if and only if v rami�es in F 0.4. Realization of groupsLet K be a �eld complete with respect to a non-trivial ultrametric absolutevalue and let z be transcendental over K. Let R1 = R02 = Kfzg, let R2 = R01 =14



Kfz�1g and R = Kfz; z�1g. Let Q1; Q2; Q̂ be the quotient �elds of R1; R2; R,respectively, and let E = K(z). Then E � Q1; Q2 � Q̂. By Corollary 1.11 wehave Q1 \ Q2 = E. Also denote R010 = K[z�1] and R020 = K[z]. Let Q01 = Q2and Q02 = Q1.Lemma 4.1: With E;Q1; Q2; Q̂ as above, let(7) (E;Fi; Qi; Q̂;Gi; G)i=1;2be a patching data. Assume that Fi = E(�i), where �i and all its conjugatesover E are in Q0i \ R, and discrE �i 2 R�, for i = 1; 2. Then(a) condition (COM) of Proposition 3.4 holds;(b) the compound F 0 of (7) has an unrami�ed K-rational place.Proof: Recall (De�nition 3.3) that (7) being a patching data means that G is a�nite group generated by the subgroups G1; G2, we have F1 � Q2 and F2 � Q1,and Fi=E is a Galois extension with group Gi, for i = 1; 2.(a) Let 1 � i � 2. By Remark 3.2 there is a basis Ci of Ni = IndGGi FiQi overQi that is also a basis of N = IndG1 Q̂ over Q̂ such that the transition matrix Bifrom the standard basis of N to Ci is in GLn(R). Therefore the transition matrixB�11 B2 from C1 to C2 is in GLn(R). By Corollary 2.3 there are A1 2 GLn(Q1)and A2 2 GLn(Q2) such that B�11 B2 = A1A2. Put C = C1A1 = C2A�12 . Then Cis a basis of N over Q̂ contained in both N1 and N2. This gives (COM).(b) Recall that F 0 � Q̂. Each a 2 K with jaj = 1 induces the evaluationhomomorphism z 7! a from R to K. As R is a principal ideal domain (Theorem1.10), this homomorphism extends to a K-place Q̂ ! K [ f1g. Its restriction'a to F 0 is a K-place. There are in�nitely many a 2 K with jaj = 1. For all but�nitely many of them 'a is unrami�ed over E.Let F=E be a �nite Galois extension with group G, and let �: F ! F 0 bean isomorphism of �elds that mapsE onto itself. Then � induces an isomorphismG(F=E)! G(F 0=E), and hence G(F=E) = G, where G acts on F 0 via (6).In the next lemma consider both K((z)) and R as submodules of the K-module of formal double sided power series P1i=�1 aizi with coe�cients in K.15



For c 6= 0 in K let �c be the automorphism of the �eld K((z)) mapping f(z) =P1i=N aizi to f(cz) =P1i=N (aici)zi. Note that �c leaves E = K(z) invariant.Lemma 4.2: Let F=E be a �nite Galois extension such that F=K has an unram-i�ed prime divisor P of degree 1.(a) There is a K-automorphism � of E that extends to a K-embedding of �elds�: F ! K((z)).(b) Assume that F � K((z)). Let � be a primitive element for F=E. Thenthere is r > 0 with the following property: If c 2 K� and jcj < r, then�c(�) and all its conjugates over E are in Q1 \R and discrE �c(�) 2 R�.Proof: (a) Let p be the prime of E=K below P. Let F̂ be the completion of F atP, and let Ê � F̂ be the completion of E at p. Then [F̂ : Ê] = e(F=E) f(F=E) =1. Apply an automorphismof E=K to assume that p is z ! 0. Then Ê = K((z)).Hence F � F̂ = K((z)).(b) Let �1; : : : ; �m be the conjugates of � over E. For i 6= j set �ij =(�i � �j)�1 2 F . All �i and all �ij lie in K((z)) and are algebraic over E. Bya theorem of Artin [Ar, Theorem 2.14] there is c0 2 K� such that the �i andthe �ij converge at z = c0. Let c 2 K� such that jcj < jc0j. Then the �i andthe �ij converge at z = c. It follows that we may consider the convergent series�c(�i); �c(�ij ) as elements of Q1 \ R (such that the coe�cient of z�n is 0 forsu�ciently large n). As �c(�i � �j)�c(�ij) = 1, we have �c(�i) � �c(�j ) 2 R�.Hence discrE �c(�) 2 R�.Proposition 4.3: Let G be a �nite group generated by subgroups G1 and G2.For i = 1; 2 let Fi be a Galois extension of E = K(z) with group Gi such thatFi=K is a regular extension that has an unrami�ed prime of degree 1. Thenthere exists a Galois extension F of E with group G such that F=K is a regularextension that has an unrami�ed prime of degree 1.Moreover, if G is the semidirect product G1�jG2, then we may choose Fso that F2 � F and the restriction map G(F=E) ! G(F2=E) is the canonicalprojection �: G! G2. 16



Proof: We may replace F2 by F 02 = �2(F2), where �2: F2 ! F 02 is an isomor-phism of �elds that restricts to an automorphism of E. Indeed, �2 induces anisomorphism G(F2=E) ! G(F 02=E), and hence G(F 02=E) = G2. Suppose thatG = G1�jG2 and that F 0=E is a Galois extension with group G so that F 02 � F 0and the restriction map G(F 0=E)! G(F 02=E) is �. Extend �2 to an isomorphismof �elds �: F ! F 0. Then � induces an isomorphism G(F=E) ! G(F 0=E), andhence G(F=E) = G, and the restriction map G(F=E)! G(F2=E) is �.Apply Lemma 4.2 to replace F2=E by an isomorphic extension so that F2 =E(�2), where �2 and all its conjugates over E are in Q1 \R and discrE �2 2 R�.By the same argument and by Remark 1.5 we may assume that F1 = E(�1),where �1 and all its conjugates over E are in Q2 \ R and discrE �1 2 R�. ByLemma 4.1(a) the patching data (7) satis�es (COM) and its compound has anunrami�ed K-rational place. The �rst assertion follows by Lemma 3.6(a). Thesecond assertion follows by Lemma 3.6(d).Recall that a local integral domain R with a maximal ideal m is completeif R = lim �n R=mn.Theorem 4.4 (Harbater): Let K be the quotient �eld of a complete local in-tegral domain, properly contained in K. Let G be a �nite group. Then thereis a Galois extension F=K(z) such that G(F=K(z)) �= G and F=K is a regularextension that has an unrami�ed prime of degree 1.Proof: By [Ja, Corollary 1.6] we may assume that K is a complete �eld withrespect to a non-trivial ultrametric absolute value. Apply inductively Proposition4.4. Thus it su�ces to assume that G is abelian (or even a cyclic p-group). Such aconstruction is well known (see [FJ, Lemma 24.46] or [V, Section 10.4.2]), exceptperhaps for the existence of an unrami�ed prime of degree 1. But this followsfrom the next lemma:Lemma 4.5: Let K be an in�nite �eld, and let F=K(z) be a Galois extensionwith abelian group G, such that F=K is regular. Then there exists a Galois17



extension F 0=K(z) with group G, regular over K such that F 0=K is regular andhas an unrami�ed K-rational prime (i.e., a prime of degree 1).Proof: Let E = K(z). Only �nitely many primes of F=K are rami�ed over E.Therefore there is a prime p of E=K with residue �eld K and a prime P of F=Kabove p that is unrami�ed over E. Let L be the residue �eld of P. Then L=K isa �nite Galois extension. As F=K is regular, F and L are linearly disjoint overK. Therefore FL=E is a Galois extension, and G(FL=E) �= G(F=E)�G(L=K).Let q be a prime of FL=L above P. As FL=L is a constant �eld extension ofF=K, the prime q is unrami�ed over F , and hence also over E, and its residue�eld is L.Let � be the decomposition group of q over E, let F 0 = (FL)� be thedecomposition �eld, and let P 0 be the prime of F 0 below q. Then the residue�eld of P 0 is K. The algebraic closure of K in F 0 is contained in the residue �eld,and hence it is K. Furthermore, F 0=K is separable, since FL=K is. Hence F 0=Kis regular.It remains to show that � is normal in G(FL=E) and G(FL=E)=� �= G.This will follow if we show that G(FL=E) = G(FL=EL)��.The restriction �: G(FL=E)! G(EL=E) maps � onto the decompositiongroup of q \ EL over E. As EL=L is a constant �eld extension of E=K, thisdecomposition group is G(EL=E). Therefore � � G(FL=EL) = � � Ker(�) =G(FL=E). As the inertia group of q over E is trivial, there is an isomorphism�! G(L=K), and hence j�j = [EL : E]. It follows that �j� is an isomorphism,and therefore � \ G(FL=EL) = � \ Ker(�) = 1. Finally, as G(FL=E) =G(FL=EL)�G(FL=F ), and G(FL=EL) �= G is abelian, G(FL=EL) lies in thecenter of G(FL=E). Hence G(FL=EL) commutes with �.Theorem 4.6: Let K0 be an algebraically closed �eld. Then every �nite em-bedding problem over K0(z) is solvable.Proof: By Tsen's theorem [Ri, Proposition V.5.2], K0(z) has cohomologicaldimension 1. Hence the absolute Galois group of K0(z) is projective [FJ, Remark18



on p. 293]. By Jarden's lemma [Ma, p. 231] it su�ces to show that all splitembedding problems over K0(z) are solvable. So consider the split embeddingproblem given by a �nite Galois extension L0=K0(z) and a split surjection �: G!G(L0=K0(z)). As K0 is algebraically closed, each (unrami�ed) prime of L0=K0is of degree 1.Part I: Solution over a complete �eld. Let t be transcendental over L0, andlet K = K0((t)). By Example 1.2, K is complete with respect to a non-trivialultrametric absolute value. Consider L0 and E = K(z) as sub�elds of L0((t)).Then L0 \ K(z) = K0(z). Thus L = L0K is a Galois extension of E, and therestriction G(L=E) ! G(L0=K0(z)) is an isomorphism. Each unrami�ed primeof L0=K0 extends to an unrami�ed prime of L=K of degree 1.By Theorem 4.4 there is a Galois extension F1 of E with group Ker �such that F1=K is a regular extension that has an unrami�ed prime of degree1. By Proposition 4.3 there is a Galois extension F of E that contains L andsuch that G(F=E) �= G and the surjection G(F=E) ! G(L=E) is �. Moreover,F=K is regular. Let � be a primitive element for F=E, integral over K[z]. Letf 2 K[Z; Y ] such that f(z; Y ) is the monic irreducible polynomial of � over E.Then F is the quotient �eld of K[Z; Y ]=f ; as F=K is regular, f is absolutelyirreducible.Part II: Construction of a Galois cover. There is a �nite sequence x of elementsofK such that F 0 = K0(x; z; �) is a Galois extension of E0 = K0(x; z) with Galoisgroup isomorphic to G(F=K(z)) via the restriction to F 0. We may assume that xcontains all coe�cients of f . By Bertini-Noether theorem [FJ, Proposition 8.8] wemay add to x the inverse c�1 of a suitable c 2 K0[x] and thus assume that '(f)is irreducible over K0 for every homomorphism ': K0[x] ! K0. Furthermore[FJ, Lemma 17.28] there is a polynomial g(X; Z) = g0(X)Zm+ � � �+ gm(X) overK0 such that g0(x) 6= 0, the ring A = K0(z)[x; g(x; z)�1] is integrally closed, andB = A[�] is a Galois ring cover [FJ, p. 57] of A with primitive element �.Part III: Specialization. By Hilbert's Nullstellensatz there is a sequence a of19



elements of K0 such that g0(a) 6= 0 and x ! a is a specialization over K0.Extend x! a to a K0(z)-homomorphism ': A! K0(z) by z 7! z, and then to ahomomorphism ' from B into the algebraic closure fL0 of L0. Composing ' withan automorphism of fL0=K0(z), we may assume that ' is the identity on L0.Let F0 = K0(z; '(�)) be the residue �eld of '. As '(f) is irreducible,'(f)(z; Y ) is the monic irreducible polynomial of '(�) over K0(z). Hence [F0 :K0(z)] = degY '(f) = degY f = jGj. By [FJ, Lemma 5.5], ' induces a group iso-morphismG(F 0=E0)! G(F0=K0(z)) that extends the restriction G(L0E0=E0)!G(L0=K0(z)). Thus F0 is a solution to the embedding problem.Corollary 4.7: Let K0 be a countable algebraically closed �eld, and let L bea function �eld of one variable over K0. Then the absolute Galois group of L isthe free pro�nite group F̂! on countably many generators.Proof: By assumption, L is a �nite separable extension of K0(z). By Theorem4.6 and by Iwasawa's criterion [FJ, Corollary 24.2], G(K0(z)) �= F̂!. As G(L) isan open subgroup of G(K0(z)), also G(L) �= F̂! [FJ, Proposition 24.7].
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