REGULAR LIFTING OF COVERS
OVER AMPLE FIELDS

by

Dan Haran* and Moshe Jarden*

School of Mathematical Sciences, Tel Aviv University
Ramat Aviv, Tel Aviv 69978, Israel
e-mail: haran@math.tau.ac.il and jarden@math.tau.ac.il

May 29, 2000

* Partially supported by the Minkowski Center for Geometry at Tel Aviv University and the Mathematical Sciences Research Institute, Berkeley.
Introduction

Colliot-Thélène [CT] uses the technique of Kollár, Miyaoka, and Mori to prove the following result.

Theorem A: Let K be an ample field of characteristic 0, x a transcendental element over K, and G a finite group. Then there is a Galois extension F of $K(x)$ with Galois group G, regular over K. Moreover, F has a K-rational place φ.

In fact, Colliot-Thélène proves a stronger version:

Theorem B: Given a Galois extension L/K with Galois group Γ which is a subgroup of G, one can choose F and φ so that the residue field extension of $F/K(x)$ under φ is L/K.

Case $\Gamma = G$ of Theorem B means that K has the arithmetic lifting property of Beckmann and Black [BB].

As the results of Kollár, Miyaoka, and Mori are valid only in characteristic 0, Colliot-Thélène’s proof works only in this case. Nonetheless, Theorem A holds in arbitrary characteristic ([Ha, Corollary 2.4] for complete fields, [Po1, Main Theorem A]; see also [Li] and [HV]). Moret-Bailly [MB], using methods of formal patching, extends Theorem B to arbitrary characteristic.

Here we use algebraic patching to prove Theorem B for arbitrary characteristic. In fact, the main ingredient of the proof is almost contained in [HJ1]. Therefore this note can be considered a sequel to [HJ1]; a large portion of it recalls the situation and facts considered there.

We also notice that if K is PAC and F is an arbitrary Galois extension of $K(x)$ with Galois group G, regular over K, then, for every Galois extension L/K with Galois group which is a subgroup of G, we can choose φ so that the residue field extension of $F/K(x)$ under φ is L/K. (After the first draft of this note has been written, P. Dèbes informed us that he also made this observation in [De, Remark 3.3].) This answers a question of Harbater. Notice that this stronger property does not hold for an arbitrary ample field K [CT, Appendix].
The idea (displayed in our Lemma 2.1) to use the embedding problem $G \rtimes G \to G$ in order to obtain the arithmetic lifting property has been used in [Po2]; we are grateful to F. Pop for making his notes available to us.

1. Embedding problems and decomposition groups

Let K/K_0 be a finite Galois extension with Galois group Γ. Let x be a transcendental element over K. Put $E_0 = K_0(x)$. Suppose that Γ acts (from the right) on a finite group G; let $\Gamma \rtimes G$ be the corresponding semidirect product and $\pi: \Gamma \rtimes G \to \Gamma$ the canonical projection. We call

$$\pi: \Gamma \rtimes G \to \Gamma = \mathcal{G}(K/K_0)$$

a finite constant split embedding problem. A solution of (1) is a Galois extension F of E_0 such that $K \subseteq F$, $\mathcal{G}(F/E_0) = \Gamma \rtimes G$, and π is the restriction map $\operatorname{res}_K: \mathcal{G}(F/E_0) \to \mathcal{G}(K/K_0)$.

In [HJ1, Theorem 6.4] we reprove the following result of F. Pop [Po1]:

Proposition 1.1: Let K_0 be an ample field. Then each finite constant split embedding problem (1) has a solution F such that F has a K-rational place. (In particular, F/K is regular.)

In this section we show that the proof of Proposition 1.1 in [HJ1] yields a stronger assertion.

Lemma 1.2: Let F be a solution of (1). Put $F_0 = F^\Gamma$. Let $\varphi: F \to \widetilde{K}_0$ be a K-place extending a K_0-place of E_0. Assume that φ is unramified in F/E_0 and let D_φ be its decomposition group in F/E_0. Then $\varphi(F) \supseteq K$ and the following assertions are equivalent:

(a) $\varphi(F) = K$ and $\Gamma = D_\varphi$;
(b) $\Gamma \supseteq D_\varphi$;
(c) $\varphi(F_0) = K_0$;
(d) $\varphi(F) = K$ and $\varphi(f^\gamma) = \varphi(f)^\gamma$ for each $\gamma \in \Gamma$ and $f \in F$ with $\varphi(f) \neq \infty$.

2
Proof: As $K \subseteq F$, we have $K = \varphi(K) \subseteq \varphi(F)$. Since the inertia group of φ in F/E_0 is trivial, we have an isomorphism $\theta: D_\varphi \to \mathcal{G}(\varphi(F)/K_0)$ given by

$$\varphi(f^{\gamma}) = \varphi(f)^{\theta(\gamma)}, \quad \gamma \in D_\varphi, \ f \in F, \ \varphi(f) \neq \infty.$$

Hence $|D_\varphi| = [\varphi(F): K_0] \geq [K : K_0] = |\Gamma|$. This gives (a) \Leftrightarrow (b).

Since φ is unramified over E_0, the decomposition field F^{D_φ} is the largest intermediate field of F/E_0 mapped by φ into K_0, and hence (b) \Leftrightarrow (c).

Clearly (d) \Rightarrow (c). If $\varphi(F) = K$, apply (2) to $f \in K$ to see that $\theta(\gamma) = \gamma$ for all $\gamma \in D_\varphi$. Hence (a) \Rightarrow (d).

Remark 1.3: Let K_0 be an ample field and let F be a solution of (1). Suppose that F has a K-rational place extending K_0-places of E_0 and unramified over E_0 such that Γ is its decomposition group in F/E_0. Then F has infinitely many such places.

Indeed, put $F_0 = F^\Gamma$. Recall that F_0 is regular over K_0. By Lemma 1.2, (a) the assumption is that there is a K_0-place $\varphi: F_0 \to K_0$ unramified over $K_0(x)$, and (b) we have to show that there are infinitely many such places.

But (a) \Rightarrow (b) is a property of an ample field.

Proposition 1.4: Let K_0 be an ample field. Then each finite constant split embedding problem (1) has a solution F with a K-rational place of F extending a K_0-place of E_0 and unramified over E_0 such that Γ is its decomposition group in F/E_0.

Proof: Put $E = K(x) = KK_0(x)$.

Part A: As in the proof of [HJ1, Theorem 6.4], we first assume that K_0 is complete with respect to a non-trivial discrete ultrametric absolute value, with infinite residue field and K/K_0 is unramified.

In this case [HJ1, Proposition 5.2] proves Proposition 1.1. Claim C of that proof shows that, for every $b \in K_0$ with $|b| > 1$, $x \to b$ extends to a K-homomorphism $\varphi_b: R \to K$, where R is the principal ideal ring $K \{ \frac{1}{x^i} | i \in I \}$. From there it extends to a K-place $\varphi_b: Q \to K \cup \{ \infty \}$ of the $Q = \text{Quot}(R)$. Furthermore, [HJ1, Lemma 1.3(b)] gives an E-embedding $\lambda: F \to Q$. The compositum $\varphi = \varphi_b \circ \lambda$ is a K-rational place of
Excluding finitely many b’s we may assume that \(\varphi \) is unramified over \(E_0 \). To verify that \(\varphi \) satisfies condition (d) of Lemma 1.2, we first recall the relevant facts from [HJ1].

(a) [HJ1, Proposition 5.2, Construction B] The group \(\Gamma = \mathcal{G}(K/K_0) \) lifts isomorphically to \(\mathcal{G}(E/E_0) \). By the choice of the \(c_i \) we have \(\left(\frac{1}{x - c_i} \right) ^\gamma = \frac{1}{x - c_i^\gamma} \), for each \(\gamma \in \Gamma \). It follows that \(\Gamma \) continuously acts on \(R \) in the following way:

\[
(a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{m,n}(\frac{1}{x - c_i})^n)^\gamma = a_0^\gamma + \sum_{i \in I} \sum_{n=1}^{\infty} a_{m,n}^\gamma(\frac{1}{x - c_i^\gamma})^n.
\]

This action induces an action of \(\Gamma \) on \(Q \).

(b) [HJ1, (7) on p. 334] The above mentioned action of \(\Gamma \) on \(Q \) defines an action of \(\Gamma \) on the \(Q \)-algebra

\[
N = \text{Ind}_1^G Q = \left\{ \sum_{\theta \in G} a_\theta \theta \mid a_\theta \in Q \right\}
\]

in the following way:

\[
\left(\sum_{\theta \in G} a_\theta \theta \right)^\gamma = \sum_{\theta \in G} a_\theta^\gamma \theta^\gamma \quad a_\theta \in Q, \gamma \in \Gamma.
\]

Furthermore, the field \(F \) is a subring of \(N \) [HJ1, p. 332] and \(\Gamma \) acts on it by restriction from \(N \) [HJ1, Proof of Proposition 1.5, Part A].

(c) The embedding \(\lambda: F \to Q \) is just the restriction to \(F \) of the projection

\[
\sum_{\theta \in G} a_\theta \theta \mapsto a_1
\]

from \(N = \text{Ind}_1^G Q \to Q \) [HV, Proposition 3.4].

(d) The place \(\varphi_b: Q \to K \cup \{ \infty \} \) is induced from the evaluation homomorphism \(\varphi_b: R \to K \) given by [HJ1, Remark 3.5]

\[
\varphi_b \left(a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{m,n}(\frac{1}{x - c_i})^n \right) = a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{m,n}(\frac{1}{b - c_i})^n.
\]

In order to prove condition (d) of Lemma 1.2 it suffices to show that both \(\lambda \) and \(\varphi_b \) are \(\Gamma \)-equivariant.
Let $f = \sum_{\theta \in G} a_\theta \theta \in F \subseteq N$. Then, by (b) and (c),

$$\lambda(f^\gamma) = \lambda\left(\sum_{\theta \in G} a_\theta \theta^\gamma \right) = a_1^\gamma = \left(\lambda\left(\sum_{\theta \in G} a_\theta \theta \right) \right)^\gamma = \lambda(f)^\gamma.$$

Furthermore, let $r = a_0 + \sum_{i \in I} \sum_{n=1}^\infty a_{in} \left(\frac{1}{x - c_i} \right)^n \in R$. By (a) and (d),

$$\varphi_b(r^\gamma) = \varphi_b\left(a_0^\gamma + \sum_{i \in I} \sum_{n=1}^\infty a_m (\frac{1}{x - c_i})^n \right) = a_0^\gamma + \sum_{i \in I} \sum_{n=1}^\infty a_m (\frac{1}{b - c_i})^n$$

$$= \left(a_0 + \sum_{i \in I} \sum_{n=1}^\infty a_{in} \left(\frac{1}{b - c_i} \right)^n \right)^\gamma = \varphi_b(r)^\gamma.$$

Thus φ_b is Γ-equivariant.

Part B: K_0 is an arbitrary ample field. As in the proof of [HJ1, Theorem 6.4] let K_0 be the field of Laurent series over K_0. Then $\hat{K} = K \hat{K}_0$ is an unramified extension of K_0 with Galois group Γ and infinite residue field.

By Part A, $K_0(x)$ has a Galois extension \hat{F} which contains $\hat{K}(x)$, such that $G(\hat{F}/K_0(x)) = \Gamma \ltimes G$ and the restriction map $G(\hat{F}/K_0(x)) \to G(K/K_0)$ is the projection $\pi: \Gamma \ltimes G \to \Gamma$. Furthermore, there is $b \in K_0$ such that the place $x \to b$ of $K_0(x)$ extends to an unramified \hat{K}-place $\hat{\varphi}: \hat{F} \to \hat{K}$ and $\hat{\varphi}(\hat{F}^\Gamma) = \hat{K}_0$. Put $m = |G|$.

Use Weak Approximation to find $y \in \hat{F}^\Gamma$ mapped by the m distinct extensions of $x \to b$ to \hat{F}^Γ into m distinct elements of the separable closure of K_0; then $\hat{F}^\Gamma = \hat{K}_0(x, y)$.

Thus there exist polynomials $f \in \hat{K}_0[X, Z]$, $g \in \hat{K}_0[X, Y]$, elements $z \in \hat{F}$, $y \in \hat{F}^\Gamma$, and elements $b, c \in \hat{K}_0$, such that the following conditions hold:

(3a) $\hat{F} = \hat{K}_0(x, z)$, $f(x, Z) = \text{irr}(z, \hat{K}_0(x))$; we may therefore identify $G(f(x, Z), \hat{K}_0(x))$ with $G(\hat{F}/\hat{K}_0(x))$;

(3b) $\hat{F}^\Gamma = \hat{K}_0(x, y)$, whence $\hat{F} = \hat{K}(x, y)$, and $g(x, Y) = \text{irr}(y, \hat{K}_0(x))$; therefore $g(X, Y)$ is absolutely irreducible;

(3c) $\text{disc} g(b, Y) \neq 0$ and $g(b, c) = 0$.

All of these objects depend on only finitely many parameters from \hat{K}_0. So, there are $u_1, \ldots, u_n \in \hat{K}_0$. So, let u_1, \ldots, u_n be elements of \hat{K}_0 such that the following conditions hold:
(4a) $F = K_0(u, x, z)$ is a Galois extension of $K_0(u, x)$, the coefficients of $f(X, Z)$ lie in $K_0[u]$, $f(x, Z) = \text{irr}(z, K_0(u, x))$, and $\mathcal{G}(f(x, Z), K_0(u, x)) = \mathcal{G}(f(x, Z), \hat{K}_0(x))$;

(4b) the coefficients of g lie in $K[u]$; hence $g(x, Y) = \text{irr}(y, K_0(u, x))$; furthermore, $K_0(u, x, y) = F^\Gamma$;

(4c) $b, c \in K_0[u]$ and $\text{disc}g(b, Y) \neq 0$ and $g(b, c) = 0$.

Since \hat{K}_0 has a K-rational place, namely, $x \to 0$, the field \hat{K}_0 and therefore also $K_0(u)$ are regular extensions of K_0. Thus, u generates an absolutely irreducible variety $U = \text{Spec}(K_0[u])$ over K_0. By Bertini-Noether [FJ, Proposition 8.8] the variety U has a nonempty Zariski open subset U' such that for each $u' \in U'$ the K_0-specialization $u \to u'$ extends to a K-homomorphism $' : K[u, x, z, y] \to K[u', x, z', y']$ such that the following conditions hold:

(5a) $f'(x, z') = 0$, the discriminant of $f'(x, Z)$ is not zero, and $F' = K_0(u', x, z')$ is the splitting field of $f'(x, Z)$ over $K_0(u', x)$; in particular $F'/K_0(u', x)$ is Galois;

(5b) $g'(X, Y)$ is absolutely irreducible and $g'(x, y') = 0$; so $g'(x, Y) = \text{irr}(y', K(u', x))$; furthermore, $K_0(u', x, y') = (F')^\Gamma$;

(5c) $b', c' \in K_0[u']$ and $\text{disc}g'(b', Y) \neq 0$ and $g'(b', c') = 0$.

As K_0 is existentially closed in \hat{K}_0, and since $u \in U(\hat{K}_0)$, there is $u' \in U(K_0)$. Now repeat the end of the proof of [HJ1, Lemma 6.2] (from “By (5a), the homomorphism...” to conclude that F' is a solution of (1).

![Diagram](image)

Condition (5c) ensures that the place $x \to b'$ of $K_0(x)$ is unramified in in $(F')^\Gamma$, hence in F', and extends to a K_0-rational place of $(F')^\Gamma$. This ends the proof by Lemma 1.2.
2. Lifting property over ample fields

Let \(\Gamma \) be a subgroup of a finite group \(G \). Let \(\Gamma \) act on \(G \) by the conjugation in \(G \)

\[
g^\gamma = \gamma^{-1} g \gamma.
\]

and consider the semidirect product \(\Gamma \ltimes G \). To fix notation, \(\Gamma \ltimes G = \{ (\gamma, g) \mid \gamma \in \Gamma, g \in G \} \) and the multiplication on \(\Gamma \ltimes G \) is defined by

\[
(\gamma_1, g_1)(\gamma_2, g_2) = (\gamma_1 \gamma_2, g_1 \gamma \gamma_2 g_2).
\]

Notice that \(\Gamma \ltimes G \cong \Gamma \times G \) by \((\gamma, g) \mapsto (\gamma, \gamma g) \). However, the above presentation gives a different splitting of the projection \(\Gamma \times G \to \Gamma \). In particular, we have an epimorphism \(\rho : \Gamma \ltimes G \to G \) given by \((\gamma, g) \mapsto \gamma g \). Let \(N \) denote its kernel.

Lemma 2.1: Let \(K_0 \) be a field, \(K \) a Galois extension of \(K_0 \) with Galois group \(\Gamma \), and \(x \) a transcendental element over \(K_0 \). Assume that \((1) \) has a solution \(\hat{F} \) with a \(K \)-rational place \(\hat{\varphi} \) of \(F \) extending a \(K_0 \)-place of \(K_0(x) \) and unramified over \(K_0(x) \) such that \(\Gamma \) is its decomposition group in \(F/K_0(x) \). Let \(F = \hat{F}^N \) and let \(\varphi \) be the restriction of \(\hat{\varphi} \) to \(F \). Then

(6a) \(F \) is a Galois extension of \(K_0(x) \) and \(\mathcal{G}(F/K_0(x)) \cong G \);

(6b) \(F/K_0 \) is a regular extension;

(6c) \(\varphi \) represents a prime divisor \(p \) of \(F/K_0 \) with decomposition group \(\Gamma \) in \(F/K_0(x) \) and residue field \(K \).

Proof: By assumption, \(\hat{F} \) is a Galois extension of \(K_0(x) \) containing \(K \), with Galois group \(\Gamma \ltimes G \) such that the restriction \(\mathcal{G}(\hat{F}/K_0(x)) \to \mathcal{G}(K/K_0) \) is the projection \(\Gamma \ltimes G \to \Gamma \), and \(\hat{F}/K \) is regular. Furthermore, \(\hat{\varphi} : \hat{F} \to K \) is a \(K \)-place unramified over \(K_0(x) \), with decomposition group \(\Delta = \{ (\gamma, 1) \mid \gamma \in \Gamma \} \cong \Gamma \) in \(\hat{F}/K_0(x) \) and residue field extension \(K/K_0 \). In particular, \(\hat{F} \) is regular over \(K \).

From the definition of \(F \) we get (6a) and \(\rho(\Delta) = \Gamma \subseteq G \) is the decomposition group of the restriction \(\varphi : F \to K \) of \(\hat{\varphi} \) to \(F \). As \(|\Delta| = [K : K_0] \), the residue field of \(\varphi \) is \(K \). As \(\Gamma \ltimes G = NG \), the fields \(F = \hat{F}^N \) and \(K(x) = \hat{F}^G \) are linearly disjoint over \(K_0(x) \). Therefore \(F \) is regular over \(K_0 \). \(\blacksquare \)
Lemma 2.1 together with Proposition 1.4 and Remark 1.3 yield the following result, originally proved by Colliot-Thélène [CT, Theorem 1] in characteristic 0:

Theorem 2.2: Let K_0 be an ample field, G a finite group, Γ a subgroup, K a Galois extension of K_0 with Galois group Γ, and x a transcendental element over K_0. Then there is F that satisfies (6a), (6b) and (6d) there are infinitely many prime divisors p of F/K_0 with decomposition group Γ in $F/K_0(x)$ and residue field K.

Remark 2.3: In case of $\Gamma = G$, Theorem 2.2 says that an ample field K_0 has the so-called **arithmetic lifting property** of Beckmann-Black [BB]. □

If K_0 is a PAC field, an even stronger property holds.

Theorem 2.4: Let K_0 be a PAC field, G a finite group, F a function field of one variable over K_0, and E a subfield of F such that F/E is Galois with Galois group G. Let Γ be a subgroup of G and K a Galois extension of K_0 with Galois group Γ. Then there are infinitely many prime divisors p of F/K_0 with decomposition group Γ in F/E and residue field K.

Proof: By definition, F is a regular extension of K_0. In particular, F is linearly disjoint from K over K_0. Hence,

$$\mathcal{G}(FK/E) = \mathcal{G}(FK/F) \times \mathcal{G}(FK/EK) \cong \Gamma \times G.$$

Consider the subgroup $\Delta = \{(\gamma, \gamma) \in \Gamma \times G | \gamma \in \Gamma\}$ of $\mathcal{G}(FK/E)$. It satisfies the following conditions:

(7a) $\Delta \cdot (\Gamma \times 1) = \Gamma \times \Gamma$ and $\Delta \cap (\Gamma \times 1) = 1$.

(7b) $\Delta \cdot (1 \times G) = \Gamma \times G$ and $\Delta \cap (G \times 1) = 1$.

Denote the fixed field of Δ in FK by D and the fixed field of the subgroup Γ of $G = \mathcal{G}(F/E)$ by F_0. Condition (7) translates via Galois theory to the following one:

(8a) $D \cap F = F_0$ and $DF = FK$.

(8b) $D \cap EK = E$ and $DK = FK$.

As F/K_0 is regular, so is FK/K. Hence, by (8b), D/K_0 is a regular extension. Since K_0 is PAC, there exist infinitely many K_0-places $\varphi: D \rightarrow K_0$. Use (8b) to extend
each such φ to a K-place $\psi: FK \to K$. As $[FK : D] = |\Delta| = |\Gamma| = [K : K_0]$, D is the decomposition field of ψ in FK/E. By (8a), F_0 is the decomposition field of $\psi|_F$ in F/E. ■

Corollary 2.5: Let K_0 be a PAC field, E a function field of one variable over K_0, and G a finite group. For $i = 1, \ldots, n$ let Γ_i be a subgroup of G and K_i a Galois extension of K_0 with Galois group Γ_i. Then E has a Galois extension F such that

(9a) $G(F/E) \cong G$.

(9b) F/K_0 is a regular extension.

(9c) For each i there exists a prime divisor p_i of F/K_0 with decomposition group over E equal to Γ_i and with residue field K_i. Moreover, p_1, \ldots, p_n are distinct.

Proof: The existence of F with the properties (9a) and (9b) is well known [HJ2, Theorem 2]. Now apply Theorem 2.4 successively to Γ_i and K_i instead of to Γ and K. ■

References

