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The aim of this note is to answer in the negative a question of W.-D. Geyer, asked at
the 1983 Group Theory Meeting in Oberwolfach: Is a maximal abelian subgroup A of
a free profinite group F necessarily isomorphic to Z, the profinite completion of 2?

Of course, A is the direct product UpAp of its Sylow-# subgroups, and

cd(Ap)  ̂ cd(F)  ̂ 1

(where cd stands for cohomological dimension) for every p ([8], corollary 3-3). Thus
Ap is a free pro-#-group ([8], theorem 6-5). As Ap is also abelian, it easily follows that
either Ap = 1 or Ap s Z.p, the free pro-p-group on one generator. Thus A ^ Up£jrZp,
where n is a set of primes. If n is the set of all primes then n^^Z^, s 2.

We prove by way of converse the following result:

THEOREM. Let F be the free profinite group on a set X, where \X\ > 2, and let n be a
non-empty set of primes. Then F has a maximal abelian subgroup isomorphic to HpEn Zp.

The idea of the proof is the following: we show that A — Ylpe7I1p is a free factor of
Pa, i.e. fia  ̂ A *B for some profinite group B. To conclude from this that A is a
maximal abelian subgroup of Fa (the general case then follows from this one), we show
that

CA*B(a) = CA(a) (*)

for every 1 4= a e A. To this end we embed Pu in the absolute Galois group of a certain
algebraic field and then use some facts about the henselizations of this field. Thus our
proof uses field theory in an essential way. We leave open the question whether (*)
holds for arbitrary profinite groups A and B.

In this note A*B always denotes the free product in the category of profinite
groups of A and B. For basic information about this notion see [6].

We begin by proving some more properties:

Definition [7]. A discrete group Y is called locally extended residually finite (LERF)
if every finitely generated subgroup of F is an intersection of subgroups of finite
index in F.

LEMMA 1. The discrete free product of two finite groups is LERF.

Proof. Let F be the discrete free product of finite groups A and B. The kernel K
of the natural map F->AxB is a free subgroup of F (by the Kurosh subgroup
theorem [5], theorem 1-10, p. 178) of finite index in F. By a result of Hall ([7], theorem
2-2), K is LERF. Hence F is LERF by [7], lemma 1-1.

LEMMA 2. Let A be a finitely generated subgroup of a LERF group F. Then the canonical

https://www.PDFzorro.com


52 D A N H A B A N AND ALEXANDE R LTIBOTZK Y

map i: & -> F extending the inclusion i: A -> F is injective. (Here F, A denote the profinite
completions of F, A, respectively.)

Proof. The Lemma asserts that the closure of A in F is isomorphic to A, i.e. the
profinite topology of F induces the profinite topology of A. Thus we have to prove
that if Ai is a normal subgroup of finite index in A then there exists a normal subgroup
of finite index Fx in F such that Fx n A £ A r

Now Aj is finitely generated, since A is finitely generated and (A.AJ < oo. But F
is LERF, hence Ax = C\a£i^a> where {FJae/}  is the family of subgroups of finite
index in F containing Av In particular Ax = na<=z(Fa n A). As (A: Ax) < oo, there exists
a finite subset J of I such that Ax = f\aeJ(ra n A). Define F0 = nae jFa and
Fx = nyer^o- Clearly (F:F0) < oo; hence Fx is a normal subgroup of finite index in F, and

r x n A s r0 n A = Aj.

LEMM A 3. Let {^4a|ae/}  and {Bp\fieJ} be two inverse systems of profinite groups and
put

A = lim Aa, B = lim Bfi.
ael fieJ

Then
A*B = lim Aa

(Here I xJ is the inverse system for which (a', /?') ^ (a, /?) iff a' ^ a and /?' ^ /?; the
maps are the obvious ones.)

Proof. The group A * B contains A and B as closed subgroups and satisfies the
following universal property: Every pair of homomorphisms 0X: A-+G, <p2:B^-G
into a finite group G extends to a unique homomorphism <}>:  A *B->G. Clearly there
exists a el, fie J such that ^1 factors through Aa and <fi 2 through Bfi. Therefore

lim Aa *  Bp
a

has the above universal property.

PROPOSITION 4. Let A and B be two profinite groups and A' ^ A, B' < B closed
subgroups. Then the map A' *B' ^>-A*B induced by the inclusions A' ^-A, B' ->B, is
injective, i.e. the smallest closed subgroup K of A*B containing A' and B' is isomorphic
to A' * B'. Moreover, Kf\A = A'.

Proof. To prove the first assertion of the Proposition we may assume that A and B
are finite. Indeed, let {Na} (resp. {Mp}) be the family of open normal subgroups of A
(resp. B). Then

A' = lim A'NJNa and B' = lim B'Mfi/Mfi.

By Lemma 3,

A *B = lim A/Nx *  B/Mp and A'*B' = lim A'Na/Na * B'Mfi/Mp.
(a,fi) (a,/?)

But the map A' * B' -> A * B is induced by the maps

A'NJNa * B'Mfi/Mp^A/Na * B/Mfi,

therefore it suffices to show that the latter is injective for every (a, ft).
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Let F (resp. A) be the discrete free product of the finite groups A and B (resp. A'
and JB'). Then V ^ A *B, A ^ A' *B', and the inclusions A' ^-A and B' ->B induce
the inclusion i: A-»I \ We have to show that i: A->F is also an inclusion. But V is
LERF by Lemma 1, hence the assertion follows by Lemma 2.

Clearly K n A > A'. Conversely, let aeK n A and consider the map a: A*B^-A
induced by the identity A->A and by the trivial map B->{1}  £ A. I t suffices to show
that a(a)eA', since a is injective on A. But oc(K) = aoi(A' *B'), and aoi is induced
by the inclusion A'^-A and by the map B'-^{1}  £ A; hence a{K) = A'. Thus
a(a)eA'.

Let us fix a prime 2> and let i; be the 2>-adic valuation of the rationals Q. Let {Qp,vp)
be the henselization of (Q, v), i.e. Qp is the intersection of the field of p-&dic numbers
Qp with the algebraic closure Q of Q, and vp extends v. Let v be the unique extension
of vp to a valuation of the algebraic closure Q of Q (cf. [1], proposition 11). For a field
F denote by G(F) = Q(F/F) its absolute Galois gioup.

LEMMA 5. IfaeG(Q) then either o-<=G(Qp) or <QPQ£ = Q.

Proof. Assume Q£ = Qp. Then the restriction a of a to Qp is an automorphism of
Qp, hence its fixed field K is henselian with respect to vp (cf. [2], satz 1-7). But Qp is
a henselization of Q, hence K = Qp, whence <f = 1. Thus ere G(Qp).

Assume Qp =f= Qp. As Qp (resp. QJ) is the decomposition field of v (resp. av) we have
that v 4= crv. This implies that the restrictions of v and av to Qp Qp are also distinct,
since Qp Qp is henselian with respect to both of these valuations. Thus by a result of
F.K.Schmidt([2], Satz 1-5) Q^QJ = Q.

LEMMA 6. (a) Z is isomorphic to a subgroup of G(Qp).
(b) Fw is isomorphic to a subgroup of G(Qp) *  G{QP).
(c) Let G = gx*  ... *gn, qhere gf ~ G(Qp) for i = 1, ...,n. Then for every 1 #= aegx

the centralizer Co (a) of a in G is contained in QV

Proof, (a) The Galois group of the maximal unramified extension of Qp over Qp is
Z (cf. [2], p. 353). Thus there exists an epimorphism r:  G(Qp) -> Z. But Z is free, hence r
has a section, i.e. an embedding l.-^-G{Qp).

(6) By (a) and by Proposition 4 there exists an embedding

But Fa is isomorphic to a subgroup of F2, by [4], corollary 3-9, hence (b) follows,
(c) By [3], theorem 4-1, there exist TV ..., Tn e G(Q) such that

QrJ) = G(QP<)*...*G(Q P»).

Without loss of generality T1 = 1. Since G(Q^)  ̂ G(QP), we may assume that

G =

in particular, (? is a subgroup of (r(Q) and its subgroup gx is ^(Qp). Now if ereCG(a)
then

1 4= a = a ' eg i n g? = G(Qp) n

so QPQJ 4= Q. Thus creG{Q)p) = Qlt by Lemma 5.
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COROLLARY 7. Let P #= 1 be a subgroup of Z, and let H = P*fia. If I + aeP then
Cff(a) = P. In particular, P is a maximal abelian subgroup of H.

Proof. Let 0 = gx*  g2*  g3, where Qt ~ G(QP) for i = 1, 2, 3.
By Lemma 6 (a), (b) we may assume that P is a subgroup of gx and Fa is a subgroup

of g2 * g3. Thus H is a subgroup of 6?, by Proposition 4, and .ff n gx = P. I t follows by
Lemma 6 (c) that

CH(a) = Go(a) nH = (CQ(a) f) Q,) 0 H = CG(a) n P = CP(a)

and CP(a) = P, since P is abelian. Thus CH(a) = P.

LEMMA 8. Let P be a countably generated protective profinite group and let F be a free
profinite group of infinite rank. Then P*F ~ F.

Proof. Assume first that F =PU. By Iwasawa's criterion ([8], theorem 9-3) we have
to show the following: Let a: B^-A be an epimorphism of finite groups and

an epimorphism. Then there exists an epimorphism rjr:  P*Pa->B such that a o i/r  = 0.
Denote Ax = 0(P), A2 = ${Pj, B1 = a "1 ^ ) , -B2 = a~H 2̂)-

 B y t h e projectivity of
P there exists ŷ "i: P -^B  ̂ such that ao\Jrx = resP^; by Iwasawa's criterion there
exists an epimorphism ^i^: J^-^Ba such that a o ^2 = r e s ^ .̂ The maps ^rx, ^2

define a map ijr:  P *FU-+B such that uorjr = <p. But

= ^ and f(P*fa) 2 ^ J = £2 2 Kera;

thus r̂ is an epimorphism. This establishes the case F = Fa.
I n the general case F zK*F, hence P*F ~ P*^W * P ~ ^w * # ^ P.

Remarks, (a) One can also deduce the Lemma from [6], satz 3-7, p. 347.
(b) We do not know whether a finitely generated free profinite group can be written

as a free product of two profinite groups, not both of them free. If the Grushko-
Neumann theorem ([5], corollary 1-9, p. 178) is true for profinite groups, then one can
prove that such a decomposition is impossible.

We are now in a position to prove the Theorem: Let n be a nonempty set of primes.
The group P = UpenZp is a subgroup of the free group Z, hence P is projective
(cf. [4], proposition 4-8). Thus for F = F~u the result follows from Corollary 7 and
Lemma 8.

I f | Z| > Ko then
F = li m Fa,

where the Fa are finitely generated free profinite groups. But F ^ A * fia * F by
Lemma 8, hence

F = lim A*Pa*F a

ael

in such a way that the maps of this inverse system are the identity on A. As

P *F ~ P
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the centralizer of A in A *  Fa *  Fa is A for every a e I, hence A is equal to its own
centralizer in the inverse limit F.

I f |Z| < fc$0, fix  2?e77- and an epimorphism <j>:  F^-Zp, and denote N = Ker0. By
[4], corollary 3-9, N ^ fia; hence A can be embedded as a maximal abelian subgroup
of N. Therefore CF{A) n N = CN(A) = A.

I t remains to show that no xeF\N centralizes A. Indeed, otherwise the p-Sylow
subgroup Bp of the closed procyclic group B generated by x centralizes the p-Sylow
subgroup ApoiA. Both Ap and Bp are non-trivial by the way we chosep and <fi.  Thus
Zp x lp s Ap x Bp is a subgroup of F, a contradiction, since Zp x Zp is not projective.

Problem. What are the isomorphism classes of maximal abelian subgroups of £?(£$)?

Added in proof. Since this paper was submitted, we have learned that W. Herfort
and L. Bibes (Torsion elements and centralizers in free products of profinite groups)
have shown that the relation (*) holds for arbitrary profinite groups A and B.
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