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Introduction
Serre ([9]) proved the following result:

THEOREM A: Let G be a profinite group without elements of a prime order p, and let

H be an open subgroup of G. Then cd,H = cd,G.

Let G, be a p-Sylow subgroup of G and let H, = H NG, be a p-Sylow subgroup
of H. By a theorem of Tate ([7], Proposition IV.2.1)

cdpH, <cd,H < cdpG = cd, G,

hence we may replace G by G, and H by H,. Furthermore, by [7], Proposition 1V.2.1,
cdpyH = cd,G if ¢d,G < oo. Therefore Theorem A follows from the following result

proved by Serre in [9]:

THEOREM A’: Let G be a torsion free pro-p-group and let H be an open subgroup of
G. If cdy,H < oo then cd,G' < oo.

The proof of Theorem A’ given in [9] is rather difficult. It uses the theory of Steen-
rod powers and Cartan’s formula to show that for the Bockstein map 8: H'(G,F,) —
H?(G,F,) there are non-zero elements z1, ..., 2z, € H'(G,F,) such that u = [~ B(z)
= 0. On the other hand, if the kernel U of a homomorphism z € H'(G,F,) satisfies
cd,U < oo, then the cup product by ((z) is an isomorphism H(G, A) — H1T?(G, A)
for every G-module A annihilated by p and every ¢ > c¢d,U. Thus if c¢d,U < oo for
every open subgroup U of G then c¢d,G < co. The general assertion can be reduced to
this particular case.

Later Serre proved the discrete analogue of Theorem A:

b

THEOREM B ([10], Theorem 9.2): Let G be a group without elements of a prime order

p and let H be a subgroup of finite index in G. Then cd,H = cd,G.

The proof of the latter result is much simpler. Again, it is enough to show that
cd,G < oo if cdpH < oco. But this is done using the fact that c¢d,G < oo if and only if

the trivial Z,[G]-module Z, has a finite projective resolution.
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To the best of our knowledge this proof has not been translated to the profinite
case. The aim of this note is to fill up this gap. Notice that a straightforward analogue of
the second proof does not immediately apply in our situation: In the Galois cohomology
theory (as introduced in [8] or [7]) one uses only discrete modules, and there are not
enough projective modules among them. We overcome this obstacle by using Brumer’s
development ([1]) of cohomology via profinite modules. This allows us to carry over
Serre’s simple proof of Theorem B to profinite groups.

It has been our intention to keep the exposition self-contained, assuming only
basics of profinite groups and general cohomology theory (in an abelian category). We
therefore repeat (and adapt) arguments given elsewhere, mostly from Brumer [1] and
from the very clear exposition of the proof of Theorem B in Passman [6].

The author is grateful to Moshe Jarden for valuable remarks concerning the pre-

sentation of the material in this note.

1. Profinite G-modules

Recall that if G is a topological group then a G-module is a topological abelian
group A on which G continuously acts such that g(a + b) = ga + gb for all a,b € A,
g € G. A homomorphism of G-modules is a continuous G-invariant homomorphism of

their abelian groups.

DEFINITION 1.1: Let C be a class of finite abelian groups. A pro-C-G-module A is the
inverse limit 1<i£n A; of some family {4;} of finite G-modules such that A; € C for every

We shall work only with a fixed family C, which allows us to drop the prefix
(épro_c_”.

CONVENTION 1.2: Fix a prime p and denote F, = Z/pZ. In this paper G
will always be a profinite group. Furthermore, “G-module” will mean “pro-
C-G-module”, where C is the class of finite elementary abelian p-groups, i.e.,

finite vector spaces over IF,,.



Thus: finite G-modules are finite vector spaces over F,,; inverse limits of G-modules
are again G-modules. If G = 1, we write ‘Fy-module’ instead of ‘1-module’; thus IF,-

modules are inverse limits of finite vector spaces over Fj,.

Example 1.3. The following are examples of G-modules.
(a) F, with the trivial G-action is a finite G-module.
(b) If G is finite then the group ring F,[G] = {deG cgg | ¢ € F,} is a finite
G-module.
(c) The complete group ring F,[G] = l(iin F[G/N], where N runs through the open
normal subgroups of G. Observe that I, [G] is dense in F,[G].
(d) If A, B are G-modules then so is A @ B (with the product topology).

Let B be the family of open G-submodules of a G-module A; then N B = 0.
Indeed, if A = li(_m A;, where A; are finite G-modules and B; is the kernel of A — A;

2
then B; € B for every 7, and N; B; = 0. Hence A = lién A/B. From this canonical
BeB
presentation of A as an inverse limit one deduces that closed G-submodules of G-modules

and quotients modulo closed G-submodules are GG-modules.

It is easy to see that the category of G-modules is abelian. This provides a con-
venient framework for standard constructions, definitions and arguments. However, a
reader less aquainted with abelian categories need not be discouraged, since the category
of G-modules is a straightforward analogue of the more familiar category of modules
over a ring. In fact, G-modules are topological modules over the topological ring F,, [G].

Let H be a closed subgroup of G. Every G-module is also an H-module; in

particular (taking H = 1), every G-module is an [F,-module.

2. Free G-modules

DeFINITION 2.1: Let X be a Boolean space. The free G-module on X is a G-module
Fg(X) and a continuous map i: X — Fg(X) such that for every G-module A and
every continuous map f: X — A there exists a unique continuous G-homomorphism

¢: Fg(X) — A such that f = poi.



Remark 2.2. Replacing the clause “a G-module A” by “a finite G-module A” does
not alter the definition, since a G-module A is the inverse limit l(iin A; of finite G-

modules, and ¢: Fg(X) — A is uniquely determined by a compatible family of maps
pj- Fg(X) — A7

LEMMA 2.3: (a) The free G-module on X exists and is unique up to a unique G-

homomorphism.

(b) If X = lanj and G = lgnGj then Fg(X) = lgnFGj (X;).

(c) If X is the disjoint union of Xy and Xy then Fg(X) = Fg(X1) ® Fg(Xa).

(d) Let g1,92 € G and 1,29 € X. Then g1i(z1) = g2i(x2) if and only if g, = g2 and
x1 = x9. In particular, i: X — Fg(X) is injective.
Thus we shall consider X to be a closed subspace of Fg(X), and i the inclusion
map.

(e) Fe({1}) =TF,[G].

Proof: (b) Use the universal properties to construct the maps for which {Fg, (X;)} is an
inverse system, and then show that li(_m Fg, (X;) has the universal property mentioned
in Remark 2.2.

(c) Clearly Fg(X1) @ Fg(X2) satisfies the universal property of Fg(X).

(d) Consider F, with the trivial G-action. If z1 # x5, there exists a continuous map
f: X — F, such that f(z;) = 1 and f(z2) = 0. Let ¢: Fg(X) — F, be the G-
homomorphism such that f = ¢ o4, then <p(g1i(:1:1)) =g¢g1f(z1) =1 and <p(g2i(:1:2)) =
92f(z2) = 0, hence gri(z1) # g2i(72).

If z1 = 9 and g1 # g9, there is an open N < G such that g1 N # goN. For the
continuous map f: X — F,[G/N], given by f(z) =1 for all z € X, let ¢: Fg(X) —
F,[G/N] be the unique G-homomorphism such that f = ¢ oi. Now ¢(g1i(z1)) =
91f(z1) = g1 N and similarly 90(927:(372)) = g2N, hence g1i(z1) # g2i(72).

(e) If G is finite then clearly the group ring [, [G] of Example 1.3(b) has the universal
property of F({1}). The general case follows from (b) and Example 1.3(c).
(a) The uniqueness if obvious. Existence: by (b) we may assume that X is finite, and

by (c) we may assume that |X| = 1, say X = {1}, in which case Fg(X) exists by (e).
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LEMMA 2.4: As an F,-module, Fg(X) is the free F,-module F1(GX) on GX, where
GX ={gz|ge G, zeX)C FgX).

Proof: If X = lim X; then GX = limG X, and by Lemma 2.3(b), F(X) = lim Fg(X;)
% B % P % P

and F1(GX) = 1i<_m F1(GX;). Thus we may assume that X is finite. Similarly we may

assume that G is finite. In this case Fg(X) = @,cx Fp[Glr = D,ex D eq Frgr =

In the opposite direction we notice:

LEMMA 2.5: Let P be a G-module, and let W be a closed subset of P such that
(i) P is the free F,-module on W, i.e., P = Fy(W);
(ii) F,W ={nw | n € F, , w e W} is G-invariant;
(iii) {9 € G | gw € Fyw} = {1} for allw € W.
Then P is a free G-module.

Proof: The group G’ = F) x G acts continuously on P by (n,g)z = ngz. It follows
from (i) that 0 ¢ W (since there is a homomorphism P — F,, mapping W into 1), and
from (ii) and (iii) that

(ii") FXW ={nw |n e F;, we W} =F,W~\{0} is G'-invariant; and

(iii") {(n,9) € G' | (n,9)z = 2z} = {1} for all z € Fy W.

Furthermore, F W is closed in P (it is the image of the compact set F x W in P).
Let X be a closed system of representatives of the G’-orbits in T W (cf. [3], Lemma
2.4). We proceed to show that P = Fg(X).

A continuous map f: X — A into a G-module A can be uniquely extended to a
G'-invariant continuous map f": FX W — A by f'(ngx) = ngf(z). By (i) the restriction
of f" to W can be uniquely extended to a continuous F,-linear map ¢: P — A; clearly
@ extends f’ as well. We claim that ¢ is a G-homomorphism; obviously it is then the

unique G-homomorphism extending f, which will complete the proof.
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Fix g € G; both z — ¢(gz) and z — gp(z) are continuous F,-homomorphisms
from P into A. They agree on W, since f’ is G’-invariant, hence by (i) they are equal.

Thus ¢(gz) = gp(z) for all z € P. 1
We notice for the record the following weaker version of Lemma 2.5:

COROLLARY 2.6: Let P be a G-module, and let W be a closed subset of P such that
(i) P is the free F,,-module on W, i.e., P = F1(W);
(ii) W is G-invariant;
(iii) {9 € G| gw =w} = {1} for allw € W.
Then P is a free G-module.

3. Projective G-modules

By the usual definition of a projective object in an abelian category, a G-module
P is projective if for every epimorphism of G-modules a: B — A and every morphism
p: P — A there exists a morphism ¢: P — B such that a0 = . In order to present
another — equivalent — definition we need a result on fibred products (cf. [4], Lemma 1.1

or [2], Proposition 20.6).

LEMmMA 3.1: Consider a commutative diagram of G-modules

P
¢
B——+B/K
(6
(10’

B/K'———— B/(K + K')

in which K and K' are G-submodules of B and «,d’, 7,7 are the quotient maps.
Assume that K' is open in B and K N K' = {0}. Then there exists a unique morphism
Y: P — B such that c ot = ¢ and o' o1p = .
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Proof: An easy diagram-chasing shows that for every b € B/K and every b/ € B/K'
such that 7(b) = 7' (b’) there exists a unique b € B such that a(b) = b and o/ (b) = b'. Tt
follows that there exists a unique set-theoretic function ¢: P — B such that cov¢ = ¢

and o' o = ¢’. We have

(21 4+ 22) = P(21) + ¥(2z9) forall z1,29 € P,
P(gz) =g(z) forall ze P andall geG,

as can be readily seen by applying p and p’ to both sides of these equations. Finally, 9
is continuous, since its restriction to the open subgroup U = Ker ¢’ of P is continuous.
Indeed, ¥(U) C K', p(U) C (K + K')/K, and the restriction of a to K’ is an isomor-
phism K’ — (K + K')/K. As ¢ is continuous and a o 1) = ¢, the restriction of ¢ to U

is also continuous. ]

LEMMA 3.2 (cf. [2], Lemma 20.8, Parts B, C): A G-module P is projective if and only
if for every epimorphism of finite G-modules a: B — A and every morphism ¢: P — A

there exists a morphism : P — B such that ao = .

Proof: Assume that the condition holds and let a: B — A be an epimorphism and
¢: P — A a morphism of G-modules. Denote K = Ker a. Without loss of generality «
is the quotient map B — B/K.
(a) Assume first that K is finite. Then there exists an open G-submodule K’ of B
such that K N K" = {0}. Let o, o/, 7,7’ be as in Lemma 3.1 (see the diagram there).
Since B/K' and B/(K + K') are finite G-modules, by the assumption there exists a
morphism ¢': P — B/K' such that the diagram commutes. By Lemma 3.1 there exists
a morphism ¢: P — B such that a oy = ¢.
(b) In the general case let T be the collection of pairs (L, \), where L is a G-submodule
of K and A: P — B/L is a morphism such that ay koA = ¢, where oy, g is the quotient
map B/L — B/K. Partially order I by letting (L', A') > (L, A) mean that L' C L and
ar., oA = A Then I' is inductive, and hence by Zorn’s Lemma it has a maximal
element (L, \).

It remains to show that L = 0. If not, there is an open G-submodule N of G such
that L ¢ N; thus L' = N N L is a proper open G-submodule of L. As Ker ay/ r is
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finite, by (a) there exists a morphism X': P — B/L' such that ap/ o A’ = A. Then
(L',X) eI and (L', ') > (L, ), a contradiction. 1

LEMMA 3.3: Let P be a G-module.
(a) P is a quotient of a free G-module.
(b) If P is free then P is projective.
c) P is projective if and only if it is a direct summand of a free G-module.

)

(c)

(d) If P = lién P;, where P; are projective G-modules then P is projective.
)

(e) P is projective in the category of F,-modules.

Proof: (a) The identity P — P induces a G-epimorphism Fg(P) — P.

(b) 1In the setup of Lemma 3.2 let s: A — B be a section of v, and let ¢: P = Fg(X) —
B be the unique extension of soresxp: X — B. Then a o = ¢, since this is true on
X.

(c¢) is a formal consequence of (a) and (b) in an abelian category: cf. [5], Proposition
1.5.5.

(d) In the setup of Lemma 3.2 the map ¢: P — A factors through some P; (since A
is finite), say into ¢': P — P; and ¢;: P, — A. As P; is projective, there is ¢;: P, —» B
such that «o; = ¢;. Thus o (¢; 0 ¢') = .

(e) If P is finite then it is a free F,-module, and hence projective. The general case

follows by (d). 1

In particular every G-module P is a quotient of a projective G-module P,, and

therefore, by induction, P has a projective resolution

P, : o= P, —P,4 —-+ — P — P —P—0
671, 61':,7'1 62 6] o

(that is, P, is an exact sequence and P; are projective G-modules). If

o> P —P | — — P — P, —P—=0
S T o, o' o

n n—1
is another projective resolution of P, there exists a chain transformation from the former
projective resolution to the latter, that lifts the identity of P; such a chain transforma-

tion is unique up to a homotopy ([5], Theorem IIL.6.1).
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COROLLARY 3.4 (cf. [6], Lemma 10.3.10): A complex of F,-modules

o=k, —E, 1 —- —FE —FE —FE—=0
En €

€2 €1

is exact if and only if it splits, i.e., there exist continuous homomorphisms s: F — Fj

and s,: E,, = E,, 1 for n > 0 such that
l=es, 1l=se+e150 and 1=s,_16, +€Ent15, forall n>1.
Proof: Put E_1 =FE, E_5=0,¢9 =¢,e_7 =0. Then we have to show that

FE, : =K, —FE, 11— —F —F —FEF_ 1 —FE_9—0

E92 €1
is exact if and only if there exist continuous homomorphisms s,: FE,, — FE,y1, for
n > —1, such that (letting s_o: E_9 — E_; be the zero map)

(%) 1=S5Sp-16p +€nt18n, forall n>-1.

If E, is exact then it is a projective resolution of E_5 = 0 by Lemma 3.3(e), and
both 0 and 1 are chain transformations of F, to itself that lift the identity of £ o = 0.
By the preceding remark they are homotopic, which gives (x). Conversely, (x) implies

the exactness of F,: if a € Ker ¢, for n > —1, then
a4 = Spn—16n(a) + ent15n(a) = ent15n(a) € im(epy1) - 1

Let P be a G-module, and let

P, : =P, —-P,, — — P — P —P—=0
A d a, )

n—1 82

be a projective resolution of P. Let A be a G-module. Then P, yields the complex
Homg (Py, A) of abelian groups

0 — Homg(FPy, A) — Homg (P, A) — - -+ — Homg(P,-1,A) - Homg(P,, A) — - -,

where Homg (P, A) is the group of G-homomorphisms from P,, into A. The homology
groups

Extg, (P, A) = H" (Hom(P;, A))
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of this complex do not depend on the choice of the projective resolution P, of P ([5]

Corollary I11.6.3).

3

For example, consider F,, as a G-module with the trivial G-action. To compute
Exte(F,, A) we shall use the so-called standard free resolution P, defined as follows:
P, is the free G-module F({1}) = F,[G] (see Lemma 2.3(e));
P, is the free G-module F(G™); here G" = G X --- x G (n times);
0: Py — F, is the unique extension of the map {1} — F, given by 1 +— 1;
(thus if G is finite then O(3_ c5aq9) = >_,cq aq); and

On: P, — P, 1 is the unique extension of the map d,,: G — P,,_1 given by
an(gh s 7gn) = 91(927 cee 7g’n)

n—1
+ > (1) (g1 2 9im10 GiGig1, Gigas -2 Gn) + (1) (g1, gn1)-
i=1

We leave it to the reader to check that P, is indeed an exact sequence. If G is
finite, this is done exactly as in [5], Theorem IV.5.1; the general case follows, since an
inverse limit of exact sequences is exact ([7], Proposition 1.3.6).

By the universal property of free G-modules, Homg (P, A) may be identified with
the set C™(G, A) of continuous functions f: G* — A, and 9*: C" (G, A) — C™(G, A)
is then clearly given by

(8*f)(q17 . /Qn) = glf(Q?v .- /Qn)

+ Z(—l)if(gh 3 9im15GiGi+ 1, Git2s - -5 9n) T (=1)" (g1, gn1)-
i=1

Thus Homg(Py, A) is the complex C*(G, A) from which one derives the cohomology
groups H™(G, A) of G with coefficients in A (see [7], p. 94). Hence:

COROLLARY 3.5: If A is a finite G-module then
Ext’é(Fp,A) =H"(G,A) .

The following result provides the link between projective resolutions and the co-

homological dimension.
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PROPOSITION 3.6: Let P be a G-module.
(a) If there is a projective resolution P, of P with P, = 0 then Ext& (P, A) = 0 for
all G-modules A.
(b) If Extga (P, A) = 0 for all finite G-modules A then there is a projective resolution
P, of P with Py = 0.

Proof: (a) clear.

(b) Let Py be a projective resolution. Let P, — 9(P,) — P, 1 be the decompo-
m i

sition of 0,,: P, — P, 1 into an epimorphism g and a monomorphism . It suffices to

show that 0,,(P,) is projective, since then

0= 0n(P,) — Pnr_a 5 6—>P0 ?P—>0

is a projective resolution of P.
We shall use Lemma 3.2 to prove this. Consider the diagram

Pn—l < an(Pn) A Pn NI Pn—l—l
4 ©

671, +1
(pJ/

B — A

«

in which « is an epimorphism of finite G-modules. Since H" (G, A) = 0, the sequence
Homg(P,-1,A) — Homg(P,, A) = Homg (P11, A)

is exact. Notice that pdn,y1 = 0, hence pp is in the kernel of Homg(P,, A) —
Homg (P41, A). Therefore there exists a G-homomorphism ¢': P, 1 — A such that
op = @' 0p = ¢'ip, in particular, ¢'i = ¢. Since P,_; is projective, there is ¢: P,_1 —
B such that ayp = ¢’. Thus a(yi) = ¢, which shows that 9, (P,) is projective. I

Actually, one can achieve even P, = 0 in (b), but the proof is much more subtle

(see [1], Corollary 3.2). We shall not need this refinement.

COROLLARY 3.7: c¢d,G < oo if and only if [, has a projective resolution of finite

length.

Proof: By [7], Proposition IV.1.5 and its proof, c¢d,G < oo if and only if there is n
such that H**t1(G, A) = 0 for all finite G-modules A. (Recall that by Convention 1.2
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finite G-modules are finite elementary abelian p-groups.) Now apply Corollary 3.5 and

Proposition 3.6. ]

4. The Complete Tensor Product

Let A, B,C be F,-modules. A continuous map f: A x B — C'is F,-bilinear if
Fla+a,8) = f(a,b)+ f(a'0) and fla,b+0) = f(a,b) + f(ab)
for all a,a’ € A, b, € B. This, of course, also implies that

f(na,, b) = nf(”’? b) = f((],, ﬂb)

foralln e F,,ac A, be B.

Recall ([1], Section 2) that the complete tensor product of A and B is an F,-
module A®B and an F,-bilinear map #: A x B — A®B (we write a®b for 0(a,b))
with the following universal property: given an F,-module C' and an IF,-bilinear map

f: Ax B = C, there exists a unique continuous F,-linear map g: A®B — C such that
gotl=F.

Remark 4.1.

(a) Replacing the clause “an F,-module C” above by “a finite Fy-module C” does not
alter the definition of the complete tensor product (cf. Remark 2.2).

(b) The complete tensor product of A and B is obviously unique up to a unique iso-
morphism, if it exists. Now li(_m A/U ® B/V, where U (resp. V) runs through the open
[F,-submodules of A (resp. B), satisfies the universal property mentioned in (a). There-
fore ARB = lim A/U ® B/V'; notice that the F,-modules A/U ® B/V are finite. Thus
A®B is the completion of A ® B in the topology induced by the kernels of the maps
A®B — A/JU® B/V.

(c) Ifa: A — A" and f: B — B’ are morphisms of F,-modules then, by the defini-
tion of AQB, there exists a unique homomorphism a®p3: A®B — A'®@B’ such that
(a®p)(a®b) = a(a)®B(b) for all a € A, b€ B.
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(d) Tt follows immediately from the universal property of the complete tensor product
or form (b) above that (A®B)®C = A®(B®C), and hence we denote it by AR BRC.
More generally, if Ag,..., A,, are F,-modules then Ag® - -®A,, can be induc-

tively defined by inserting parentheses in any meaningful way.

LEMMA 4.2: Let Fy(X) and Fy(Y) be free F,-modules. Then Fy(X)®F,(Y) is the free
F,-module on its subset {x®y |z € X , y € Y}.

Proof: Tt is enough to show that the F,-linear map F;(X x Y) — Fy(X)®F,(Y), ex-
tending (z,y) — m@y, is an isomorphism. This is well known if X and Y are finite, since
then Fy(X)®F,(Y) = F1(X) ® F1(Y). In the general case X = lani and Y = lgnY;,
where X; and Yj are finite. Therefore X x Y = lién X; x Y;, and so by Lemma 2.3(b),
Fi(X) = li(_mFl(Xi), F(Y) = li<_mF1(Y,-) and Fi(X xY) = lgnFl(Xi x Y;). Thus
Fi(X xY) = Fi(X)®F,(Y) is the inverse limit of the isomorphisms F;(X; x Y;) —
Fi(X;)®F(Y;), and hence an isomorphism. 1

The complete tensor product A,®B, of two sequences of [F,-modules

A, = A, — Ay — - — A — Ag — A= 0
B, : ---—>Bnﬁ—>Bn_1—>---—>Bl B—>Bo ?B—>0

is the sequence of [F,,-modules
Cy : =0, —-0C, 1 —--—C; —Cy —C—=0
Yn 71 Y

defined as follows. First, to simplify the notation, for n < 0 put A,, = B,, = 0, and for
n <0let a,: A, = A,_1 and S,: B,, = B,,_1 be the zero maps. Then define
C= A@B and Cn = @?:0 (A7®Bn,7) = Gai—}—j:n (A7®B7) s

v=a®B and 7, = Bitjon[(®1)+ (-1)"(186;)] , for every n€Z

(this is where «ag, Sy come in). The last equation simply means that

'yn(viéévj) = ai(vi)éév_,- + (—l)iv,@ﬁj(v_,-) , for wv;e€A; and wv;€ Bj.

13



LEMMA 4.3 (cf. [6], Lemma 10.3.11): The complete tensor product of exact sequences

of F,-modules is also an exact sequence.

Proof: Assume that A, and B, are exact. Using Remark 4.1(c) it is straightforward
to check that v,vn,+1 = 0 and yy; = 0. Since A, is exact, by Corollary 3.4 there exist

F,-homomorphisms s: A — Ag and s,,: A,, = A, 41, for n > 0 that split A,, i.e.,
as=1, l=sa+asg and 1=s, 10, +ays118,, forall n>1.

Similarly there exist ¢t: B — By and t,,: B,, — Bj,+1, for n > 0 that split B,. Check

(again using Remark 4.1(c)) that u = s®t: C — Cy and uy,: C,, — Cyy1, given by
u=s®t and u, = [(sa®t,) + (s0@1)] ® (B, (s;®1)) ., for n>0,

split C,. Thus by Corollary 3.4 sequence C, is exact. 1

5. Serre’s Theorem

This section is based on Passman [6], Section 10.3 that deals with discrete groups.
Let H be an open subgroup of G, say m = (G : H), and choose 1 = g1,92,...,9m €
G such that G = J;~, Hg,. To fix the notation, write for alloc € Gand alli=1,...,m

(1) g;0 = h1(J)Q7U 3
where i — io is a permutation of {1,2,...,m} and h;(c) € H. Clearly (i,0) — ioc and
hi:G — H,1=1,...,m, are continuous functions. For o,7 € G we have

hi(07)gi(ory = 9i(0T) = (9i0)T = hi(0)gicT = hi(0)hic(T)g(i0)r »

(2) i(o1) = (io)T ,
(3) hi(oT) = hi(o)hi,(T) .
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Given a sequence P = (P, Py, Ps,...) of H-modules, define a G-module structure

on the F,-module

Qn(P) = Qu(Po. P, Py,....P)= P P8P, - 3P,
i1+ Fim=n

in the following way. Write d(v) = j if v € P;. Every 7 € G induces an Fp-linear map

P, ®---QP;, — P;, ®---QP; by

1T

(4) T(1® - Qup) = (—1)\®--- &, |
where

(4" v; = hi(T)vir

and

(4") a= Y dw)d(y).

i<j
1',7'71>j7'71

This map uniquely extends to an F,-linear map 7: Q,(P) — Q,(P).

Notice that

(5) d(v}) = d(vir) -

LEMMA 5.1: Q,(P) is a G-module.

Proof: Clearly the map (7,v) — 7(v) from G x @, (P) — @, (P) is continuous. Also
1(v) = v, since the right handed side of (4”) is an empty sum, if 7 = 1. We have to
show that

0(7’(1}1@)@2@ s @vm)) = (UT)(U1®U2® cee ®Um) )

for all o, 7 € G. By definition (4)

o (T(01802® - Bvm)) = (=1)"0 (V@R - Buy,) = (=1) TP {®vy® - By,



where v} and o’ are given by equations (4’) and (4”), and

v; = hi(o)v;, and b= Z d(v;)d(v5) .

t0
i<j
in’71>j(771

Hence by (4') and (3)
v; = hi(0)hio (T)Vigr = hi(0T)Vigr ,
and thus it remains to be shown that

a+b= Z d(v;)d(vj) mod?2 .

i<i
i77107]>j‘r7107]

Now a = a1 + ay, where
a; = Zd(vi)d(vj) with i<j dr ' >jr ' ir e > te !
ay =Y _d(v;)d(v;) with i<j ir ' >t i leT < jr et

By (5) and a change of the summation indices,

b= Z d(vir)d(vjr) = Z d(v;)d(vj) = by + by,

i<j ir—lejr—1
ic—1>j0—1 ir—lo—lsjr—1go—1

where
by =) d(vi)d(v;) with i<j ir '<jr ' ir o '>jr e}
by = d(vi)d(vy) with i>j ir~'<jr=! irTloTl >l

By interchanging ¢ and j notice that ay = by. Thus

a+b=a;+b;+2ay=a;+b; = Z d(v;)d(v;) mod?2 .

i<j
1',7'71(771>j7'71r771

More can be said about @,,(P) if the P; are free or, at least, projective.
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LEMMA 5.2: Assume that P; is a free H-module, P; = Fy(X;), for i > 0. Then
(a) Qn(P) is the free F,-module on the subset

W ={hin® - @hpvm |
hl:"'vhm, EH: U1 EXila"'vvm EXimv 7'1++Z'm:n}
(b) F,W ={nw |n €T, , we W} is G-invariant.
(c) Let 0 # w = hv1® - - @hpvy € W and let 7 € G. Then 7(w) € Fyw if and only
if
Vjr = Vj and 9iT9;r = hih: L, for1<j<m

(d) {r€G|7r(w) €Fyw}NH=/{1} for every 0 #w € W.
Proof: (a) By Lemma 2.4, P; is the free F,-module on {hv | h € H, v € X;}, and by
Lemma 4.2, P;, ®P;,® ---®P; is the free [F,,-module on

{hi1® - hpm | b1, b € H, v1 € X4, ..., 0m € X;,}

As @, (P) is the direct sum of such free F,-modules, (a) follows.
(b) By (4), 7(w) = +w’, where

(6) w' = hy(T)h1701:® - Qha (T) B r Vs -

We see that w' € W. Hence 7(w) € F,W.
(c) Define w’ by (6). Then

T(w) e Fuw s w eFwesw=uw",
since w, w’ belong to the free Fy-basis W of Q,,(P). But
w=uw & hj (T)thUjT = hj’l)j =4 hj (T)th = hj and Vjr = Vj , for 1< ] <m.

By (1), hj(1) = nggj_Tl, hence the assertion follows.
(d) Let 7 € H such that 7(w) € Fyw. By (c) we have g17gy,' = hihy,'. Recall that
g1 = 1, and notice that 17 =1, by (1). Thus 7 = 1. I
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LEMMA 5.3: Let P = (Py, Py, Ps,...) and F = (F,, F1, Fy,...) be sequences of H-
modules. If P; is a direct summand of F;, for every i > 0, then the G-module Q,,(P) is

a direct summand of Q,,(F), for every n > 0.

Proof: For every i > 0 there exists an H-module P/ such that F; = P; @ P/. Write
P; o= P; and P, ; = P]. 1t is easy to see that

"3

Qn(FO:Flv"':Fn): @ Qn(PO,impl,ilv"':Pn,in)
7:0:7:17"':7:716{071}

(not only as F,-modules, but also as G-modules). Thus Q,,(P) = Q. (Fo, P1,..., P,) is
a direct summand of Q,(F) = Q. (Fy, Fy,..., F,). I

The preceding lemmas give a nice characterization in one case:

COROLLARY 5.4: Assume that G is torsion free. Let P = (P, Py, Ps,...) be a sequence

of projective H-modules. Then Q,,(P) is a projective G-module for every n > 0.

Proof: Since projective modules are precisely the direct summands of free modules
(Lemma 3.3(c)), by Lemma 5.3 it is enough to show that @, (P) is a free G-module for
every n > 0, if the P; are free H-modules.

By Lemma 5.2, Q,,(P) is the free F,-module on a certain subset W, for which F, W
is G-invariant, and, denoting G(w) = {7 € G | 7(w) € Fyw}, we have G(w) N H = {1}
for every 0 # w € W. But G(w) N H is open in G(w), since H is open in G. Therefore
G(w) is a finite subgroup of G, and hence G(w) = 1. By the criterion of Lemma 2.5,
Qn(P) is a free G-module. 1

Our next objective are projective resolutions.

LEMMA 5.5: Let

P, : ---—>P,,,8—>Pn,1 — - — P 8—>P0 ?Fp—ﬂ]
n 1

n—1 82

be an exact sequence of H-modules. Write d(v) = j if v € P;, and denote

| Qg (v) ifi=k
(7) Oir(v) = {vd( " £k .

18



Then

Qx =@ — Q1 — o — Q1 — Qo —F, =0,
Tn Yn—1 Y2 7 Y
where
Qn=0.P)= P P8P 8P, ,
i1+ tim=n
(8) Y(01® -+ ®up) = d(v1) - (vm)
(9) 7n(7)1® e éEmm) - Z(*l)d(v])+m+d(vk71)alk(“1)® o é\i)amk (Um) 3
k=1

is an exact sequence of GG-modules.

Proof: To prove the exactness of (), it suffices to consider P, and (), as sequences of
[F,-modules, forgetting the respective group actions. It is easy to see, by induction on m,
that @, is precisely the m-fold tensor product P.P,®---®P, of m (equal) sequences
(of course, here we identify F,® - - - ®F, with F, by 11® - - - @y, > v1 - - -0 ). Thus Q.
is exact by Lemma 4.3.

It remains to be shown that v, are G-homomorphisms. Let 7 € G. By (9) and
by (4)

T(Y (018 ®u)) = Z(_l)zk’“d(m)(—l)c’“wu«@ - Wik
k=1

where w; = hi(7)0ir 1 (vir) and

ce=" Y d(O(v:))d(9k(v;)).

i<j
i‘r*—l>j‘r7—l

Now

Wik = Oirk (h,z'(T)UiT) = Oir (Vi) = O; gr—1 (V)

in the notation of (4’). By (6) we have

d(37k(1)7)) = d(Uq) - 57k 3
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where 6, = 1if 1 = k, and d;; = 0 if 2 # k. Therefore

ce= Y (d(v:) = i) (d(v;) — bjk)

i7'71>j7'71

= Z d(Uq)d(’U7) — Z d(Uj) — Z d(vv)

i<j k<j i<h

ir=1sjr—1 kr=1>j7r—1 it >kr ]
=a— Z d(v;) — Z d(v;) ,
k<i i<k
kr—1lsir—1 ir—lspkr—1
and hence
ck+Zd(vi)
i<k
=a— > dw)— D dw)+ Y. dw)+ > d(v)
k<i <k i<k <k
Er—1sir—1 ir—1sp,—1 ir—1lchkr—1 p s g1
—a— > dw)+ > dw)=a+ > d(v)
k< i<k 7T71<k‘T71
Er—1sir—1 ir—lchr—1
=a+ Y dvi,)=a+ Y d{)),
i<kr—1 i<kr—1

by (5). Therefore

= 3 (1) L MG L (0B B (V) = A (1) 0} B - B0,)
k=1
= Vn T(m@ . --(§)Um)) ) I

We are now in position to prove Serre’s Theorem. As mentioned in the Introduc-

tion, it follows from Theorem A’.
Proof of Theorem A’: By Corollary 3.7 there is a projective resolution of finite length
P, : =Py — Py — - — Py —F, =0

in the category of H-modules. Let @, = Q,(P), for n > 0. The exact sequence of

Lemma 5.5
Q*: "'_>Qn—>Qn71—>"'—>QO—>IFp_>O
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is a projective resolution of I, in the category of G-modules, by Corollary 5.4. Moreover,

it is clearly of finite length. Thus cd,G < oc by Corollary 3.7. 1
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