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IntroductionSerre ([9]) proved the following result:Theorem A: Let G be a pro�nite group without elements of a prime order p, and letH be an open subgroup of G. Then cdpH = cdpG.Let Gp be a p-Sylow subgroup of G and let Hp = H \Gp be a p-Sylow subgroupof H. By a theorem of Tate ([7], Proposition IV.2.1)cdpHp � cdpH � cdpG = cdpGp ;hence we may replace G by Gp and H by Hp. Furthermore, by [7], Proposition IV.2.1,cdpH = cdpG if cdpG < 1. Therefore Theorem A follows from the following resultproved by Serre in [9]:Theorem A0: Let G be a torsion free pro-p-group and let H be an open subgroup ofG. If cdpH <1 then cdpG <1.The proof of Theorem A0 given in [9] is rather diÆcult. It uses the theory of Steen-rod powers and Cartan's formula to show that for the Bockstein map �: H1(G; Fp) !H2(G; Fp) there are non-zero elements z1; : : : ; zm 2 H1(G; Fp) such that u =Qmi=1 �(zi)= 0. On the other hand, if the kernel U of a homomorphism z 2 H1(G; Fp) satis�escdpU < 1, then the cup product by �(z) is an isomorphism Hq(G;A)! Hq+2(G;A)for every G-module A annihilated by p and every q > cdpU . Thus if cdpU < 1 forevery open subgroup U of G then cdpG <1. The general assertion can be reduced tothis particular case.Later Serre proved the discrete analogue of Theorem A:Theorem B ([10], Theorem 9.2): Let G be a group without elements of a prime orderp and let H be a subgroup of �nite index in G. Then cdpH = cdpG.The proof of the latter result is much simpler. Again, it is enough to show thatcdpG <1 if cdpH <1. But this is done using the fact that cdpG <1 if and only ifthe trivial Zp[G]-module Zp has a �nite projective resolution.1



To the best of our knowledge this proof has not been translated to the pro�nitecase. The aim of this note is to �ll up this gap. Notice that a straightforward analogue ofthe second proof does not immediately apply in our situation: In the Galois cohomologytheory (as introduced in [8] or [7]) one uses only discrete modules, and there are notenough projective modules among them. We overcome this obstacle by using Brumer'sdevelopment ([1]) of cohomology via pro�nite modules. This allows us to carry overSerre's simple proof of Theorem B to pro�nite groups.It has been our intention to keep the exposition self-contained, assuming onlybasics of pro�nite groups and general cohomology theory (in an abelian category). Wetherefore repeat (and adapt) arguments given elsewhere, mostly from Brumer [1] andfrom the very clear exposition of the proof of Theorem B in Passman [6].The author is grateful to Moshe Jarden for valuable remarks concerning the pre-sentation of the material in this note.1. Pro�nite G-modulesRecall that if G is a topological group then a G-module is a topological abeliangroup A on which G continuously acts such that g(a + b) = ga + gb for all a; b 2 A,g 2 G. A homomorphism of G-modules is a continuous G-invariant homomorphism oftheir abelian groups.Definition 1.1: Let C be a class of �nite abelian groups. A pro-C-G-module A is theinverse limit lim Ai of some family fAig of �nite G-modules such that Ai 2 C for everyi. We shall work only with a �xed family C, which allows us to drop the pre�x\pro-C-".CONVENTION 1.2: Fix a prime p and denote Fp = Z=pZ. In this paper Gwill always be a pro�nite group. Furthermore, \G-module" will mean \pro-C-G-module", where C is the class of �nite elementary abelian p-groups, i.e.,�nite vector spaces over Fp . 2



Thus: �niteG-modules are �nite vector spaces over Fp ; inverse limits ofG-modulesare again G-modules. If G = 1, we write `Fp -module' instead of `1-module'; thus Fp -modules are inverse limits of �nite vector spaces over Fp .Example 1.3. The following are examples of G-modules.(a) Fp with the trivial G-action is a �nite G-module.(b) If G is �nite then the group ring Fp [G] = �Pg2G cgg j cg 2 Fp	 is a �niteG-module.(c) The complete group ring Fp [[G]] = lim F [G=N ], where N runs through the opennormal subgroups of G. Observe that Fp [G] is dense in Fp [[G]].(d) If A;B are G-modules then so is A� B (with the product topology).Let B be the family of open G-submodules of a G-module A; then \B2BB = 0.Indeed, if A = lim i Ai, where Ai are �nite G-modules and Bi is the kernel of A ! Aithen Bi 2 B for every i, and \iBi = 0. Hence A = lim B2B A=B. From this canonicalpresentation ofA as an inverse limit one deduces that closedG-submodules ofG-modulesand quotients modulo closed G-submodules are G-modules.It is easy to see that the category of G-modules is abelian. This provides a con-venient framework for standard constructions, de�nitions and arguments. However, areader less aquainted with abelian categories need not be discouraged, since the categoryof G-modules is a straightforward analogue of the more familiar category of modulesover a ring. In fact, G-modules are topological modules over the topological ring Fp [[G]].Let H be a closed subgroup of G. Every G-module is also an H-module; inparticular (taking H = 1), every G-module is an Fp -module.
2. Free G-modulesDefinition 2.1: Let X be a Boolean space. The free G-module on X is a G-moduleFG(X) and a continuous map i: X ! FG(X) such that for every G-module A andevery continuous map f : X ! A there exists a unique continuous G-homomorphism': FG(X)! A such that f = ' Æ i. 3



Remark 2.2. Replacing the clause \a G-module A" by \a �nite G-module A" doesnot alter the de�nition, since a G-module A is the inverse limit lim Aj of �nite G-modules, and ': FG(X) ! A is uniquely determined by a compatible family of maps'j : FG(X)! Aj .Lemma 2.3: (a) The free G-module on X exists and is unique up to a unique G-homomorphism.(b) If X = lim Xj and G = lim Gj then FG(X) = lim FGj (Xj).(c) If X is the disjoint union of X1 and X2 then FG(X) = FG(X1)� FG(X2).(d) Let g1; g2 2 G and x1; x2 2 X. Then g1i(x1) = g2i(x2) if and only if g1 = g2 andx1 = x2. In particular, i: X ! FG(X) is injective.Thus we shall consider X to be a closed subspace of FG(X), and i the inclusionmap.(e) FG(f1g) = Fp [[G]].Proof: (b) Use the universal properties to construct the maps for which fFGj (Xj)g is aninverse system, and then show that lim FGj (Xj) has the universal property mentionedin Remark 2.2.(c) Clearly FG(X1)� FG(X2) satis�es the universal property of FG(X).(d) Consider Fp with the trivial G-action. If x1 6= x2, there exists a continuous mapf : X ! Fp such that f(x1) = 1 and f(x2) = 0. Let ': FG(X) ! Fp be the G-homomorphism such that f = ' Æ i, then '�g1i(x1)� = g1f(x1) = 1 and '�g2i(x2)� =g2f(x2) = 0, hence g1i(x1) 6= g2i(x2).If x1 = x2 and g1 6= g2, there is an open N / G such that g1N 6= g2N . For thecontinuous map f : X ! Fp [G=N ], given by f(x) = 1 for all x 2 X, let ': FG(X) !Fp [G=N ] be the unique G-homomorphism such that f = ' Æ i. Now '�g1i(x1)� =g1f(x1) = g1N and similarly '�g2i(x2)� = g2N , hence g1i(x1) 6= g2i(x2).(e) If G is �nite then clearly the group ring Fp [G] of Example 1.3(b) has the universalproperty of FG(f1g). The general case follows from (b) and Example 1.3(c).(a) The uniqueness if obvious. Existence: by (b) we may assume that X is �nite, andby (c) we may assume that jXj = 1, say X = f1g, in which case FG(X) exists by (e).4



Lemma 2.4: As an Fp -module, FG(X) is the free Fp -module F1(GX) on GX, whereGX = fgx j g 2 G ; x 2 X) � FG(X) :Proof: If X = lim Xj then GX = lim GXj , and by Lemma 2.3(b), FG(X) = lim FG(Xj)and F1(GX) = lim F1(GXj). Thus we may assume that X is �nite. Similarly we mayassume that G is �nite. In this case FG(X) = Lx2X Fp [G]x = Lx2XLg2G Fpgx =F1(GX).In the opposite direction we notice:Lemma 2.5: Let P be a G-module, and let W be a closed subset of P such that(i) P is the free Fp -module on W , i.e., P = F1(W );(ii) FpW = fnw j n 2 Fp ; w 2Wg is G-invariant;(iii) fg 2 G j gw 2 Fpwg = f1g for all w 2W .Then P is a free G-module.Proof: The group G0 = F�p � G acts continuously on P by (n; g)z = ngz. It followsfrom (i) that 0 62 W (since there is a homomorphism P ! Fp mapping W into 1), andfrom (ii) and (iii) that(ii') F�p W = fnw j n 2 F�p ; w 2 Wg = FpWrf0g is G0-invariant; and(iii') f(n; g) 2 G0 j (n; g)z = zg = f1g for all z 2 F�p W .Furthermore, F�p W is closed in P (it is the image of the compact set F�p �W in P ).Let X be a closed system of representatives of the G0-orbits in F�p W (cf. [3], Lemma2.4). We proceed to show that P = FG(X).A continuous map f : X ! A into a G-module A can be uniquely extended to aG0-invariant continuous map f 0: F�p W ! A by f 0(ngx) = ngf(x). By (i) the restrictionof f 0 to W can be uniquely extended to a continuous Fp -linear map ': P ! A; clearly' extends f 0 as well. We claim that ' is a G-homomorphism; obviously it is then theunique G-homomorphism extending f , which will complete the proof.5



Fix g 2 G; both z 7! '(gz) and z 7! g'(z) are continuous Fp -homomorphismsfrom P into A. They agree on W , since f 0 is G0-invariant, hence by (i) they are equal.Thus '(gz) = g'(z) for all z 2 P .We notice for the record the following weaker version of Lemma 2.5:Corollary 2.6: Let P be a G-module, and let W be a closed subset of P such that(i) P is the free Fp -module on W , i.e., P = F1(W );(ii) W is G-invariant;(iii) fg 2 G j gw = wg = f1g for all w 2W .Then P is a free G-module.
3. Projective G-modulesBy the usual de�nition of a projective object in an abelian category, a G-moduleP is projective if for every epimorphism of G-modules �: B ! A and every morphism': P ! A there exists a morphism  : P ! B such that � Æ  = '. In order to presentanother { equivalent { de�nition we need a result on �bred products (cf. [4], Lemma 1.1or [2], Proposition 20.6).Lemma 3.1: Consider a commutative diagram of G-modules

P
B B=K

B=(K +K 0)B=K 0
'

'0 ��0 �0
!
! ## �in which K and K 0 are G-submodules of B and �; �0; �; �0 are the quotient maps.Assume that K 0 is open in B and K \K 0 = f0g. Then there exists a unique morphism : P ! B such that � Æ  = ' and �0 Æ  = '0.6



Proof: An easy diagram-chasing shows that for every �b 2 B=K and every �b0 2 B=K 0such that �(�b) = �0(�b0) there exists a unique b 2 B such that �(b) = �b and �0(b) = �b0. Itfollows that there exists a unique set-theoretic function  : P ! B such that � Æ  = 'and �0 Æ  = '0. We have (z1 + z2) =  (z1) +  (z2) for all z1; z2 2 P ; (gz) = g (z) for all z 2 P and all g 2 G ;as can be readily seen by applying p and p0 to both sides of these equations. Finally,  is continuous, since its restriction to the open subgroup U = Ker '0 of P is continuous.Indeed,  (U) � K 0, '(U) � (K +K 0)=K, and the restriction of � to K 0 is an isomor-phism K 0 ! (K +K 0)=K. As ' is continuous and � Æ  = ', the restriction of  to Uis also continuous.Lemma 3.2 (cf. [2], Lemma 20.8, Parts B, C): A G-module P is projective if and onlyif for every epimorphism of �nite G-modules �: B ! A and every morphism ': P ! Athere exists a morphism  : P ! B such that � Æ  = '.Proof: Assume that the condition holds and let �: B ! A be an epimorphism and': P ! A a morphism of G-modules. Denote K = Ker �. Without loss of generality �is the quotient map B ! B=K.(a) Assume �rst that K is �nite. Then there exists an open G-submodule K 0 of Bsuch that K \K 0 = f0g. Let �; �0; �; �0 be as in Lemma 3.1 (see the diagram there).Since B=K 0 and B=(K + K 0) are �nite G-modules, by the assumption there exists amorphism '0: P ! B=K 0 such that the diagram commutes. By Lemma 3.1 there existsa morphism  : P ! B such that � Æ  = '.(b) In the general case let � be the collection of pairs (L; �), where L is a G-submoduleof K and �: P ! B=L is a morphism such that �L;K Æ� = ', where �L;K is the quotientmap B=L! B=K. Partially order � by letting (L0; �0) � (L; �) mean that L0 � L and�L0;L Æ �0 = �. Then � is inductive, and hence by Zorn's Lemma it has a maximalelement (L; �).It remains to show that L = 0. If not, there is an open G-submodule N of G suchthat L 6� N ; thus L0 = N \ L is a proper open G-submodule of L. As Ker �L0;L is7



�nite, by (a) there exists a morphism �0: P ! B=L0 such that �L0;L Æ �0 = �. Then(L0; �0) 2 � and (L0; �0) > (L; �), a contradiction.Lemma 3.3: Let P be a G-module.(a) P is a quotient of a free G-module.(b) If P is free then P is projective.(c) P is projective if and only if it is a direct summand of a free G-module.(d) If P = lim Pi, where Pi are projective G-modules then P is projective.(e) P is projective in the category of Fp -modules.Proof: (a) The identity P ! P induces a G-epimorphism FG(P )! P .(b) In the setup of Lemma 3.2 let s: A! B be a section of �, and let  : P = FG(X)!B be the unique extension of s Æ resX': X ! B. Then � Æ  = ', since this is true onX.(c) is a formal consequence of (a) and (b) in an abelian category: cf. [5], PropositionI.5.5.(d) In the setup of Lemma 3.2 the map ': P ! A factors through some Pi (since Ais �nite), say into '0: P ! Pi and 'i: Pi ! A. As Pi is projective, there is  i: Pi ! Bsuch that � Æ  i = 'i. Thus � Æ ( i Æ '0) = '.(e) If P is �nite then it is a free Fp -module, and hence projective. The general casefollows by (d).In particular every G-module P is a quotient of a projective G-module P0, andtherefore, by induction, P has a projective resolutionP� : � � � ! Pn �!@n Pn�1 �!@n�1 � � � �!@2 P1 �!@1 P0 �!@ P ! 0(that is, P� is an exact sequence and Pi are projective G-modules). If� � � ! P 0n �!@0n P 0n�1 �!@0n�1 � � � �!@02 P 01 �!@01 P 00 �!@0 P ! 0is another projective resolution of P , there exists a chain transformation from the formerprojective resolution to the latter, that lifts the identity of P ; such a chain transforma-tion is unique up to a homotopy ([5], Theorem III.6.1).8



Corollary 3.4 (cf. [6], Lemma 10.3.10): A complex of Fp -modules� � � ! En �!"n En�1 �! � � � �!"2 E1 �!"1 E0 �!" E ! 0is exact if and only if it splits, i.e., there exist continuous homomorphisms s: E ! E0and sn: En ! En+1 for n � 0 such that1 = "s ; 1 = s"+ "1s0 and 1 = sn�1"n + "n+1sn for all n � 1 :Proof: Put E�1 = E, E�2 = 0, "0 = ", "�1 = 0. Then we have to show thatE� : � � � ! En �!"n En�1 �! � � � �!"2 E1 �!"1 E0 �!"0 E�1 �!"�1 E�2 ! 0is exact if and only if there exist continuous homomorphisms sn: En ! En+1, forn � �1, such that (letting s�2: E�2 ! E�1 be the zero map)(�) 1 = sn�1"n + "n+1sn for all n � �1 :If E� is exact then it is a projective resolution of E�2 = 0 by Lemma 3.3(e), andboth 0 and 1 are chain transformations of E� to itself that lift the identity of E�2 = 0.By the preceding remark they are homotopic, which gives (�). Conversely, (�) impliesthe exactness of E�: if a 2 Ker "n, for n � �1, thena = sn�1"n(a) + "n+1sn(a) = "n+1sn(a) 2 im("n+1) :Let P be a G-module, and letP� : � � � ! Pn �!@n Pn�1 �!@n�1 � � � �!@2 P1 �!@1 P0 �!@ P ! 0be a projective resolution of P . Let A be a G-module. Then P� yields the complexHomG(P�; A) of abelian groups0! HomG(P0; A)! HomG(P1; A)! � � � ! HomG(Pn�1; A)! HomG(Pn; A)! � � � ;where HomG(Pn; A) is the group of G-homomorphisms from Pn into A. The homologygroups ExtnG(P;A) = Hn�Hom(P�; A)�9



of this complex do not depend on the choice of the projective resolution P� of P ([5],Corollary III.6.3).For example, consider Fp as a G-module with the trivial G-action. To computeExtnG(Fp ; A) we shall use the so-called standard free resolution P�, de�ned as follows:P0 is the free G-module FG(f1g) = Fp [[G]] (see Lemma 2.3(e));Pn is the free G-module FG(Gn); here Gn = G� � � � �G (n times);@: P0 ! Fp is the unique extension of the map f1g ! Fp given by 1 7! 1;(thus if G is �nite then @(Pg2G agg) =Pg2G ag); and@n: Pn ! Pn�1 is the unique extension of the map @n: Gn ! Pn�1 given by@n(g1; : : : ; gn) = g1(g2; : : : ; gn)+ n�1Xi=1(�1)i(g1; : : : ; gi�1; gigi+1; gi+2; : : : ; gn) + (�1)n(g1; : : : ; gn�1):We leave it to the reader to check that P� is indeed an exact sequence. If G is�nite, this is done exactly as in [5], Theorem IV.5.1; the general case follows, since aninverse limit of exact sequences is exact ([7], Proposition I.3.6).By the universal property of free G-modules, HomG(Pn; A) may be identi�ed withthe set Cn(G;A) of continuous functions f : Gn ! A, and @�: Cn�1(G;A)! Cn(G;A)is then clearly given by(@�f)(g1; : : : ; gn) = g1f(g2; : : : ; gn)+ n�1Xi=1(�1)if(g1; : : : ; gi�1; gigi+1; gi+2; : : : ; gn) + (�1)nf(g1; : : : ; gn�1):Thus HomG(P�; A) is the complex C�(G;A) from which one derives the cohomologygroups Hn(G;A) of G with coeÆcients in A (see [7], p. 94). Hence:Corollary 3.5: If A is a �nite G-module thenExtnG(Fp ; A) = Hn(G;A) :The following result provides the link between projective resolutions and the co-homological dimension. 10



Proposition 3.6: Let P be a G-module.(a) If there is a projective resolution P� of P with Pn = 0 then ExtnG(P;A) = 0 forall G-modules A.(b) If ExtnG(P;A) = 0 for all �nite G-modules A then there is a projective resolutionP� of P with Pn+1 = 0.Proof: (a) clear.(b) Let P� be a projective resolution. Let Pn �!� @(Pn) �!i Pn�1 be the decompo-sition of @n: Pn ! Pn�1 into an epimorphism � and a monomorphism i. It suÆces toshow that @n(Pn) is projective, since then0! @n(Pn) �!i Pn�1 �!@n�1 � � � �!@1 P0 �!@ P �! 0is a projective resolution of P .We shall use Lemma 3.2 to prove this. Consider the diagramPn�1  �i @n(Pn)  �� Pn  �@n+1 Pn+1???y'B �!� Ain which � is an epimorphism of �nite G-modules. Since Hn(G;A) = 0, the sequenceHomG(Pn�1; A)! HomG(Pn; A)! HomG(Pn+1; A)is exact. Notice that �@n+1 = 0, hence '� is in the kernel of HomG(Pn; A) !HomG(Pn+1; A). Therefore there exists a G-homomorphism '0: Pn�1 ! A such that'� = '0@n = '0i�, in particular, '0i = '. Since Pn�1 is projective, there is  : Pn�1 !B such that � = '0. Thus �( i) = ', which shows that @n(Pn) is projective.Actually, one can achieve even Pn = 0 in (b), but the proof is much more subtle(see [1], Corollary 3.2). We shall not need this re�nement.Corollary 3.7: cdpG < 1 if and only if Fp has a projective resolution of �nitelength.Proof: By [7], Proposition IV.1.5 and its proof, cdpG < 1 if and only if there is nsuch that Hn+1(G;A) = 0 for all �nite G-modules A. (Recall that by Convention 1.211



�nite G-modules are �nite elementary abelian p-groups.) Now apply Corollary 3.5 andProposition 3.6.
4. The Complete Tensor ProductLet A;B;C be Fp -modules. A continuous map f : A� B ! C is Fp -bilinear iff(a+ a0; b) = f(a; b) + f(a0; b) and f(a; b+ b0) = f(a; b) + f(a; b0)for all a; a0 2 A, b; b0 2 B. This, of course, also implies thatf(na; b) = nf(a; b) = f(a; nb)for all n 2 Fp , a 2 A, b 2 B.Recall ([1], Section 2) that the complete tensor product of A and B is an Fp -module Ab
B and an Fp -bilinear map �: A � B ! Ab
B (we write ab
b for �(a; b))with the following universal property: given an Fp -module C and an Fp -bilinear mapf : A� B ! C, there exists a unique continuous Fp -linear map g: Ab
B ! C such thatg Æ � = f .Remark 4.1.(a) Replacing the clause \an Fp -module C" above by \a �nite Fp -module C" does notalter the de�nition of the complete tensor product (cf. Remark 2.2).(b) The complete tensor product of A and B is obviously unique up to a unique iso-morphism, if it exists. Now lim A=U 
B=V , where U (resp. V ) runs through the openFp -submodules of A (resp. B), satis�es the universal property mentioned in (a). There-fore Ab
B = lim A=U 
B=V ; notice that the Fp -modules A=U 
 B=V are �nite. ThusAb
B is the completion of A 
 B in the topology induced by the kernels of the mapsA
B ! A=U 
B=V .(c) If �: A ! A0 and �: B ! B0 are morphisms of Fp -modules then, by the de�ni-tion of Ab
B, there exists a unique homomorphism �b
�: Ab
B ! A0b
B0 such that(�b
�)(ab
b) = �(a)b
�(b) for all a 2 A, b 2 B.12



(d) It follows immediately from the universal property of the complete tensor productor form (b) above that (Ab
B)b
C = Ab
(Bb
C), and hence we denote it by Ab
Bb
C.More generally, if A0; : : : ; Am are Fp -modules then A0b
 � � � b
Am can be induc-tively de�ned by inserting parentheses in any meaningful way.Lemma 4.2: Let F1(X) and F1(Y ) be free Fp -modules. Then F1(X)b
F1(Y ) is the freeFp -module on its subset fxb
y j x 2 X ; y 2 Y g.Proof: It is enough to show that the Fp -linear map F1(X � Y ) ! F1(X)b
F1(Y ), ex-tending (x; y) 7! xb
y, is an isomorphism. This is well known if X and Y are �nite, sincethen F1(X)b
F1(Y ) = F1(X)
 F1(Y ). In the general case X = lim Xi and Y = lim Yi,where Xi and Y1 are �nite. Therefore X � Y = lim Xi � Yi, and so by Lemma 2.3(b),F1(X) = lim F1(Xi), F1(Y ) = lim F1(Yi) and F1(X � Y ) = lim F1(Xi � Yi). ThusF1(X � Y ) ! F1(X)b
F1(Y ) is the inverse limit of the isomorphisms F1(Xi � Yi) !F1(Xi)b
F1(Yi), and hence an isomorphism.The complete tensor product A�b
B� of two sequences of Fp -modulesA� : � � � ! An �!�n An�1 �! � � � �! A1 �!�1 A0 �!� A! 0B� : � � � ! Bn �!�n Bn�1 �! � � � �! B1 �!�1 B0 �!� B ! 0is the sequence of Fp -modulesC� : � � � ! Cn �!
n Cn�1 �! � � � �! C1 �!
1 C0 �!
 C ! 0de�ned as follows. First, to simplify the notation, for n < 0 put An = Bn = 0, and forn � 0 let �n: An ! An�1 and �n: Bn ! Bn�1 be the zero maps. Then de�neC = Ab
B and Cn = �ni=0(Aib
Bn�i) = �i+j=n(Aib
Bj) ;
 = �b
� and 
n = �i+j=n�(�ib
1) + (�1)i(1b
�j)� ; for every n 2 Z(this is where �0; �0 come in). The last equation simply means that
n(vib
vj) = �i(vi)b
vj + (�1)ivib
�j(vj) ; for vi 2 Ai and vj 2 Bj :13



Lemma 4.3 (cf. [6], Lemma 10.3.11): The complete tensor product of exact sequencesof Fp -modules is also an exact sequence.Proof: Assume that A� and B� are exact. Using Remark 4.1(c) it is straightforwardto check that 
n
n+1 = 0 and 

1 = 0. Since A� is exact, by Corollary 3.4 there existFp -homomorphisms s: A! A0 and sn: An ! An+1, for n � 0 that split A�, i.e.,�s = 1 ; 1 = s�+ �1s0 and 1 = sn�1�n + �n+1sn ; for all n � 1 :Similarly there exist t: B ! B0 and tn: Bn ! Bn+1, for n � 0 that split B�. Check(again using Remark 4.1(c)) that u = sb
t: C ! C0 and un: Cn ! Cn+1, given byu = sb
t and un = �(s�b
tn) + (s0b
1)�� ��ni=1 (sib
1)� ; for n � 0 ;split C�. Thus by Corollary 3.4 sequence C� is exact.
5. Serre's TheoremThis section is based on Passman [6], Section 10.3 that deals with discrete groups.LetH be an open subgroup of G, saym = (G : H), and choose 1 = g1; g2; : : : ; gm 2G such that G = Smi=1Hgi. To �x the notation, write for all � 2 G and all i = 1; : : : ;m(1) gi� = hi(�)gi� ;where i 7! i� is a permutation of f1; 2; : : : ;mg and hi(�) 2 H. Clearly (i; �) 7! i� andhi: G! H, i = 1; : : : ;m, are continuous functions. For �; � 2 G we havehi(��)gi(��) = gi(��) = (gi�)� = hi(�)gi�� = hi(�)hi�(�)g(i�)� ;hence i(��) = (i�)� ;(2) hi(��) = hi(�)hi�(�) :(3) 14



Given a sequence P = (P0; P1; P2; : : :) of H-modules, de�ne a G-module structureon the Fp -moduleQn(P) = Qn(P0; P1; P2; : : : ; Pn) = Mi1+���+im=nPi1 b
Pi2 b
 � � � b
Pimin the following way. Write d(v) = j if v 2 Pj . Every � 2 G induces an Fp -linear mapPi1 b
 � � � b
Pim ! Pi1� b
 � � � b
Pim� by(4) �(v1b
 � � � b
vm) = (�1)av01b
 � � � b
v0m ;where(40) v0i = hi(�)vi�and(400) a = Xi<ji��1>j��1 d(vi)d(vj) :This map uniquely extends to an Fp -linear map � : Qn(P)! Qn(P).Notice that(5) d(v0i) = d(vi� ) :Lemma 5.1: Qn(P) is a G-module.Proof: Clearly the map (�; v) 7! �(v) from G � Qn(P) ! Qn(P) is continuous. Also1(v) = v, since the right handed side of (4") is an empty sum, if � = 1. We have toshow that ���(v1b
v2b
 � � � b
vm)� = (��)(v1b
v2b
 � � � b
vm) ;for all �; � 2 G. By de�nition (4)���(v1b
v2b
 � � � b
vm)� = (�1)a�(v01b
v02b
 � � � b
v0m) = (�1)a+bv001 b
v002 b
 � � � b
v00m ;15



where v0i and a0 are given by equations (40) and (400), andv00i = hi(�)v0i� and b = Xi<ji��1>j��1 d(v0i)d(v0j) :Hence by (40) and (3) v00i = hi(�)hi�(�)vi�� = hi(��)vi�� ;and thus it remains to be shown thata+ b � Xi<ji��1��1>j��1��1 d(vi)d(vj)mod2 :Now a = a1 + a2, wherea1 =X d(vi)d(vj) with i < j i��1 > j��1 i��1��1 > j��1��1 ;a2 =X d(vi)d(vj) with i < j i��1 > j��1 i��1��1 < j��1��1 :By (5) and a change of the summation indices,b = Xi<ji��1>j��1 d(vi� )d(vj� ) = Xi��1<j��1i��1��1>j��1��1 d(vi)d(vj) = b1 + b2 ;where b1 =X d(vi)d(vj) with i < j i��1 < j��1 i��1��1 > j��1��1 ;b2 =X d(vi)d(vj) with i > j i��1 < j��1 i��1��1 > j��1��1 :By interchanging i and j notice that a2 = b2. Thusa+ b = a1 + b1 + 2a2 � a1 + b1 = Xi<ji��1��1>j��1��1 d(vi)d(vj) mod2 :
More can be said about Qn(P) if the Pi are free or, at least, projective.16



Lemma 5.2: Assume that Pi is a free H-module, Pi = FH(Xi), for i � 0. Then(a) Qn(P) is the free Fp -module on the subsetW =fh1v1b
 � � � b
hmvm jh1; : : : ; hm 2 H; v1 2 Xi1 ; : : : ; vm 2 Xim ; i1 + � � �+ im = ng(b) FpW = fnw j n 2 Fp ; w 2Wg is G-invariant.(c) Let 0 6= w = h1v1b
 � � � b
hmvm 2 W and let � 2 G. Then �(w) 2 Fpw if and onlyif vj� = vj and gj�g�1j� = hjh�1j� ; for 1 � j � m(d) �� 2 G j �(w) 2 Fpw	 \H = f1g for every 0 6= w 2W .Proof: (a) By Lemma 2.4, Pi is the free Fp -module on fhv j h 2 H; v 2 Xig, and byLemma 4.2, Pi1 b
Pi2 b
 � � � b
Pim is the free Fp -module onfh1v1b
 � � � b
hmvm j h1; : : : ; hm 2 H; v1 2 Xi1 ; : : : ; vm 2 XimgAs Qn(P) is the direct sum of such free Fp -modules, (a) follows.(b) By (4), �(w) = �w0, where(6) w0 = h1(�)h1�v1� b
 � � � b
hm(�)hm�vm� :We see that w0 2W . Hence �(w) 2 FpW .(c) De�ne w0 by (6). Then�(w) 2 Fpw , w0 2 Fpw, w = w0 ;since w;w0 belong to the free Fp -basis W of Qn(P). Butw = w0 , hj(�)hj�vj� = hjvj , hj(�)hj� = hj and vj� = vj ; for 1 � j � m :By (1), hj(�) = gj�g�1j� , hence the assertion follows.(d) Let � 2 H such that �(w) 2 Fpw. By (c) we have g1�g�11� = h1h�11� . Recall thatg1 = 1, and notice that 1� = 1, by (1). Thus � = 1.17



Lemma 5.3: Let P = (P0; P1; P2; : : :) and F = (F0; F1; F2; : : :) be sequences of H-modules. If Pi is a direct summand of Fi, for every i � 0, then the G-module Qn(P) isa direct summand of Qn(F), for every n � 0.Proof: For every i � 0 there exists an H-module P 0i such that Fi = Pi � P 0i . WritePi;0 = Pi and Pi;1 = P 0i . It is easy to see thatQn(F0; F1; : : : ; Fn) = Mi0;i1;:::;in2f0;1gQn(P0;i0 ; P1;i1 ; : : : ; Pn;in)(not only as Fp -modules, but also as G-modules). Thus Qn(P) = Qn(P0; P1; : : : ; Pn) isa direct summand of Qn(F) = Qn(F0; F1; : : : ; Fn).The preceding lemmas give a nice characterization in one case:Corollary 5.4: Assume that G is torsion free. Let P = (P0; P1; P2; : : :) be a sequenceof projective H-modules. Then Qn(P) is a projective G-module for every n � 0.Proof: Since projective modules are precisely the direct summands of free modules(Lemma 3.3(c)), by Lemma 5.3 it is enough to show that Qn(P) is a free G-module forevery n � 0, if the Pi are free H-modules.By Lemma 5.2, Qn(P) is the free Fp -module on a certain subsetW , for which FpWis G-invariant, and, denoting G(w) = f� 2 G j �(w) 2 Fpwg, we have G(w) \H = f1gfor every 0 6= w 2W . But G(w) \H is open in G(w), since H is open in G. ThereforeG(w) is a �nite subgroup of G, and hence G(w) = 1. By the criterion of Lemma 2.5,Qn(P) is a free G-module.Our next objective are projective resolutions.Lemma 5.5: LetP� : � � � ! Pn �!@n Pn�1 �!@n�1 � � � �!@2 P1 �!@1 P0 �!@ Fp ! 0be an exact sequence of H-modules. Write d(v) = j if v 2 Pj , and denote(7) @ik(v) = � @d(v)(v) if i = kv if i 6= k :18



ThenQ� : � � � ! Qn �!
n Qn�1 �!
n�1 � � � �!
2 Q1 �!
1 Q0 �!
 Fp ! 0 ;where Qn = Qn(P) = Mi1+���+im=nPi1 b
Pi2 b
 � � � b
Pim ;(8) 
(v1b
 � � � b
vm) = @(v1) � � �@(vm) ;(9) 
n(v1b
 � � � b
vm) = mXk=1(�1)d(v1)+���+d(vk�1)@1k(v1)b
 � � � b
@mk(vm) ;is an exact sequence of G-modules.Proof: To prove the exactness of Q�, it suÆces to consider P� and Q� as sequences ofFp -modules, forgetting the respective group actions. It is easy to see, by induction onm,that Q� is precisely the m-fold tensor product P�b
P�b
 � � � b
P� of m (equal) sequences(of course, here we identify Fp b
 � � � b
Fp with Fp by v1b
 � � � b
vm 7! v1 � � � vm). Thus Q�is exact by Lemma 4.3.It remains to be shown that 
n are G-homomorphisms. Let � 2 G. By (9) andby (4) ��
n(v1b
 � � � b
vm)� = mXk=1(�1)Pi<k d(vi)(�1)ckw1k b
 � � � b
wmk ;where wik = hi(�)@i�;k(vi� ) andck = Xi<ji��1>j��1 d�@ik(vi)�d�@jk(vj)�:Now wik = @i�;k�hi(�)vi�� = @i�;k(v0i) = @i;k��1(v0i) ;in the notation of (4'). By (6) we haved�@ik(vi)� = d(vi)� Æik ;19



where Æik = 1 if i = k, and Æik = 0 if i 6= k. Thereforeck = Xi<ji��1>j��1 �d(vi)� Æik��d(vj)� Æjk�= Xi<ji��1>j��1 d(vi)d(vj)� Xk<jk��1>j��1 d(vj)� Xi<ki��1>k��1 d(vi)= a� Xk<ik��1>i��1 d(vi)� Xi<ki��1>k��1 d(vi) ;and henceck +Xi<k d(vi)= a� Xk<ik��1>i��1 d(vi)� Xi<ki��1>k��1 d(vi) + Xi<ki��1<k��1 d(vi) + Xi<ki��1>k��1 d(vi)= a� Xk<ik��1>i��1 d(vi) + Xi<ki��1<k��1 d(vi) = a+ Xi��1<k��1 d(vi)= a+ Xi<k��1 d(vi� ) = a+ Xi<k��1 d(v0i) ;by (5). Therefore��
n(v1b
 � � � b
vm)� = mXk=1(�1)a+Pi<k��1 d(v0i)@1;k��1(v01)b
 � � � b
@m;k��1(v0m)= mXk=1(�1)a+Pi<k d(v0i)@1;k(v01)b
 � � � b
@m;k(v0m) = 
n�(�1)av01b
 � � � b
v0m�= 
n��(v1b
 � � � b
vm)� :We are now in position to prove Serre's Theorem. As mentioned in the Introduc-tion, it follows from Theorem A0.Proof of Theorem A0: By Corollary 3.7 there is a projective resolution of �nite lengthP� : � � � ! Pn �! Pn�1 �! � � � �! P0 �! Fp ! 0in the category of H-modules. Let Qn = Qn(P), for n � 0. The exact sequence ofLemma 5.5Q� : � � � ! Qn �! Qn�1 �! � � � �! Q0 �! Fp ! 020



is a projective resolution of Fp in the category of G-modules, by Corollary 5.4. Moreover,it is clearly of �nite length. Thus cdpG <1 by Corollary 3.7.

21
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