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THE UNDECIDABILITY OF PSEUDO REAL CLOSED FIELDS

*
Dan Haran

The aim of this note is to establish the following re-
sult:
THEOREM: Let £ be a non-empty class of Boolean spaces
and let PRC(E) be the class of pseudo real closed fields
whose spaces of orderings belong to £ . Then the elementa-
ry theory of PRC(E) 1is undecidable.

Our proof appears to be an interesting application of
the theory of Artin-Schreier structures, which has been in-
itiated in [5] for the purpose of characterization of the
absolute Galois groups of PRC fields. In Section 1 we de-
fine and investigate Frattini covers of Artin-Schreier
structures, in analogy with [6], Section 2. In Section 2 we
consider the analogues of proofs of [1] and [3], to attain
the Theorem.

INTRODUCTION.

In [8] Prestel calls a field K pseudo real closed

(PRC), if every absolutely irreducible variety V over K,
which has a simple point in every real closed extension of
K , has a K-rational point ([8], Theorem 1.2). A pseudo al-
gebraically closed (PAC) field is then a PRC field, which
is not formally real. Cherlin, van den Dries and Macintyre
[1] and Ershov [3] have independently shown that the ele-
mentary theory To of PAC fields is undecidable. This
leads to an immediate observation (Ershov [2]) that the
theory T of PRC fields is also undecidable. Indeed, by
[8], Proposition 1.5,

* This work corresponds to a part of the doctoral disser-
tation done under the supervision of Prof. Moshe Jarden
at Tel-Aviv University
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Ty ((ax,y)[x2+y2 = -1]}

is a set of axioms for To , hence T is undecidable by
(9], Theorem 1 on p. 134.

Therefore the genuine question in this context is
whether the theory of formally real PRC fields (i.e., PRC
fields which are not PAC) is decidable. The Theorem answers
this question in negative.

Since the notion of an Artin-Schreier structure is so
essential to this work, we now recall their definition and
some properties. For the details we must refer the reader
to [5].

An Artin-Schreier structure is a system

G = (G,G', Xx %@ ,

where G 1is a profinite group, G' 1is an open subgroup of
G of index = 2 , X 1is a Boolean (= compact, Hausdorff,
totally disconnected) space on which G continuously acts,
and d 1is a continuous map, such that for every x € X

(1) d(x) 1is an involution (= an element of order 2),
d(x) ¢ G' , and d(x°) = (a(x))° , for every o € G ;
(11) {o €6 | x° =x} = (1,d(x)} .

If L/K is a Galois extension and .~1 € L , let
X(L/K) be the space of maximal ordered intermediate fields
(E,Q) of L/K (here KSECSL and Q is an ordering of
the field E ) with the topology defined by the subbase
{HL(a)Ia € L} , where H (a) = {(E,Q) |a is positive in Q}.
Then X(L/K) is a Boolean space and the Galois group
G(L/K) acts on it. If x = (E,Q) € X(L/K) , then E is a
fixed field of a unique involution d(x) € G(L/K) . Now

G(L/K) = (G(L/K),G(L/K(/=T)),X(L/K) —2> G(L/K))
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is an Artin-Schreier structure ([5], Example 3.2).

A morphism of Artin-Schreier structures ¢ : H — G ,
where H = (H,H',X(H) -9 H) and G = (G,G',X(G) —2» G) ,
is a pair consisting of a homomorphism ¢ : H — G and a

continuous map ¢ : X(H) — X(G) such that

(1) d(e(x)) = ¢(d(x)) for every x € X(H)
(11)  0(x% = 00 for all x € X(H) and o € H
(111) o~ '(c") = ®' .

It is an epimorphism if ¢(H) = G and o(X(H)) = X(G) . An
epimorphism ¢ : H — G 1is a cover, if for all
X,/X, € X(H) such that o(x,) = o(x,) there exists a
¢ € G such that x: =X, .

The restriction map Res:G(L'/K) — G(L/K) , where
KCS LESL' is a Galois tower (and ,~1 € L' ) is a cover
([5], Example 3.4).

An Artin-Schreier structure G is said to be projec-
tive if, given a morphism ¢ : G — A and a cover

o 3 — A , there exists a morphism y : G — B such that

B
7

a o =0 .

The main result of [5] provides the connection with
PRC fields. For a field K denote G(K) = G(K/K) , where
K is the separable closure of K .

THEOREM ([5], Theorems 10.1, 10.2): If K is a PRC field
then G(K) 1is projective. If G is a

Schreier structure then there exists a PRC field K such
that G = G(K) .

projective Artin-

Acknowledgement: The author wishes to express his grati-
tude to Moshe Jarden for many valuable remarks.
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1. FRATTINI COVERS.

Let H, H) and G be Artin-Schreier structures. We
say that H, 1s a substructure of H (and write H =H)
if H CH, x(go) € X(H) and the inclusions H, — H,
x(go) — X(H) define a morphism i : Eo — H . We write

s . i -
H, <H if H, =H but HJ #H.If ¢ : H— G is a mor
phism of Artin-Schreier structures, the restriction of ¢
to HJ .,
¢odi:H —G.

denoted by res, ¢, is the morphism

He

Furthermore we denote

() = (o(H,),0(H "), 0(X(H)) > o(H))

and for a Gj <G

- “1,. 0y -1 a -1
(o " (Go),o (G ") ,0 (X(G))) — o (Go)).

0-1(§o)

DEFINITION 1.1: A cover ¢ : H — G is a Frattini cover

(of G ), if for every H, < H the restriction

res, ¢ H) — G 1is not a cover. (I.e., resHow is either

not an epimorphism or it is an epimorphism but not a cover.)

The following fundamental lemma will often be used in
the sequel without referring to it explicitly.

LEMMA 1.2: Let ¢ : H—> G and ¢ : G — F be two epi-
morphisms of Artin-Schreier structures. Then:

(1) ® oy is a cover if and only if both ¢y and ¢ are

covers.
(ii) o o ¢y is a Frattini cover if and only if both ¢

and ¢ are Frattini covers.

Proof: - straightforward. We only remark that in order to

" ¢ 1is a Frattini cover if ¢ o ¢y 1is a

prove that
Frattini cover", one has to check first the following: if
-1 .

< = =

o 1is a cover, G, =G and H  =1¢ '(G)) then the restric

tion ¢° : Eo — 90 of Yy to Eo is a cover. //
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LEMMA 1.3: Let ¢ : H — G be a morphism, and let
¢ : G— F be a Frattini cover of Artin-Schreier struc-

tures. If ¢ o ¥ is a cover, then so is vy .

Proof: Denote G, = y(H) . Then ¢ : H— G, and
res. » :+ G — F are epimorphisms, (res. ¢) o ¢ = @ o ¥
G -0 Go

is a cover, hence they are also covers, by Lemma 1.2. Since
¢ 1is a Frattini cover, this implies G, =G . It follows
that ¢ is a cover. //

LEMMA 1.4: Consider a cartesian square of Artin-Schreier

structures

|
N\

Py

(1) P4

v

|3’<—:—|UJ
[\8]

|t

1 m
(see [5], Section 4).

(1) Assume that ™ is an epimorphism. Then Py is an

epimorphism; moreover, mn, is an epimorphism if and
only if p, 1is an epimorphism.

(i1) If =, 4is a cover, then p, is also a cover.

(iii) If p, is a cover and n, is an epimorphism, then

™ is a cover.

(iv) Assume that TqrTyrPq /P, are epimorphisms. If P,
is a Frattini cover, then so is LI

Proof: By Lemma 4.6 of [5] we may assume that B = B, X By
and Py» P, are the coordinate projections. Now: -

(1) - follows easily.

(ii) P, is an epimorphism, by (i) . Let x,x' € X(B)

such that pz(x) = pz(x') and denote X, = pz(x) . Then
there exist x1,x1' € X(§1) such that x = (x1,x2) '

X' = (x1',x2) , and n1(x1) = n1(x1') = nz(xz) . By assump-
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tion there is a o € Ker ™ such that X' = x, . Thus

Tt = (o,1) € By, ¥ B, = B . Clearly x' = xT .

(iii) By (i), ™ is an epimorphism. Let x1,x1' € x(§1)
such that m,(x,) = m,(x4") . Choose x, € X(B,) such that

"2(x2) = n1(x1) , and let x = (x1,x2) , X' =

= (x4'/%x,) € X(B) . Then p, (x) = P, (x') , hence there ex-
ists a o € B such that x' = x° . Therefore x1' =

= p1(x') - x1p1(0).

(iv) By (iii), =, is a cover. Let é1 = B, such that

. : - B = 5. ) .
resy, Ty * By — A is a cover. Define B = p, (B;) ; then

A

B = B . It can be easily verified that

N res’.p

B*2
B = 4>§2
lresép1 ["2
B - —> A
=1 resg my

is a cartesian square. By (ii), resép2 is a cover.

It follows that é =B, since p, is a Frattini cov-
er. Thus B, = p,(B) = B, ; this implies that m, is a
Frattini cover. //

LEMMA 1.5: Let ¢, : C — B; be an epimorphism and
¥, : C — B, a cover. Then there exists a commutative dia-

gram of epimorphisms, unique up to an isomorphism,

C
= [
\\Qg 2
(2) B => B
11’1 = Py T2
191 T2
™
23 * &
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such that the square (1) is cartesian.

Proof: If such a diagram exists, then by the previous
lemmas w,pz,ﬂ1 are covers. Thus with no loss we may as-
sume that

(3a) B = C/K, B, = C/K;, By = Cq/K,;, A = C/L

2
where K = K1,K2 <= L = C' are normal subgroups of C .

Since (1) is a cartesian square, we have

(3b) K=K, nNK L = K,K

1 27 172

and, since ™ is a cover,

The equations (3a) - (3c) also suggest the definitions
of Artin-Schreier structures B, A , which satisfy the re-
quirements of this Lemma. //

LEMMA 1.6: Let ¢ : H — G be a cover. Then there is an

Artin-Schreier substructure F = H such that

resp®: F — G is a Frattini cover.

Proof: Take F to be a minimal Artin-Schreier substruc-

ture of H such that res; ¢ : F — G 1is a cover. Its

F
existence is easily shown by Zorn's Lemma. //

LEMMA 1.7: Let n, : B, — A, i =1,2, be two epimor-

i
phisms of Artin-Schreier structures.
(1) If =, 1is a cover, then there exists a commutative
diagram
B-————B
(4) 1?1 lwz
Br—————— A

=1 L
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in which p, is a Frattini cover.

(ii) If m, and =, are covers, there exists a commu-
tative diagram (4), in which p is a Frattini cover.

(iii) If m and T, are Frattini covers, there exists

a commutative diagram (4), in which P/PqsPys 2Le

Frattini covers.

Proof: First construct a cartesian diagram (4) (i.e., let
B = B, é B, ) . Note that if L (resp. m, and 7, ) is a
cover, then P, (resp. P, /P, and p ) are covers, by
Lemma 1.4 (ii). To obtain (i) or (ii), use Lemma 1.6, and
replace B by a suitable substructure and Pq/Py /P by
their respective restrictions. Case (iii) follows from (ii):
if TyrToP  are Frattini covers, then pP,/P, are covers,
by Lemma 1.3, hence Frattini covers. 1/
Let ©y ¢ ﬂi — G, 1i=1,2, be two covers. We say
that ©4 is isomorphic to ®y if there is an isomorphism
0 : H1 2 such that g = 0y 0 © . This is an equiva-
lence relation on covers of G . We shall write ¢, 2 o,
if there is a cover ¢ : H, — H, such that ¢, = ¢, o ¥ .

— H

This is a pre-order relation on covers of G .

A cover P — G 1is called projective, if P is a
projective Artin-Schreier structure (see [5], Section 7).

REMARK 1.8: Let ¢ : H — G be a Frattini cover, and
y : P — G a projective cover. Then there exists a mor-
phism y : P — H such that ¢ o y = ¢y . By Lemma 1.3, ¥y

is a cover; hence Vy = o .
This observation motivates the following proposition.

PROPOSITION 1.9: Let G be an Artin-Schreier structure.

There exists an Artin-Schreier structure G and a cover

® : 8 — G, unique up to an isomorphism, which satisfies

the following equivalent conditions:
(i) ® is a projective Frattini cover of G .
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the largest Frattini cover of G .

(i) o
(iii) o

o &
n |n

the smallest projective cover of G .

Proof: The proof naturally divides into three parts.

Part I. The construction of the largest Frattini cover o
of G .

There exists a projective Artin-Schreier structure P
and a cover ¢  : P — G . Indeed, by [5], Corollary 10.3
we may assume that G = G(F/E) , where F 1is a Galois ex-
tension of a PRC field E ; by [5], Theorem 10.1, G(E) is
projective and by [5], Example 3.4 the restriction map
Resp : G(E) — G(F/E) 4is a cover. Fix P and ¢, and let
L = Ker ¢, ; with no loss G =P/L and ¢, is the quo-
tient map. Let

F={KJ4P|K £L and P/K — P/L is a Frattini cover}

By Remark 1.8, every Frattini cover of G is smaller
than ©g hence is isomorphic to P/K — P/L , for some
K € F . This, together with Lemma 1.7 (iii), implies that
for every K1,K2 € F there is a K € F such that
K = K1 n K2 . Thus (E/KIK € F} constitutes an inverse
system of Frattini covers of P/L . It is easily seen, that
its inverse limit - which is P/K , where K is the inter-
section of elements of F - is also a Frattini cover (i.e.,
K€E€F). Let G=~P/K and let ¢ : P/K — P/L be the quo-
tient map induced by the inclusion K = L . By the defini-
tion of K , @ is larger than every Frattini cover of G .

Part II. The uniqueness of ¢ .

Suppose that a cover 51 : §1 — G =P/L of G also
satisfies (ii). Then © 20 i.e., there is a cover
v s §1 — P/K such that 51 =9 o ¥ ; but 51 is a
Frattini cover, hence so is ¢ , by Lemma 1.2. We claim
that ¢y is an isomorphism.

Indeed, the quotient map p : P — P/K 1is a projec-
tive cover, hence by Remark 1.8 there is a cover
Py B— §1 such that p =y o p; . Let K, = Ker p; .
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With no loss we may assume that §1 = B/K1 and that p,
is the quotient map P — P/K, .

The equation p = ¢ o P, implies that K, <= K and
that ¢ 1is the quotient map g/K1 — P/K induced by the
inclusion K; < K . The equation 51 = o y implies that
®q 1is the quotient map P/K; — B/L . Thus K, €F,
whence K = K1 » by the definition of K . Therefore
K = K1 ¢ in particular ¢ is an isomorphism.

Part III. The equivalence of the conditions (i), (ii),
(iidi).
(1) => (ii) and (i) => (iii): follow from Remark 1.8.
(i1) => (i): Let a : B — A be a cover of Artin-Schreier
structures and let ¢ : G — A be a morphism. We have to
find a morphism y : G — B such that a« o y = ¢ .
By Lemma 1.7 (i) there exists an Artin-Schreier struc-

ture G, and a commutative diagram

I
27
[9]

>
7

|
—
<

(5) B ®

|

—_—
¢}

1>

in which ¢ is a Frattini cover. By Part II, y is an iso-
morphism. Let y = B o w_1 ; then a oy =0 , by (5).
(1i1i) => (i): By Part I there exists the largest Frattini
cover ¢, : G, — G of G . By (ii) => (i) , ¢ is a pro-
jective cover. Therefore o = 51 , i.e., there is a cover
0: Gy — G such that 51 =@ o 0 : Now 51 is a Frattini
cover, hence so is ¢ , by Lemma 1.2. //

The following lemma gives an example of a Frattini

cover.

LEMMA 1.10: If H 1is an Artin-Schreier structure and
¢(H) is the Frattini subgroup of H , then the quotient
map ¢ : H — H/¢(H) is a Frattini cover.
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Proof: ILet H < H . If H = H , then there exists an
x € X(H) \ X(H)) . Moreover, x° € X(H) \ X(H)) for all
o € H, since X(go) is closed under the action of H .
Thus o(x) ¢ o(X(H))) , since o '(o(x)) = {x°|o € H) .
If Ho # H , then Ho¢(H) # H , hence w(Ho) # H/o(H) .

It follows in both cases that resgow : H) — H/¢(H)
is not an epimorphism. Therefore ¢ 1is a Frattini cover.//

An Artin-Schreier structure is called Frattini-

H
trivial, if every Frattini cover H — G is an isomorphism.

By Lemma 1.10, the Frattini subgroup ¢(H) of H is
trivial, if H 1is Frattini-trivial. The converse statement
is not true (in contrary to the analogue in [6], Section 2):

EXAMPLE: There exists an Artin-Schreier structure H
which is not Frattini-trivial, but ¢(H) =1 .

Proof: Let H = (z/zz)2 and let X, and X, be two dis-
joint sets, each of two elements. Let €or€97€) be the in-
volutions of H and put H' = (52) . Define

d : Xo Y X, — H by d(Xo) = {eo) i d(X1) = (51) . The
group H acts on Xo U X1 in the following way: €y acts
trivially on xi and non-trivially on x1_i , for i =0,1.
It is easily verified that H = (H,H',Xj ¥ X, 4, By is

an Artin-Schreier structure, and the quotient map

H — H/H' 1is a Frattini cover. Thus H is not Frattini-

trivial, although ¢(H) =1 .

LEMMA 1.11: Let B, , B, and C be Artin-Schreier struc-
tures, B, Frattini-trivial. Let ¢, : C — B, be a
Frattini cover of B, , and let vy, : C — B, be an epi-
morphism. Then there exists a unique epimorphism

™ 2 EZ — §1 such that m o wz = w1 .

Proof: By Lemma 1.5 there exists a commutative diagram of
epimorphisms (2) with a cartesian square (1). Now wz
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is a Frattini cover, hence so is Py and, by Lemma 1.4,
also m, . But B, 1is Frattini-trivial, hence m, is an
-1

isomorphism. Let 1w = LB o m, ; then = o by =¥y . //

2. CODING OF GRAPHS.

Let us fix for a moment a Boolean space X . For a
profinite group G' define G = (e) x G' , where (e) &
= Z/2Z . Let G act on the Boolean space X x G' by

(xlg)h = (x,g)eh = (x,gh) , for x € X and g,h € G' .

Finally define 4 : X x G' — G by d(x,9) = € . Then

F(X,G') = G = (G,G',X x G' -%» @)

is an Artin-Schreier structure, and X(G)/G' = X .

In this way we obtain a functor F(X,*) from the cat-
egory of profinite groups to the category of Artin-Schreier
structures G with the property X(G)/G' == X . Moreover:
if ¢ 1is an epimorphism (embedding) of profinite.groups,
then F(X,¢) 1is a cover (embedding) of Artin-Schreier
structures.

To simplify the notation, we often omit the reference
to X and write just F(G') , F(o) .

LEMMA 2.71: Let G' be a profinite group. Then F(G') is
Frattini-trivial if and only if the Frattini subgroup ¢(G')
of G' 1is trivial.

Proof: The 'only if' part is proved in Lemma 1.10. Con-
versely, assume that ¢(G') = 1 and let ¢ : F(G') — H
be a cover, which is not an isomorphism. Let K = Ker ¢
(clearly 1 # K 4 G' ), and let ¢ : G' — G'/K be the
quotient map. Then the kernel of F(¢) : F(G') — F(G'/K)
is K , hence we may assume that H = F(G'/K) and

¥y = F(¢) . There exists a maximal open subgroup M' of G’
such that K ¢ M' (since K £ ¢(G') ); let i : M' — G'
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be the inclusion and ¢_ : M' — G'/K the restriction of

o
® to M' . Then 0y = @ 0 i , and ¢, 1is an epimorphism,
since M'K = G' . Thus we have a commutative diagram
v = F(o)
F(G') -> F(G'/K)
F(i ////§7;:?
F(M')

in which F(i) is an embedding (thus with no loss

F(M') < F(G') ) and F(wo) (which may be regarded as
resF(M,)w ) is a cover. Thus ¢ 1is not a Frattini cover.
Therefore F(G') is Frattini-trivial. //

REMARK 2.2: Let L/K be a Galois extension and G a pro-

finite group. Then G(L/K) = F(X,G) if and only if:

(1) J-1 €L and ,/~T ¢ K

(ii) X(K) = X ,

(iii) there exists a totally real Galois extension LSt
of K such that G(L/K) =G and L = LO(J:T) .

We shall eventually use the functor F = F(X,+) to
prove the undecidability of the theory of formally real PRC
fields, relying on the appropriate analogue in the category
of PAC fields (Cherlin, v.d. Dries and Macintyre [1] and
Ershov [3]).

We commence by investigation of certain graphs.

A graph is a non-empty set with an irreflexive symmet-

ric binary relation.

We fix two finite groups A , B and use them to de-
fine some graphs.

Let G be a profinite group. Let IG be the set of
all open N 4 G such that G/N = A . Define a binary re-
lation RG on IG : for N.‘,N2 € IG let (N1,N2) € RG
if and only if N1 # N2 and there exists an open N 4 G
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such that N = N1 n N2 and G/N = B . Clearly, if IG # 0,
then T, = (IG,RG) is a graph.
Analogously, let G be an Artin-Schreier structure

and X a Boolean space. Let IG X be the set of all open
B

N 4 G such that N = G' and G/N = F(X,A) . Define a bi-

nary relation RG,X on IG,X : for N1,N2 € Ig,x let

(N1,N2) € R, if and only if N, # N, and there exists
__'
an open N 4 G such that N <N, n N, and G/N = F(X,B) .

Clearly, T ) is a graph, if Lo o k9 .
_I

c,x - {Ig,x'Rg,x

Let K be a field. Let Ix be the set of all Galois
extensions L of K (contained in a fixed separable clo-
sure K of K ) such that G(L/K) = F(X(K),A) . Let Ry
be the set of all (L1,L2) € Ip x Ix for which L, # L,
and there exists a Galois extension L € K of K such
that L,/L, €L and G(L/K) =« F(X(K),B) . Then T, =

K
= (IK,RK) is a graph, if I, # ¢ .

We comment on the connections between these structures
(the case of I.=¢ , I =@ , I, =@ is included):
G G,X K
1. Let G be a profinite group and X a Boolean space.
If N 4G is open, then G/N = A if and only if
F(X,G)/N == F(X,A) . Hence there exists a natural iso-
morphism rG = rF(X,G),x .
2, Let K be a field. The map L + G(L) from IK into
IE(K),X(K) defines an isomorphism Ty = PQ(K),X(K) .
3. Let X be a Boolean space and let ¢ : H — G be a
cover of Artin-Schreier structures. Then the injection
w* e I — I , given by o*(N) = w—1(N) , extends
G,X H,X o
to an embedding ¢ : PG x FH X (L.€.,
=> (6" (N]) 0" (N,)) for all
(Ny,Ny) € Rs,x = (0 (Nj)so (Ny)) € Ry x + for a

NN, € I ; ) . If ¢ is a Frattini cover and

__I
F(X,aA) , F(X,B) are Frattini-trivial (i.e., according
to Lemma 2.1, ¢(A) = ¢(B) = 1 ), then w* is an iso-

morphism, by Lemma 1.11.

The following lemma contains the main point of this
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section.

LEMMA 2.3: For a suitable choice of A,B we have:

If I 1is a graph, and X a Boolean space, there exist

(i) a profinite group G such that fg=T:
(ii) a PRC field K such that X(K) =X and T =T .
Proof: If (ii) is ignored, then the Lemma has been inde-

pendently proved by Ershov [3] and Cherlin, v.d. Dries and

Macintyre [1].

We note that in [3] the group B is the wreath pro-
duct of S with A x A , where A and S are two non-
isomorphic non-abelian simple groups.

In [1] two distinct odd primes p and q are consid-
ered. The group A 1is the dihedral group Dp of order 2p
and B 1is the semidirect product A x AP &/gZ . (The ac-
tion of A x A on &/gZ is defined by o(a1,22) _
= Pla1)-p(a2) » o €Z/qL , a;a, €A, where p is the
unique epimorphism from Dp onto {x1}.)

For the benefit of the reader we note that in both
cases there exist precisely two M1,M2 4 B such that
B/M1 = B/Mz >~ A (moreover, B/M1 n M2 = A x A ). If
TyeTy B — A are the two corresponding epimorphisms and
r = (I,R) , then G can be defined as

{(a,b) € AI X BR|n1(br) = ay and nz(br) =aj
for all r = (i,j) € R} .

Note also that the Frattini subgroups of A and B are 1.
(ii) Let G satisfy (i). Let H — F(X,G) be the projec-
tive Frattini cover of F(X,G) . By [5], Theorem 10.2 there
exists a PRC field K such that G(K) = H . Then X(K) ==

>~ X , since
X(K) = X(K/K)/G(R(/=T)) = X(H)/H' = (XxG')/G' =X .
By the remarks preceding this Lemma I, = T, == rF(x,G) =]

= FG . But rG >~ T , by (i), hence T = r
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3. UNDECIDABILITY.

Let £ be a non-empty family of Boolean spaces. De-
note by PRC(E) the class of PRC fields K such that
X(K) € £ .

THEOREM 3.1: The elementary theory of PRC(Z) is undeci-
dable.

Proof: Let L (R) be the language of the first order pre-
dicate calculus, whose signature consists of one binary re-
lation symbol R (in particular, L(R) does not possess
the equality sign). The elementary theory of graphs in
L(R) 1is undecidable ([4], Theorem 3.3.3). We shall inter-
pret this theory in the theory of PRC(E) .

Let L be the elementary language of fields. If K

is a field, k an integer and a = (a1,...,ak) € Kk , we

denote
_ mK k-1 _
fa =T +a1T +to.otay and Ka = K[T]/(fa) .
Fix A,B as in Lemma 2.3 and denote m = |A|l , n =
= |B| . Our aim is to construct (in a primitive recursive

way) for every formula ¢(Y,Z,...) in L(R) , with free
variables Y,Z,... , a formula w'(Y1,...,Ym,z1,...,Zm,...)
in L[ such that for every PRC field K and all m-tuples
a,b,... € K' we have: if Ka(J:T),Kb(J:T),... € I , then

(1) KF o'(ab...) <=> T F w(Ka(ﬁ),Kb(J—T),...) A

To do this, consider first a finite group G . We can
find a formula “G(Y1""'Y|G|%G|in L such that for every
PRC field K and every a € K : KEF aG(a) if and only
if
(1) fa(T) is irreducible over K ;

(i1) K /K is a Galois extension and G(Ka/K) ~ G ;
(i11) /=T € K ;

(iv) Ka/K is totally real, i.e.,
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(iv") fa(T) has a root (necessarily simple) in the real
closure of (K,P) , for every P € X(K) .

Indeed, for (i), (ii), (iii) see, e.g., the proof of [7],
Lemma 5.3; for (iv') see Prestel [8], the proof of Theorem
4.1.

Remark 2.2 implies that K E aG(a) if and only if
G(K, W~=T)/K) = F(X(K),G) .

Next, using the Tschirnhaus transform, we construct
for every integer r a formula Br(Y1""'Ym'Z1""Zr) in
L such that for every field K and every a € K" y C € KE
we have: if fa,fc are irreducible over K , then:

K E Br(a,c) <=> there exists a K-embedding
K, W=T) — K_ (/1) .

The construction ¢ > ¢' is carried out by induc-
tion on the structure of ¢ . If ¢ is R(Y,Z) , we define
w'(Y1,...,Ym,Z1,...,Zm) to be

(3U1,-..,Un) GB(E) A Bn(XIH) A Bn(glg) A 1Bm(XIE)

If w1', wz', ¢' have already been defined, we let

log Vool =0," Vo,' 5 [q0]" = q0';
[(3D) 01" = (3¥q,..,¥ ) [, (X)) A o' (D]

It follows from the definitions, that our formula ¢' has
the required property.

Lemma 2.3 implies that a sentence ¢ € L(R) 1is true
in all graphs if and only if it is true in all PK  where
K € PRC(Z) , such that Iy # @ . By (1) this happens if and
only if

K E[(3Y) ay(¥)] Ao, for all K € PRC(E) .

Therefore, if the theory of PRC(E) were decidable, we
would obtain a decision procedure for the theory of graphs,
a contradiction. //
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