INTRODUCTION INTO RIGID ANALYTIC GEOMETRY

Course notes (in progress) for a course given at Tel Aviv University
in Fall 2006
BY
Dan Haran

1. Valuation Theory

Only rank 1 valuation, that is, valuations with valuation group contained in \mathbb{R}^{+}.
ExERCISE 1.1:
(a) $|-a|=|a|$.
(b) $|a|<|b|$ implies $|a+b|=|b|$.

Proof: (a) $|-a|^{2}=\left|(-a)^{2}\right|=|a|^{2}$, hence $|-a|=|a|$.
(b) On one hand $|a+b| \leq \max (|a|,|b|)=|b|$. If $|a+b|<|b|$, then $|b|=\mid(a+b)+$ $(-a)|\leq \max (|a+b|,|a|)<|b|$, a contradiction.

Completion, definition of norm eqivalence of norms over complete fields, uniqueness of extension of valuations from complete fields to finite (and hence algebraic) extensions.

Definition 1.2: Let $(k,| |)$ be a valued field.
(a) $k^{0}=\{a \in k| | a \mid \leq 1\}$ is the valuation ring of $|\mid$.

It is a valuation subring of k, that is, for each $a \in k$ either $a \in k^{0}$ or $k^{-1} \in k^{0}$.
(b) $k^{00}=\{a \in k| | a \mid<1\}$ is the (unique) maximal ideal of k^{0}, because
(c) $U=k^{0} \backslash k^{00}=\{a \in k| | a \mid=1\}=\left(k^{0}\right)^{\times}$.
(d) $\bar{k}=k^{0} / k^{00}$ is the residue field of $|\mid$.
(e) $\left|k^{\times}\right|=\left\{|a| \mid a \in k^{\times}\right\}$is the value group of $|\mid$.

Exercise 1.3: Compute the above objects for $k=\mathbb{Q}$ with p-adic valuation and for $k=k_{0}(t)$. (Notice that $\left|k^{\times}\right| \cong \mathbb{Z}$ - discrete valuation.)

Let k_{v} be the completion of k. Then $\overline{k_{v}}=\bar{k}$. Indeed, k is dense in k_{v}. Hence for each $b \in k_{v}$ with $|b| \leq 1$ there is $a \in k$ with $|b-a|<1$. In particular, $|a| \leq 1$.

If $|\mid$ is discrete, then $| k_{v}^{\times}\left|=\left|k^{\times}\right|\right.$. Indeed, if $\left\{a_{n}\right\}$ is a Cauchy sequence in k, then $\lim \left|a_{n}\right|=\left|a_{m}\right|$ for some m or $\lim \left|a_{n}\right|=0$.

How does $k_{v}=\mathbb{Q}_{p}$ look like? Let $b \in k_{v}^{0}$. Then there is a unique $a_{0} \in\{0,1, \ldots, p-$ $1\} \subseteq \mathbb{Z}$ such that $\bar{a}_{0}=\bar{b} \in \bar{k}$, that is $\left|a_{0}-b\right|<1$. Thus $b=a_{0}+p b_{1}$, where, $b_{1} \in k_{v}^{0}$. Again, there is a uniqe $a_{1} \in\{0,1, \ldots, p-1\}$ such that $\left|a_{1}-b_{1}\right|<1$. Thus $b=a_{0}+p a_{1}+p^{2} b_{2}$, where, $b_{2} \in k_{v}^{0}$. By induction, $b=\sum_{n=0}^{\infty} a_{n} p^{n}$.

For a general $b \in \mathbb{Q}_{p}$ there is $m \geq 0$ such that $p^{m} b \in k_{v}^{0}$, that is, $b=p^{-m} b^{\prime}$, where $b^{\prime} \in k_{v}^{0}$. So $b=\sum_{n=N}^{\infty} a_{n} p^{n}$, where $N \in \mathbb{Z}$. (This is just like the usual p-adic expansion of numbers, only infinite; the addition and multiplication are the same.) Notice that $\left(k_{v}\right)^{0}=\mathbb{Z}_{p}=\left\{\sum_{n=0}^{\infty} a_{n} p^{n} \mid a_{n} \in\{0,1, \ldots, p-1\}\right\}$.

Similarly, the completion of $k_{0}(t)$ is $k_{0}((t))=\left\{\sum_{n=N}^{\infty} a_{n} t^{n} \mid a_{n} \in k_{0}, N \in \mathbb{Z}\right\}$.

2. Banach Spaces

(Some theorems that should be here are at the end of this section.)
Recall the following theorem

Baire Category Theorem: Let X be a nonempty complete metric space, and let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a sequence of closed subsets of X such that $X=\bigcup_{i=1}^{\infty} X_{i}$. Then not each X_{i} has empty interior.

Proof: For $x \in X$ and for a positive number ε denote $B(x, \varepsilon)=\left\{x^{\prime} \in X \mid d\left(x, x^{\prime}\right)<\varepsilon\right\}$, the open ball around x of radius ε.

Assume that each X_{i} has empty interior. Then for each $x \in X$, each $\varepsilon>0$ and each i the point x is not in the interior of X_{i} and hence there is $x^{\prime} \in B(x, \varepsilon)$ such that $x^{\prime} \notin X_{i}$. As $B(x, \varepsilon)$ is open and X_{i} is closed, there is $\varepsilon^{\prime}>0$ such that $B\left(x^{\prime}, \varepsilon^{\prime}\right) \subseteq B(x, \varepsilon)$ and $B\left(x^{\prime}, \varepsilon^{\prime}\right) \cap X_{i}=\emptyset$.

Fix $x_{0} \in X$ and $\varepsilon_{0}>0$. Use the preceding paragraph to construct, by induction, a sequence $x_{1}, x_{2}, \ldots \in X$ and a sequence of positive numbers $\varepsilon_{1}, \varepsilon_{2}, \ldots$ such that
(a) $B\left(x_{i+1}, \varepsilon_{i+1}\right) \subseteq B\left(x_{i}, \varepsilon_{i} / 2\right) \subseteq B\left(x_{i}, \varepsilon_{i}\right)$,
(b) $B\left(x_{i+1}, \varepsilon_{i+1}\right) \cap X_{i}=\emptyset$,

By (a), $\left\{x_{i}\right\}_{i=1}^{\infty}$ is a Cauchy sequence in X, and hence converges to some $x \in X$. Let $i \geq 1$. As $x_{j} \in B\left(x_{i}, \varepsilon_{i} / 2\right)$ for all $j>i$, this x is in the closure of $B\left(x_{i}, \varepsilon_{i} / 2\right)$ and hence in $B\left(x_{i}, \varepsilon_{i}\right)$. By (b), $x \notin X_{i}$. This is a contradiction to $X=\bigcup_{i=1}^{\infty} X_{i}$.

The actions on a normed vector space (addition and multiplication with scalars) are continuous.

A complete vector space (over a complete field) is called a Banach space.
Banach Theorem 2.1: Let $T: V \rightarrow W$ be a surjective continuous linear map of Banach spaces over a complete field k. Then T is open.

Proof: Fix $\pi \in k$ with $0<|\pi|<1$.
Denote $V^{0}=\{v \in V \mid\|v\|<1\}$. This is an open subset of V; moreover, sets of the form $v+\pi^{n} V^{0}$ form a basis for the topology on V. Similarly put $W^{0}=\{w \in$ $W \mid\|w\|<1\}$. We have to show that the image of every open basic set in V is open
in W. Since $T\left(v+\pi^{n} V^{0}\right)=T(v)+\pi^{n} T\left(V^{0}\right)$, it is enough to show that $U:=T\left(V^{0}\right)$ is open in W. Equivalently, as U is an additive subgroup of W, show that 0 is an inner point of U.

Claim 1: 0 is an inner point of \bar{U}. Indeed, apply T to $V=\bigcup_{n=1}^{\infty} \pi^{-n} V^{0}$ to get $W=\bigcup_{n=1}^{\infty} \pi^{-n} U$ and hence $W=\bigcup_{n=1}^{\infty} \pi^{-n} \bar{U}$. By Baire's theorem there is n such that $\pi^{-n} \bar{U}$ has an inner point. Since $\pi^{-n} \bar{U}$ is homeomorphic to \bar{U}, also \bar{U} has an inner point u. Then $0=u-u$ is an inner point of $\bar{U}-u=\bar{U}$.

Thus there is $m \in \mathbb{N}$ such that $\pi^{m} W^{0} \subseteq \bar{U}$.
Claim 2: If $\pi^{m} W^{0} \subseteq \bar{U}$, then $\pi^{m+1} W^{0} \subseteq U$. Indeed, let $w \in \pi^{m+1} W^{0}$. We will construct a sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ in V^{0} such that

$$
\begin{equation*}
w-\sum_{i=1}^{n} \pi^{i} T\left(v_{i}\right) \in \pi^{n+m+1} W^{0} \tag{3}
\end{equation*}
$$

Let $n \geq 1$. Suppose that we have already constructed $v_{1}, v_{2}, \ldots, v_{n-1} \in V^{0}$ such that $w-\sum_{i=1}^{n-1} \pi^{i} T\left(v_{i}\right) \in \pi^{n+m} W^{0}$. (For $n=1$ this is the assumption $w \in \pi^{m+1} W^{0}$.) Thus there is $w^{\prime} \in \pi^{m} W^{0}$ such that

$$
\begin{equation*}
w-\sum_{i=1}^{n-1} \pi^{i} T\left(v_{i}\right)=\pi^{n} w^{\prime} \tag{4}
\end{equation*}
$$

But $w^{\prime} \in \pi^{m} W^{0} \subseteq \bar{U}=\overline{T\left(V^{0}\right)}$, hence there is $v_{n} \in V^{0}$ such that

$$
\begin{equation*}
w^{\prime}-T\left(v_{n}\right) \in \pi^{m+1} W^{0} \tag{5}
\end{equation*}
$$

Multiply (5) by π^{n} and add it to (4) - and get (3).
Clearly, $\left\{\sum_{i=1}^{n} \pi^{i} v_{i}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in V^{0}. Let $v \in V^{0}$ be its limit. Then $\sum_{i=1}^{n} \pi^{i} T\left(v_{i}\right)=T\left(\sum_{i=1}^{n} \pi^{i} v_{i}\right)$ converges to $T(v) \in T\left(V^{0}\right)=U$. But by (3), $\sum_{i=1}^{n} \pi^{i} T\left(v_{i}\right)$ converges to w. Thus $w \in U$.

Corollary 2.2: There is $C>0$ such that for every $w \in W$ there is $v \in V$ such that $T(v)=w$ and $\|v\| \leq C\|w\|$.

Proof: By Banach Theorem, there is $0<\delta<1$ such that

$$
\{w \in W \mid\|w\|<\delta\} \subseteq\{T(v) \mid v \in V,\|v\|<1\}
$$

That is, replacing w by $\frac{1}{a^{r}} w$, where $a \in k^{\times}$and $r \in \mathbb{Z}$, we have:
(1) If $w \in W$ such that $\|w\|<\delta\left|a^{r}\right|$, then there is $v \in V$ such that $w=T(v)$ and $\|v\|<\left|a^{r}\right|$.

Choose $a \in k$ such that $|a|>1$. Put $C=\frac{|a|}{\delta}$. Let $w \in W$. Then there is a unique $r \in \mathbb{Z}$ such that

$$
C^{-1}|a|^{r}=\delta|a|^{r-1}<\| w| | \leq \delta|a|^{r}=\delta\left|a^{r}\right|
$$

By (1) there is $v \in V$ such that $T(v)=w$ and

$$
\|v\|<|a|^{r}<C\|w\| .
$$

Corollary 2.3: Let $T: V \rightarrow W$ be a linear map of Banach spaces over a complete field k. Then T is continuous if and only if its graph $G=\{(v, T(v) \mid v \in V\}$ is closed in $V \times W=V \oplus W$.

Proof: Every continuous map $T: V \rightarrow W$ into a Hausdorff space has a closed graph G. Inded, let $(v, w) \in(V \times W) \backslash G$, that is $T(v) \neq w$. There are disjoint open neighbourhoods: W_{1} of $T(v)$ and W_{2} of w. The neighbourhood $T^{-1}\left(W_{1}\right) \times W_{2}$ of $(v, w) \in V \times W$ does not meet G.

Conversely, assume that G is closed. Then it is a complete k-subspace of $V \times W$. The projection $V \times W \rightarrow V$ induces a bijective continuous linear map $G \rightarrow V$. By Banach Theorem it is also open. Hence its inverse $V \rightarrow G$ is also continuous, hence so is its composition with the projection $V \times W \rightarrow W$. But this is T.

Definition 2.4: Let k be a complete field. A Banach algebra over k is a Banach space A which is also a commutative ring containing k and $\|1\|=1$ and $\|a b=\| a\|\cdot\| b \|$.

A Banach module over A is an A-module M with a norm $\|\|$ such that M is a Banach space over k and $\|a m\| \leq\|a\| \cdot\|m\|$ for all $a \in A$ and $m \in M$.

Theorem 2.5: Let M be a finitely generated Banach module over a Banach algebra A (over a complete field k). Assume that A is noetherian (every submodule of M is finitely generated). Then every submodule N of M is closed.

Proof: Let \tilde{N} be the closure of N in M; it is closed and hence complete. By the noetherianity, \tilde{N} has a finite set e_{1}, \ldots, e_{n} of generators. Define a norm on A^{n} by $\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|=\max \left(\left\|a_{1}\right\|, \ldots,\left\|a_{n}\right\|\right)$. Then A^{n} is Banach A-module (also a Banach algebra - one can produce examples of Banach algebras this way). The map $A^{n} \rightarrow$ \tilde{N} given by $\left(a_{1}, \ldots, a_{n}\right) \mapsto \sum_{i=1}^{n} a_{i} e_{i}$ is an A-homomorphism (in particular k-linear), continuous and surjective. By Banach Theorem there is $C>0$ such that every $x \in \tilde{N}$ can be written as $x=\sum_{i=1}^{n} a_{i} e_{i}$ with $\left\|a_{i}\right\| \leq C\|x\| . W \log C>1$.

Choose $f_{1}, \ldots, f_{n} \in N$ such that $\left\|f_{i}-e_{i}\right\| \leq \frac{1}{C^{2}}$.
Claim: $\hat{N}=\sum_{i=1}^{n} A f_{i}$ and hence $\hat{N}=N$.
Let $x \in \hat{N}$. We wil construct, by induction, convergent series in A

$$
a_{1}=\sum_{k=1}^{\infty} a_{1 k}, \quad a_{2}=\sum_{k=1}^{\infty} a_{2 k}, \quad, \ldots, \quad a_{n}=\sum_{k=1}^{\infty} a_{n k}
$$

such that $x=a_{1} f_{1}+\cdots+a_{n} f_{n}$. Suppose, by induction, that we have found $a_{i k}$ for $k<l$ such that

$$
\left\|x-\sum_{i=1}^{n}\left(\sum_{k=1}^{l-1} a_{i k}\right) f_{i}\right\| \leq C\|x\|
$$

(for $l=1$ this is obvious). Then there are $a_{i l} \in A$ such that

$$
x-\sum_{i=1}^{n}\left(\sum_{k=1}^{l-1} a_{i k}\right) f_{i}=\sum_{i=1}^{n} a_{i l} e_{i}
$$

and

$$
\left\|a_{i l}\right\| \leq C\left\|x-\sum_{i=1}^{n}\left(\sum_{k=1}^{l-1} a_{i k}\right)\right\| \leq C \frac{1}{C^{l-1}}\|x\|
$$

Hence

$$
\left\|\sum_{i=1}^{n} a_{i l} e_{i}-\sum_{i=1}^{n} a_{i l} f_{i}\right\|=\left\|\sum_{i=1}^{n} a_{i l}\left(e_{i}-f_{i}\right)\right\| \leq C \frac{1}{C^{l-1}}\|x\| \frac{1}{C^{2}}=\frac{1}{C^{l}}\|x\|
$$

ExERCISE 2.6: Let M be a finitely generated module over a noetherian Banach algebra A. Then M is a Banach module.

Proof: If $M=A^{m}$, put $\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|=\max _{i}\left\|a_{i}\right\|$. In the general case there is a surjective A-homomorphism $s: A^{n} \rightarrow M$. Put $\|s(x)\|=\inf \{\|x-y\| \| y \in \operatorname{Ker}(s)\}$. Now
show that this is a norm on M (here we use that $\operatorname{Ker}(s)$ is closed in $\left.A^{n}\right)$ and M is complete w.r.t it.

Corollary 2.7: Every A-homomorphism of finitely generated Banach A-modules is continuous.

Proof: Let M, N be two A-modules and let $u: M \rightarrow N$ be an A-homomorphism. Suppose first M is a free A-module with basis e_{1}, \ldots, e_{n} and $\left\|\sum a_{i} e_{i}\right\|=\max _{i}\left\|a_{i}\right\|$. Then

$$
\left\|u\left(\sum a_{i} e_{i}\right)\right\|=\left\|\sum a_{i} u\left(e_{i}\right)\right\| \leq \max \left\|a_{i} u\left(e_{i}\right)\right\| \leq \max \left\|a_{i}\right\| \cdot \max \left\|u\left(e_{i}\right)\right\|
$$

In the general case there is a surjective map $s: A^{n} \rightarrow M$. By the previous case s and $u \circ s$ are continuous. By Banach theorem s is open. It follows that u is continuous. (Take $U \subseteq N$ open; then $u^{-1}(U)=s\left(s^{-1}\left(u^{-1}(U)\right)\right)=s(u \circ s)^{-1}(U)$ is open.)

Definition 2.11: Let V be a vector space over a complete field k. Norm on a E is a function $\left\|\|: E \rightarrow \mathbb{R}\right.$ such that for all $v, v^{\prime} \in V$ and all $a \in k$
(a) $\|v\| \geq 0$.
(b) $\|v\|=0$ implies $v=0$.
(c) $\|a v\|=|a| \cdot\|v\|$.
(d) $\left\|v+v^{\prime}\right\| \leq \max \left(\|v\| \cdot\left\|v^{\prime}\right\|\right)$.

Excluding requirement (b) we get a semi-norm.
Two norms $\left\|\left\|_{1},\right\|\right\|_{2}$ on V are equivalent norms if there are positive constants C_{1}, C_{2} such that $C_{1}\|v\|_{1} \leq\|v\|_{2} \leq C_{2}\|v\|_{1}$ for all $v \in V$.

Example 2.12: If $\operatorname{dim} V=n<\infty$, and v_{1}, \ldots, v_{n} is its basis,

$$
\left\|\sum_{i=1}^{n} a_{i} v_{i}\right\|=\max _{i}\left|a_{i}\right|
$$

defines a norm on V.
Lemma 2.13: Let V be a vector space over a complete field k, let $v_{1}, \ldots, v_{n} \in V$ be linearly independent, and let $v^{(i)}=\sum_{j=1}^{n} a_{j}^{(i)} v_{j}$, for $j=1,2, \ldots$ be a Cauchy sequence in V. Then $\left\{a_{j}^{(i)}\right\}_{i=1}^{\infty}$ is a Cauchy sequence in k, for every $1 \leq j \leq n$.

Proof: By induction on n.

Corollay 2.13: In the above lemma,

$$
v^{(i)} \rightarrow 0 \leftrightarrow a_{j}^{(i)} \rightarrow 0 \text { for all } 1 \leq j \leq n
$$

Theorem 2.14: Let V be a finite dimensional vector space over a complete field k. Then any two norms on V are equivalent: There are positive constants C_{1}, C_{2} such that for every $v \in V$

$$
C_{1}\|v\|_{1} \leq\|v\|_{2} \leq C_{2}\|v\|_{1} .
$$

Corollay 2.15: Let E be an algebraic extension of a complete field k. Then the valuation $|\mid$ of k uniquely extends to a valuation of E. Moreover, if E / k is finite, then E is complete.

Proof: We do not prove the existence of the extension. We proved the completeness and the uniqueness. (Missing.)

3. Affinoids in the projective line

Let K be an algebraically closed valued field wrt to a non-archimedian (multiplicative) valuation $|\mid$. Notice that $| K^{\times} \mid$is dense in $[0, \infty)$.

Let $\mathbb{P}=\mathbb{P}^{1}(K)=(K \times K \backslash\{(0,0)\}) / \sim$ where $\left(x_{0}, x_{1}\right) \sim\left(y_{0}, y_{1}\right)$ if there is $a \in K^{\times}$such that $y_{0}=a x_{0}$ and $y_{1}=a x_{1}$.

Denote the equivalence class of $\left(x_{0}, x_{1}\right)$ in \mathbb{P} by $\left(x_{0}: x_{1}\right)$ and write $z=(z: 1)$ and $\infty=(1: 0)$. If $x_{1} \neq 0$, then $\left(x_{0}: x_{1}\right)=\left(\frac{x_{0}}{x_{1}}: 1\right)=\frac{x_{0}}{x_{1}}$. If $x_{1}=0$, then $x_{0} \neq 0$, and hence $\left(x_{0}: x_{1}\right)=(1: 0)=\infty$. Thus $\mathbb{P}=\mathbb{P}^{1}(K)=K \cup\{\infty\}$. We call \mathbb{P} the projective line.

Definition 3.1: A map $\varphi: \mathbb{P} \rightarrow \mathbb{P}$ is called an automorphism of \mathbb{P} if there exists a matrix $A \in \mathrm{Gl}_{2}(K)$ such that $\varphi(\mathbf{x})=A \mathbf{x}$.

EXERCISE 3.2: The set of automorphisms of \mathbb{P} is a group, isomorphic to $\mathrm{GPl}_{2}(K)$.
Given distinct $z_{1}, z_{2}, z_{3} \in \mathbb{P}$ and distinct $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime} \in \mathbb{P}$, there is a unique automorphism φ of \mathbb{P} such that $\varphi\left(z_{i}\right)=z_{i}^{\prime}$, for $i=1,2,3$.

Definition 3.3: A subset D of \mathbb{P} is a closed [open] disk if there are $a \in K$ and $\rho \in\left|K^{\times}\right|$ such that

$$
D=\{z \in K| | z-a \mid \leq[<] \rho\} \quad \text { or } \quad D=\{z \in K| | z-a \mid \geq[>] \rho\} \cup\{\infty\} .
$$

ExErcise 3.4: (i) Let $D=\{z \in \mathbb{P}| | z-a \mid<\rho\}$. If $b \in D$, then $D=\{z \in \mathbb{P}| | z-b \mid<$ $\rho\}$.
(ii) Let $D=\{z \in \mathbb{P}| | z-a \mid>\rho\}$. If $b \notin D$, then $D=\{z \in \mathbb{P}| | z-b \mid>\rho\}$.
(iii) Analogous statements hold for closed disks.

Lemma 3.5: Let D be an open (closed) disk, and let T be an automorphism of \mathbb{P}. Then $T(D)$ is an open (closed) disk.

Proof: Every automorphism of \mathbb{P} is the product of stretchings $\left(z \mapsto a z\right.$ with $\left.a \in K^{\times}\right)$, translations $(z \mapsto z+b$ with $b \in K)$, and the inversion $\left(z \mapsto z^{-1}\right)$. (These maps are defined by elementary matrices over K, and every elementary matrix over K is of one
of these types, except for $\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right)$. But $\left.\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & c \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$. Thus we may assume that T is one of these three types.

If T is either stretching or translation, the assertion is obvious. Assume therefore that T is $z \mapsto z^{-1}$. We may also assume that $\infty \notin D$. Otherwise $\mathbb{P} \backslash D$ is a closed (open) disk that does not contain ∞. If $T(\mathbb{P} \backslash D)=\mathbb{P} \backslash T(D)$ is a closed (open) disk, then $T(D)$ will be an open (closed) disk.

This leaves us with four cases. Let \triangleleft be one of the symbols $<, \leq$, and let \triangleleft^{\prime} be the other one. This notation allows us to deal with a pair of cases simultaneously.
(1) $D=\{z \in \mathbb{P}| | z-a \mid \triangleleft \rho\}$ and $|a| \triangleleft \rho$. Then $0 \in D$, and hence by Exercise 3.4, $D=\{z \in \mathbb{P}| | z \mid \triangleleft \rho\}$. In this case $T(D)=\left\{\left.w\left|\frac{1}{\rho} \triangleleft\right| w \right\rvert\,\right\}$, a disk.
(2) $D=\{z \in \mathbb{P}| | z-a \mid \triangleleft \rho\}$ and $\rho \triangleleft^{\prime}|a|$. Then every $z \in D$ satisfies $|z-a|<|a|$, and hence $|z|=|a|$. Put $D^{\prime}=\left\{w| | w-\frac{1}{a} \left\lvert\, \triangleleft \frac{\rho}{|a|^{2}}\right.\right\}$. As $\frac{\rho}{|a|^{2}} \triangleleft^{\prime}\left|\frac{1}{a}\right|$, every $w \in D^{\prime}$ satisfies $\left|w-\frac{1}{a}\right|<\frac{1}{|a|}$, and hence $|w|=\frac{1}{|a|}$. Therefore

$$
\begin{aligned}
T(D)= & \left\{w\left|\left|\frac{1}{w}-a\right| \triangleleft \rho,\left|\frac{1}{w}\right|=|a|\right\}=\left\{w| | w-\frac{1}{a}\left|\triangleleft \frac{\rho}{|a|}\right| w\left|,|w|=\frac{1}{|a|}\right\}=\right.\right. \\
& \left\{w\left|\left|w-\frac{1}{a}\right| \triangleleft \frac{\rho}{|a|^{2}},|w|=\frac{1}{|a|}\right\}=D^{\prime} .\right.
\end{aligned}
$$

Lemma 3.6: Let D_{1}, D_{2} be two disks (open or closed, not necessarily of the same type!) such that $D_{1} \cap D_{2} \neq \emptyset$ and $D_{1} \cup D_{2} \neq \mathbb{P}$. Then either $D_{1} \subseteq D_{2}$ or $D_{2} \subseteq D_{1}$.

Proof: Using an autormorphism of \mathbb{P} we may assume that $\infty \notin D_{1}, D_{2}$. Thus

$$
D_{i}=\left\{z \in \mathbb{P}| | z-a_{i} \mid<\rho_{i}\right\} \quad \text { or } \quad D_{i}=\left\{z \in \mathbb{P}| | z-a_{i} \mid \leq \rho_{i}\right\}, \quad i=1,2 .
$$

Let $a \in D_{1} \cap D_{2}$. By Exercise 3.4, wlog $a_{1}=a_{2}=a$. The assertion follows. (If $\rho_{i}<\rho_{j}$, then $D_{i} \subseteq D_{j}$; if $\rho_{i}=\rho_{j}$, and D_{i} is open or D_{j} closed, then $D_{i} \subseteq D_{j}$.)

Corollary 3.7: Let $F^{\prime} \neq \mathbb{P}$ be the union of finitely many disks. Then F^{\prime} is the union of finitely many disjoint disks.

Proof: Let C_{1}, \ldots, C_{m} be disks such that $F^{\prime}=\bigcup_{j=1}^{m} C_{j}$. Let D_{1}, \ldots, D_{r} be the maximal among C_{1}, \ldots, C_{m} (with respect to inclusion of sets). Then $F^{\prime}=\bigcup_{i=1}^{r} D_{i}$. For $i \neq j$, neither $D_{i} \subseteq D_{j}$ nor $D_{j} \subseteq D_{i}$, and $D_{i} \cup D_{j} \neq \mathbb{P}$. Therefore, by Lemma 3.6, $D_{i} \cap D_{j}=\emptyset$.

Definition 3.8:

(a) A non-empty subset of \mathbb{P} is called a connected affinoid, if it is the intersection of finitely many closed disks. Equivalently, the set is the complement of the union of finitely many open disks and the union is not \mathbb{P}.
(b) An affinoid is the union of finitely many connected affinoids.

The value group $\left|K^{\times}\right|$is not discrete, and hence it has infinitely many values between ρ_{1} and ρ_{2}. Therefore R is infinite.

Lemma 3.9: Let D_{0}, \ldots, D_{n} be disks. If $D_{i} \cup D_{j} \neq \mathbb{P}$ for all i, j, then $\bigcup_{i=0}^{n} D_{i} \neq \mathbb{P}$; moreover, $\mathbb{P} \backslash \bigcup_{i=0}^{n} D_{i}$ is an infinite set.

Proof: Replace D_{0}, \ldots, D_{n} by the maximal disks among them to assume that there are no inclusion among them. By Lemma 3.6, D_{0}, \ldots, D_{n} are disjoint. By Lemma 3.5 we may assume that either $D_{0}=\{z \in \mathbb{P}| | z \mid \geq 1\}$ or $D_{0}=\{z \in \mathbb{P}| | z \mid>1\}$. Let $1 \leq i \leq n$. As $D_{0} \cap D_{i}=\emptyset$, we have $D_{i}=\left\{z \in K| | z-a_{i} \mid \triangleleft_{i} \rho_{i}\right\}$, where \triangleleft_{i} is either $<$ or \leq.

Part A: $D_{0}=\{z \in \mathbb{P}| | z \mid \geq 1\}$. Let $1 \leq i \leq n$. As $D_{0} \cap D_{i}=\emptyset$, we have $\left|a_{i}\right|<1$. As $D_{0} \cup D_{i} \neq \mathbb{P}$, also $\rho_{i}<1$. Thus $\pi:=\max _{1 \leq i \leq n}\left(\left|a_{i}\right|, \rho_{i}\right)$ is smaller than 1 , and hence $\left\{z \in K|\pi<|z|<1\}\right.$ is contained in $\mathbb{P} \backslash \bigcup_{i=0}^{n} D_{i}$.

Part B: $D_{0}=\{z \in \mathbb{P}| | z \mid>1\}$. Let $1 \leq i \leq n$. As $D_{0} \cap D_{i}=\emptyset$, we have $\left|a_{i}\right|, \rho_{i} \leq$ 1. However, if $\rho_{i}=1$ and \triangleleft_{i} is \leq, then $D_{i}=\{z \in K| | z \mid \leq 1\}$, which gives the contradiction $D_{0} \cup D_{i}=\mathbb{P}$. Therefore either $\rho_{i} \leq 1$ or \triangleleft_{i} is $<$, and hence $D_{i} \subseteq\{z \in$ $K\left|\left|z-a_{i}\right|<1\right\}$. Thus $\mathbb{P} \backslash \bigcup_{i=0}^{n} D_{i}$ contains the set

$$
\begin{aligned}
U & :=\left\{z \in K|\quad| z\left|=1,\left|z-a_{i}\right|=1,1 \leq i \leq n\right\}\right. \\
& =\left\{z \in K^{0} \mid \bar{z} \neq 0, \bar{a}_{1}, \ldots, \bar{a}_{r}\right\}
\end{aligned}
$$

which is infinite, since \bar{K} is infinite.
Corollary 3.10: Let D_{1}, \ldots, D_{n} and C_{1}, \ldots, C_{m} be disks.
(a) If $D_{i} \cap D_{j} \neq \emptyset$ for all i, j, then $\bigcap_{i=1}^{n} D_{i} \neq \emptyset$.
(b) If $\emptyset \neq \bigcap_{i=1}^{n} D_{i} \subseteq \bigcup_{j=1}^{m} C_{j} \neq \mathbb{P}$, then there are i and j such that $D_{i} \subseteq C_{j}$.
(c) If D_{1}, \ldots, D_{n} are disjoint, of the same type (closed or open), then \mathbb{P} is not their disjoint union.
(d) If $\bigcup_{i=1}^{n} D_{i}=\bigcup_{j=1}^{m} C_{j} \neq \mathbb{P}$, and there are no inclusions among the D_{i} and no inclusions among the C_{j}, then $n=m$ and, up to a permutation, $D_{i}=C_{i}$, for $i=1, \ldots, m$.

Proof: (a) Apply Lemma 3.9 to the disks $\mathbb{P} \backslash D_{1}, \ldots, \mathbb{P} \backslash D_{1}$.
(b) If $\bigcap_{i=1}^{n} D_{i} \subseteq \bigcup_{j=1}^{m} C_{j}$, then $\mathbb{P}=\bigcup_{i=1}^{n}\left(\mathbb{P} \backslash D_{i}\right) \cup \bigcup_{j=1}^{m} C_{j}$. By Lemma 3.9 either $\left(\mathbb{P} \backslash D_{i}\right) \cup\left(\mathbb{P} \backslash D_{i^{\prime}}\right)=\mathbb{P}$ for some i, i^{\prime}, or $C_{j} \cup C_{j^{\prime}}=\mathbb{P}$ for some j, j^{\prime}, or $\left(\mathbb{P} \backslash D_{i}\right) \cup C_{j}=\mathbb{P}$ for some i, j. The first option gives $D_{i} \cap D_{i^{\prime}}=\emptyset$, a contradiction to $\emptyset \neq \bigcap_{i=1}^{n} D_{i}$. The second option contradicts $\bigcup_{j=1}^{m} C_{j} \neq \mathbb{P}$. The third option gives $D_{i} \subseteq C_{j}$.
(c) We have $D_{i} \cup D_{k} \neq \mathbb{P}$ for all i, k (otherwise $D_{i}=D_{k}^{c}$ are of the same type). Apply Lemma 3.9.
(d) Fix $1 \leq i \leq m$. As $\emptyset \neq D_{i} \subseteq \bigcup_{j=1}^{n} C_{j} \neq \mathbb{P}$, by (b) there is $1 \leq j \leq n$ such that $D_{i} \subseteq C_{j}$. Similarly, there is $1 \leq i^{\prime} \leq m$ such that $C_{j} \subseteq D_{i^{\prime}}$. Thus $D_{i} \subseteq D_{i^{\prime}}$. By assumption, this implies that $i=i^{\prime}$. Hence $D_{i}=C_{j}$.

Proposition 3.11: Let F be a connected affinoid, and let F_{1}, \ldots, F_{m} be disjoint connected affinoids, $m \geq 2$. Then $F \neq \bigcup_{i=1}^{m} F_{i}$.

Proof: Write F as $F=\mathbb{P} \backslash \bigcup_{j=1}^{p} C_{j}$, where C_{j} are disjoint open disks, and $p \geq 0$.
Similarly, for each $1 \leq i \leq m$ we have $F_{i}=\mathbb{P} \backslash \bigcup_{t_{i}=1}^{n_{i}} D_{i t_{i}}$, where the $D_{i t_{i}}$ are open disks.

Assume that $F=\bigcup_{i=1}^{m} F_{i}$. Let $\mathbf{T}=\left\{\mathbf{t}=\left(t_{1}, \ldots, t_{m}\right) \mid 1 \leq t_{i} \leq n_{i}\right\}$. Then

$$
\begin{equation*}
\mathbb{P} \neq \bigcup_{j=1}^{p} C_{j}=\left(\bigcup_{t_{1}=1}^{n_{1}} D_{1 t_{1}}\right) \cap \cdots \cap\left(\bigcup_{t_{m}=1}^{n_{m}} D_{m t_{m}}\right)=\bigcup_{\mathbf{t} \in \mathbf{T}} D_{\mathbf{t}} \tag{3}
\end{equation*}
$$

where $D_{\mathbf{t}}=D_{1 t_{1}} \cap \cdots \cap D_{m t_{m}}$, for each $\mathbf{t} \in \mathbf{T}$.
Part A: If $D_{\mathbf{t}} \neq \emptyset$, then there is $1 \leq k \leq m$ such that $D_{k t_{k}} \subseteq D_{i t_{i}}$ for all $1 \leq i \leq m$ and hence $D_{\mathbf{t}}=D_{k t_{k}}$.

Indeed, $D_{\mathbf{t}} \subseteq \bigcup_{j} C_{j} \neq \mathbb{P}$, so by Corollary $3.10(\mathrm{~b})$ there are $1 \leq k \leq m$ and $1 \leq j \leq p$ such that $D_{k t_{k}} \subseteq C_{j}$. In particular, $D_{\mathbf{t}} \subseteq C_{j}$. As C_{1}, \ldots, C_{p} are disjoint, this
j is uniquely determined by \mathbf{t}. Let $1 \leq i \leq m$. As $F_{i} \subseteq F$ and hence $C_{j} \subseteq \bigcup_{s_{i}=1}^{n_{i}} D_{i s_{i}}$, by Corollary 3.10 (b) there is (a unique) s_{i} such that $C_{j} \subseteq D_{i s_{i}}$. Thus there is a unique $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right) \in \mathbf{T}$ such that $C_{j} \subseteq D_{\mathbf{s}}$. We get $D_{\mathbf{t}} \subseteq D_{k t_{k}} \subseteq C_{j} \subseteq D_{\mathbf{s}}$. But $\mathbf{t}=\mathbf{s}$, since $D_{\mathbf{t}} \cap D_{\mathbf{s}} \neq \emptyset$. Therefore $D_{\mathbf{t}}=D_{k t_{k}}$, which proves the claim.

Part B: For all $1 \leq i<j \leq m$ there are t_{i} and t_{j} such that $D_{i t_{i}} \cup D_{j t_{j}}=\mathbb{P}$. Indeed, $F_{i} \cap F_{j}=\emptyset$, that is, $\bigcup_{t_{i}=1}^{n_{i}} D_{i t_{i}} \cup \bigcup_{t_{j}=1}^{n_{j}} D_{j t_{j}}=\mathbb{P}$. By Lemma 3.9, \mathbb{P} is the union of two of the disks on the left handed side. As $\bigcup_{t_{i}=1}^{n_{i}} D_{i t_{i}}, \bigcup_{t_{j}=1}^{n_{j}} D_{j t_{j}} \neq \mathbb{P}$, one of the two disks is of the form $D_{i t_{i}}$ and the other one of the form $D_{j t_{j}}$.

Part C: Construction of a special $\mathbf{t} \in T$. By Part B there are t_{1} and t_{2} such that $D_{1 t_{1}} \cup D_{2 t_{2}}=\mathbb{P}$. Choose such t_{1}. For $2 \leq i \leq m$ choose t_{i} in the following way:
(a) If there exists t_{i} such that $D_{1 t_{1}} \cup D_{i t_{i}}=\mathbb{P},-$ choose such t_{i}.
(b) Otherwise, by Part B , there are $t_{1}^{\prime} \neq t_{1}$ and t_{i} such that $D_{1 t_{1}^{\prime}} \cup D_{i t_{i}}=\mathbb{P}$. Choose such t_{i}. As $D_{1 t_{1}} \cap D_{1 t_{1}^{\prime}}=\emptyset$, we have $D_{1 t_{1}} \subseteq D_{1 t_{1}^{\prime}}^{c} \subseteq D_{i t_{i}}$. Thus we have chosen t_{i} such that $D_{1 t_{1}} \subseteq D_{i t_{i}}$.

Part D: There is no i such that $D_{i t_{i}} \subseteq D_{1 t_{1}}, \ldots, D_{m t_{m}}$. Observe that (a) applies to $i=2$, that is, $D_{1 t_{1}} \cup D_{2 t_{2}}=\mathbb{P}$. Thus $D_{1 t_{1}} \nsubseteq D_{2 t_{2}}$. It follows that if i has been chosen by (b), then also $D_{i t_{i}} \nsubseteq D_{2 t_{2}}$. If i has been chosen by (a), then $D_{i t_{i}} \nsubseteq D_{1 t_{1}}$.

Part E: $D_{\mathbf{t}} \neq \emptyset$. By Corollary 3.10(a) it suffices to show for $1 \leq i, j \leq m$ that $D_{i t_{i}} \cap D_{j t_{j}} \neq \emptyset$. Suppose first $j=1$. If t_{i} has been chosen by (a), then $D_{1 t_{1}} \cup D_{i t_{i}}=\mathbb{P}$, and hence $D_{1 t_{1}} \cap D_{i t_{i}} \neq \emptyset$. If t_{i} has been chosen by (b), then $D_{1 t_{1}} \subseteq D_{i t_{i}}$, and hence $D_{1 t_{1}} \cap D_{i t_{i}} \neq \emptyset$.

Now the general case: If t_{i} has been chosen by (b), then $D_{1 t_{1}} \subseteq D_{i t_{i}}$, hence by the previous case $D_{i t_{i}} \cap D_{j t_{j}} \neq \emptyset$. Similarly if t_{j} has been chosen by (b). If both t_{i} and t_{j} have been chosen by (a), then $D_{1 t_{1}} \cup D_{i t_{i}}=\mathbb{P}=D_{1 t_{1}} \cup D_{j t_{j}}$, and hence $\emptyset \neq \mathbb{P} \backslash D_{1 t_{1}} \subseteq D_{i t_{i}} \cap D_{j t_{j}}$.

Exercise 3.12: Let F_{1}, F_{2} be connected affinoids, $F_{1} \cap F_{2} \neq \emptyset$. Then both $F_{1} \cap F_{2}$ and $F_{1} \cup F_{2}$ are connected affinoids.

Proof: The first assertion is trivial. As for the second one, write $\mathbb{P} \backslash F_{1}$ and $\mathbb{P} \backslash F_{2}$ as
unions of open disks, say, $\mathbb{P} \backslash F_{1}=\bigcup_{i} D_{i}$ and $\mathbb{P} \backslash F_{2}=\bigcup_{j} E_{j}$. Then

$$
\mathbb{P} \backslash\left(F_{1} \cup F_{2}\right)=\left(\mathbb{P} \backslash F_{1}\right) \cap\left(\mathbb{P} \backslash F_{2}\right)=\bigcup_{i j} D_{i} \cap E_{j}
$$

The assumption $F_{1} \cap F_{2} \neq \emptyset$ implies that $D_{i} \cup E_{j} \neq \mathbb{P}$, for all i, j. By Lemma 3.6, $D_{i} \cap E_{j}$ is either empty or an open disk.

Theorem 3.13: Let $F \neq \mathbb{P}$ be an affinoid. There are unique connected affinoids F_{1}, \ldots, F_{m} such that $F=\bigcup_{i=1}^{m} F_{i}$.

Proof: Existence. Write F as the union of connected affinoids F_{1}, \ldots, F_{m}. If there are $1 \leq i, j \leq m$ such that $F_{i} \cap F_{j} \neq \emptyset$, then $F_{i} \cup F_{j}$ is a connected affinoid itself, by Exercise 3.12. Proceed by induction on m.

Uniqueness. Suppose that $F=\bigcup_{i=1}^{m} F_{i}=\bigcup_{j=1}^{n} G_{j}$, where F_{i}, G_{j} are connected affinoids. Then $F_{i}=\bigcup_{j=1}^{n} F_{i} \cap G_{j}$. By Exercise 3.12, each $F_{m} \cap G_{j}$ is either empty or a connected affinoid. Therefore, by Proposition 3.11, there is (a unique) j such that $F_{m}=F_{m} \cap G_{j}$, that is, $F_{m} \subseteq G_{j}$. Wlog $j=n$. By a similar argument there is a unique i^{\prime} such that $G_{j} \subseteq F_{i^{\prime}}$. As the F_{i} are disjoint, $i^{\prime}=m$. Therefore $F_{m}=G_{n}$. Thus $\bigcup_{i=1}^{m-1} F_{i}=\bigcup_{j=1}^{n-1} G_{j}$. It follows by induction on $\min (m, n)$ that $m=n$, and $F_{i}=G_{i}$, for $i=1, \ldots, m$, up to a permutation.

Exercise 3.14: Assume that K is algebraically closed. Let $f \in K(z)$ be a rational function, and let $\rho \in\left|K^{\times}\right|$. Then $F=\{z| | f(z) \mid \leq \rho\}$ is an affinoid.

Proof: Write f as $c \prod_{i=1}^{s}\left(z-a_{i}\right)^{n_{i}}$, where $a_{i} \neq a_{j}$ for $i \neq j$, and $n_{i} \in \mathbb{Z} \backslash\{0\}$. Let $n=\operatorname{deg}(f)=\sum_{i} n_{i}$. Replacing ρ by $\frac{\rho}{|c|}$ we may assume that $c=1$.

Part A: $s=1$. In this case

$$
F=\left\{z| | z-\left.a_{1}\right|^{n_{1}} \leq \rho\right\}= \begin{cases}\left\{z| | z-a_{1} \left\lvert\, \leq \rho^{\frac{1}{n_{1}}}\right.\right\} & \text { if } n_{1}>0 \\ \left\{z| | z-a_{1} \left\lvert\, \geq \rho^{\frac{1}{n_{1}}}\right.\right\} & \text { if } n_{1}<0 .\end{cases}
$$

This is a closed disk.
Part B: Reduction. Assume $s \geq 2$. Let T be an automorphism of \mathbb{P}. As T^{-1} maps affinoids onto affinoids, it suffices to show that $F^{\prime}=\{z| | f(T(z)) \mid \leq \rho\}$ is an affinoid.

For instance, if T is $z \mapsto a z$, where $a \in K^{\times}$, then

$$
F^{\prime}=\left\{z\left|\prod_{i=1}^{s}\right| a z-\left.a_{i}\right|^{n_{i}} \leq \rho\right\}=\left\{z\left|\prod_{i=1}^{s}\right| z-\left.\frac{a_{i}}{a}\right|^{n_{i}} \leq \frac{\rho}{|a|^{n}}\right\}
$$

Replacing a_{i} by $\frac{a_{i}}{a}$ we may assume that
(i) $\max _{i \neq j}\left|a_{i}-a_{j}\right|=1$.

If T is $z \mapsto z+a$, where $a \in K$, then $F^{\prime}=\left\{z\left|\prod_{i=1}^{s}\right| z-\left.a_{i}^{\prime}\right|^{n_{i}} \leq \rho\right\}$, where $a_{i}^{\prime}=a_{i}-a$. Hence we may replace a_{i} by a_{i}^{\prime}. (Observe that $a_{i}^{\prime}-a_{j}^{\prime}=a_{i}-a_{j}$, so that (i) is preserved.)

Apply this with $a=a_{1}+u$, where $u \in K$ such that $|u|=1$ but $\overline{a_{i}-a_{1}} \neq \bar{u}$. We have $\left|a_{i}^{\prime}\right| \leq \max \left(\left|a_{i}-a_{1}\right|,|u|\right) \leq 1$, but $a_{i}^{\prime}=a_{i}-a_{1}-u$ together with $\bar{a}_{i}-\bar{a}_{1} \neq \bar{u}$ implies that but $\left|a_{i}^{\prime}\right| \nless 1$, otherwise $\bar{a}_{i}-\bar{a}_{1}=\bar{u}$, a contradiction. Replacing a_{i} by a_{i}^{\prime} we may assume that
(ii) $\left|a_{i}\right|=1$ for each $i=1, \ldots, s$.

Part C: Assume that $\left|a_{i}-a_{j}\right|=1$ for all $i \neq j$. We have $F=F_{0} \cup \bigcup_{i=1}^{s} F_{i}$, where $F_{0}=\left\{z\left|\bigwedge_{j=1}^{s}\right| z-a_{j}|\geq 1 \wedge| f(z) \mid \leq \rho\right\}, \quad F_{i}=\left\{z| | z-a_{i}|<1 \wedge| f(z) \mid \leq \rho\right\}, 1 \leq i \leq s$.

Let $z \in F_{0}$. Then $\left|z-a_{i}\right|=\left|z-a_{j}\right|$ for all $i \neq j$. Indeed, if $\left|z-a_{i}\right|>1$ for some i, this follows from the above assumption; otherwise $\left|z-a_{i}\right|=1=\left|z-a_{j}\right|$. Therefore $F_{0}=\left\{z\left|\bigwedge_{j=1}^{s}\right| z-a_{j}|\geq 1 \wedge| z-\left.a_{i}\right|^{n} \leq \rho\right\}$ is an affinoid (an intersection of $s+1$ closed disks, by Part A).

Let $1 \leq i \leq s$ and let $z \in F_{i}$. Then $\left|z-a_{i}\right|<1$. By the above assumption $\left|z-a_{j}\right|=1$ for all $j \neq i$. Therefore

$$
\begin{aligned}
F_{i} & =\left\{z| | z-a_{i}|<1 \wedge| z-\left.a_{i}\right|^{n_{i}} \leq \rho\right\}= \\
& = \begin{cases}\left\{z| | z-a_{i} \left\lvert\, \leq \rho^{\frac{1}{n_{i}}}\right.\right\} & \text { if } \rho<1 \text { and } n_{i}>0 \\
\emptyset & \text { if } \rho \leq 1 \text { and } n_{i}<0 \\
\left\{z\left|\bigwedge_{j \neq i}\right| z-a_{j}|=1 \wedge| z-a_{i} \mid<1\right\} & \text { if } \rho \geq 1 \text { and } n_{i}>0 \\
\left\{z\left|\bigwedge_{j \neq i}\right| z-a_{j}\left|=1 \wedge \rho^{\frac{1}{n_{i}}} \leq\left|z-a_{i}\right|<1\right\}\right. & \text { if } \rho>1 \text { and } n_{i}<0 .\end{cases}
\end{aligned}
$$

It suffices to show that $F_{0} \cup F_{i}$ is an affinoid. By Part A, F_{0} is an affinoid. In the first two cases also F_{i} is an affinoid (possibly empty). Let $U=\left\{z\left|\bigwedge_{j=1}^{s}\right| z-a_{j} \mid=1\right\}$. In
the last two cases $F_{i} \cup U$ is an affinoid; but now $\rho \geq 1$, and hence $U \subseteq F_{0}$. Therefore $F_{0} \cup F_{i}=F_{0} \cup\left(U \cup F_{i}\right)$ is an affinoid.

Part D: Assume that $\left|a_{1}-a_{2}\right| \neq 1$. There is k such that $\left|a_{1}-a_{k}\right|=1$, otherwise $\left|a_{1}-a_{k}\right|<1$ for all $k=2, \ldots, s$, whence $\left|a_{i}-a_{j}\right|<1$ for all $i \neq j$, a contradiction to (i). Wlog there is $2<t<s$ and $\alpha \in\left|K^{\times}\right|$such that $\alpha<1$ and $\left|a_{1}-a_{i}\right|<\alpha<1$ for $i=1, \ldots, t$ and $\alpha<\left|a_{1}-a_{i}\right|=1$ for $i=t+1, \ldots, s$.

If $\left|z-a_{1}\right| \leq \alpha$, then $\left|z-a_{i}\right|=1$ for $i=t+1, \ldots, s$. If $\left|z-a_{1}\right| \geq \alpha$, then $\left|z-a_{i}\right|=\left|z-a_{1}\right|$ for $i=1, \ldots, t$. Therefore $F=F_{1} \cup F_{2}$, where

$$
F_{1}=\left\{z| | z-a_{1}|\leq \alpha \wedge| f(z) \mid \leq \rho\right\}=\left\{z| | z-a_{1}\left|\leq \alpha \wedge \prod_{i=1}^{t}\right| z-\left.a_{i}\right|^{n_{i}} \leq \rho\right\}
$$

and

$$
\begin{aligned}
F_{2} & =\left\{z| | z-a_{1}|\geq \alpha \wedge| f(z) \mid \leq \rho\right\} \\
& =\left\{z| | z-a_{1}|\geq \alpha \wedge| z-\left.a_{1}\right|^{n_{1}+\cdots+n_{t}} \prod_{i=t+1}^{s}\left|z-a_{i}\right|^{n_{i}} \leq \rho\right\}
\end{aligned}
$$

Both F_{0} and F_{1} are affinoids, by induction on s.
Lemma 3.15: Let $F_{1}, F_{2}, \ldots, F_{r}$ be disjoint connected affinoids.
(a) If $r \geq 2$, there are disjoint closed disks E_{1}, E_{2} such that $F_{1} \subseteq E_{1}, F_{2} \subseteq E_{2}$, $F_{3}, \ldots, F_{r} \subseteq E_{1} \cup E_{2}$.
(b) Suppose $F_{1}=\bigcap_{j=1}^{s} D_{j}$, where D_{j} are closed disks with disjoint complements. Then $D_{1} \cup F_{2} \cup \cdots \cup F_{r} \neq \mathbb{P}$.

Proof: (a) By induction on the number m of non-disks among F_{1}, \ldots, F_{r}. If $m=0$, that is, F_{1}, \ldots, F_{r} are disjoint closed disks, this is Corollary 3.10 (c). Suppose $m \geq 1$. Then there is t such that F_{t} is not a disk, and hence F_{t} is the complement of the disjoint union of open disks $\cup_{j=1}^{s} C_{j}$. For each $i \neq t$ we have $F_{i} \subseteq \cup_{j=1}^{s} C_{j}$, and hence, by Corollary 3.10 (b), $F_{i} \subseteq C_{j}$, for some (unique) j.

If $t=1$, wlog $F_{2} \subseteq C_{1}$. Apply the induction hypothesis to $\left(C_{1}^{c}, F_{2},\left\{F_{i} \mid i \geq\right.\right.$ $\left.3, F_{i} \subseteq C_{1}\right\}$) to get the required assertion. (In detail: the elements of this sequence are disjoint connected affinoids and the number of non-disks among them is $<m$ (we have
replaced at least F_{1} by a disk C_{1}^{c}). So there are disjoint closed disks E_{1}, E_{2} such that $C_{1}^{c} \subseteq E_{1}\left(\right.$ and hence $F_{1} \subseteq E_{1}$ and $F_{i} \subseteq E_{1}$ if $\left.F_{i} \nsubseteq C_{1}\right), F_{2} \subseteq E_{2}$, and $F_{i} \subseteq E_{1} \cup E_{2}$, whenever $i \geq 3$ and $F_{i} \subseteq C_{1}$.)

Similarly if $t=2$.
If $t \neq 1,2$, wlog $t=r>2$ and $F_{1} \subseteq C_{1}$. Apply the induction hypothesis to

$$
\begin{cases}\left(F_{1}, F_{2},\left\{F_{i} \mid i \geq 3, F_{i} \subseteq C_{1}\right\}, C_{1}^{c}\right) & \text { if } F_{2} \subseteq C_{1} \\ \left(F_{1},\left\{F_{i} \mid i \geq 3, F_{i} \subseteq C_{1}\right\}, C_{1}^{c}\right) & \text { if } F_{2} \nsubseteq C_{1}\end{cases}
$$

to get the required assertion. (In detail: the elements of this sequence are disjoint connected affinoids and the number of non-disks among them is $<m$ (we have replaced at least F_{r} by a disk $\left.C_{1}^{c}\right)$. So there are disjoint closed disks E_{1}, E_{2} such that $F_{1} \subseteq E_{1}$, each F_{i} is contained in $E_{1} \cup E_{2}$ - either by assumption or because $F_{i} \subseteq C_{1}^{c} \subseteq E_{1} \cup E_{2}$ and $F_{2} \subseteq E_{2}$-either by assumption or because $F_{2} \subseteq C_{1}^{c} \subseteq E_{1} \cup E_{2}$-.)
(b) First assume $r=2$ and F_{2} is a closed disk. Then $\bigcap_{j=1}^{s} D_{j} \cap F_{2}=\emptyset$. By Corollary 3.10 (a) there is j such that $D_{j} \cap F_{2}=\emptyset$. Hence if $j=1$, we have $D_{1} \cup F_{2} \neq \mathbb{P}$ by an exercise (the union of two disjoint closed disks is not \mathbb{P}). If $j \neq 1$, then D_{j}^{c}, D_{1}^{c} are disjoint, and hence $F_{2} \subseteq D_{j}^{c} \subseteq D_{1}$, whence $F_{2} \cup D_{1}=D_{1} \neq \mathbb{P}$.

By induction on the number m of non-disks among F_{2}, \ldots, F_{r}. If $m=0$, that is, F_{2}, \ldots, F_{r} are disjoint closed disks, by an exercise $F_{i} \cup F_{j} \neq P$ for $i \neq j$ and $F_{i} \cup D_{1} \neq P$ by the preceding special case. Hence $D_{1} \cup F_{2} \cup \cdots \cup F_{r} \neq \mathbb{P}$ by Lemma 3.9.

Suppose $m \geq 1$. Then $r \geq 2$ and wlog F_{r} is not a disk. Hence F_{r} is the complement of the disjoint union of open disks $\cup_{j=1}^{s} C_{j}$. For each $i \neq r$ we have $F_{i} \subseteq \cup_{j=1}^{s} C_{j}$, and hence, by Corollary 3.10 (b), $F_{i} \subseteq C_{j}$, for some (unique) j. Wlog $F_{1} \subseteq C_{1}$. Apply the induction hypothesis to ($F_{1},\left\{F_{i} \mid i \geq 2, F_{i} \subseteq C_{1}\right\}, C_{1}^{c}$) (which produces a larger union) to get the required assertion.

Remark 3.16: There are disjoint connected affinoids F_{1}, F_{2}, F_{3} for which do not exist disjoint closed disks E_{1}, E_{2} such that $F_{1} \subseteq E_{1}$ and $F_{2}, F_{3} \subseteq E_{2}$. Indeed, let $F_{1}=$ $\left(C_{1} \cup C_{2}\right)^{c}$, where $C_{1}=\{z| | z \mid<1\}$ and $C_{2}=\{z| | z-1 \mid<1\}$, and let $F_{i} \subseteq C_{i}$ be a closed disk, containing 0,1 respectively. If such E_{1}, E_{2} existed, then $0,1 \in E_{1}$ and $\infty \notin E_{1}$. Hence $E_{1}=\{z| | z \mid \leq \rho\}$ for some $\rho \in\left|K^{\times}\right|$and $\rho \geq 1$. But there is $0,1 \neq \bar{z} \in \bar{K}$. Lift it to $z \in K^{o} ;$ then $z \in E_{1}$ and $z \in F_{1}$, a contradiction/

Lemma 3.17: Let F be a connected affinoid such that $\infty \notin F$. Then either F is a closed disk or a finite union of sets of the form

$$
\begin{aligned}
C_{r, r^{\prime}} & =\left\{z \in K\left|r<\left|z-a_{0}\right|<r^{\prime}\right\}\right. \\
C_{r} & =\left\{z \in K| | z-a_{0}\left|=\cdots=\left|z-a_{n}\right|=r\right\},\right.
\end{aligned}
$$

where $r, r^{\prime} \in\left|K^{\times}\right|, a_{0}, \ldots, a_{n} \in K$ such that $\left|a_{i}-a_{j}\right|=r$.
Proof: If F is not a closed disk, then it is the intersection of $n+1 \geq 2$ closed disks D_{0}, \ldots, D_{n+1}, such that their complements are disjoint. As $\infty \in F^{c}=\bigcup_{i=0}^{n+1} D_{i}^{c}$, wlog $\infty \in D_{n+1}^{c}$. Thus

$$
D_{i}=\left\{z| | z-a_{i} \mid \geq \pi_{i}\right\}, \quad i=0, \ldots, n, \quad \text { and } \quad D_{n+1}=\left\{z| | z-a_{n+1} \mid \leq \pi_{n+1}\right\}
$$

Put

$$
F_{k}=\left\{z \in F| | z-a_{k}\left|\leq\left|z-a_{i}\right|, \quad i=0, \ldots, n\right\}, \quad k=0, \ldots, n .\right.
$$

Then $F=\bigcup_{k=0}^{n} F_{k}$. (By an exercise each F_{k} is a connected affinoid, but we will not use this.) Thus it suffices to present each F_{k} as a finite union of sets of the form $C_{r, r^{\prime}}$ and $C_{r} . W \log k=0$.

As translations move $C_{r, r^{\prime}}$ and C_{r} into sets of the same form, we may assume that $a_{0}=0$. Then $0=a_{0} \in D_{0}^{c} \subseteq D_{n+1}$; by Exercise 3.4, wlog $a_{n+1}=0$. Thus
$D_{0}=\left\{z| | z \mid \geq \pi_{0}\right\}, D_{i}=\left\{z| | z-a_{i} \mid \geq \pi_{i}\right\}, i=1, \ldots, n, \quad D_{n+1}=\left\{z| | z \mid \leq \pi_{n+1}\right\}$
and

$$
F_{0}=\left\{z \in F| | z\left|\leq\left|z-a_{i}\right|, i=1, \ldots, n\right\} .\right.
$$

The disjointness of $D_{0}^{c}, \ldots, D_{n+1}^{c}$ implies, in particular,

$$
\begin{aligned}
& \pi_{0} \leq\left|a_{i}\right| \leq \pi_{n+1}, \quad i=1, \ldots, n \\
& \pi_{i} \leq\left|a_{i}\right|, \quad i=1, \ldots, n
\end{aligned}
$$

(Indeed, $a_{i} \in D_{i}^{c} \subseteq D_{0}, D_{n+1}$, hence $\left|a_{i}\right| \geq \pi_{0},\left|a_{i}\right| \leq \pi_{n+1}$. Further, $0 \in D_{0}^{c} \subseteq D_{i}$, hence $\left|a_{i}\right| \geq \pi_{i}$.)

Let $\pi_{0}=r_{0}<r_{1}<\cdots<r_{s}=\pi_{n+1}$ be all the distinct numbers in the set $\left\{\pi_{0},\left|a_{1}\right|, \ldots,\left|a_{n}\right|, \pi_{n+1}\right\}$. Then

$$
F_{0}=\cup_{t=1}^{s}\left\{z \in F_{0}\left|r_{t-1}<|z|<r_{t}\right\} \cup \cup_{t=1}^{s}\left\{z \in F_{0}| | z \mid=r_{t}\right\}\right.
$$

But if $r_{t-1}<|z|<r_{t}$, then $\pi_{0} \leq|z| \leq \pi_{n+1}$, and for every $1 \leq i \leq n$

$$
\left|z-a_{i}\right|= \begin{cases}|z|>r_{t-1} \geq\left|a_{i}\right| & \text { if }\left|a_{i}\right| \leq r_{t-1} ; \\ \left|a_{i}\right| \geq r_{t}>|z| & \text { if }\left|a_{i}\right|>r_{t-1}, \text { and hence }\left|a_{i}\right| \geq r_{t} .\end{cases}
$$

In both cases, $\left|z-a_{i}\right| \geq|z|$ and $\left|z-a_{i}\right| \geq\left|a_{i}\right| \geq \pi_{i}$. Hence $z \in F_{0}$. Thus

$$
\left\{z \in F_{0}\left|r_{t-1}<|z|<r_{t}\right\}=\left\{z \in K\left|r_{t-1}<|z|<r_{t}\right\}=C r_{t-1}, r_{t} .\right.\right.
$$

Similarly if $|z|=r_{t}$, then $\pi_{0} \leq|z| \leq \pi_{n+1}$, and for every $1 \leq i \leq n$

$$
\left|z-a_{i}\right|= \begin{cases}|z|=r_{t}>\left|a_{i}\right| & \text { if }\left|a_{i}\right|<r_{t} \\ \leq r_{t} & \text { if }\left|a_{i}\right|=r_{t} \\ \left|a_{i}\right|>r_{t}=|z| & \text { if }\left|a_{i}\right|>r_{t}\end{cases}
$$

Thus if $\left|a_{i}\right| \neq r_{t}$, then $\left|z-a_{i}\right| \geq|z|=r_{t}$ and $\left|z-a_{i}\right| \geq\left|a_{i}\right| \geq \pi_{i}$. If $\left|a_{i}\right|=r_{t}$, then $\left|z-a_{i}\right| \geq|z|=r_{t}, \pi_{i} \leftrightarrow\left|z-a_{i}\right|=r_{t}\left(=\left|a_{i}\right| \geq \pi_{i}\right)$. Hence

$$
\begin{aligned}
\left\{z \in F_{0}| | z \mid=r_{t}\right\} & =\left\{z \in K| | z\left|=r_{t}, \pi_{0} \leq|z| \leq \pi_{n+1}, \bigwedge_{\substack{i=1 \\
\left|a_{i}\right|=r_{t}}}^{n}\right| z-a_{i} \mid \geq r_{t}, \pi_{i}\right\} \\
& =\left\{z \in K| | z\left|=r_{t} \bigwedge_{\substack{i=1 \\
\left|a_{i}\right|=r_{t}}}^{n}\right| z-a_{i} \mid \geq r_{t}, \pi_{i}\right\} \\
& =\left\{z \in K| | z\left|=r_{t}, \bigwedge_{\substack{i=1 \\
\left|a_{i}\right|=r_{t}}}^{n}\right| z-a_{i} \mid=r_{t}\right\},
\end{aligned}
$$

The last set is of the form C_{r}. Indeed, if for $1 \leq i<j \leq n$ we have $\left|a_{i}\right|=\left|a_{j}\right|=r_{t}$, then $\left|a_{i}-a_{j}\right| \leq r_{t}$. If $\left|a_{i}-a_{j}\right|<r_{t}$, then from $\left|z-a_{i}\right|=r_{t}$ follows $\left|z-a_{j}\right|=r_{t}$. Therefore we may throw away the condition $\left|z-a_{j}\right|=r_{t}$. Thus wlog $\left|a_{i}-a_{j}\right|=r_{t}$ for all $i<j$.

4. Holomorphic functions

Let $(K,| |)$ be an algebraically closed complete non-archimedian valued field. Recall that K^{o} is its valuation ring and $K^{o o}$ is its maximal ideal.

Let F be a subset of $\mathbb{P}=\mathbb{P}(K)$. For a function $f: F \rightarrow K$ define the norm $\|f\|=\|f\|_{F}:=\sup _{z \in F}|f(z)| \in K$. Observe that
(1) $\|f+g\| \leq \max (\|f\|,\|g\|)$;
(2) $\|f g\| \leq\|f\| \cdot\|g\|$;
(3) $\|c f\|=|c| \cdot| | f| |$, for every $c \in K^{\times}$.

Let $F \subset \mathbb{P}$ be an affinoid.

Definition 4.1: A function $f: F \rightarrow K$ is holomorphic if for every $\varepsilon \in\left|K^{\times}\right|$there is a rational function $g \in K(z)$ without poles in F such that $\|f-g\|_{F}<\varepsilon$.

We set:
(i) $\mathcal{O}(F)=$ the set of K-holomorphic functions on F.
(ii) $\mathcal{O}^{\circ}(F)=\{f \in \mathcal{O}(F) \mid\|f\| \leq 1\}$;
(iii) $\mathcal{O}^{o o}(F)=\{f \in \mathcal{O}(F) \mid\|f\|<1\}$;
(iv) $\overline{\mathcal{O}(F)}=\mathcal{O}^{\circ}(F) / \mathcal{O}^{\circ o}(F)$.

Exercise 4.2: Let $g \in K(z)$ be without poles in F. Show that $\|g\|_{F}<\infty$. Deduce that $\|f\|_{F}<\infty$ for every holomorphic function f on F.

Proof: As K is algebraically closed, g is the product of a constant function, linear functions $z-c$, with $c \in K$, and the inverses of linear functions, all of them without poles in F. Thus we may assume that g is one of them. In particular, g has only one pole in \mathbb{P}. As F is the union of connected affinoids, we may assume that F is connected. But then F is the intersection of closed disks, and the single pole of g is not in all of them. Therefore we may assume that F is a disk. In this case the assertion is easy.

Lemma 4.3:
(a) $\mathcal{O}(F)$ is complete.
(b) $\mathcal{O}(F)$ is a K-algebra, $\mathcal{O}^{\circ}(F)$ is a K^{o}-algebra, $\mathcal{O}^{o o}(F)$ is an ideal of it, and $\overline{\mathcal{O}(F)}$ is an algebra over $\bar{K}=K^{o} / K^{o o}$.

Proof: (a) Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $\mathcal{O}(F)$. Let $z \in F$. Obviously, $\left\{f_{n}(z)\right\}$ is a Cauchy sequence in K. As K is complete, this sequence has a limit, say, $f(z) \in K$. This yields a function $f: F \rightarrow K$.

Let $\varepsilon>0$. There is N such that for all $n, m \geq N$ and each $z \in F$ we have $\left|f_{n}(z)-f_{m}(z)\right| \leq\left\|f_{n}-f_{m}\right\|<\varepsilon$. In particular, $\left|f_{n}(z)-f(z)\right| \leq \varepsilon$ for all $n \geq N$ and each $z \in F$. Hence $\left\|f_{n}-f\right\| \leq \varepsilon$ for all $n \geq N$. Thus $f_{n} \rightarrow f$.

Finally, for each $\varepsilon>0$ there is f_{n} such that $\left\|f_{n}-f\right\|<\varepsilon$ and there is $g \in K(z)$ without poles in F such that $\left\|f_{n}-g\right\|<\varepsilon$. Then $\|f-g\|<\varepsilon$.

Proposition 4.4: Let $D=\{z \in K| | z \mid \leq 1\}$.
(a) $\mathcal{O}(D)=\left\{\sum_{n=0}^{\infty} a_{n} z^{n} \mid a_{n} \in K\right.$ and $\left.\lim _{n \rightarrow \infty} a_{n}=0\right\}=: \mathcal{O}$.
(b) $\mathcal{O}(D)^{o}=\left\{\sum_{n=0}^{\infty} a_{n} z^{n} \mid a_{n} \in K^{o}\right.$ and $\left.\lim _{n \rightarrow \infty} a_{n}=0\right\}$.
(c) $\mathcal{O}(D)^{o o}=\left\{\sum_{n=0}^{\infty} a_{n} z^{n} \mid a_{n} \in K^{o o}\right.$ and $\left.\lim _{n \rightarrow \infty} a_{n}=0\right\}$.
(d) $\overline{\mathcal{O}}=\bar{K}[\bar{z}]$, the ring of polynomials in one variable over \bar{K}.
(e) Let $f, g \in \mathcal{O}$. Then $\|f g\|=\|f\| \cdot\|g\|$.
(f) If $\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{O}$, then $\left\|\sum_{n=0}^{\infty} a_{n} z^{n}\right\|_{D}=\max \left|a_{n}\right|$. Moreover, there is $c \in D$ such that $\left|\sum_{n=0}^{\infty} a_{n} c^{n}\right|=\max \left|a_{n}\right|$.

Proof:

Part A: First part of (a). Let us denote the right handed side by \mathcal{O}. Its elements are convergent sequences of powers of z, hence $\mathcal{O} \subseteq \mathcal{O}(D)$.

Part B: Proof of (f).
If $\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{O}$, then clearly $\left\|\sum_{n=0}^{\infty} a_{n} z^{n}\right\|_{D} \leq \max \left|a_{n}\right|$. To show "=", we may assume, by (3), that $\max \left\|a_{n}\right\|=1$, and we have to show that there is $z \in D$ such that $|f(z)|=1$. Let $\bar{f}:=\sum_{n=0}^{\infty} \bar{a}_{n} Z^{n}$. This is a nonzero polynomial over \bar{K}. Thus there is $\bar{z} \in \bar{K}$ such that $\bar{f}(\bar{z}) \neq 0$. It is the residue of some $z \in K^{o}=D$. Then $\overline{f(z)}=\bar{f}(\bar{z}) \neq 0$. This means that $|f(z)|=1$.

Part C: \mathcal{O} is complete. Let $\left\{\sum_{n=0}^{\infty} a_{n}^{(i)} z^{n}\right\}_{i=1}^{\infty}$ be a Cauchy sequence. By the above formula for the norm $\left\{a_{n}^{(i)}\right\}_{i=1}^{\infty}$ is a Cauchy sequence for each $n \geq 0$. Hence it converges to some $a_{n} \in K$. It is easy to see that $\lim _{n \rightarrow \infty} a_{n}=0$ and $\sum_{n=0}^{\infty} a_{n}^{(i)} z^{n} \rightarrow \sum_{n=0}^{\infty} a_{n} z^{n}$. (Indeed, let $\varepsilon>0$. There is i such that if $j \geq i$, then $\left|a_{n}^{(i)}-a_{n}^{(j)}\right| \leq \varepsilon$ for all n; hence $\left|a_{n}^{(i)}-a_{n}\right| \leq \varepsilon$ for all n. There is also N such that if $n \geq N$ then $\left|a_{n}^{(i)}\right| \leq \varepsilon$. Thus $\left|a_{n}\right| \leq \varepsilon$ for all $n \geq N$.)

Part D: Second part of (a). As \mathcal{O} is complete, to show that $\mathcal{O}(D) \subseteq \mathcal{O}$, it suffices to show that every rational function $f \in K(z)$ with no poles in D is in \mathcal{O}. As \mathcal{O} is a K algebra (check!), we may assume that f is either a polynomial over K (whence $f \in \mathcal{O}$) or $f=\frac{1}{z-b}$, where $b \notin D$, that is, $|b|>1$, whence $\frac{1}{z-b}=\frac{1}{-b} \frac{1}{1-\frac{1}{b} z}=\frac{1}{-b} \sum_{n=0}^{\infty} \frac{1}{b^{n}} z^{n}=$ $\sum_{n=0}^{\infty}-\frac{1}{b^{n+1}} z^{n} \in \mathcal{O}$.
(b), (c) - clear.
(d) Let \bar{z} be a variable over \bar{K}. The map $\sum_{n=0}^{\infty} a_{n} z^{n} \mapsto \sum_{n=0}^{\infty} \overline{a_{n}} \bar{z}^{n}$ is a well defined homomorphism $\mathcal{O}^{o} \rightarrow \bar{K}[\bar{z}]$. The sequence $0 \rightarrow \mathcal{O}^{o o} \rightarrow \mathcal{O}^{\circ} \rightarrow \bar{K}[\bar{z}] \rightarrow 0$ is exact. Hence $\mathcal{O}^{o} / \mathcal{O}^{o o} \cong \bar{K}[\bar{z}]$.
(e) Clearly $\|f g\| \leq\|f\| \cdot\|g\|$. Wlog $\|f\|=\|g\|=1$, and we have to show that $\|f g\|=1$. That is, $\bar{f}, \bar{g} \neq 0$, and we have to show that $\overline{f g}=\bar{f} \bar{g} \neq 0$. This follows from (d), since $\bar{K}[\bar{z}]$ is an integral domain.

Exercise 4.5: Let φ be an automorphism of \mathbb{P}. Let F be an affinoid. Show that $f \mapsto f \circ \varphi$ is an isomorphism $\mathcal{O}(\varphi(F)) \rightarrow \mathcal{O}(F)$ of K-algebras that preserves the norm.

ExERCISE 4.6: Let $c \in K$ and $\pi \in K^{\times}$.
(a) Let $F=\{z| | z-c|\leq|\pi|\}$. Then

$$
\begin{aligned}
\mathcal{O}(F) & =\left\{\sum_{n=0}^{\infty} a_{n}(z-c)^{n} \mid a_{n} \in K \text { and } \lim _{n \rightarrow \infty} a_{n} \pi^{n}=0\right\} \\
& =\left\{\left.\sum_{n=0}^{\infty} b_{n}\left(\frac{z-c}{\pi}\right)^{n} \right\rvert\, b_{n} \in K \text { and } \lim _{n \rightarrow \infty} b_{n}=0\right\}
\end{aligned}
$$

and $\left\|\sum_{n=0}^{\infty} a_{n}(z-c)^{n}\right\|_{F}=\max \left|a_{n} \| \pi\right|^{n}=\max \left|b_{n}\right|$.
(b) Let $F=\{z| | z-c|\geq|\pi|\}$. Then

$$
\begin{aligned}
\mathcal{O}(F) & =\left\{\sum_{n=0}^{\infty} a_{n}(z-c)^{-n} \mid a_{n} \in K \text { and } \lim _{n \rightarrow \infty} a_{n} \pi^{-n}=0\right\} \\
& =\left\{\left.\sum_{n=0}^{\infty} b_{n}\left(\frac{\pi}{z-c}\right)^{n} \right\rvert\, b_{n} \in K \text { and } \lim _{n \rightarrow \infty} b_{n}=0\right\}
\end{aligned}
$$

and $\left\|\sum_{n=0}^{\infty} a_{n}(z-c)^{n}\right\|_{F}=\max \left|a_{n} \| \pi\right|^{-n}=\max \left|b_{n}\right|$.
Proof: An application of Exercise 4.5 to Proposition 4.4:
(a) The automorphism $z \mapsto \frac{z-c}{\pi}$ maps F onto the unit disk.
(b) The automorphism $z \mapsto \frac{\pi}{z-c}$ maps F onto the unit disk.

For an affinoid F adopt the following notation: For $c \in F$ let $\mathcal{O}(F)_{c}=\{f \in$ $\mathcal{O}(F) \mid f(c)=0\}$. Furthermore, let $\mathcal{C}(F)$ be the algebra of constant K-holomorphic functions on F. Clearly $\mathcal{C}(F) \cong K$.

Proposition 4.7 (Decomposition of Mittag-Leffler): Let D_{1}, \ldots, D_{m} be m disjoint open disks. Let F_{i} be the complement of D_{i} and let $F=\bigcap_{i=1}^{m} F_{i}$. Let $c \in F$. Then
(a) $\mathcal{O}(F)=\mathcal{C}(F) \oplus \oplus_{i=1}^{m} \mathcal{O}\left(F_{i}\right)_{c}$.
(b) Let $f_{0} \in \mathcal{C}(F)$ and let $f_{i} \in \mathcal{O}\left(F_{i}\right)_{c}$, for $i=1, \ldots, m$. Then $\left\|\sum_{i=0}^{m} f_{i}\right\|_{F}=$ $\max \left\|f_{i}\right\|_{F_{i}}$. Moreover, there is $z \in F$ such that $\left|\sum_{i=0}^{m} f_{i}(z)\right|=\max \left\|f_{i}\right\|_{F_{i}}$.

Proof: (b) We may assume that $\left\|f_{0}\right\|_{F} \leq \max _{1 \leq i \leq m}\left\|f_{i}\right\|_{F_{i}}$, otherwise for every $z \in F$ we have $\left|\sum_{i=0}^{m} f_{i}(z)\right|=\left|f_{0}(z)\right|$. Using (3) we may normalize the f_{i} to assume that $\max _{1 \leq i \leq m}\left\|f_{i}\right\|_{F_{i}}=1 \geq\left\|f_{0}\right\|_{F}$, and we have to show that there is $z \in F$ such that $\left|\sum_{i=0}^{m} f_{i}(z)\right|=1$.

By Exercise 4.5 we may assume that $c=\infty$. Hence $F_{i}=\left\{z| | z-a_{i}\left|\geq\left|\pi_{i}\right|\right\}\right.$, for each i.

Reordering F_{1}, \ldots, F_{m} we may assume that
(i) there is $1 \leq s \leq m$ such that $\left\|f_{i}\right\|_{F_{i}}=1$ for $i=1, \ldots, s$ and $\left\|f_{i}\right\|_{F_{i}}<1$ for $i=s+1, \ldots, m ;$
(ii) $\left|\pi_{1}\right| \geq\left|\pi_{i}\right|$ for $i=1, \ldots, s$.

By Exercise 4.5 we may assume that $a_{1}=0$ and $\left|\pi_{1}\right|=1$.

Let $2 \leq i$. As $D_{1} \cap D_{i}=\emptyset$ and hence $a_{i} \notin D_{1}$ and $a_{1}=0 \notin D_{i}$,
(x) $\left|a_{i}\right| \geq\left|\pi_{1}\right|,\left|\pi_{i}\right|$, for $2 \leq i \leq m$.

Therefore, reordering F_{2}, \ldots, F_{s} we may assume that
(iii) there is $1 \leq r \leq s$ such that $\left|a_{i}\right|=\left|\pi_{1}\right|$ for $i=2, \ldots, r$ and $\left|a_{i}\right|>\left|\pi_{1}\right|$ for $i=r+1, \ldots, s$.

Put $I=\{1\} \cup\left\{2 \leq i \leq m| | a_{i}\left|=\left|\pi_{1}\right|\right\}\right.$ and

$$
G=\bigcap_{i \in I}\left\{z \in K| | z-a_{i}\left|=\left|\pi_{1}\right|\right\}\right.
$$

We claim that
(iv) $G \subseteq F$;
(v) every $z \in G$ satisfies $\left|f_{i}(z)\right|<1$ for $i=r+1, \ldots, m$; and
(vi) there is $z \in G$ such that $\left|\sum_{i=0}^{r} f_{i}(z)\right|=1$.

It then follows that there is $z \in F$ such that $\left|\sum_{i=1}^{m} f_{i}(z)\right|=1$, whence $\left\|\sum_{i=1}^{m} f_{i}\right\|=1$.
(iv) Let $z \in G$ and let $1 \leq i \leq m$. If $i=1$, then $|z|=\left|\pi_{1}\right|$, and hence $z \in F_{1}$. If $i \geq 2$ and $i \in I$, then $\left|a_{i}\right|=\left|\pi_{1}\right|$, so $\left|z-a_{i}\right|=\left|\pi_{1}\right|=\left|a_{i}\right| \geq\left|\pi_{i}\right|$, by (x), whence $z \in F_{i}$. If $i \notin I$, then $i \geq 2$ and $\left|a_{i}\right|>\left|\pi_{1}\right|=|z|$, hence $\left|z-a_{i}\right|=\left|a_{i}\right| \geq\left|\pi_{i}\right|$, by (x), whence $z \in F_{i}$. Thus $z \in \bigcap_{i=1}^{m} F_{i}=F$.
(v) For $s<i \leq m$ this follows from (i). If $r<i \leq s$ we have $|z|=\left|\pi_{1}\right|$ and $\left|a_{i}\right|>\left|\pi_{1}\right|$, hence $\left|z-a_{i}\right|=\left|a_{i}\right|>\left|\pi_{1}\right|$.
(vi) Let $1 \leq i \leq r$. Recall that $\left\|f_{i}\right\|_{F_{i}}=1$. Hence by Exercise $4.6(\mathrm{~b}), f_{i}=$ $\sum_{n=1}^{\infty} b_{n}^{(i)}\left(\frac{\pi_{i}}{z-a_{i}}\right)^{n}$, where $b_{n}^{(i)} \in K^{o}$, not all in $K^{o o},\left|\pi_{i}\right| \leq 1$, and $\left|a_{i}\right|=1$. Therefore $\overline{f_{i}}=\sum_{n=1} \overline{b_{n}^{(i)}}\left(\frac{\overline{\bar{z}_{i}}}{\bar{z}-\overline{a_{i}}}\right)^{n} \in K(\bar{z})$. Moreover, $\overline{f_{1}} \neq 0$ (as $\left\|f_{1}\right\|=1$), and has a pole in $\bar{z}=\overline{a_{1}}=0$, whereas $\overline{f_{i}}$, for $i=2, \ldots, r$, has a pole in $\overline{a_{i}} \neq \overline{a_{1}}=0$ (or $\overline{f_{i}}=0$), and f_{0} has no poles. Therefore $\sum_{i=0}^{r} \bar{f}_{i}$ has a pole in 0 . In particular, $\sum_{i=0}^{r} \bar{f}_{i} \neq 0$. Hence there is $\bar{z} \in \bar{K}$ such that $\left|\sum_{i=0}^{r} \bar{f}_{i}(\bar{z})\right| \neq 0$ and $\bar{z} \neq \bar{a}_{i}$, for each $i \in I$. Lift \bar{z} to an element $z \in K$ with $|z|=1$. Then $z \in G$ and $\left|\sum_{i=0}^{r} f_{i}(z)\right|=1$.
(a) Again, we may assume that $c=\infty$. We have to show that for every $f \in \mathcal{O}(F)_{\infty}$ there are unique $f_{i} \in \mathcal{O}\left(F_{i}\right)_{\infty}, i=1, \ldots, m$, such that $f=\sum_{i=1}^{m} f_{i}$. The uniqueness follows from (b): If $0=\sum_{i=1}^{m} f_{i}$, where $f_{i} \in \mathcal{O}\left(F_{i}\right)_{\infty}$, then $0=\max \left(\left\|f_{1}\right\|_{F_{1}}, \ldots,\left\|f_{m}\right\|_{F_{m}}\right)$, and hence $f_{1}=\cdots=f_{m}=0$.

To show the existences, it suffices to assume that f is rational. (Why?) As K is algebraically closed, f can be written as a finite sum of the form

$$
\begin{equation*}
f=\sum_{b} \sum_{k} \frac{a_{k, b}}{(z-b)^{k}}, \tag{6}
\end{equation*}
$$

where $k \geq 1$, and $b \in K \backslash F$ and $a_{k, b} \in K$. Put

$$
\begin{equation*}
f_{i}=\sum_{b \in D_{i}} \sum_{k} \frac{a_{k, b}}{(z-b)^{k}} \tag{7}
\end{equation*}
$$

Then $f=\sum_{i=1}^{m} f_{i}$ and $f_{i} \in \mathcal{O}\left(F_{i}\right)_{\infty}$.

Example 4.8: Let $0<r_{1} \leq r_{2}$ and let $F=\left\{z\left|r_{1} \leq|z| \leq r_{2}\right\}\right.$. For each $n \in \mathbb{Z}$ put $\tilde{r}_{n}=\left\{\begin{array}{ll}r_{1} & \text { if } n<0 \\ 1 & \text { if } n=0 \\ r_{2} & \text { if } n>0\end{array}\right.$. Then
(a) $\mathcal{O}(F)=\left\{\sum_{n=-\infty}^{\infty} a_{n} z^{n} \mid a_{n} \in K\right.$ and $\left.\lim _{n \rightarrow \pm \infty}\left|a_{n}\right| \tilde{r}_{n}^{n}=0\right\}$.
(b) $\left\|\sum_{n=-\infty}^{\infty} a_{n} z^{n}\right\|_{F}=\max \left|a_{n}\right| \tilde{r}_{n}^{n}$.

Proof: We have $F=D_{1} \cap D_{2}$, where $D_{1}=\left\{z \in \mathbb{P}\left|r_{1} \leq|z|\right\}\right.$ and $D_{2}=\{z \in$ $\mathbb{P}\left||z| \leq r_{2}\right\}$. Let $f \in \mathcal{O}(F)$. Choose $c \in F$. By Mittag-Leffler there are $f_{0} \in K$ (a constant function), $f_{1} \in \mathcal{O}\left(D_{1}\right)_{c}, f_{2} \in \mathcal{O}\left(D_{2}\right)_{c}$, such that $f=f_{0}+\operatorname{res}_{F} f_{1}+\operatorname{res}_{F} f_{2}$, and $\|f\|_{F}=\max \left(\left|f_{0}\right|,\left\|f_{1}\right\|_{D_{1}},\left\|f_{2}\right\|_{D_{2}}\right)$.

Choose ρ_{1}, ρ_{2} such that $\left|\rho_{i}\right|=r_{i}$. By Exercise 4.6(a), $f_{2}(z)=\alpha_{2}+\sum_{n=1}^{\infty} a_{n} z^{n}$, where $\lim _{n \rightarrow \infty}\left|a_{n}\right| r_{2}^{n}=0$. As $f_{2}(c)=0$, we have $\alpha_{2}=-\sum_{n=1}^{\infty} a_{n} c^{n}$.

Similarly, by Exercise 4.6(b), changing n to $-n$, we have $f_{1}(z)=\alpha_{1}+\sum_{n=-1}^{-\infty} a_{n} z^{n}$, where $\lim _{n \rightarrow-\infty}\left|a_{n}\right| r_{1}^{n}=0$. As $f_{1}(c)=0$, we have $\alpha_{1}=-\sum_{n=-1}^{-\infty} a_{n} c^{n}$.

Thus $f(z)=f_{0}+f_{1}(z)+f_{2}(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$, where $a_{0}=f_{0}-\alpha_{1}-\alpha_{2}$ and $\lim _{n \rightarrow-\infty}\left|a_{n}\right| r_{1}^{n}=0$ and $\lim _{n \rightarrow \infty}\left|a_{n}\right| r_{2}^{n}=0$.
(The a_{n} as above are unique; this follows from (b).)
(b) Observe that $\left|\alpha_{1}\right| \leq \max _{n<0}\left(\left|a_{n}\right| \tilde{r}_{n}^{n}\right)$ and $\left|\alpha_{2}\right| \leq \max _{n>0}\left(\left|a_{n}\right| \tilde{r}_{n}^{n}\right)$. Therefore

$$
\|f\|_{F}=\max \left(\left|f_{0}\right|,\left\|f_{1}\right\|_{D_{1}},\left\|f_{2}\right\|_{D_{2}}\right)=\max _{n \neq 0}\left(\left|f_{0}\right|,\left|\alpha_{1}\right|,\left|\alpha_{2}\right|,\left|a_{n}\right| \tilde{r}_{n}^{n}\right)=\max _{n \neq 0}\left(\left|f_{0}\right|,\left|a_{n}\right| \tilde{r}_{n}^{n}\right)
$$

We have to show that this is M, where $M=\max _{n \neq 0}\left(\left|f_{0}-\alpha_{1}-\alpha_{2}\right|,\left|a_{n}\right| \tilde{r}_{n}^{n}\right)$. Clearly $M \leq| | f \|_{F}$. Also, if $\left|f_{0}\right| \leq \max _{n \neq 0}\left(\left|a_{n}\right| \tilde{r}_{n}^{n}\right)$, then $\|f\|_{F} \leq M$. If $\left|f_{0}\right|>\max _{n \neq 0}\left(\left|a_{n}\right| \tilde{r}_{n}^{n}\right)$, then $\left|f_{0}-\alpha_{1}-\alpha_{2}\right|=\left|f_{0}\right|$, so $M=\|f\|_{F}$.

Lemma 4.9: Let F_{1}, \ldots, F_{r} be disjoint connected affinoids in \mathbb{P}. Put $F=\cup_{i=1}^{r} F_{i}$. Then $\mathcal{O}(F) \cong \prod_{i=1}^{r} \mathcal{O}\left(F_{i}\right)$, via $f \mapsto\left(\operatorname{res}_{F_{1}} f, \ldots, \operatorname{res}_{F_{r}}\right)$.

Proof: Wlog $r \geq 2$.
The map res: $\mathcal{O}(F) \rightarrow \prod_{i=1}^{r} \mathcal{O}\left(F_{i}\right)$ is clearly injective. Each $\left(f_{1}, \ldots, f_{r}\right) \in$ $\prod_{i=1}^{r} \mathcal{O}\left(F_{i}\right)$ is the sum of elements of the form $\left(0, \ldots, 0, f_{k}, 0, \ldots, 0\right)$, where $1 \leq k \leq r$ and $f_{k} \in \mathcal{O}\left(F_{k}\right)$. Therefore it suffices to show that the latter element is in the image of res. Wlog $k=1$.

Part A: $f_{1}(z)=1$ for all $z \in F_{1}$. Let $1 \leq l \leq r$ such that $l \neq 1$. By Lemma 3.15(a) there are two disjoint closed disks D^{\prime} and $D^{\prime \prime}$ such that $F \subseteq D^{\prime} \cup D^{\prime \prime}$ and $F_{1} \subseteq D^{\prime}$ and $F_{l} \subseteq D^{\prime \prime}$.

Wlog $D^{\prime}=\left\{z| | z \mid \leq \rho^{\prime}\right\}$ and $D^{\prime \prime}=\left\{z| | z \mid \geq \rho^{\prime \prime}\right\}$, where $\rho^{\prime}<1<\rho^{\prime \prime}$. The sequence $g_{n}(z)=\frac{1}{z^{n}+1}$ (of rational functions without poles in $D^{\prime} \cup D^{\prime \prime}$) converges (uniformly!) to 1 on D^{\prime} and to 0 on $D^{\prime \prime}$. Its restriction to F is a function $f_{1, l} \in \mathcal{O}(F)$ that is 1 on F_{1} and 0 on F_{l}.

Let $f=\prod_{l \neq} f_{1, l}$. Then $f \in \mathcal{O}(F)$, and res $f=(1,0, \ldots, 0)$.
Part B: Arbitrary $f_{1} \in \mathcal{O}\left(F_{1}\right)$. Write F_{1} as $\bigcap_{i=1}^{s} D_{i}$, where D_{1}, \ldots, D_{s} are closed disks such that $\mathbb{P} \backslash F_{1}=\cup_{j=1}^{s} D_{j}^{c}$. By Mittag-Leffler-Decomposition, $f_{1}=g_{0}+g_{1}+$ $\cdots+g_{s}$, where g_{0} is constant and $g_{l} \in \mathcal{O}(F)$ extends to a function $g_{l} \in \mathcal{O}\left(D_{l}\right)$, for each $1 \leq l \leq s$. Wlog $f_{1}=g_{l}$ for some l and wlog $l=1$.

Apply an automorphism of \mathbb{P} to Lemma 3.15(b) to assume that $0 \in D_{1}$ and $\infty \notin D_{l} \cup F_{2} \cup \cdots \cup F_{r}$. Then wlog D_{1} is the unit disk.

We can write $f_{1} \in \mathcal{O}\left(D_{1}\right)$ as $f_{1}(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$, where $\left|a_{n}\right| \rightarrow 0$. For each N the function $f_{1}^{(N)}=\sum_{n=1}^{\infty} a_{n} z^{n}$ has a pole only in ∞, and hence $f_{1}^{(N)} \in \mathcal{O}(F)$. By Part A there is $g \in \mathcal{O}(F)$ such that g is 1 on F_{1} and 0 on the rest. Then $\left\{g f_{1}^{(N)}\right\}_{N=1}^{\infty} \subseteq \mathcal{O}(F)$ is a Cauchy sequence. Its limit $f \in \mathcal{O}(F)$ satisfies the required conditions.

Lemma 4.10: Let F be a connected affinoid, and let D be a closed disk contained in F. Let $0 \neq f \in \mathcal{O}(F)$. Then $\operatorname{res}_{D} f \neq 0$.

Proof: Write F as the intersection of r closed disks D_{1}, \ldots, D_{r} such that their complements $D_{1}^{c}, \ldots, D_{r}^{c}$ are disjoint. Wlog $\infty \in D$ and $0 \notin D$. Thus

$$
D_{k}=\left\{z| | z-a_{k}\left|\geq\left|\pi_{k}\right|\right\}, \text { for } k=1, \ldots, r, \quad \text { and } \quad D=\{z| | z|\geq|\rho|\} .\right.
$$

$\mathrm{W} \log \|f\|_{F}=1$. If $f(\infty) \neq 0$, the assertion is trivial. So assume that $f(\infty)=0$. By Mittag-Leffler there are unique $f_{1} \in \mathcal{O}\left(D_{1}\right), \ldots, f_{r} \in \mathcal{O}\left(D_{r}\right)$ vanishing at ∞, such that $f=\operatorname{res}_{F} f_{1}+\cdots+\operatorname{res}_{F} f_{r}$. As $1=\|f\|_{F}=\max _{k}\left\|f_{k}\right\|_{D_{k}}$, we have $\left\|f_{k}\right\|_{D_{k}} \leq 1$ for each k, and there is k with $\left\|f_{k}\right\|_{D_{k}}=1$.

Part A: $r=1$. We may assume that $a_{1}=0$ and $\pi_{1}=1$. Thus $D_{1}=\{z| | z \mid \geq 1\}$, and $D=\left\{z| | z|\geq|\rho|\}\right.$, where $|\rho| \geq 1$. Then $f(z)=\sum_{i=0}^{\infty} b_{i}\left(\frac{1}{z}\right)^{i}$, where $\max \left(\left|b_{i}\right|\right)=$ $\|f\|_{F}>0$. Thus not all b_{i} are 0 . Now, $\operatorname{res}_{D} f(z)=\sum_{i=0}^{\infty} \frac{b_{i}}{\rho^{2}}\left(\frac{\rho}{z}\right)^{i}$, and $\|f\|_{D}=\max \left(\left|\frac{b_{i}}{\rho^{2}}\right|\right)$. Hence $\|f\|_{D}>0$.

Assume, by induction, that $r \geq 2$ and that the assertion is true for less than r disks.

Part B: Reductions. Wlog (apply the automorphism $z \mapsto \frac{z}{\pi}$ of $\left.\mathbb{P}\right) \max \left(\left|a_{k}-a_{l}\right|\right)=1$. For distinct $1 \leq k, l \leq r$ we have $D_{k}^{c} \cap D_{l}^{c}=\emptyset$, and hence $\left|a_{k}-a_{l}\right| \geq\left|\pi_{k}\right|,\left|\pi_{l}\right|$. Thus

$$
\begin{equation*}
\left|\pi_{1}\right|, \ldots,\left|\pi_{r}\right| \leq 1 \tag{1}
\end{equation*}
$$

Furthermore, wlog $|\rho|$ is very large, say

$$
\begin{equation*}
|\rho|>1,\left|a_{k}\right|,\left|\pi_{k}\right|, \quad k=1, \ldots, r \tag{2}
\end{equation*}
$$

Indeed, let $\left|\rho^{\prime}\right| \geq|\rho|$ and let $D^{\prime}=\left\{z| | z\left|\geq\left|\rho^{\prime}\right|\right\}\right.$. Then $D^{\prime} \subseteq D \subseteq F$. If $\operatorname{res}_{D^{\prime}} f \neq 0$, then also $\operatorname{res}_{D} f \neq 0$.

Part C: Reduction to $\left|a_{k}-a_{l}\right|=1$ and $\pi_{k}=1$ for all $k \neq l$. By Mittag-Leffler there are unique $f_{1} \in \mathcal{O}\left(D_{1}\right), \ldots, f_{r} \in \mathcal{O}\left(D_{r}\right)$ vanishing at ∞, such that $f=\operatorname{res}_{F} f_{1}+\cdots+$ $\operatorname{res}_{F} f_{r}$. As $f \neq 0$, not all f_{k} are 0 .

For each $1 \leq k \leq r$ let $D_{k}^{\prime}=\left\{z| | z-a_{k} \mid \geq 1\right\}$. By Part C, $D \subseteq D_{k}^{\prime}$. By (1), $D_{k}^{\prime} \subseteq D_{k}$. Some of the disks in the sequence $D_{1}^{\prime}, \ldots, D_{r}^{\prime}$ may coincide (see below). Let E_{1}, \ldots, E_{s} be the distinct elements of this sequence, and for each $1 \leq j \leq s$ let $\mathcal{K}(j)=\left\{k \mid D_{k}^{\prime}=E_{j}\right\}$.

More precisely, if $\left|a_{k}-a_{l}\right|<1$, then $D_{k}^{\prime}=D_{l}^{\prime}$. If, on the other hand, $\left|a_{k}-a_{l}\right|=1$, then the complements of D_{k}^{\prime} and D_{l}^{\prime} are disjoint, and hence $D_{k}^{\prime} \neq D_{l}^{\prime}$. As there are k, l such that $\left|a_{k}-a_{l}\right|=1$, not all the disks in the sequence $D_{1}^{\prime}, \ldots, D_{r}^{\prime}$ are equal. Thus $2 \leq s$ and $\# \mathcal{K}(j)<r$ for each $1 \leq j \leq s$. Furthermore, the complements of E_{1}, \ldots, E_{s} are disjoint.

Put $G=\bigcap_{j=1}^{s} E_{j}$. This is a connected affinoid. We claim that $\operatorname{res}_{G} f \neq 0$. Indeed, for each $1 \leq j \leq s$ let $g_{j}=\sum_{k \in \mathcal{K}(j)} \operatorname{res}_{E_{j}} f_{k} \in \mathcal{O}\left(E_{j}\right)$. Then $\operatorname{res}_{G} f=\sum_{j=1}^{s} \operatorname{res}_{G} g_{j}$. Therefore this is the Mittag-Leffler decomposition of $\operatorname{res}_{G} f$. Hence it suffices to show that there is j such that $g_{j} \neq 0$.

There is k_{0} such that $f_{k_{0}} \neq 0$. Let j be such that $k_{0} \in \mathcal{K}(j)$. Now, $F_{j}=$ $\bigcap_{k \in \mathcal{K}(j)} D_{k}$ is the intersection of $\# \mathcal{K}(j)<r$ closed disks with disjoint complements. Put $g_{j}^{\prime}=\sum_{k \in \mathcal{K}(j)} \operatorname{res}_{F_{j}} f_{k} \in \mathcal{O}\left(F_{j}\right)$. This is the Mittag-Leffler decomposition of g_{j}^{\prime}. Therefore, as $f_{k_{0}} \neq 0$, also $g_{j}^{\prime} \neq 0$. But $g_{j}=\operatorname{res}_{E_{j}} g_{j}^{\prime}$. As $\# \mathcal{K}(j)<r$, by the induction hypothesis we have $g_{j} \neq 0$. This shows that $\operatorname{res}_{G} f \neq 0$.

Now, either $s<r$ or or $s=r$. In the first case, by the induction hypothesis (applied to $D \subseteq G=\bigcap_{j=1}^{s} E_{j}$) $\operatorname{res}_{D} f \neq 0$. In the second case we may replace F with $G\left(\right.$ and D_{k} with D_{k}^{\prime} for each k) and thus assume that $\left|a_{k}-a_{l}\right|=1$ and $\pi_{k}=1$ for all $k \neq l$.

Part D: Assume that $\left|a_{k}-a_{l}\right|=1$ for all $k \neq l$ and $\left|\pi_{i}\right|=1 \leq \rho$ for all i.
Write f_{k} as $\sum_{j=1}^{\infty} b_{j}^{(k)}\left(\frac{1}{z-a_{k}}\right)^{j}$.
Then
(i) $\left|a_{k}\right|,\left|b_{j}^{(k)}\right| \leq 1$ for all j and k; in particular, $\overline{a_{k}}, \overline{b_{j}^{(k)}} \in \bar{K}$ are defined.
(ii) $\overline{a_{1}}, \ldots, \overline{a_{r}}$ are distinct;
(iii) There are j and k such that $\left|b_{j}^{(k)}\right|=1$; that is, not all $\overline{b_{j}^{(k)}}$ are 0 .

Furthermore, $\left|b_{j}^{(k)}\right| \rightarrow 0$, for each $1 \leq k \leq r$. Therefore
(iv) there is m such that $\overline{b_{j}^{(k)}}=0$ for all k and all $j \geq m$.

It follows that $\bar{f}(t)=\sum_{k=1}^{r} \sum_{j=1}^{\infty} \overline{b_{j}^{(k)}}\left(\frac{1}{t-\overline{a_{k}}}\right)^{j} \neq 0$ is a non-trivial rational function over \bar{K}. Therefore there is $\bar{c} \neq 0$ in (the algebraic closure of) \bar{K} such that $\bar{f}(\bar{c}) \neq 0$.

Thus there is c in the algebraic closure of K such that $|c|=1$ and $f(c) \neq 0$. In particular, the restriction of f to $D^{\prime}=\{z| | z \mid \geq 1\}$ is not trivial. Since $|\rho| \geq 1$, we have $D \subseteq D^{\prime}$. Hence by Part A also $\operatorname{res}_{D} f \neq 0$.

5. Factorization

The aim of this section is to prove the following
Theorem 5.1: Let F be a connected affinoid in \mathbb{P} such that $\infty \notin F$. Let $0 \neq f(z)$.
(a) f has finitely many zeroes in F. Moreover, there are $c_{1}, \ldots, c_{m} \in F$ such that $f(z)=g(z) \prod_{i=1}^{m}\left(z-c_{i}\right)$, where $g \in \mathcal{O}(F)$ has no zeroes in F.
(b) The following are equivalent:
(i) $f \in \mathcal{O}(F)^{\times}$;
(ii) f has no zeros in F;
(iii) There is $\theta>0$ such that $|f(z)|>\theta$ for all $z \in F$.
(b) The ring $\mathcal{O}(F)$ is a principal ideal domain; its maximal ideals are $(z-c) \mathcal{O}(F)$, where $c \in F$.

We prove this in several steps:
Lemma 5.2 (Factorization): Let F be an affinoid in \mathbb{P}. Let $\infty \neq c \in F$ and let $f \in \mathcal{O}(F)$ such that $f(c)=0$. Then there is a unique $g \in \mathcal{O}(F)$ such that $f(z)=(z-c) g(z)$ on $F \backslash\{\infty\}$.

Proof: To show the uniqueness, it suffices to prove that if $0 \neq g \in \mathcal{O}(F)$, then $(z-$ $c) \cdot g(z) \neq 0$. There is $a \in F$ such that $g(a) \neq 0$. As g is continuous (it is the limit of rational functions, which are continuous on F), we may assume that $a \neq c, \infty$. (There is $0 \neq d \in K$ with $|d|$ sufficiently small; then $g(a+d) \neq 0$ and $a+d \neq c, \infty$.) Then $(a-c) \cdot g(a) \neq 0$.

Part A: Reduction to a connected affinoid. Write F as the disjoint union of connected affinoids F_{1}, \ldots, F_{r}. Wlog $c \in F_{1}$. For $2 \leq i \leq r$ we have $c \notin F_{i}$ and hence $(z-c)^{-1} \in$ $\mathcal{O}\left(F_{i}\right)$, whence $g_{i}:=(z-c)^{-1} f_{i} \in \mathcal{O}\left(F_{i}\right)$ satisfies $\operatorname{res}_{F_{i}} f=(z-c) g_{i}(z)$. Suppose there is $g_{1} \in \mathcal{O}\left(F_{1}\right)$ such that $\operatorname{res}_{F_{1}} f=(z-c) g_{1}(z)$. Then by Lemma 4.9 there is a unique $g \in \mathcal{O}(F)$ such that $\operatorname{res}_{F_{i}} g=g_{i}$. Clearly $f(z)=(z-c) g(z)$.

Part B: Reduction to a closed disk. Write F as the intersection of closed disks $\bigcap_{j=1}^{s} D_{j}$. By Mittag-Leffler, $f=\sum f_{i}$, where $f_{i} \in \mathcal{O}(F)_{c}$ extends to a holomorphic
function on D_{i}. It suffices to prove the assertion for each f_{i}. Therefore wlog f extends to a holomorphic function on D_{i}. So wlog $F=D_{i}$.

Part C: f is the restriction of an automorphism of \mathbb{P} to F. Say, $f(z)=\frac{\alpha z+\beta}{\gamma z+\delta}$, where $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{Gl}_{2}(K)$. Since $f(c)=0$, we have $\alpha c+\beta=0$. Thus $f(z)=\frac{\alpha(z-c)}{\gamma z+\delta}=$ $(z-c) \cdot \frac{\alpha}{\gamma z+\delta}$.

Part D: F is the unit disk. Suppose that $F=U:=\{z| | z \mid \leq 1\}$ and $c=0$. By Proposition 4.4, $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, where $a_{n} \rightarrow 0$. As $f(c)=0$, we have $a_{0}=0$. Moreover, $h(z):=\sum_{n=1}^{\infty} a_{n} z^{n-1} \in \mathcal{O}(U)$. Therefore $f(z)=z h(z)$.

Part D: The general case. There is an automorphism φ of \mathbb{P} such that $\varphi(F)=U$ and $\varphi(c)=0$. There is $f_{1} \in \mathcal{O}(U)_{0}$ such that $f(z)=f_{1}(\varphi(z))$. By Part $\mathrm{D}, f_{1}=z \cdot g_{1}$, where $g_{1} \in \mathcal{O}(U)$. Thus $f=f_{1}(\varphi(z))=\varphi(z) \cdot g_{1}(\varphi(z))$, and $g_{1}(\varphi(z)) \in \mathcal{O}(F)$. By Part C, $\varphi(z)=(z-c) g_{2}(z)$ for some $g_{2} \in \mathcal{O}(F)$. So $f=(z-c) g_{1}(z) g_{2}(z)$.

The main tool is a lemma we already proved:
Lemma 3.17: Let F be a connected affinoid such that $\infty \notin F$. Then either F is a closed disk or a finite union of sets of the form

$$
\begin{aligned}
C_{r, r^{\prime}} & =\left\{z \in K\left|r<\left|z-a_{0}\right|<r^{\prime}\right\}\right. \\
C_{r} & =\left\{z \in K| | z-a_{0}\left|=\cdots=\left|z-a_{n}\right|=r\right\}\right.
\end{aligned}
$$

where $r, r^{\prime} \in\left|K^{\times}\right|, a_{0}, \ldots, a_{n} \in K$ such that $\left|a_{i}-a_{j}\right|=r$.
Lemma 5.3: Let $D=\{z| | z \mid \leq 1\}$ be a closed disk. Let $0 \neq f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in$ $\mathcal{O}(D)$, and let $m=\max \left(n| | a_{n} \mid=\|f\|_{D}\right)$.
(a) If $m \geq 1$, then f has a zero in D; more precisely -
(b) There are $c_{1}, \ldots, c_{m} \in D$ and $g \in \mathcal{O}(D)$ with no zeros in D such that $f(z)=$ $g(z) \prod_{i=1}^{m}\left(z-c_{i}\right)$.
(c) The following are equivalent:
(i) $f \in \mathcal{O}(D)^{\times}$;
(ii) f has no zeros in D;
(iii) $f=c(1+s)$, where $c \in K^{\times}$and $s \in \mathcal{O}^{o o}(D)$ (that is, $m=0$);
(iv) $|f(z)|=\|f\|_{D}$ for each $z \in D$.

Proof: Wlog $a_{m}=1$. Hence $f \in \mathcal{O}^{\circ}(D)$.
(a) For $k \geq m$ let $f_{k}(z)=\sum_{n=0}^{k} a_{n} z^{n}$. Then

$$
\bar{f}(z)=\bar{f}_{k}(z)=z^{m}+\bar{a}_{m-1} z^{m-1}+\cdots+\bar{a}_{0} .
$$

Write f_{k} as

$$
f_{k}(z)=\lambda^{\prime} \prod_{i=1}^{s}\left(z-c_{i k}\right) \prod_{j=1}^{t}\left(z-d_{j k}\right)
$$

where $\left|c_{i k}\right| \leq 1$ and $\left|d_{j k}\right|>1$. Put $\lambda=\lambda^{\prime}\left(-d_{1 k}\right) \cdots\left(-d_{t k}\right)$ (and λ^{\prime} is the leading coefficient of f_{k}, which is not necessarily a_{k}, because the latter could be 0). Then we can write the preceding equation as

$$
f_{k}(z)=\lambda \prod_{i=1}^{s}\left(z-c_{i k}\right) \prod_{j=1}^{t}\left(1-d_{j k}^{-1} z\right)
$$

Comparing norms on both sides we get $|\lambda|=1$. Taking bar on both sides we see that

$$
z^{m}+\bar{a}_{m-1} z^{m-1}+\cdots+\bar{a}_{0}=\bar{f}_{k}(z)=\bar{\lambda} \prod_{i=1}^{s}\left(z-\bar{c}_{i k}\right)
$$

Hence $\bar{\lambda}=1$ and $m=s$.
For each k put $Z_{k}=\left\{c_{1 k}, \ldots, c_{m k}\right\}$. Then $\# Z_{k} \leq m$.
Fix k and let $c_{k+1} \in Z_{k+1}$. Then

$$
\prod_{i=1}^{m}\left|c_{k+1}-c_{i k}\right|=\left|f_{k}\left(c_{k+1}\right)\right|=\left|f_{k}\left(c_{k+1}\right)-f_{k+1}\left(c_{k+1}\right)\right| \leq\left\|f_{k}-f_{k+1}\right\|
$$

Hence there is $c_{k}=c_{i k} \in Z_{k}$ such that $\left|c_{k+1}-c_{k}\right| \leq\left\|f_{k}-f_{k+1}\right\|^{\frac{1}{m}}$. Choose this $c_{k} \in Z_{k}$; this defines a map : $Z_{k+1} \rightarrow Z_{k}$ by $c_{k+1} \mapsto c_{k}$. Now, $\lim _{\longleftarrow} Z_{n} \neq \emptyset$, so there is a sequence $\left\{c_{k}\right\}_{k} \subseteq D$ such that $f_{k}\left(c_{k}\right)=0$ and $\left|c_{k+1}-c_{k}\right| \leq\left\|f_{k}-f_{k+1}\right\|^{\frac{1}{m}}$ for every k. Thus $\left\{c_{k}\right\}_{k}$ is a Cauchy sequence. Hence its limit $c \in D$ is a zero of f.
(c) (i) \Rightarrow (ii) - clear.
(ii) \Rightarrow (iii): If f has no zeros in D, then by (a), $m=0$. Hence $f=a_{0}+s=1+s$, where $s=\sum_{n=1}^{\infty} a_{n} z_{n}$ satisfies $\|s\|_{D}<1$.
(iii) \Rightarrow (iv): Let $z \in D$. Then $|s(z)| \leq\|s\|_{D}<1$, hence $|1+s(z)|=1$.
(iv) \Rightarrow (i): Write f as the limit of a sequence of rational functions f_{k} without poles in D (for instance, the partial sums $f_{k}(z)=\sum_{n=0}^{k} a_{n} z^{n}$). We may assume that $\left\|f_{k}-f\right\|<1$ for each k, and hence f_{k} has no zeros in D; in fact, for every $z \in D$ we have $\left|f_{k}(z)-f(z)\right|<1$, but $|f(z)|=1$, whence $\left|f_{k}(z)\right|=1$. Thus $\frac{1}{f_{k}}$ is a sequence of rational functions with no poles in D. Check that $\frac{1}{f_{k}} \rightarrow \frac{1}{f}$.
(b) By induction on m. Assume first that $m=0$. Then $\|1-f\|<1$, hence by (c), $f \in \mathcal{O}(D)^{\times}$.

Assume that $m \geq 1$. By (a), f has a zero $c \in D$. Then f can be written as $f(z)=$ $\sum_{n=0}^{\infty} b_{n}(z-c)^{n}$, where $\left|b_{n}\right| \leq 1$. As $f(c)=0$, we have $b_{0}=0$. Thus $f(z)=(z-c) h(z)$, where $h(z)=\sum_{n=1}^{\infty} b_{n}(z-c)^{n} \in \mathcal{O}^{o}(D)$. Write $h(z)$ as $h(z)=\sum_{n=0}^{\infty} a_{n}^{\prime} z^{n}$, and put $m^{\prime}=\max \left(n| | a_{n}^{\prime} \mid=1\right)$. From $\bar{f}(z)=(z-\bar{c}) \bar{h}(z)$ we see that $m^{\prime}=m-1$. By the induction hypothesis $h(z)=g(z) \prod_{i=1}^{m-1}\left(z-c_{i}\right)$, where $c_{1}, \ldots, c_{m-1} \in K$ and $g \in \mathcal{O}(D)$ has no zeros in D. Put $c=c_{m}$. Then $f(z)=g(z) \prod_{i=1}^{m}\left(z-c_{i}\right) g(z)$.

REmARK 5.4: Let C be a subset of an affinoid F, and let $f, q \in \mathcal{O}(F)$ such that $\|f-q\|_{C}<\|f\|_{C}$. Then
(i) $\|f\|_{C}=\|q\|_{C}$.
(ii) If $z \in C$ and $|f(z)|=| | f \|_{C}$, then $|f(z)|=|q(z)|$.

Proof: Let $C^{\prime}=\left\{z \in C| | f(z) \mid>\|f-q\|_{C}\right\}$. As $\sup _{z \in C}|f(z)|=\|f\|_{C}>\|f-q\|_{C}$, the set C^{\prime} is not empty. Hence C^{\prime} contains all $z \in C$ with $|f(z)|=\|f\|_{C}$. For $z \in C^{\prime}$ we have $|f(z)|>|f(z)-q(z)|$, and hence $|f(z)|=|q(z)|$. This proves (ii). Also $\|f\|_{C}=\sup _{z \in C^{\prime}}|f(z)|=\sup _{z \in C^{\prime}}|q(z)|=\|q\|_{C}$.

Lemma 5.5: Let $r \in\left|K^{\times}\right|$, and let $b_{1}, \ldots, b_{N} \in K$ such that $\left|b_{1}\right|=\cdots=\left|b_{N}\right|=r$. Put

$$
\begin{aligned}
C & =\left\{z \in K| | z\left|=r,\left|z-b_{\nu}\right|=r, 1 \leq \nu \leq N\right\}\right. \\
& =\{z \in K| | z \mid=r\} \backslash \bigcup_{\nu=1}^{N}\left\{z \in K| | z-b_{\nu} \mid<r\right\}
\end{aligned}
$$

Let q be a rational function with no poles in C. Let $\left\{d_{1}, \ldots, d_{n}\right\} \subseteq C$ contain all the zeroes of q in C. Then
(a) $|q(z)|=\|q\|_{C}$, if $z \in C$ and $\left|z-d_{i}\right| \geq r$, for $i=1, \ldots, n$;
(b) $\|q\|_{\left\{z| | z-d_{i} \mid<r\right\}}=\|q\|_{C}$, for $i=1, \ldots, n$.

Proof: It suffices to show that there are $k \in \mathbb{N}$ and $p, \rho \in\left|K^{\times}\right|$such that $p<r$ and:
(i) if $z \in C$ and $\left|z-d_{i}\right| \geq r$, for $i=1, \ldots, n$, then $|q(z)|=\rho$;
(ii) $|q(z)| \leq \rho$ for all $z \in C$;
(iii) For each $1 \leq i \leq n$, if $z \in C$ and $p<\left|z-d_{i}\right|<r$, then $\left|\frac{z-d_{i}}{r}\right|^{k} \rho \leq|q(z)| \leq \rho$.

Observe that if this assertion is true for two rational functions q_{1}, q_{2}, then it also holds for their product $q_{1} q_{2}$. Thus we may assume that either $q(z)=z-a$, where $a \in K$ or $q(z)=\frac{1}{z-a}$, where $a \notin C$.

Futhermore, we may assume that $\left\{d_{1}, \ldots, d_{n}\right\}$ is the set of all zeroes of q in C. (We could have assumed this from the beginning, but this "more general" setup was necessary for the preceding reduction from q to its factors: The set of zeroes of $q_{1} q_{2}$ may properly contain the set of zeroes of q_{1}.) More precisely, let k, p, ρ such that (i), (ii) and (iii) hold, and let $d_{n+1}, \ldots, d_{n^{\prime}} \in C$. Let

$$
p^{\prime}=\max \left(p,\left|d_{i}-d_{j}\right|\left|1 \leq i, j \leq n^{\prime},\left|d_{i}-d_{j}\right|<r\right)\right.
$$

Then the corresponding assertions, say (i'), (ii'), and (iii'), hold for $d_{1}, \ldots, d_{n+1}, \ldots, d_{n^{\prime}}$ with k, p^{\prime}, ρ. Indeed, (i^{\prime}) is weaker than (i), and (ii') does not depend on $d_{1}, \ldots, d_{n^{\prime}}$. Fix $1 \leq j \leq n^{\prime}$ and $z \in C$ such that $p^{\prime}<\left|z-d_{j}\right|<r$. If there is no $1 \leq i \leq n$ such that $\left|z-d_{i}\right|<r$, then $|q(z)|=\rho$ by (i). If there is $1 \leq i \leq n$ such that $\left|z-d_{i}\right|<r$, then $\left|d_{i}-d_{j}\right|<r$, and hence $\left|d_{i}-d_{j}\right| \leq p^{\prime}$, by the definition of p^{\prime}, whence $\left|z-d_{j}\right|=$ $\left|\left(z-d_{i}\right)+\left(d_{i}-d_{j}\right)\right|=\left|z-d_{j}\right|$. As $p \leq p^{\prime}$, condition (iii') for j follows from (iii) for i.

Let $q(z)=z-a$. Let $a \in K$, and let $z \in C$. Recall that $|z|=r$.
(1) If $|a|>r$, then $|z-a|=|a|$. (In this case $n=0$.)
(2) If $|a|<r$, then $|z-a|=r$. (In this case $n=0$.)
(3) If $|a|=r$, but $a \notin C$, then there is ν such that $\left|a-b_{\nu}\right|<r$. As $\left|z-b_{\nu}\right|=r$, we have $|z-a|=\left|\left(z-b_{\nu}\right)-\left(a-b_{\nu}\right)\right|=r$. (In this case $\left.n=0.\right)$
(4) If $|a|=r$ and $a \in C$, then $n=1$ and $a=d_{1}$, because a is the only zero of q. If $\left|z-d_{1}\right| \geq r$, then $|z-a|=\left|z-d_{1}\right|=r$ (because $|z|=\left|d_{1}\right|=r$. If $\left|z-d_{1}\right|<r$, then $|z-a|=\frac{\left|z-d_{1}\right|}{r} r$.

In case (1) put $\rho=|a|$, otherwise $\rho=r$. Let $k=1$, and let p be arbitrary. Then (i),(ii),(iii) hold.

If $q(z)=\frac{1}{z-a}$, where $a \notin C$, then the assertion follows from cases $(1),(2),(3)$ above.

Lemma 5.6: Let F be an affinoid that contains $D=\{z \in K| | z \mid<1\}$. Let $0 \neq f \in$ $\mathcal{O}(F)$. Then f has finitely many zeroes in D. Furthermore, $f(z)=g(z) \prod_{i=1}^{m}\left(z-c_{i}\right)$, where c_{1}, \ldots, c_{m} are the zeroes of f in D, and $g \in \mathcal{O}(F)$ has no zeroes in D. Moreover, $\|g\|_{D}=|g(z)|$ for all $z \in D$.

Proof: In this proof let D_{r} denote the closed disk of radius r around 0 , and U_{r} the circle of radius r around 0 . Put $\rho=\|f\|_{D}\left(\leq\|f\|_{F}\right)$. Then $\rho>0$ by Lemma 4.10. Let $q \in \mathcal{O}(F)$ be a rational function such that $\|f-q\|_{D}<\frac{\rho}{2}$. (E.g., $\|f-q\|_{F}<\frac{\rho}{2}$.)

If $0<r_{0}<1$ is sufficiently large, $\|f\|_{D_{r_{0}}} \geq \frac{\rho}{2}$; this, together with $\|f-q\|_{D_{r_{0}}}<\frac{\rho}{2}$, gives $\|q\|_{D_{r_{0}}} \geq \frac{\rho}{2}$ (there is $z \in D_{r_{0}}$ such that $|f(z)| \geq \frac{\rho}{2}$; of course, $|f(z)-q(z)|<\frac{\rho}{2}$, so $\left.|q(z)| \geq \frac{\rho}{2}\right)$. In particular, $q \neq 0$ has only finitely many zeroes. Provided that r_{0} is sufficiently large, we may assume that $q(z)$ has no zeroes in $\left\{z \in K\left|r_{0}<|z|<1\right\}\right.$.

Let $r_{0}<r<1$, and let $z \in D$ such that $|z|=r$. We have

$$
|f(z)-q(z)| \leq\|f-q\|_{D}<\frac{\rho}{2} \leq\|q\|_{D_{r_{0}}} \leq\|q\|_{D_{r}} .
$$

But $\|q\|_{D_{r}}=\|q\|_{U_{r}}$, and, by Lemma 5.5 or Proposition 4.4, $\|q\|_{U_{r}}=|q(z)|$. Thus $|f(z)-q(z)|<|q(z)|$, and hence $|f(z)|=|q(z)|>0$.

In particular, all the zeroes of f in D are in $D_{r_{0}}$. By Lemma 5.3 there are $c_{1}, \ldots, c_{m} \in D_{r_{0}}$ and $g^{\prime} \in \mathcal{O}\left(D_{r_{0}}\right)$ with no zeroes such that $\operatorname{res}_{D_{r_{0}}} f(z)=g^{\prime}(z) \prod_{i=1}^{m}(z-$ c_{i}). (Observe that this g^{\prime} is unique.) By the Factorization Lemma and by induction on i we can write $f(z)=g(z) \prod_{i=1}^{m}\left(z-c_{i}\right)$, where $g \in \mathcal{O}(F)$. By the uniqueness of g^{\prime} we have $\operatorname{res}_{D_{r_{0}}} g(z)=g^{\prime}(z)$. Thus g has no zeroes in $D_{r_{0}}$, and hence also in D (by the first statement of this paragraph).

Let $z \in D$. Let $|z|<r<1$. By Lemma 5.3, $|g(z)|=\|g\|_{D_{r}}$. Hence $|g(z)|=$ $\lim _{r \rightarrow 1^{-}}\|g\|_{D_{r}}=\|g\|_{D}$.

Lemma 5.7: Let C be as in Lemma 5.5, and let F be an affinoid that contains C. Let $0 \neq f \in \mathcal{O}(F)$.
(i) f has finitely many zeroes in C. More precisely, $f(z)=g(z) \prod_{i=1}^{m}\left(z-c_{i}\right)$, where c_{1}, \ldots, c_{m} are the zeroes of f, and $g \in \mathcal{O}(F)$ has no zeroes in C.
(ii) If f has no zeroes in C, then $|f(z)|=\|f\|_{C}$ for all $z \in C$.

Proof: Since C contains a closed disk, by Lemma 4.10, $\|f\|_{C}>0$. Let $q \in \mathcal{O}(F)$ be a rational function such that $\|f-q\|_{C}<\|f\|_{C}$. Then $q \neq 0$. By Remark 5.4, $\|q\|_{C}=\|f\|_{C}$. Let d_{1}, \ldots, d_{n} be the zeroes of q in C. Put

$$
D_{i}=\left\{z \in C| | z-d_{i} \mid<r\right\}, 1 \leq i \leq n, \quad \text { and } \quad G=C \backslash \bigcup_{i=1}^{n} D_{i}
$$

By Lemma 5.5, $|q(z)|=\|q\|_{C}$ for every $z \in G$.
It follows that for every $z \in G$ we have $|f(z)-q(z)| \leq\|f-q\|_{C}<\|f\|_{C}=\|q\|_{C}=$ $|q(z)|$, and hence $|f(z)|=|q(z)|=\|q\|_{C}$. In particular, $f(z)$ has no zeroes in G. Thus all the zeroes of f are in the open disks D_{1}, \ldots, D_{n}. By Lemma 5.6 their number is finite, and we get the required factorization.
(ii) Let

$$
\rho=\|f\|_{C}=\|q\|_{C}=\|q\|_{D_{i}}, \text { for } i=1, \ldots, n
$$

(the equalities follow from Remark 5.4 and Lemma 5.5, respectively). It suffices to show that $|f(z)|=\rho$ for every $z \in C$. For $z \in G$ this is written above. For $z \in D_{i}$, by Lemma 5.3, (present D_{i} as the increasing union of closed disks) $|f(z)|=\|f\|_{D_{i}}$. As

$$
\|f-q\|_{D_{i}} \leq\|f-q\|_{C}<\|f\|_{C}=\rho=\|q\|_{D_{i}}
$$

by Remark 5.4, $\|f\|_{D_{i}}=\|q\|_{D_{i}}$. Thus $|f(z)|=\|q\|_{D_{i}}=\rho$.
Lemma 5.8: Let $r_{1}, r_{2} \in\left|K^{\times}\right|$, where $r_{1}<r_{2}$. Put

$$
C=\left\{z \in K\left|r_{1}<|z|<r_{2}\right\} .\right.
$$

Let F be an affinoid that contains C.
(i) Let $f \in \mathcal{O}(F)$. If $f \neq 0$, then f has a finite number of zeroes in C. Furthermore, $f(z)=g(z) \prod_{i=1}^{m}\left(z-c_{i}\right)$, where c_{1}, \ldots, c_{m} are zeroes of f in C, and $g \in \mathcal{O}(F)$ has no zeroes in C.
(ii) If $g \in \mathcal{O}(F)$ has no zeroes in C, there is $\theta>0$ such that $|g(z)|>\theta$ for all $z \in C$.

Proof: For each $r_{1}<r<r_{2}$ let $U_{r}=\{z \in K| | z \mid=r\}$. Put $\theta=\inf \left\{\|f\|_{U_{r}} \mid r_{1}<r<\right.$ $\left.r_{2}\right\}$. We claim that $\theta>0$.

Indeed, for all $r_{1}<r_{1}^{\prime} \leq r_{2}^{\prime}<r_{2}$ let $F^{\prime}=\left\{z \in K\left|r_{1}^{\prime} \leq|z| \leq r_{2}^{\prime}\right\}\right.$. By Example 4.8, there are $a_{n} \in K$ such that

$$
f(z)=\sum_{n=-\infty}^{+\infty} a_{n} z_{n}
$$

where $\left|a_{n}\right|\left(r_{2}^{\prime}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\left|a_{n}\right|\left(r_{1}^{\prime}\right)^{n} \rightarrow 0$ as $n \rightarrow-\infty$. By Example 4.8(b), these a_{n} are unique. This implies that a_{n} do not depend on $r_{1}^{\prime}, r_{2}^{\prime}$. As $f \neq 0$, there is $k \in \mathbb{Z}$ such that $a_{k} \neq 0$.

If $r_{1}<r_{1}^{\prime}=r=r_{2}^{\prime}<r_{2}$, then $F^{\prime}=U_{r}$. By Example 4.8, $\|f\|_{U_{r}}=\max _{n}\left|a_{n}\right| r^{n}$. Hence $\|f\|_{U_{r}} \geq\left|a_{k}\right| r^{k} \geq\left|a_{k}\right| \cdot \min \left(r_{1}^{k}, r_{2}^{k}\right)$. It follows that $\theta>0$.

Let $q \in \mathcal{O}(F)$ be a rational function such that $\|f-q\|_{F}<\theta$. Then $q \neq 0$, and hence q has only finitely many zeroes in C. Let $r_{1}<r<r_{2}$ such that $r \neq|d|$ for each zero $d \in C$ of q, and let $z \in U_{r}$. Then q has no zero in U_{r}, and hence by Lemma 5.5, $|q(z)|=\|q\|_{U_{r}}$. Furthermore, $\|f-q\|_{U_{r}} \leq\|f-q\|_{F}<\theta \leq\|f\|_{U_{r}}$. Hence by Remark 5.4, $\|f\|_{U_{r}}=\|q\|_{U_{r}}$. Thus for every $z \in U_{r}$

$$
|f(z)-q(z)|<\theta \leq\|f\|_{U_{r}}=\|q\|_{U_{r}}=|q(z)|
$$

and hence $|f(z)|=|q(z)|=\|q\|_{U_{r}}=\|f\|_{U_{r}}$.
Therefore $|f(z)| \geq \theta$ for all $z \in C$ except for finitely many U_{r} 's on which f has zeroes. In particular, this prove (ii). Now apply Lemma 5.7 (to each U_{r} instead of C there).

Proof of Theorem 5.1: (a) By Lemma 3.17, F is the union of certain sets C_{1}, \ldots, C_{n}. By induction, $f=f_{0} \prod_{i=1}^{k}\left(z-c_{i}\right)$, where $c_{1}, \ldots, c_{k} \in \bigcup_{i=1}^{n-1} C_{i}$ and $f_{0} \in \mathcal{O}(F)$ has no zeroes
in $\bigcup_{i=1}^{n-1} C_{i}$. By Lemmas $5.3,5.5,5.7, f_{0}=g \prod_{i=k+1}^{m}\left(z-c_{i}\right)$, where $c_{k+1}, \ldots, c_{m} \in C_{n}$ and $g \in \mathcal{O}(F)$ has no zeroes in C_{n}.
(b) Implication (iii) \Rightarrow (ii) is trivial. By the preceding lemmas, (ii) \Rightarrow (iii). To deduce (iii) \Rightarrow (i), approximate f by rational functions with no zeroes on F, so that their inverses are rational functions on F; they converge to f^{-1}.
(c) First notice that F is an integral domain: Let $f, g \in \mathcal{O}(F) \backslash\{0\}$. By (i) they have only finitely many zeroes in F. Since F is an infinite set, there is $c \in F$ such that $f(c), g(c) \neq 0$. Hence $f g \neq 0$. (One could also use Lemma 4.10, which proves that $\mathcal{O}(F) \subseteq \mathcal{O}(D)$ for some closed disk D. As $\mathcal{O}(D)$ is an integral domain, so is $\mathcal{O}(F)$.)

Consider the obvious homomorphism (actually, an embedding) $K[z] \rightarrow \mathcal{O}(F)$. Let $J \leq \mathcal{O}(F)$ be an ideal. Let $\left\{f_{i}\right\}_{i \in I}$ be a set of its generators. By (i) and (ii) each f_{i} is, up to an element of $\mathcal{O}(F)^{\times}$, a polynomial in z. Thus we may assume that $f_{i} \in K[z]$. Let J_{0} be the ideal of $K[z]$ generated by the f_{i}; then $J=J_{0} \mathcal{O}(F)$. As $K[z]$ is a PID, the ideal J_{0} is generated by some $f \in K[z]$. Hence $J=f \mathcal{O}(F)$.

6. Affinoid algebras

In this section let $(k,| |)$ be a complete non-archimedean valued field. Let K be the completion of the algebraic closure of k. (Then K is algebraically closed.)

Definition 6.1: Formal power series. Let $\mathbb{N}_{0}=\{0,1,2, \ldots\}$. The elements of \mathbb{N}_{0}^{n} are n-tuples $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. For an n-tuple of indeterminates $z=\left(z_{1}, \ldots, z_{n}\right)$ and for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$ write $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}} .\left(\right.$ Thus $\left.z^{\alpha} z^{\beta}=z^{\alpha+\beta}.\right)$

Let R be a commutative ring with 1 . Then

$$
R\left[\left[z_{1}, \ldots, z_{n}\right]\right]=\left\{\sum_{\alpha} a_{\alpha} z^{\alpha} \mid a_{\alpha} \in R\right\}
$$

is an R-algebra, the ring of formal power series in z_{1}, \ldots, z_{n} over R.
Lemma 6.2: Let R be a commutative ring with 1 .
(a) $R\left[\left[z_{1}, \ldots, z_{n}\right]\right]=R\left[\left[z_{1}, \ldots, z_{n-1}\right]\right]\left[\left[z_{n}\right]\right]$.
(b) If R is an integral domain, then so is $R\left[\left[z_{1}, \ldots, z_{n}\right]\right]$.

Proof: (b) Suppose $f=\sum_{\alpha} a_{\alpha} z^{\alpha}, g=\sum_{\beta} b_{\beta} z^{\beta} \neq 0$. Choose smallest α, β, in the lexicographical order on \mathbb{N}_{0}^{n}, such that $a_{\alpha}, b_{\beta} \neq 0$. Then the coefficient of $z^{\alpha+\beta}$ in $f g$ is $a_{\alpha} b_{\beta} \neq 0$.)

Assume that $(R,\| \|)$ is a normed Banach $(k,| |)$-algebra. Then

$$
R^{o}=\{r \in R \mid\|r\| \leq 1\}
$$

is a subring of R (in fact, a k^{o}-algebra) and

$$
R^{o o}=\{r \in R \mid\|r\|<1\}
$$

an ideal in R^{o}. Let $\bar{R}=R^{o} / R^{o o}$. This is an \bar{k}-algebra.
Definition 6.3: Standard affinoid algebra. For $\alpha \in \mathbb{N}_{0}^{n}$ put $|\alpha|=\max _{i}\left(\alpha_{i}\right)$. (This has got nothing to do with the absolute value on k.) Put

$$
T_{n}(R)=R\left\langle z_{1}, \ldots, z_{n}\right\rangle=\left\{\sum_{\alpha} a_{\alpha} z^{\alpha} \mid a_{\alpha} \in R, \lim _{|\alpha| \rightarrow \infty} a_{\alpha}=0\right\} .
$$

This is a subalgebra of $R\left[\left[z_{1}, \ldots, z_{n}\right]\right]$. Put

$$
\left\|\sum_{\alpha} a_{\alpha} z^{\alpha}\right\|=\max _{\alpha}\left\|a_{\alpha}\right\|
$$

This is a norm (of an algebra over k):
(a) $\|f\|=0$ if and only if $f=0$.
(b) $\|f+g\| \leq\|f\|+\|g\|$. In fact, $\|f+g\| \leq \max (\|f\|,\|g\|)$.
(c) $\|c f\|=|c|\|f\|$, for $c \in k$ and $f \in T_{n}$.
(d) $\|f g\| \leq\|f\| \cdot\|g\|$.

It follows that

$$
T_{n}^{o}=\left\{\sum_{\alpha} a_{\alpha} z^{\alpha} \mid a_{\alpha} \in R^{o}, \lim _{|\alpha| \rightarrow \infty} a_{\alpha}=0\right\}
$$

is a subring of T_{n} and

$$
T_{n}^{o o}=\left\{\sum_{\alpha} a_{\alpha} z^{\alpha} \mid a_{\alpha} \in R^{o o}, \lim _{|\alpha| \rightarrow \infty} a_{\alpha}=0\right\}
$$

is an ideal in T_{n}^{o}.
Remark 6.4: We have $T_{n}^{o} / T_{n}^{o o} \cong \bar{R}\left[\bar{z}_{1}, \ldots, \bar{z}_{n}\right]$, the ring of polynomials in n variables. Indeed, the map $T_{n}^{(0)} \rightarrow \bar{R}\left[\bar{z}_{1}, \ldots, \bar{z}_{n}\right]$ given by $\sum_{\alpha} a_{\alpha} z^{\alpha} \mapsto \sum_{\alpha} \overline{a_{\alpha}} \bar{z}^{\alpha}$ is well defined and its kernel is precisely $T_{n}^{o o}$.

Exercise 6.5: Let R be a Banach algebra over k.
(a) T_{n} is complete, that is, a Banach algebra.
(b) $T_{n}(R)=T_{n-1}(R)\left\langle z_{n}\right\rangle$ (and the norm on $T_{n}(R)$ is the norm coming from the right handed side). (This is the main reason that we consider a general ring R instead of a complete field k.)

Proposition 6.6: Let $R=k$ be a field. Then $\bar{R}=\bar{k}$ is the residue field.
(a) $\|f g\|=\|f\| \cdot\|g\|$ for all $f, g \in T_{n}$.
(b) T_{n} is an integral domain.
(c) $f=\sum a_{\alpha} z^{\alpha}$ of T_{n} is invertible if and only if $\left|a_{0}\right|>\left|a_{\alpha}\right|$ for each $\alpha \neq 0$. (Here $\left.0=(0, \ldots, 0) \in \mathbb{N}_{0}^{n}.\right)$

Proof: (a) We may assume that $f, g \neq 0$. Multiplying them by suitable elements of k we may assume that $\|f\|=\|g\|=1$. In particular their images \bar{f}, \bar{g} in $\bar{k}\left[\bar{z}_{1}, \ldots, \bar{z}_{n}\right]$ are
not 0 . As $\bar{k}\left[\bar{z}_{1}, \ldots, \bar{z}_{n}\right]$ is an integral domain also the image $\bar{f} \bar{g}$ of $f g$ is not 0 , that is, $\|f g\|=1$.
(b) If $f, g \neq 0$, then $\|f\|,\|g\| \neq 0$, and hence $\|f g\|=\|f \cdot\| g \| \neq 0$, whence $f g \neq 0$.
(c) Suppose that $\left|a_{0}\right|>\left|a_{\alpha}\right|$ for all $\alpha \neq 0$. Dividing by a_{0} we may assume that $a_{0}=1$. Then f may be written as $f=1-h$, where $\|h\|<1$. It is easy to see that $g=\sum_{n=0}^{\infty} h^{n} \in T_{n}$ satisfies $f g=1$. Hence f is invertible.

Conversely, suppose that f is invertible. Then $\|f\| \neq 0$. Dividing by $\|f\|$ we may assume that $\|f\|=1$. In particular, $f \in T_{n}^{o}$. Its residue $\bar{f}=\sum \bar{a}_{\alpha} \bar{z}^{\alpha}$ is invertible in $\bar{k}\left[\bar{z}_{1}, \ldots, \bar{z}_{n}\right]$. Therefore $\bar{a}_{\alpha}=0$ for each $\alpha \neq 0$. Thus $\left|a_{\alpha}\right|<1=\|f\|$. It follows that $\left|a_{0}\right|=1$.

In what follows we could take $R=k\left\{z_{1}, \ldots, z_{n-1}\right\rangle$ and $z=z_{n}$, so that $R\{z\}=$ $T_{n}(k)$.

Definition 6.7: For $g=\sum_{n=0}^{\infty} a_{n} z^{n} \neq 0$ in $R\{z\}$ define the pseudodegree of g to be the integer $d=\max \left(n:\left\|a_{n}\right\|=\|g\|\right)$. Call a_{d} the pseudoleading coefficient of g. Call g regular, if $a_{d} \in R^{\times}$and $\left\|c a_{d}\right\|=\|c\| \cdot \mid a_{d} \|$ for all $c \in R$.

Remark 6.8: Let g be regular of pseudodegree d and let $0 \neq q \in R\{z\}$ of pseudodegree l. Then $q g$ is of pseudodegree $d+l \geq d$ and $\|q g\|=\|q\| \cdot\|g\|$.

Indeed, let $g=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $q=\sum_{n=0}^{\infty} c_{n} z^{n}$ and let l be the pseudodegree of q. Then $\|q g\| \leq\|q\| \cdot\|g\|$, but, by Remark? (if $\|a\|<\|b\|$ then $\|a+b\|=\|b\|$), the norm of the coefficient of z^{d+l} in $q g$ is $\left\|c_{l} a_{d}\right\|=\left\|c_{l}\right\| \cdot\left\|a_{d}\right\|=\|q\| \cdot\|g\|$.

Theorem 6.9 (Weierstrass Division Theorem): Let $f \in R\{z\}$ and let $g \in R\{z\}$ be regular of pseudodegree d. Then there are unique $q \in R\{z\}$ and $r \in R[z]$ such that $f=q g+r$ and $\operatorname{deg} r<d$. Moreover,

$$
\begin{equation*}
\|q g\|=\|q\| \cdot\|g\| \leq\|f\| \quad \text { and } \quad\|r\| \leq\|f\| \tag{1}
\end{equation*}
$$

Proof: Write g as $g=\sum_{n=0}^{\infty} a_{n} z^{n} \in R\{z\}$.
Part I: Estimates (1). Assume that $f=q g+r$, where $\operatorname{deg} r<d$. If $q=0$, then (1) is clear. Assume that $q \neq 0$. By Remark 6.8, $\|q g\|=\|q\| \cdot\|g\|$ and $q g$ is of pseudodegree $m \geq d$. In particular, $\|q\| \cdot\|g\|$ is the norm of the coefficient of z^{m} in
$q g$. This coefficient is also the coefficient of z^{m} in $f=q g+r$, since $\operatorname{deg} r<d \leq m$. Therefore $\|q\| \cdot\|g\| \leq\|f\|$. It follows that $\|r\|=\|f-q g\| \leq \max (\|f\|,\|q g\|) \leq\|f\|$.

Part II: Uniqueness. Assume that $f=q g+r=q^{\prime} g+r^{\prime}$, where $\operatorname{deg} r, \operatorname{deg} r^{\prime}<d$. Then $0=\left(q-q^{\prime}\right) g+\left(r-r^{\prime}\right)$. By Part I, $\left\|q-q^{\prime}\right\|=\left\|r-r^{\prime}\right\|=0$. Hence $q=q^{\prime}$ and $r=r^{\prime}$.

Part III: Existence if g is a polynomial of degree d. Write f as $\sum_{n=0}^{\infty} b_{n} z^{n}$. For each $m \geq 0$ let $f_{m}=\sum_{n=0}^{m} b_{n} z^{n} \in R[z]$. As g is regular of pseudodegree d, its leading coefficient is invertible. Euclid's algorithm for polynomials over R produces $q_{m}, r_{m} \in R[z]$ such that $f_{m}=q_{m} g+r_{m}$ and $\operatorname{deg} r_{m}<\operatorname{deg} g$. Thus for all k, m we have $f_{m}-f_{k}=\left(q_{m}-q_{k}\right) g+\left(r_{m}-r_{k}\right)$. By Part I, $\left\|q_{m}-q_{k}\right\| \cdot\|g\|,\left\|r_{m}-r_{k}\right\| \leq\left\|f_{m}-f_{k}\right\|$. Thus $\left\{q_{m}\right\}_{m=0}^{\infty}$ and $\left\{r_{m}\right\}_{m=0}^{\infty}$ are Cauchy sequences in $R\{z\}$, and hence they converge to $q \in R\{z\}$ and $r \in R[z]$ with $\operatorname{deg} r<d$. Clearly $f=q g+r$.

Part IV: Existence for arbitrary g. If $g=\sum_{n=0}^{\infty} a_{n} z^{n}$, put $g_{0}=\sum_{n=0}^{d} a_{n} z^{n} \in R[z]$. Then $\left\|g-g_{0}\right\|<\|g\|$. By Part III with g_{0} and f there are $q_{0} \in R\{z\}$ and $r_{0} \in R[z]$ such that $f=q_{0} g_{0}+r_{0}$ and deg $r_{0}<d$. By Part I, $\left\|q_{0}\right\| \leq \frac{\|f\|}{\|g\|}$ and $\left\|r_{0}\right\| \leq\|f\|$. Thus $f=q_{0} g+r_{0}+f_{1}$, where $f_{1}=-q_{0}\left(g-g_{0}\right)$, and $\left\|f_{1}\right\| \leq \frac{\left\|g-g_{0}\right\|}{\|g\|} \cdot\|f\|$.

Put $f_{0}=f$. By induction we get, for each $k \geq 0$, elements $f_{k}, q_{k} \in R\{z\}$ and $r_{k} \in R[z]$ such that $\operatorname{deg} r<d$ and
$f_{k}=q_{k} g+r_{k}+f_{k+1}, \quad\left\|q_{k}\right\| \leq \frac{\left\|f_{k}\right\|}{\|g\|},\left\|r_{k}\right\| \leq\left\|f_{k}\right\|, \quad$ and $\quad\left\|f_{k+1}\right\| \leq \frac{\left\|g-g_{0}\right\|}{\|g\|}\left\|f_{k}\right\|$.
It follows that $\left\|f_{k}\right\| \rightarrow 0$, whence also $\left\|q_{k}\right\|,\left\|r_{k}\right\| \rightarrow 0$. Therefore $q=\sum_{k=0}^{\infty} q_{k} \in R\{z\}$ and $r=\sum_{k=0}^{\infty} r_{k} \in R[z]$. Clearly $f=q g+r$ and $\operatorname{deg} r<d$.

Theorem 6.10 (Weierstrass Preparation Theorem): Let $f \in T_{n}(k)$ have norm 1. Then there exists a norm-preserving k-algebra automorphism σ of $T_{n}(k)$ such that $\sigma(f)$ is regular in z_{n}.

Proof: Let $e_{1}, \ldots, e_{n-1} \in \mathbb{N}$. Define σ by

$$
z_{1} \mapsto z_{1}+z_{n}^{e_{1}}, \ldots, z_{n-1} \mapsto z_{n-1}+z_{n}^{e_{n-1}}, z_{n} \mapsto z_{n}
$$

that is, if $g=\sum_{\alpha} a_{\alpha} z^{\alpha}$, then $\sigma(g)=\sum_{\alpha} a_{\alpha} \sigma\left(z^{\alpha}\right)$, where

$$
\sigma\left(z^{\alpha}\right)=\left(z_{1}+z_{n}^{e_{1}}\right) \cdots\left(z_{n-1}+z_{n}^{e_{n-1}}\right) z_{n}
$$

This is a well defined continuous homomorphism $T_{n}(k) \rightarrow T_{n}(k)$. Indeed, $\left\|\sigma\left(z^{\alpha}\right)\right\| \leq$ $\left\|z^{\alpha}\right\|$. Hence for each $g=\sum_{\alpha} a_{\alpha} z^{\alpha} \in T_{n}(k)$ the series $\sum_{\alpha} a_{\alpha} \sigma\left(z^{\alpha}\right)$ converges, whence $\sigma(g) \in T_{n}(k)$. Moreover, $\|\sigma(g)\| \leq\|g\|$. The inverse of σ is given by replacing + with - in the definition of σ.

We claim that $\sigma(f)$ is regular in z_{n} for suitable $e_{1}, \ldots, e_{n-1} \in \mathbb{N}$.
Indeed, write $f=\sum_{\alpha} c_{\alpha} z^{\alpha}$. The set $\Lambda=\left\{\alpha \in \mathbb{N}_{0}^{n} \mid \overline{c_{\alpha}} \neq 0\right\}$ is finite. We have

$$
\begin{aligned}
\overline{\sigma(f)} & =\sum_{\alpha \in \Lambda} \overline{c_{\alpha}}\left(z_{1}+z_{n}^{e_{1}}\right)^{\alpha_{1}} \cdots\left(z_{n-1}+z_{n}^{e_{n-1}}\right)^{\alpha_{n-1}} z_{n}^{\alpha_{n}} \\
& =\sum_{\alpha \in \Lambda} \overline{c_{\alpha}}\left(z_{n}^{e_{1} \alpha_{1}+\cdots+e_{n-1} \alpha_{n-1}+\alpha_{n}}+\ldots\right)
\end{aligned}
$$

where the other monomials with coefficient $\overline{c_{\alpha}}$ are of degree in z_{n} strictly smaller than $e_{1} \alpha_{1}+\cdots+e_{n-1} \alpha_{n-1}+\alpha_{n}$. Thus if the degrees $e_{1} \alpha_{1}+\cdots+e_{n-1} \alpha_{n-1}+\alpha_{n}$ of the 'leading' monomials are distinct for distinct $\alpha \in \Lambda$, these monomials will not cancel each other, and one of them will be with the maximal degree.

To achieve it, take $e_{i}=e^{i}$ with $e>\alpha_{j}$ for all j and all $\alpha \in \Lambda$. (The above degrees are then e-adic expansions of natural numbers; the sequences of digits in these expansions are distinct, hence the numbers are distinct.)

THEOREM 6.13: The ring T_{n} is noetherian (every ideal of T_{n} is finitely generated).
Proof: By induction on n. Suppose T_{n-1} is noetherian. Then so is the ring of polynomials $T_{n-1}\left[z_{n}\right]$. Let I be a non-zero ideal of T_{n}. Then there is $f \in I$ such that $\|f\|=1$. By the Preparation we may assume that f is regular in z_{n}, say, of degree d. By the Division each $g \in I$ is of the form $g=q f+r$, where $q \in T_{n}$ and $r \in T_{n-1}\left[z_{n}\right] \cap I$. Thus I is generated by f and the finitely many generators of the ideal $T_{n-1}\left[z_{n}\right] \cap I$ of $T_{n-1}\left[z_{n}\right]$.

Lemma 6.14: Let $f \in T_{n}$ be regular in z_{n} of pseudodegree d. Then $f=q g$, where $g \in\left(T_{n}\right)^{\times}$and $g \in T_{n-1}\left[z_{n}\right]$ is monic of degree d and norm 1 (and hence also regular in z_{n} of degree d).

Proof: The Division gives $q \in T_{n}$ and $r \in T_{n-1}\left[z_{n}\right]$ such that $z_{n}^{d}=f q+r$; moreover $\operatorname{deg}_{z_{n}} r<d$ and $\|r\| \leq\left\|z_{n}^{d}\right\|=1$. Hence $z_{n}^{d}-r$ is also regular of degree d, and so we may perform another division: $f=q^{\prime}\left(z_{n}^{d}-r\right)+r^{\prime}$. This gives $f=q q^{\prime} f+r^{\prime}$. But also $f=1 f+0$. The uniqueness of division by f gives $q q^{\prime}=1$ and $r^{\prime}=0$. Thus $f=q^{\prime} g$, where q^{\prime} is a unit and $g=z_{n}^{d}-r \in T_{n-1}\left[z_{n}\right]$ is monic with norm 1 .

Lemma 6.15: Let $f, g \in T_{n-1}\left[z_{n}\right]$, and g be monic of norm 1. Then $g \mid f$ in $T_{n-1}\left[z_{n}\right]$ if and only if $g \mid f$ in T_{n}.

Proof: The division with reminder in $T_{n-1}\left[z_{n}\right]$ gives $f=q g+r$, with $q, r \in T_{n-1}\left[z_{n}\right]$ and $\operatorname{deg} r<d$. But $q \in T_{n}$ and g is regular in z_{n}. Thus if $g \mid f$ in T_{n}, by the uniqueness of the division in T_{n} we must have $r=0$. Therefore $g \mid f$ in $T_{n-1}\left[z_{n}\right]$. The converse is trivial.

Lemma 6.16: Let $g \in T_{n-1}[z]$ be monic of norm 1. Then g is irreducible in $T_{n-1}\left[z_{n}\right]$ if and only if g is irreducible in T_{n}.

Proof: An element of a ring is invertible if and only if it divides 1 in that ring, Thus by Lemma 6.15, a monic polynomial of norm 1 in $T_{n-1}\left[z_{n}\right]$ is invertible in $T_{n-1}\left[z_{n}\right]$ if and only if it is invertible in T_{n}.

Suppose g is reducible in $T_{n-1}\left[z_{n}\right]$, that is, $g=g_{1} g_{2}$, where $g_{1}, g_{2} \in T_{n-1}\left[z_{n}\right]$ are not invertible. Wlog g_{1}, g_{2} are monic, whence $\left\|g_{1}\right\|,\left\|g_{2}\right\| \geq 1$. But $\left\|g_{1}\right\| \cdot\left\|g_{2}\right\|=\|g\|=1$, so $\left\|g_{1}\right\|=\left\|g_{2}\right\|=1$. By the preceding paragraph g_{1}, g_{2} are not invertible in T_{n}. Thus g is reducible in T_{n}.

Conversely, suppose g is reducible in T_{n}, that is, $g=g_{1} g_{2}$, where $g_{1}, g_{2} \in T_{n}$ are not invertible. We may assume that $\left\|g_{1}\right\|=\left\|g_{2}\right\|=1$. By Exercise 6.12, g_{1}, g_{2} are regular in z_{n}. By Lemma 6.14 we may assume that g_{1} is monic in $T_{n-1}\left[z_{n}\right]$. Division with remainder in $T_{n-1}\left[z_{n}\right]$ gives $g=g_{1} q+r$ with $q, r \in T_{n-1}\left[z_{n}\right]$ and $\operatorname{deg} r<\operatorname{deg} g_{1}$. By the uniqueness of division in T_{n} we have $q=g_{2}$ and $r=0$. Thus $g_{2} \in T_{n-1}\left[z_{n}\right]$. As $g=g_{1} g_{2}$, also g_{2} is monic. By the first paragraph of this proof g_{1}, g_{2} are not invertible in $T_{n-1}\left[z_{n}\right]$. Thus g is reducible in $T_{n-1}\left[z_{n}\right]$.

THEOREM 6.17: The ring T_{n} is a unique factorization domain.

Proof: By induction on n. Suppose T_{n-1} is a UFD. Then so is the ring of polynomials $T_{n-1}\left[z_{n}\right]$ [Lang, Algebra, Theorem IV.2.3].

Let $0 \neq f \in T_{n}$. We want to show that f is a product of irreducibles, unique up to invertibles. Without loss of generality $\|f\|=1$. By the Preparation we may assume that f is regular in z_{n}, say, of pseudodegree d. By Lemma 6.14 we may assume that $f \in T_{n-1}\left[z_{n}\right]$ is monic of degree d and norm 1 .

Write $f=g_{1} \cdots g_{r}$, where $g_{i} \in T_{n-1}\left[z_{n}\right]$ are irreducible. Then their leading coefficients must be invertible. So wlog they are monic. Thus $\left\|g_{i}\right\| \geq 1$. As $f=g_{1} \cdots g_{r}$, we have $\left\|g_{i}\right\|=1$. By Lemma 6.16, the g_{i} are irreducible in T_{n}.

To show the uniqueness of the product, let $g \in T_{n}$ be irreducible, $g \mid f$ in T_{n}. By Lemma 6.14 we may assume that $g \in T_{n-1}\left[z_{n}\right]$ is monic of norm 1. By Lemma 6.15, $g \mid f$ in $T_{n-1}\left[z_{n}\right]$. Thus there is i such that $g \mid g_{i}$ in $T_{n-1}\left[z_{n}\right]$. Therefore $g=g_{i}$.

Theorem 6.18: Let I be an ideal of T_{n}. Then there exist an integer $d \leq n$ and a norm preserving k-automorphism σ of T_{n} such that the composition $T_{d} \rightarrow T_{n} \xrightarrow{\sigma} T_{n} \rightarrow T / I$ is a finite injective morphism.

Proof: (a) By induction on n. The assertion is clear for $n=0$. Assume $n \geq 1$. If $I=0$, take $d=n$ and let σ be the identity. So assume that $I \neq 0$.

By the Preparation there is a norm-preserving k-automorphism ρ of T_{n} such that $\rho^{-1}(I)$ contains some f regular of degree m in z_{n}. Put $J=\rho^{-1}(I) \cap T_{n-1}$. The canonical morphism $\bar{\lambda}: T_{n-1} / J \rightarrow T_{n} / \rho^{-1}(I)$ is injective. The division by f in T_{n} shows that $T_{n} / \rho^{-1}(I)=T_{n-1}\left\{z_{n}\right\} / \rho^{-1}(I)$ is a finite T_{n-1} / J-module, generated by $1, z_{n}, \ldots, z_{n}^{m-1}$. Thus $\bar{\lambda}$ is finite. The map $\bar{\rho}: T_{n} / \rho^{-1}(I) \rightarrow T_{n} / I$ induced from ρ is an isomorphism.

By the induction hypothesis there is d and a norm-preserving k-automorphism τ of T_{n-1} such that $T_{d} \rightarrow T_{n-1} \xrightarrow{\tau} T_{n-1} \rightarrow T_{n-1} / J$ is a finite injective morphism. Extend
τ to an automorphism of T_{n} by $\tau\left(z_{n}\right)=z_{n}$.

Then $\bar{\rho} \bar{\lambda} \bar{\tau}: T_{d} \rightarrow T_{n} / I$ is an injective finite morphism. Hence $\sigma=\rho \tau$ has the required property.

Corollary 6.19: Let \mathfrak{m} be a maximal ideal of T_{n}. Then the field T_{n} / \mathfrak{m} is a finite extension of k.

Proof: By Theorem 6.18 there is a subring T_{d} of T_{n} / \mathfrak{m} over which T_{n} / \mathfrak{m} is finite. As T_{n} / \mathfrak{m} is a field, so is T_{d} [AM, Prop. 5.7]. It follows that $d=0$ (for instance, z_{1} is not invertible in T_{d}) and hence T_{n} / \mathfrak{m} is a finite extension of $T_{0}=k$.

Definition 6.20: An affinoid algebra A over k is a k-algebra which is finite over T_{n}, for some n. That is, there is a ring homomorphism $T_{n} \rightarrow A$ such that via it A is a finite T_{n}-module. By Theorem 6.18 we may assume that $T_{n} \rightarrow A$ is injective. (A composition of finite homomorphisms is finite.)

Theorem 6.21: An affinoid algebra is a noetherian ring.
Proof: By definition, an affinoid algebra is a finitely generated extension of some T_{n}, which is noetherian by Theorem 6.13 . Hence A is noetherian.

Corollary 6.22: Let A be an affinoid algebra, and suppose A is a Banach algebra with respect to some norm on A. Let $I \leq A$ be an ideal. Then
(a) I is closed with respect to the norm.
(b) The norm on A induces a norm on A / I such that A / I is a Banach algebra with respect to it.

Proof: (a) This is Theorem 2.5.
(b) Put $E=A / I$. Define norm on E by $\|e\|_{E}=\inf \{\|f\| \| \varphi(f)=e\}$. We check that this is a norm: Suppose $\|e\|_{E}=0$. Then there is $\left\{f_{i}\right\}_{i=0}^{\infty} \subseteq A$ such that $\varphi\left(f_{i}\right)=e$ and $\left\|f_{i}\right\| \rightarrow 0$. Thus $f_{0}-f_{i} \in I$ and $f-f_{i} \rightarrow f_{0}$. But I is closed by (a), hence $f_{0} \in I$. Thus $e=\varphi\left(f_{0}\right)=0$.

Clearly $\|\alpha e\|=\alpha \mid \cdot\|e\|_{E}$, for every $\alpha \in k$. Let $e, e^{\prime} \in E$. Let $f, f^{\prime} \in A$ such that $\varphi(f)=e, \varphi\left(f^{\prime}\right)=e^{\prime}$. Then $\left\|e e^{\prime}\right\|_{E} \leq\left\|f f^{\prime}\right\| \leq\|f\| \cdot\left\|f^{\prime}\right\|$. Taking infimum on the right handed side, $\left\|e e^{\prime}\right\|_{E} \leq\|e\| \cdot\left\|e^{\prime}\right\|$.

In particular $\left(e=e^{\prime}=1\right),\|1\|_{E} \geq 1$. But $\|1\|_{E} \leq\|1\|=1$. So $\|1\|_{E}=1$.
To show that $\left\|e+e^{\prime}\right\| \leq \max \left(\|e\|,\left\|e^{\prime}\right\|\right)$, use that for $A, B \subseteq[0, \infty)$ we have $\inf _{a \in A, b \in B} \max (a, b)=\max (\inf (A), \inf (B))$.

ExERCISE 6.23: Let $g \in T_{n-1}\left[z_{n}\right]$ be monic of norm 1. Then $T_{n-1}\left[z_{n}\right] / g T_{n-1}\left[z_{n}\right] \rightarrow$ $T_{n} / g T_{n}$ is an isomorphism.

Theorem 6.24: Let E be an affinoid algebra. Then $E \cong T_{n} / I$ for some n and for some ideal $I \leq E$.

Proof: (a) By the definition there exists a finite homomorphism $\varphi: T_{d} \rightarrow E$. Thus $E=T_{d}\left[e_{d+1}, \ldots, e_{n}\right]$, (by abuse of notation we write T_{d} instead of $\varphi\left(T_{d}\right)$) and each e_{i} is integral over T_{d}, that is, satisfies some monic $g_{i}(X) \in T_{d}[X]$.

Fix i. Say, $g_{i}=X^{m}+a_{1} X^{m-1}+\ldots+a_{m}$, with $a_{j} \in T_{d}$. We may assume that $\max \left\|a_{j}\right\| \leq 1$, otherwise replace e_{i} by αe_{i}, where $\alpha \in k^{\times}$with $|\alpha|$ sufficiently small. (Then αe_{i} satisfies $X^{m}+\alpha a_{1} X^{m-1}+\ldots+\alpha^{m} a_{m}$.)

Claim: We can extend φ to a homomorphism $\varphi: T_{n} \rightarrow E$ such that $\varphi\left(z_{i}\right)=e_{i}$. Indeed, by induction on i suppose we have already extended φ to $\varphi: T_{i-1} \rightarrow E$. Extend it to $\varphi: T_{i-1}\left[z_{i}\right] \rightarrow E$ by $\varphi\left(z_{i}\right)=e_{i}$. Then $g_{i}\left(z_{i}\right) \in T_{i-1}\left[z_{i}\right]$ and $\varphi\left(g_{i}\left(z_{i}\right)\right)=0$. Hence φ factors into $T_{i-1}\left[z_{i}\right] \rightarrow T_{i-1}\left[z_{i}\right] / g_{i} T_{i-1}\left[z_{i}\right] \rightarrow E$. By the preceding paragraph, $\left\|g_{i}\right\|=1$. By Exercise 6.23 we may replace the first map by $T_{i} \rightarrow T_{i} / g_{i} T_{i}$ and thus extend φ to T_{i}.

As the image of φ contains the generators of E over T_{d}, φ is surjective. Let $I=\operatorname{ker}(\varphi) ;$ then $E \cong T_{n} / I$. It is easy to see that E is complete.

Theorem 6.25: Let $\left(A_{i},\| \|_{i}\right)$, for $i=1,2$, be two affinoid algebras, which are Banach k-algebras w.r.t. their respective norms. Let $u: A_{1} \rightarrow A_{2}$ be a homomorphism of k algebras. Then u is continuous. In particular, all norms on an affinoid algebra which make it into a Banach k-algebra are equivalent.

Proof: By Corollary 2.3 we have to show that the graph $\left\{(x, u(x)) \mid x \in A_{1}\right\}$ is closed in $A_{1} \times A_{2}$. That is, if $\left(x_{i}, u\left(x_{i}\right)\right) \rightarrow(x, y) \in A_{1} \times A_{2}$, then $y=u(x)$. Replacing x_{i} by $x_{i}-x$ and y by $y-u(x)$ we have to prove: if $\lim x_{i}=0$ and $\lim u\left(x_{i}\right)=y \in A_{2}$, then $y=0$.

Let $I_{2} \leq A_{2}$ be an ideal such that $\operatorname{dim}_{k} A_{2} / I_{2}<\infty$. Let $I_{1}=\operatorname{Ker}\left(A_{1} \rightarrow A_{2} \rightarrow\right.$ $\left.A_{2} / I_{2}\right)$. Then

commutes, with \bar{u} an embedding. So also $\operatorname{dim}_{k} A_{1} / I_{1}<\infty$.
By Theorem 6.18, $A_{i} / I_{i} A_{i}$ are affinoid algebras and by Corollary 6.22, they are Banach algebras, wrt the induced norms. The norm of $A_{2} / I_{2} A_{2}$ restricts via \bar{u} to another norm on $A_{1} / I_{i} A_{1}$. By Theorem 2.14 these two norms are equivalent. Thus \bar{u} is continuous. Therefore $\pi_{2} \circ u=\bar{u} \circ \pi_{1}$ is continuous. Thus $\pi_{2}(y)=0$, that is, $y \in I_{2}$.

It remains to show that $\bigcap_{\operatorname{dim}_{k} A / I<\infty} I=0$.
Let $M \leq A$ be a maximal ideal. By Theorem 6.24 there is an epimorphism $\pi: T_{n} \rightarrow A ;$ As $\pi^{-1}(M) \leq T_{n}$ is maximal and $T_{n} / \pi^{-1}(M) \cong A / M$, by Corollary 6.19, $\operatorname{dim}_{k} A / M<\infty$. Moreover, $\operatorname{dim}_{k} A / M^{n}<\infty$ for every $n \geq 1$. (Indeed, by induction on n, using the short exact sequence $0 \rightarrow M^{n-1} / M^{n} \rightarrow A / M^{n} \rightarrow A / M^{n-1} \rightarrow 0$, it suffices to show that $\operatorname{dim}_{k} M^{n-1} / M^{n}<\infty$. As A is noetherian, the A-ideal M^{n-1} is a finite A-module; hence M^{n-1} / M^{n} is a finite A / M-module. But A / M is a finite k-module, so M^{n-1} / M^{n} is a finite k-module.)

Assume there is $0 \neq y \in \bigcap_{M} \bigcap_{n} M^{n}$. Put $J=\{a \in A \mid a y=0\}$. This is a a proper ideal of A. Hence there is a maximal $M \leq A$ such that $J \subseteq M$. Thus every $s \in A \backslash M$ satisfies $s y \neq 0$. This means that $\frac{y}{1} \in A_{M}$ is not zero. Furthermore,
$\frac{y}{1} \in M^{n} A_{M}=\left(M A_{M}\right)^{n}$. But by Krull's Theorem, (in noetherian ring A we have $\left.\bigcap_{n} \operatorname{rad}(A)^{n}=0\right) \bigcap_{n}\left(M A_{M}\right)^{n}=0$. A contradiction.

7. Affinoid spaces

Definition 7.1: An affinoid space is the set $X=\operatorname{Sp}(A)$ of the maximal ideals of an affinoid algebra A. For each $x \in X$ the field A / x is a finite extension of k by Corollary 6.19. The valuation || of k uniquely extends to A / x. For $f \in A$ put $f(x)$ to be the image of f in A / x under the quotient map $A \rightarrow A / x$. Define topology on A : generated by $\left\{x \in X||f(x)| \leq 1\}\right.$. Put $\|f\|_{\text {sp }}=\sup _{x \in X}|f(x)|$. Define

$$
A^{o}=\left\{f \in A \mid\|f\|_{\mathrm{sp}} \leq 1\right\} \quad A^{o o}=\left\{f \in A \mid\|f\|_{\mathrm{sp}}<1\right\}
$$

Lemma 7.2: Let $\|\|$ be a norm on A. Then $\| f\left\|_{\mathrm{sp}} \leq\right\| f \|$ for every $f \in A$.
Proof: It suffices to prove: $|f(x)| \leq\|f\|$ for every $f \in A$ and every $x \in X$. Fixing x, it suffices to prove: $|f(x)| \leq\|g\|$ for every $g \in A$ such that $f(x)=g(x)$. That is, $|a| \leq\|a\|$ for every $a \in A / x$, where $\|\|$ is the induced norm on A / x.

There is $C>0$ such that $C|b| \leq\|b\|$ for every $b \in A / x$. In particular, $C|a|^{m}=$ $C\left|a^{m}\right| \leq\left\|a^{m}\right\| \leq\|a\|^{m}$. Thus $C^{1 / m}|a| \leq\|a\|$. Taking limit, $|a| \leq\|a\|$.

Remark 7.3: The map $\left\|\left\|\|_{\text {sp }}\right.\right.$ is a semi-norm, called the spectral semi-norm. It is a norm if and only if the intersection of all maximal ideals of A is 0 .

Example 7.4: Let A be an affinoid algebra. Let \tilde{k} be an algebraic closure of k. Every $x \in \operatorname{Sp}(A)$ defines a homomorphism (necessarily continuous, by Theorem 6.25) $u: A \rightarrow$ \tilde{k}, whose image is a finite extension A / x of k. Two such homomorphisms u_{1}, u_{2} are equivalent if they have the same kernel, i.e., there is a k-isomorphism $\theta: u_{1}(A) \rightarrow u_{2}(A)$ such that $u_{2}=\theta \circ u_{1}$. Thus elements of $\operatorname{Sp}(A)$ correspond to equivalence classes of k-algebra homomorphisms $u: A \rightarrow \tilde{k}$ with image finite over k. (If $k=K$ is algebraically closed, each equivalence class contains a unique homomorphism.)

In particular, for $A=T_{n}$, each such u : $T_{n} \rightarrow \tilde{k}$ defines $\left(x_{1}, \ldots, x_{n}\right) \in \tilde{k}^{n}$ by $x_{i}=u\left(z_{i}\right)$. The continuity of u implies that $\left|x_{i}\right| \leq 1$ (for every $a \in \tilde{k}$ with $|a|<1$ the Cauchy series $\sum_{j=1}^{\infty} a^{j} z_{i}^{j}$ is mapped into a Cauchy series $\sum_{j=1}^{\infty} a^{j} x_{i}^{j}$, so $\left.|a| \cdot\left|x_{i}\right|<1\right)$. Conversely, every such $\left(x_{1}, \ldots, x_{n}\right) \in \tilde{k}^{n}$ defines a homomorphism $u: T_{n} \rightarrow \tilde{k}$ with image
finite over k. Thus $\operatorname{Sp}\left(T_{n}\right)=D_{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \tilde{k}^{n}| | x_{i} \mid \leq 1\right\} / \cong$. If $k=K$ is algebraically closed, then $\operatorname{Sp}\left(T_{n}\right)=D_{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \tilde{k}^{n}| | x_{i} \mid \leq 1\right\}$.

Lemma 7.5: The spectral norm on T_{n} coincides with the standard norm. Moreover, for every $f \in T_{n}$ there is $x \in \operatorname{Sp}\left(T_{n}\right)$ such that $\|f\|=|f(x)|$.

Proof: By Lemma $7.2,\|f\|_{\text {sp }} \leq\|f\|$ for every $f \in T_{n}$. So we only have to prove the second assertion. Wlog $\|f\|=1$. Hence $\bar{f} \in \bar{k}\left[z_{1}, \ldots, z_{n}\right]$ is not zero. So there are $\bar{x}_{1}, \ldots, \bar{x}_{n}$ in the algebraic closure of \bar{k} such that $\bar{f}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \neq 0$. Lift them to $x_{1}, \ldots, x_{n} \in \bar{k}$ with $\left|x_{i}\right| \leq 1$. (For instance, first lift \bar{x}_{i} to $x_{i} \in K^{o}$, where K is the completion of \bar{k}, and then, as \bar{k} is dense in K, replace x_{i} by a sufficiently close element of \bar{k}.) There is a finite extension l of k such that $x_{1}, \ldots, x_{n} \in l^{o}$. The k-map $T_{n} \rightarrow l$ defined by $z_{i} \mapsto x_{i}$ is a continuous epimorphism. Its kernel $x \in \operatorname{Sp}\left(T_{n}\right)$ satisfies $|f(x)|=1$.

Exercise 7.6: Let A be an affinoid algebra. Let $f \in A$. TFAE:
(a) $\inf \{|f(x)| \mid x \in \operatorname{Sp}(A)\}>0$;
(b) $f(x) \neq 0$ for all $x \in \operatorname{Sp}(A)$;
(c) $f \in A^{\times}$;

Example 7.7: Let $k=K$ be algebraically closed. We have defined a connected affinoid in \mathbb{P} as the complement F of a union of disjoint disks in \mathbb{P}. We now show that $\mathcal{O}(F)$ is an affinoid algebra and that $\operatorname{Sp}(\mathcal{O}(F))=F$.

To make notation easier assume that $\infty \in F$. Thus $F^{c}=\bigcup_{i=1}^{n}\left\{a \in \mathbb{P}| | a-a_{i} \mid<\right.$ $\left.\left|\pi_{i}\right|\right\}$, with $a_{i}, \pi_{i} \in K$. Define $\varphi: F \rightarrow\left(K^{o}\right)^{n}$ by

$$
\varphi(a)=\left(\frac{\pi_{1}}{a-a_{1}}, \ldots, \frac{\pi_{n}}{a-a_{n}}\right)
$$

It is an injection and

$$
\begin{aligned}
\varphi(F) & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left(K^{o}\right)^{n} \left\lvert\, \frac{\pi_{i}}{x_{i}}+a_{i}=\frac{\pi_{j}}{x_{j}}+a_{j}\right. \text { for } i \neq j\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left(K^{o}\right)^{n} \mid \pi_{i} x_{j}-\pi_{j} x_{i}+\left(a_{i}-a_{j}\right) x_{i} x_{j}=0 \text { for } i \neq j\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left(K^{o}\right)^{n} \left\lvert\, \frac{\pi_{i}}{a_{i}-a_{j}} x_{j}+\frac{\pi_{j}}{a_{j}-a_{i}} x_{i}+x_{i} x_{j}=0\right. \text { for } i \neq j\right\}
\end{aligned}
$$

Let I be the ideal of T_{n} generated by

$$
\left.E_{i j}=\frac{\pi_{i}}{a_{i}-a_{j}} z_{j}+\frac{\pi_{j}}{a_{j}-a_{i}} z_{i}+z_{i} z_{j} \in T_{n}=K\left\langle z_{1}, \ldots, z_{n}\right\rangle, \text { for } i \neq j\right\}
$$

and put $A=T_{n} / I$. Then A is an affinoid algebra and $\operatorname{Sp}(A)$ can be identified with $\varphi(F)$. We show that there is an isomorphism $\psi: A \rightarrow \mathcal{O}(F)$ such that $\varphi=\operatorname{Sp}(\psi)$.

Since $\mathcal{O}(F)$ is a Banach algebra with respect to the 'supremum' norm $\left\|\|_{F}\right.$ and $\left\|\frac{\pi_{i}}{z-a_{i}}\right\|_{F} \leq 1$, the map $z_{i} \mapsto \frac{\pi_{i}}{z-a_{i}}$ extends to a unique homomorphism $\hat{\psi}: T_{n} \rightarrow \mathcal{O}(F)$ such that $\|\hat{\psi}(f)\|_{F} \leq\|f\|$ for every $f \in T_{n}$. Obviously $\hat{\psi}\left(E_{i j}\right)=0$, hence $\hat{\psi}$ induces a homomorphism $\psi A \rightarrow \mathcal{O}(F)$ such that $\|\psi(f)\|_{F} \leq\|f\|_{A}$ for every $f \in A$ (in the infimum norm on A). Using the $E_{i j}$ it is easy to see that every $f \in T_{n}$ is of the form $f=f_{0}+a+\sum_{i=1}^{n} \sum_{m=1}^{\infty} a_{i, m} z_{i}^{m}$, where $f_{0} \in I$ and $a, a_{i, m} \in K$ with $\lim _{m} a_{i, m}=0$. By the Mittag-Leffler decomposition in $\mathcal{O}(F)$ we see that $\hat{\psi}$ is surjective, its kernel is I, and for every $g \in \mathcal{O}(F)$ there is a preimage $f \in T_{n}$ such that $\|f\|=\|g\|_{F}$. Thus ψ is an isometric isomorphism.

The above identification allows to give a different proof of?
Theorem 7.8: Let F be a connected affinoid in \mathbb{P}. Then $\mathcal{O}(F)$ is a principal ideal domain. In particular, every $0 \neq f \in \mathcal{O}(F)$ has only finitely many zeroes.

8. Spectral norm

Lemma 8.1: Let K be an algebraically closed complete field. Let $P(X)=X^{n}+$ $a_{1} X^{n-1}+\cdots+a_{n} \in K[X]$ and let $\alpha_{1}, \ldots, \alpha_{n} \in K$ be its roots. Then $\max _{j}\left|\alpha_{j}\right|=$ $\max _{i}\left|a_{i}\right|^{1 / i}$.

Proof: We have

$$
P(X)=X^{n}+a_{1} X^{n-1}+\cdots+a_{n}=\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right) .
$$

Wlog $\left|\alpha_{1}\right| \geq\left|\alpha_{i}\right|$ for all i. Substitute $X=\alpha_{1} Y$. Then $\alpha_{1}^{-n} P\left(\alpha_{1} Y\right)$ is

$$
Y^{n}+\frac{a_{1}}{\alpha_{1}} Y^{n-1}+\cdots+\frac{a_{n}}{\alpha_{1}^{n}}=(Y-1)\left(Y-\frac{\alpha_{2}}{\alpha_{1}}\right) \cdots\left(Y-\frac{\alpha_{n}}{\alpha_{1}}\right)
$$

The right handed side is in $K^{o}[Y]$. Hence $\left|\frac{a_{i}}{\alpha_{1}^{i}}\right| \leq 1$ for each i. We must have $\left|\frac{a_{i}}{\alpha_{1}^{i}}\right|=1$ for some i, otherwise modulo $K^{o o}$ the left handed side of the above displayed equation would be Y^{n} and the right handed side would have root 1 , a contradiction.

Proposition 8.2: Let A be an affinoid algebra without zero-divisors and let $T_{d} \rightarrow A$ be a finite monomorphism. Then every $f \in A$ satisfies a monic irreducible $P=X^{n}+$ $a_{1} X^{n-1}+\cdots+a_{n} \in T_{d}[X]$. We have $\|f\|_{\mathrm{sp}}=\max _{i}\left\|a_{i}\right\|_{\mathrm{sp}}^{1 / i}$ and there is $x \in \operatorname{Sp}(A)$ with $|f(x)|=\max _{i}\left\|a_{i}\right\|_{\mathrm{sp}}^{1 / i}$. (We can write $\|\|$ instead of $\| \|_{\mathrm{sp}}$, by Lemma 7.5.)

Proof: The map $T_{d} \rightarrow A$ is an inclusion of integral domains. Let $P(X)$ be the monic irreducible polynomial of $f \in A$ over the quotient field of T_{d}. But T_{d} is a unique factorization domain, hence integrally closed, [L, Prop. VII.1.7], hence $P(X) \in T_{d}[X]$ [L, Cor. VII.1.6]. Division with remainder gives that $T_{d}[f] \cong T_{d}[X] /(P(X))$.

Let $x \in \operatorname{Sp}(A)$ (a maximal ideal of A). As A / T_{d} is integral, $y=x \cap T_{d}$ is a maximal ideal of $T_{d}[\mathrm{AM}, 5.8]$, that is, $y \in \operatorname{Sp}\left(T_{d}\right)$. Thus $k \subseteq T_{d} / y \subseteq A / x$. There is a complete algebraically closed field K such that $A / x \subseteq K$. As $P(f)=0, f(x)$ is a root of $X^{n}+a_{1}(y) X^{n-1}+\cdots+a_{n}(y) \in K[X]$. By Lemma 8.1,

$$
|f(x)| \leq \max _{i}\left|a_{i}(y)\right|^{1 / i} \leq \max _{i}\left\|a_{i}\right\|_{\mathrm{sp}}^{1 / i}
$$

In particular, $\|f\|_{\mathrm{sp}} \leq \max _{i}\left\|a_{i}\right\|_{\mathrm{sp}}^{1 / i}$. So we only have to find $x \in \operatorname{Sp}(A)$ such that $|f(x)| \geq \max _{i}\left\|a_{i}\right\|_{\mathrm{sp}}^{1 / i}$.

Choose i which attains the maximum on the right handed side. By Lemma 7.5 there is $y \in \operatorname{Sp}\left(T_{d}\right)$ with $\left|a_{i}(y)\right|=\left\|a_{i}\right\|_{\mathrm{sp}}$. Let K be a complete algebraically closed field such that $T_{d} / y \subseteq K$. By Lemma 8.1 there is a root $\lambda \in K$ of $X^{n}+a_{1}(y) X^{n-1}+$ $\cdots+a_{n}(y) \in K[X]$ such that $|\lambda| \geq\left|a_{i}(y)\right|^{1 / i}$. So it suffices to find $x \in \operatorname{Sp}(A)$ such that $f(x)=\lambda$.

As $T_{d}[f] \cong T_{d}[X] /(P(X))$, we may extend the homomorphism $T_{d} \rightarrow T_{d} / y$ to $u: T_{d}[f] \rightarrow K$ such that $u(f)=\lambda$. The image $u\left(T_{d}[f]\right)=T_{d} / y[\lambda]$ is a field, because T_{d} / y is a field. Hence $\operatorname{Ker}(u)$ is a maximal ideal of $T_{d}[f]$. As A is integral over T_{d} and hence also over $T_{d}[f]$, there is $x \in \operatorname{Sp}(A)$ lying over $\operatorname{Ker}(u)$ [AM, 5.10 and 5.8]. Then $f(x)=\lambda$.

Exercise 8.3: Let $u: A \rightarrow B$ be an epimorphism of affinoid algebras. Then $\|u(f)\|_{\mathrm{sp}} \leq$ $\|f\|_{\text {sp }}$ for every $f \in A$.

Proof: Let $y \in \operatorname{Sp}(B)$. Then $x=u^{-1}(y) \in \operatorname{Sp}(A)$ and $(u(f))(y)=f(x)$. Therefore $\|u(f)\|_{\mathrm{sp}}=\sup _{x \in u^{-1}(\operatorname{Sp}(A))}|f(x)| \leq \sup _{x \in \operatorname{Sp}(A)}|f(x)|=\|f\|_{\mathrm{sp}}$.

Let A be a commutative ring with unity. Recall that the nilradical nil $(A)=\{f \in$ $\left.A \mid(\exists n \in \mathbb{N}) f^{n}=0\right\}$ is an ideal of A. It is the intersection of all prime ideals of A, and hence the intersection of all minimal prime ideals of A. If A is noetherian, there are only finitely many minimal prime ideals of A. Always nil $(A) \subseteq \operatorname{rad}(\mathrm{A})$, the intersection of the maximal ideals of A. We say that A is reduced if $\operatorname{nil}(A)=0$.

Corollary 8.4: Let A be an affinoid algebra. Then $\operatorname{nil}(A)=\operatorname{rad}(A)$. If A is reduced, then $\left\|\|_{\text {sp }}\right.$ is a norm.

Proof: We have $\operatorname{rad}(\mathrm{A})=\left\{\mathrm{f} \in \mathrm{A} \mid\|\mathrm{f}\|_{\text {sp }}=0\right\}$. So the second assertion follows from the first one.

Let $f \in \operatorname{rad}(\mathrm{~A})$, that is, $\|f\|_{\mathrm{sp}}=0$.
Suppose first that A has no zero-divisors. By Theorem 6.18 there exists a finite monomorphism $T_{d} \rightarrow A$. By Proposition 8.2, f satisfies a monic irreducible $P(X) \in$ $T_{d}[X]$ whose coefficients, except for the leading one, are 0 . Thus $P=X$, and hence $f=0$. Therefore $\operatorname{rad}(\mathrm{A})=0$.

In the general case let \mathcal{P} be a prime ideal of A. Then A / \mathcal{P} is an affinoid algebra with no zero-divisors. Let \bar{f} be the image of f in A / \mathcal{P}. By Exercise $8.3,\|\bar{f}\|_{\mathrm{sp}} \leq\|f\|_{\mathrm{sp}}=$ 0 . Hence by the previous case $\bar{f}=0$. Thus $f \in \mathcal{P}$. Therefore $f \in \bigcap \mathcal{P}=\operatorname{nil}(A)$.

Proposition 8.5: Let A be an affinoid algebra. Let $\varphi: T_{d} \rightarrow A$ be a finite monomorphism. Then
(a) $\varphi\left(T_{d}^{0}\right) \subseteq A^{o}$.
(b) A^{o} is integral over T_{d}^{o}.

Proof: (a) By a home exercise, $\|f\|_{\mathrm{sp}}=\|\varphi(f)\|_{\mathrm{sp}}$. Thus $\varphi\left(T_{d}^{0}\right) \subseteq A^{o}$.
(b) Let $f \in A^{o}$. We want to find a monic $P(X) \in T_{d}^{o}[X]$ such that $P(f)=0$.

If A has no zero divisors, the irreducible polynomial $P(X)$ of f over T_{d} has coefficients in T_{d}^{o}, by Proposition 8.2.

In the general case let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{s}$ be the minimal prime ideals in A.
Fix $1 \leq i \leq s$. Let $A_{i}=A / \mathcal{P}_{i}$, let $\pi_{i}: A \rightarrow A_{i}$ be the quotient map, and put $f_{i}=$ $\pi_{i}(f)$. Then A_{i} is without zero-divisors. By Exercise 8.3, $f_{i} \in A_{i}^{o}$. Let $Q_{i}=\operatorname{Ker}\left(\pi_{i} \circ \varphi\right)$. Then φ induces a finite monomorphism $\bar{\varphi}: T_{d} / Q_{i} \rightarrow A_{i}$. By Theorem 6.18, there is $c \leq d$ and a norm-preserving automorphism σ of T_{d} such that $\bar{\sigma}: T_{c} \rightarrow T_{d} \xrightarrow{\sigma} T_{d} \rightarrow T_{d} / Q_{i}$ is a finite monomorphism. The composition $\bar{\varphi} \bar{\sigma}$ a finite monomorphism $T_{c} \rightarrow A_{i}$.

By the above special case there is a monic $\hat{P}_{i}(X) \in T_{c}^{o}[X]$ such that $\hat{P}_{i}\left(f_{i}\right)=0$. Since the spectral norms on T_{c}, T_{d} are the standard norms and σ preserves the latter, $P_{i}(X)=$ $\sigma\left(\hat{P}_{i}\right) \in T_{d}^{o}[X]$. Moreover, P_{i} is monic and $P_{i}\left(f_{i}\right)=0$. Thus $P_{i}(f) \in \mathcal{P}_{i}$.

Put $P(X)=\prod_{i=1}^{s} P_{i}(X)$. Then $P \in T_{d}^{o}[X]$ is monic and $P(f) \in \bigcap_{i} \mathcal{P}_{i}$. Therefore $P(f)$ is nilpotent. So for a suitable $m \geq 1$ we have $P^{m}(f)=0$.

Corollary 8.6: Let A be an affinoid algebra with a norm \|\| \|hich makes it a Banach algebra. Then $A^{o}=\left\{f \in A \mid \sup _{n \geq 0}\left\|f^{n}\right\|<\infty\right\}$.

Proof: Let $f \in A$.

Suppose $N=\sup _{n \geq 0}\left\|f^{n}\right\|<\infty$. Let $x \in \operatorname{Sp}(A)$. Then for every $n \geq 1, \mid f(x)^{n}=$ $\left|f^{n}(x)\right| \leq\left\|f^{n}\right\|_{\mathrm{sp}} \leq\left\|f^{n}\right\| \leq N$, whence $|f(x)| \leq 1$. Therefore $\|f\|_{\text {sp }} \leq 1$, whence $f \in A^{o}$.

Conversely, suppose $f \in A^{o}$. There is a finite monomorphism $T_{d} \rightarrow A$. By Theorem 8.5(b), f is integral over T_{d}^{o}. Thus $f^{n}=\sum_{i=0}^{n-1} a_{i} f^{i}$ with $a_{i} \in T_{d}^{o}$. By induction, $f^{m}=\sum_{i=0}^{n-1} b_{i} f^{i}$ where $b_{i} \in T_{d}^{o}$. As $T_{d} \rightarrow A$ is continuous (Theorem 6.25), there is $C>0$ such that $\left\|b_{i}\right\| \leq C\left\|b_{i}\right\|_{T_{d}}$. But $\left\|b_{i}\right\|_{T_{d}}=\left\|b_{i}\right\|_{\mathrm{sp}}$, by Lemma 7.5, and $\left\|b_{i}\right\|_{\text {sp }} \leq 1$, hence $\left\|b_{i}\right\| \leq C$. Thus $\left\|f^{m}\right\| \leq \max _{i=0}^{n-1} C\left\|f^{i}\right\|$ is bounded.

Corollary 8.7: Let A be an affinoid algebra with a norm || || which makes it a Banach algebra. Then $\|f\|_{\text {sp }}=\lim _{n \rightarrow \infty}\left\|f^{n}\right\|^{1 / n}$.

Proof: By a home exercise, $\|f\|_{\mathrm{sp}}^{n}=\left\|f^{n}\right\|_{\mathrm{sp}}$. Hence by Lemma 7.2, $\|f\|_{\mathrm{sp}}^{n}=\left\|f^{n}\right\|_{\mathrm{sp}} \leq$ $\left\|f^{n}\right\|$, whence $\|f\|_{\text {sp }} \leq\left\|f^{n}\right\|^{1 / n}$. It now suffices to show that limsup $\left\|f^{n}\right\|^{1 / n} \leq\|f\|_{\mathrm{sp}}$.

Choose $a \in k$ such that $|a|>1$. Let $s \in \mathbb{Z}$ and $m \in \mathbb{N}$ such that $\|f\|_{\text {sp }} \leq|a|^{\frac{s}{m}}$. Then $\|f\|_{\mathrm{sp}}^{m} \leq|a|^{s}$, hence $\left\|\frac{1}{a^{s}} f^{m}\right\|_{\mathrm{sp}} \leq 1$, whence by Corollary 8.6 there is $C^{\prime}>0$ such that $\left\|\frac{1}{a^{s q}} f^{m q}\right\| \leq C^{\prime}$ for every $q \in \mathbb{N}$. In particular, if $n \in \mathbb{N}$, write it as $n=m q+r$ with $q, r \in \mathbb{N}$ and $0 \leq r<m$. Then $s q=\frac{s}{m} n-\frac{s r}{m}$, and hence

$$
\left\|f^{n}\right\| \leq\left\|f^{m q}\right\| \cdot\left\|f^{r}\right\| \leq C^{\prime}|a|^{s q}\left\|f^{r}\right\| \leq C^{\prime} \frac{\left\|f^{r}\right\|}{|a|^{\frac{s r}{m}}}\left(|a|^{\frac{s}{m}}\right)^{n}
$$

Let C be the maximum of $C^{\prime} \frac{\left\|f^{r}\right\|}{|a|^{\frac{\pi}{m}}}$ over the finitely many choices of r, s. Then $\left\|f^{n}\right\| \leq$ $C\left(|a|^{\frac{s}{m}}\right)^{n}$. Thus limsup $\left\|f^{n}\right\|^{1 / n} \leq|a|^{\frac{s}{m}}$.

EXERCISE 8.8: Let $\varphi: A \rightarrow B$ be a homomorphism of affinoid algebras over k. Put $C=A\left\langle X_{1}, \ldots, X_{s}\right\rangle$. Let $b_{1}, \ldots, b_{s} \in B$. Then there exists a homomorphism of k algebras $\psi: C \rightarrow B$ extending φ such that $\psi\left(X_{i}\right)=b_{i}$ for each i if and only if $\left\|b_{i}\right\|_{\mathrm{sp}} \leq 1$ for each i. If ψ exists, it is unique and continuous.

Lemma 8.9: Let T be an integral domain, E its quotient field, V a vector space over E, and $A, B \subseteq V$ finitely generated T-modules. Let A_{E}, B_{E} be the E-vector spaces generated by A, B. If $A_{E} \subseteq B_{E}$, then there is $0 \neq t \in T$ such that $t A \subseteq B$.

Proof: Suppose that $A=\sum_{i=1}^{m} T \alpha_{i}$ and $B=\sum_{j=1}^{n} T \beta_{j}$. For each i there are $t_{i j}, 0 \neq$
$t_{i j}^{\prime} \in T$ such that $\alpha_{i}=\sum_{j=1}^{n} \frac{t_{i j}^{\prime}}{t_{i j}} \beta_{j}$. Put $t=\prod_{i} \prod_{j} t_{i j}$. Then $0 \neq t \in T$ and and $\frac{t}{t_{i j}} \in T$ for all i, j. Hence $t \alpha_{i}=\sum_{j} t_{i j}^{\prime} \frac{t}{t_{i j}} \beta_{j} \in \sum_{j=1}^{n} T \beta_{j}=B$, for all i, whence $t A \subseteq B$.

Lemma 8.10: Let A be an affinoid algebra without zero-divisors and let $T_{d} \rightarrow A$ be a finite morphism. Then $\|f \alpha\|_{\mathrm{sp}}=\|f\| \cdot\|\alpha\|_{\mathrm{sp}}$ for all $f \in T_{d}$ and $\alpha \in A$. (Recall that $\|f\|_{\mathrm{sp}}=\|f\|$ and the norm on T_{d} is multiplicative.)

Proof: Let $X^{n}+a_{1} X^{n-1}+\cdots+a_{n} \in T_{d}[X]$ be the irreducible polynomial of $\alpha \in A$ over the quotient field E of T_{d}. Then $X^{n}+a_{1} X^{n-1}+\cdots+a_{n} \in T_{d}[X]$ is the irreducible polynomial of $f \alpha$ over E. Hence by Proposition 8.2

$$
\|f \alpha\|_{\mathrm{sp}}=\max _{i}\left\|f_{i}^{i} a_{i}\right\|^{1 / i}=\max _{i}\left\|f_{i}^{i}\right\|^{1 / i} \cdot\left\|a_{i}\right\|^{1 / i}=\|f\| \max _{i}\left\|a_{i}\right\|^{1 / i}=\|f\|\|\alpha\|_{\mathrm{sp}}
$$

Lemma 8.11: Let l / k be a finite extension of complete fields, and let $q \in \mathbb{N}$. Then $T^{\prime}=l\left\langle z_{1}^{1 / q}, \ldots, z_{d}^{1 / q}\right\rangle$ is a finite extension of $T_{d}=k\left\langle z_{1}, \ldots, z_{d}\right\rangle$.

Proof: Let $\beta_{1}, \ldots, \beta_{m}$ be a basis of l over k. We show that

$$
T^{\prime}=\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{\mu_{1}=0}^{q-1} \cdots \sum_{\mu_{n}=0}^{q-1} T_{d}\left(\beta_{i} z_{1}^{\mu_{1} / q} \cdots z_{n}^{\mu_{n} / q}\right)
$$

Let $f=\sum_{\alpha} a_{\alpha}\left(z_{1}^{1 / q}\right)^{\alpha_{1}} \cdots\left(z_{n}^{1 / q}\right)^{\alpha_{n}} \in T^{\prime}$, with $a_{\alpha} \in l$ such that $a_{\alpha} \rightarrow 0$. Then each $a_{\alpha} \in l$ can be uniquely written as

$$
a_{\alpha}=\sum_{i=1}^{m} a_{\alpha, i} \beta_{i}, \quad a_{\alpha, i} \in k
$$

We have seen that $a_{\alpha} \rightarrow 0$ implies $a_{\alpha, i} \rightarrow 0$ for each i. Therefore $f=\sum_{i=1}^{m} f_{i} \beta_{i}$, where

$$
f_{i}=\sum_{\alpha} a_{\alpha, i}\left(z_{1}^{1 / q}\right)^{\alpha_{1}} \cdots\left(z_{n}^{1 / q}\right)^{\alpha_{n}}, \quad i=1, \ldots, m
$$

are well defined elements of T^{\prime}. But

$$
\begin{aligned}
f_{i} & =\sum_{0 \leq \mu_{1}, \ldots, \mu_{n}<q} \sum_{\substack{\alpha \\
\alpha_{j} \equiv \mu_{j}(\bmod q)}} a_{\alpha, i}\left(z_{1}^{1 / q}\right)^{\alpha_{1}} \cdots\left(z_{n}^{1 / q}\right)^{\alpha_{n}} \\
& =\sum_{0 \leq \mu_{1}, \ldots, \mu_{n}<q}\left(\sum_{\alpha_{j} \equiv \mu_{j}(\bmod q)} a_{\alpha, i}\left(z_{1}^{1 / q}\right)^{\alpha_{1}-\mu_{1}} \cdots\left(z_{n}^{1 / q}\right)^{\alpha_{n}-\mu_{n}}\right) z_{1}^{\mu_{1} / q} \cdots z_{n}^{\mu_{n} / q}
\end{aligned}
$$

and the series in the brackets are elements of T_{d}.

Lemma 8.12: Let k be a complete field of characteristic $p>0$ and assume that $[k$: $\left.k^{p}\right]<\infty$. Let q be a power of p. Let $T=k\left\langle z_{1}, \ldots, z_{d}\right\rangle$ and $T^{\prime}=k^{1 / q}\left\langle z_{1}^{1 / q}, \ldots, z_{d}^{1 / q}\right\rangle$. Then $T^{\prime}=T^{1 / q}$.

Proof: (The equality takes places in some algebraically closed field K containing T^{\prime} and hence also T.)

Let $i \in \mathbb{N}$. The isomorphism $k \rightarrow k^{p^{i}}$ given by $a \mapsto a^{p^{i}}$ maps $k^{p} \subseteq k$ onto $k^{p^{i+1}} \rightarrow k^{p^{i}}$, hence $\left[k^{p^{i+1}}: k^{p^{i}}\right]<\infty$. Therefore $\left[k: k^{q}\right]<\infty$. Apply the inverse of the isomorphism $k \rightarrow k^{q}$ to get that $\left[k^{1 / q}: k\right]<\infty$.

CLAIM: $T^{\prime} \subseteq T^{1 / q}$. Let $f=\sum_{\alpha} a_{\alpha} z_{1}^{\alpha_{1} / q} \cdots z_{n}^{\alpha_{n} / q} \in T^{\prime}$. Then $a_{\alpha} \in k^{1 / q}$ and $a_{\alpha} \rightarrow 0$. Therefore $a_{\alpha}^{q} \in k$ and $a_{\alpha}^{q} \rightarrow 0$. It follows that $f^{q}=\sum_{\alpha}^{q} a_{\alpha}^{q} z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}} \in T$.

CLaim: $T^{1 / q} \subseteq T^{\prime}$. Let $f \in T^{1 / q}$. Then $f^{q} \in T$, hence $f^{q}=\sum_{\alpha} a_{\alpha} z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$, with $a_{\alpha} \in k$ and $a_{\alpha} \rightarrow 0$. Then $a_{\alpha}^{1 / q} \in k^{1 / q}$ and $a_{\alpha}^{1 / q} \rightarrow 0$. Put $g:=\sum_{\alpha} a_{\alpha}^{1 / q} z_{1}^{\alpha_{1} / q} \cdots z_{n}^{\alpha_{n} / q} \in$ T^{\prime}. Then $g^{q}=f$. Hence $f \in T^{1 / q}$.

Theorem 8.13: The spectral norm on a reduced affinoid algebra A is equivalent to any norm which makes A a Banach algebra.

Proof: Let || || be a norm on A such that A is a Banach k-algebra. We have to show that there is $C>0$ such that $\|\|\leq C\|\|_{\text {sp }}$. Since all Banach norms on an affinoid algebra are equivalent, we actually have to show that A is complete with respect to $\left\|\|_{\text {sp }}\right.$.

Part A: Reduction to an integral domain. Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{s}$ be the minimal prime ideals of A. Each $A_{i}=A / \mathcal{P}_{i}$ is a Banach algebra with respect to the norm $\left\|\|_{i}\right.$ induced from A (Corolllary 6.22). Assume that each A_{i} satisfies the assertion of the theorem. Then so does $\hat{A}=A_{1} \times \cdots \times A_{s}$ with respect to the Banach norm $\left\|\|_{\hat{A}}\right.$ given by $\left\|\left(a_{1}, \ldots, a_{s}\right)\right\|_{\hat{A}}=\max _{i}\left\|a_{i}\right\|_{i}$. Indeed,

$$
\operatorname{Sp}(\hat{A})=\bigcup_{i=1}^{s}\left\{A_{1} \times \cdots \times A_{i-1} \times x \times A_{i+1} \times \cdots \times A_{s} \mid x \in \operatorname{Sp}\left(A_{i}\right)\right\}
$$

and hence $\left\|\left(a_{1}, \ldots, a_{s}\right)\right\|_{\mathrm{sp}}=\max _{i}\left\|a_{i}\right\|_{\mathrm{sp}}$. If $\left\|a_{i}\right\|_{i} \leq C_{i}\left\|a_{i}\right\|_{\mathrm{sp}}$, then $\left\|\left(a_{1}, \ldots, a_{s}\right)\right\|_{\hat{A}} \leq$ $C\left\|\left(a_{1}, \ldots, a_{s}\right)\right\|_{\mathrm{sp}}$, where $C=\max _{i} C_{i}$.

As A is reduced, the canonical map $\iota: A \rightarrow \hat{A}$ is injective. Its image $\iota(A)$ is a closed A-submodule of \hat{A} (Theorem 2.5), and hence Banach with respect to $\left\|\|_{\hat{A}}\right.$. Therefore it induces a Banach norm $\left\|\|_{\iota}\right.$ on A by $\| f\left\|_{\iota}=\right\| \iota(f) \|_{\hat{A}}$. By Theorem 6.25, $\left\|\|_{\iota}\right.$ and || || are equivalent. On the other hand, the restriction of the spectral norm on \hat{A} to A (via ι) is the spectral norm on A. (Indeed, every maximal ideal of \hat{A} restricts to a maximal ideal of A, and every maximal ideal of A contains some \mathcal{P}_{i} and hence extends to a maximal ideal of \hat{A}.) Therefore the assertion for A follows from the assertion for \hat{A}.

By Theorem 6.18 there is a finite monomorphism $T_{d} \rightarrow A$.
Part B: Reduction to: the quotient field $Q(A)$ of A is a normal extension of the quotient field $Q\left(T_{d}\right)$ of T_{d}. Let L be a finite normal extension of $Q\left(T_{d}\right)$ containing $Q(A)$. There are finitely many $b_{1}, \ldots, b_{m} \in L$ such that $L=Q(A)\left[b_{1}, \ldots, b_{m}\right]$. Multiplying them by a suitable element of A we may assume that b_{1}, \ldots, b_{m} are integral over A. Then $B=A\left[b_{1}, \ldots, b_{m}\right]$ is finite over A, and hence also over T_{d}, and the qotient field of B is L. If we can show that B is complete with respect to its spectral norm $\|\|$, then A is complete with respect to $\|\|$, by Theorem 2.5. By a home exercise, the restriction of \|\| to A is the spectral norm on A.

Part C: Reduction to: the quotient field $Q(A)$ of A is a separable extension of the quotient field $Q\left(T_{d}\right)$ of T_{d}. If $\operatorname{char}(k)=0$, there is nothing to prove. If $\operatorname{char}(k)=p>0$, we prove the theorem only in the case $\left[k: k^{p}\right]<\infty$. Let M be the maximal purely inseparable extension of $Q\left(T_{d}\right)$ in $Q(A)$. As $Q(A) / Q\left(T_{d}\right)$ is normal, $Q(A) / M$ is separable [L, V.6.11].

There are $\beta_{1}, \ldots, \beta_{m} \in M$ such that $M=Q\left(T_{d}\right)\left[\beta_{1}, \ldots, \beta_{s}\right]$. Each β_{i} is purely inseparable over $Q\left(T_{d}\right)$ and hence there is a power q_{i} of the characteristic p such that $\beta_{i}^{q_{i}} \in Q\left(T_{d}\right)$. Take $q=\max _{i} q_{i}$. Then q is a power of p and $M^{q} \subseteq Q\left(T_{d}\right)$, that is, $M \subseteq Q\left(T_{d}\right)^{1 / q}$. By an exercise (to be written down later) $Q\left(T_{d}\right)^{1 / q}=Q\left(T^{\prime}\right)$, where

$$
T^{\prime}=k^{1 / q}\left\langle z_{1}^{1 / q}, \ldots, z_{d}^{1 / q}\right\rangle .
$$

is a finite extension of $T_{d}=k\left\langle z_{1}, \ldots, z_{d}\right\rangle$. Let A^{\prime} be the compositum of T^{\prime} and A (that is, the smallest ring containing both T^{\prime} and A) in the algebraic closure of $Q\left(T^{\prime}\right)$. Then
A^{\prime} is finite over T^{\prime} (is generated by the finitely many generators of A over T_{d}) and hence over T_{d}, whence also over A. We have the following commutative diagrams of rings and their quotient fields

As $Q(A) / M$ is separable and $Q\left(A^{\prime}\right)$ is the compositum of $Q(A)$ and $Q\left(T^{\prime}\right)$, the extension $Q\left(A^{\prime}\right) / Q\left(T^{\prime}\right)$ is separable. If we can show that A^{\prime} is complete with respect to its spectral norm $\|\|$, then A is complete with respect to $\| \|$, by Theorem 2.5. By a home exercise, the restriction of $\|\|$ to A is the spectral norm on A.

Part D: A basis of $Q(A)$ over $Q\left(T_{d}\right)$. Choose a basis e_{1}, \ldots, e_{r} of $Q(A)$ over $Q\left(T_{d}\right)$. By Lemma 8.9 we may multiply each e_{i} by some $0 \neq f_{i} \in T_{d}$ to assume that $f_{i}\left(T_{d} e_{i}\right) \subseteq$ A, that is, $f_{i} e_{i} \in A$. Replace e_{i} by $f_{i} e_{i}$ to assume that $e_{1}, \ldots, e_{r} \in A$.

Notice that $\sum_{i=1}^{s} T_{d} e_{i}$ is a free T_{d}-module, contained in A. The standard norm $\left\|\|\right.$ on T_{d} induces the 'maximum' norm on $\sum_{i=1}^{s} f_{i} e_{i}$ by $\| \sum_{i=1}^{s} T_{d} e_{i}\left\|=\max _{i}\right\| f_{i} \|$. It is easy to see that $\sum_{i=1}^{s} T_{d} e_{i}$ is complete with respect to this norm.

Part E: The restriction of the spectral norm of A to $\sum_{i=1}^{s} T_{d} e_{i}$ is equivalent to the above maximum norm. To prove this, we will be using the trace $\operatorname{Tr}: Q(A) \rightarrow Q\left(T_{d}\right)$ [$\mathrm{L}, ?]$. This is a $Q\left(T_{d}\right)$-linear operator, defined as follows: If the irreducible polynomial of $\alpha \in Q(A)$ over $Q\left(T_{d}\right)$ is $X^{n}+a_{1} X^{n-1}+\cdots+a_{n}$, then n divides $r=\left[Q(A): Q\left(T_{d}\right)\right]$ and

$$
\operatorname{Tr}(\alpha)=-\frac{r}{n} a_{1}
$$

In particular, if $\alpha \in A$, then by Proposition $8.2, a_{1}, \ldots, a_{n} \in T_{d}$, and

$$
\begin{equation*}
\|\alpha\|_{\mathrm{sp}}=\max _{i}\left\|a_{i}\right\|^{1 / i} \geq\left\|a_{1}\right\| \geq\|\overbrace{a_{1}+\cdots+a_{1}}^{\frac{r}{n} \text { times }}\|=\|\operatorname{Tr}(\alpha)\| \tag{1}
\end{equation*}
$$

Furthermore, as $Q(A) / Q\left(T_{d}\right)$ is separable, there is a basis $e_{1}^{*}, \ldots, e_{r}^{*}$ of $Q(A)$ over $Q\left(T_{d}\right)$. such that $\operatorname{Tr}\left(e_{j}^{*} e_{i}\right)=\delta_{i j}$. As in Part D , for each j there is $0 \neq g_{j} \in T_{d}$ such that
$g_{j} e_{j}^{*} \in A$. Replace e_{j}^{*} by $g_{j} e_{j}^{*}$ to assume that

$$
\begin{equation*}
e_{1}^{*}, \ldots, e_{r}^{*} \in A \text { is a basis of } Q(A) \text { over } Q\left(T_{d}\right) \text { and } \operatorname{Tr}\left(e_{j}^{*} e_{i}\right)=\delta_{i j} g_{j} \in T_{d} \tag{2}
\end{equation*}
$$

Let $f_{1}, \ldots, f_{r} \in T_{d}$. Then

$$
\operatorname{Tr}\left(e_{j}^{*} \sum_{i=1}^{r} f_{i} e_{i}\right)=\sum_{i=1}^{r} f_{i} \operatorname{Tr}\left(e_{j}^{*} e_{i}\right)=\sum_{i=1}^{r} f_{i} g_{j} \delta_{i j}=g_{j} f_{j}
$$

hence by (1)

$$
\left\|g_{j}\right\| \cdot\left\|f_{j}\right\|=\left\|g_{j} f_{j}\right\|_{\mathrm{sp}}=\left\|\operatorname{Tr}\left(e_{j}^{*} \sum_{i=1}^{r} f_{i} e_{i}\right)\right\|_{\mathrm{sp}} \leq\left\|e_{j}^{*} \sum_{i=1}^{r} f_{i} e_{i}\right\|_{\mathrm{sp}} \leq\left\|e_{j}^{*}\right\|_{\mathrm{sp}} \cdot\left\|\sum_{i=1}^{r} f_{i} e_{i}\right\|_{\mathrm{sp}}
$$

whence

$$
\left\|\sum_{i=1}^{r} f_{i} e_{i}\right\|=\max _{j}\left\|f_{j}\right\| \leq \max _{j}\left(\frac{\left\|e_{j}^{*}\right\|_{\mathrm{sp}}}{\left\|g_{j}\right\|}\right)\left\|\sum_{i=1}^{r} f_{i} e_{i}\right\|_{\mathrm{sp}}
$$

On the other hand,

$$
\left\|\sum_{i=1}^{r} f_{i} e_{i}\right\|_{\mathrm{sp}} \leq \max _{i}\left\|f_{i}\right\|_{\mathrm{sp}}\left\|e_{i}\right\|_{\mathrm{sp}} \leq\left(\max _{i}\left\|e_{i}\right\|_{\mathrm{sp}}\right) \max \left\|f_{i}\right\|=\left(\max _{i}\left\|e_{i}\right\|_{\mathrm{sp}}\right)\|\cdot\| \sum_{i=1}^{r} f_{i} e_{i} \| .
$$

Hence the two norms on $\sum_{i=1}^{s} T_{d} e_{i}$ are equivalent.
Part F: End of the proof. Obviously, $\sum_{i=1}^{s} T_{d} e_{i}$ is complete with respect to the maximum norm. By the preceding part, $\sum_{i=1}^{s} T_{d} e_{i}$ is complete with respect to the spectral norm of A.

By Lemma 8.9, there is $0 \neq f \in T_{d}$ such that $f A \subseteq \sum_{i=1}^{s} T_{d} e_{i}$. Therefore the T_{d}-submodule $f A$ of A is complete (Theorem 2.5). But by Lemma 8.10, $\|f \alpha\|_{\mathrm{sp}}=$ $\|f\|_{\mathrm{sp}} \cdot\|\alpha\|_{\mathrm{sp}}=\|f\| \cdot\|\alpha\|_{\mathrm{sp}}$ for every $\alpha \in A$. Hence A is complete with respect to $\left\|\left\|\|_{\mathrm{sp}}\right.\right.$.

References

[AM] M.F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading Massachussetts, 1969.
[L] S. Lang, Algebra, third edition, Addison-Wesley, Reading Massachussetts, 1994.
[FP] J. Fresnel and M. v.d. Put, Rigid Analytic Geometry and its Applications, Progress in Mathematics 218, Birkhäuser, Boston, 2004.
[FP'] J. Fresnel and M. v.d. Put, Géométrie Analytique Rigide et Applications, Progress in Mathematics 18, Birkhäuser, Boston, 1981.

21 January, 2007

