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Abstract

We investigate a model of pricing when impatient customers queue to receive a

service.

In order to receive the service, the customers have to pay both the service-provider (a
bulk sum), and a parking-provider (a sum determined by the actual time they spend in
the system). The service and parking providers are scparate entrepremeurs, each

choosing a price to maximize his own revenue.

A potential rate of atrival by customers is assumed. The customers are not able to
observe the queue’s length, and so a portion of the customers join the system — this

portion is determined according to statistical arguments.

We find clear analytical results for the behavior of both entrepreneurs and the
customers in equilibrium, and define a range of equilibria that may be reached in
different situations (depending on the potential demand). We show graphically, that

the system converges into this set of equilibria.

We compare the results to the results of equilibria that will be reached by a
monopolist who supplies both the service and the parking. The monopolist will

choose a lower set of prices, and achieve social optimality.

We show that customers’ impatience is crucial for the justification of the model: in
case the customers are not impatient, the parking-provider’s price in equilibrium will
be set to zero. Indeed, we show that for low values of customers’ impatience, the

parking-price is an increasing function of the customers’ impatience.

We also find, that under our model, the parking-provider will generally prefer to
change his pricing system, and set a bulk-sum for his service just like the

service-provider.

When the potential demand in the market decreases, it either has no effect or it causes

the set of prices to rise.
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Part 1 — Introduction

When potential customers decide to get a certain service, or even purchase a product,
they consider the possibility that they will have to spend time waiting their turn in a

queue and being serviced themselves.

When customers consider their time to be valuable, their decision whether to arrive at
the facility and receive the service or not, is not only influenced by the charged price,

but also by the time they expect to spend at that facility.

This interpretation of customers’ demand, has been dealt with quite widely in recent

years,

Consider the providers of the service. Since the customers spend time at their facility,
they have to provide the customers the desired service and “accommodation” for the
time they spend at the facility. This “accommodation” may be a parking service for

their cars or a parallel for services provided via the internet.

In this work, we consider a separation of this “parking”-service from the basic service
provided. We consider two separate entrepreneurs, one of which provides a “parking”
service, and the other provides the regular service. The customers have to pay them

both in order to receive the service,

We investigate such a model to see how this separation influences the price charged
from the customers, how the prices are set in such a model, and to find whether there

are any Nash-equilibria that may be expected in such a model.

The thesis is arranged as follows: a short discussion of relevant literature is given in
sec. 1.1, followed by a short discussion of our goals in sec. 1.2. In Part 2, the model is
presented. We give the main results — specific analytic results along with some other
qualitative results. We solve the model to find Nash-equilibria and prove these results,
and then give a graphical interpretation and show that system converges to these
equilibria. In Part 3, we shortly investigate a few variations to this model, to get a
fecling of its sensitivity to different kinds of changes. In part 4, we discuss the results,

and summarize in part 5.




1.1  Overview of related literature

The subject of equilibrium strategies in queueing systems has been dealt with for
about three decades now. The earliest works on this subject seem to be the one by
Naor [15], and later on by Edelson and Hildebrand [5]. Since then, a quite extensive
amount of articles dealt with this subject, beginning with different models concerning
the relationships among customers and between the customers and a service provider
(with the distinction between a public central planner and a private revenue
maximizing entrepreneur), and continuing with models concerning competition
between separate service providers (usually between competing revenue-maximizing

servers).

A thorough mapping of existing literature on equilibrium strategies in queueing

systems is given by Hassin & Haviv [6].

Following, is a brief presentation of a few of the models that had been dealt with in

the past, that seem to be most relevant as a background for our model.
We begin with two early works that set the basis for our model.

1.1.1 Naor

Naor [15] considers whether the imposition of an “entrance fee” on arriving

customers who wish to be serviced by a station is a rational measure,

He shows that self optimization of each customer does not optimize the general

system (does not yield public optimization).

Naor describes a specific model, as follows (we give the assumptions in detail here

and relate to them when we later present our model):

1, A stationary Poisson stream of customers — with parameter A - arrives at a
single service station. Customers are identical except for their arrival time. A is
the rate at which the need for the service arises, and not necessarily the actual

rate of customers that decide to enter the station and be served.




2. The station renders service in such a way that service times are independently,

identically, and exponentially distributed with intensity parameter p.

3. On successful completion of service, the customer is endowed with a reward of

R (expressible in monetary units). All customer rewards are equal.

4. The cost to a customer for staying in the system (either waiting or being served)

is C monetary units per time unit. All customer costs are equal.

5. Customers are risk neutral, that is, they maximize the expected value of a linear

utility function.

6. From the public (social) point of view, utilities of individuals (customers and

servers) are identical and additive.

7. For the model to make sense, it is assumed that any customer will choose to join

the queue if he finds the system empty (when he only incurs the costs of his own

service-time), thus: %5 > 1. Otherwise, There is no justification for operating the

system at all.

8. An arriving customer has to choose between two alternatives:
(a) He joins the queue, incurs the losses associated with spending some of his
time in it, and finaily obtains the reward.
(b) He refuses to join the queue — an action which does not bring about any
gain or loss.
The choice is made by the customer on comparing the net gains associated
with each of the alternatives, after observing the queue-length (option a is

assumed on a tie).

Under these model assumptions, each customer chooses a “threshold” strategy as
follows: on arriving at the system the customer observes the queue-size. If the queue
is shorter than a predetermined threshold n, he joins the queue, otherwise he chooses

not o join the queue (diverted).




The threshold chosen is the highest integer for which the expected utility gained by
the service (R) exceeds or equals the expected costs of being served (consisting of the

cost of time spent in the queue and being served, and of a paid toll if collected),

Clearly, the levying of tolls will increase the expected costs of being served, and so
will result in a lower threshold (of course, this is done in “steps”, as n is a discrete

function of the costs).

Naor investigates the threshold strategy chosen “naturally” by customers without
interference, and compares it to the Socially optimal threshold strategy (one which
maximizes the total additive utilities of the all population). He further compares the

socially optimal toll, with the toll chosen by a revenue-maximizer.

Naor finds the “natural”-threshold to be too high in comparison with the socially
optimal one, which leads to the conclusion that levying a toll (which later may be
redistributed) can be socially worthwhile. The range of the socially optimal toll is

directly defined by the socially optimal threshold.

When a revenue-maximizer sets the toll, Naor finds that he tends to charge higher
tolls than the socially optimal ones, resulting in an even lower threshold strategy than

the socially optimal one.

In his concluding remarks, Naor emphasizes that his results are independent of the
specifics of the model. This point is later criticized by Edelson & Hildebrand, as will
be further discussed shortly. We mention now that by “specifics” Naor relates to the
service-time distribution, possible heterogeneity of customers in their evaluation of R,
and so forth, but does not relate to the possibility of changes in the basic model’s
structure (changing assumption 8 and changing of the toll’s structure), or to changes

in the individual and collective utility functions (assumptions 5 & 6).




1.1.2 Edelson and Hildebrand

Edelson and Hildebrand [5] further investigate the relationship between Pareto
(Socially) optimal and revenue-maximizing tolls. They criticize Naor’s conclusion
that the revenue-maximizing toll is higher than the socially optimal one, and construct

three models in which this conclusion does not hold.

They begin by giving Naor’s R (individuals’ benefit from service) a new
interpretation, as the alternative cost of being served in a different facility, which in
turn, is constructed by a constant toll - 1, and the cost of time spent there, where the
expected time at the alternative facility is y, which is assumed independent of the

customer flow.

This interpretation, which may seem very appealing, actually makes some very
fundamental changes in certain perspectives of analyzing the model. It does not
influence the analyzation of the two first models presented, but it makes all the

difference for the third one, as will be further discussed along with that model.

In the first model, the customers are not allowed to balk (Naor’s 8™ assumption). This
means, that when a need for service arises, a customer decides whether he wants to
approach the analyzed facility or the alternative one, based on statistical information
alone. The customer is not allowed to see the queue-size before making this decision.
Once deciding, this decision is irrevocable. (The interpretation given here to Naor’s R
helps justify this decision-structure, but is not actually needed for this model. One
could alternatively assume that the decision has to be made in advance before

reaching the facility and being able to observe the queue-length).

The strategy to be followed by the customers in such a model, cannot be of the
threshold type, and so the stream of customers is partitioned between joining the
queue, and joining the alternative facility, in fractions A(0) and [1-A(0)] respectively
(where 0 is the toll collected) that ensure the expected benefits from joining the queue

and joining the alternative facility are the same.

Following such a model, Edelson and Hildebrand find that the socially optimal and

the revenue-maximizing tolls coincide.




The second model presented, allows the customers to balk (and adopt a threshold
strategy), actually adopting all of Naor’s assumptions. However, they allow the toll
collector to impose a two-part tariff, selling rights to all the potential population to

service with a specific toll if service is rendered.

Following this model, Edelson and Hildebrand show that again, the socially optimal

and the revenue-maximizing tolls coincide.

This model, although very similar to Naor’s, needs two assumptions to hold: the
population is assumed finite, and more than that, it is assumed that the all potential
population can be approached in advance to collect the pre-paid toll without further
costs. These assumptions might be considered by some as a meaningful change of the
model and it’s underling assumptions, even though not positively expressed in Naot’s
paper. Still, minimal restructuring of this model will yield a model with the same

result, in which these assumptions are not required.

The third model presented, allows balking and introduces heterogeneity among
customers in the time-costs. Specifically, it divides the population (the stream of
customers) into fractions with different evaluation for time spent - each fraction is
homogenous. Edelson and Hildebrand give a simple example with two customer
types. They find that in such a model, depending on the different parameters, the
revenue-maximizing toll may be either higher, lower or the same as the socially
optimal one.  Their model enables them to explore some possibilities of

price-discrimination.

It is in this model, that the alternative interpretation to Naor’s R has it’s effect, and it
is important to emphasize the difference it makes, as it may raise the question whether

the comparison between this model and Naor’s results is significant.

When we increase the value of time for one type of customers under the alternative
interpretation, we actually increase the value of R for these customers along with the
value of time. Since the time spent in the other facility is supposedly fixed - v, we
increase a supposedly-fixed parameter, so that we order groups of customers in such a
way that groups with a bigger evaluation for time, automatically have a bigger

appreciation for the service. Still, their result shows that when costs and evaluation for




service change among customers in a certain way, revenue-maximizing tolls may be

lower than the socially optimal ones.

As opposed to Naor’s interpretation of an objective appreciation of a given service (be
it constant or random), we have an appreciation, which depends on the customers’
evaluation of time. This may seem “economically right” at first, as it gives a feeling
of competition. However, this other “facility” isn’t actually analyzed under tools
relevant to competition — we would expect the same rules to apply to a competitor,
namely, dependence of the spent time in the system on the actual stream of customers

to that system, and the ability to change the toll collected.

Further more, assuming that this model indeed represents a kind of degenerated
competition (where the toll and time in the alternative system are assumed fixed, at
least in the short future), a competitive market of one kind or another is a “whole
different ball game” than a situation in which a Monopolist sets tolls to maximize his
revenue as is the case in Naor’s model (where naturally, one might expect higher

tolls).

One last point on this alternative interpretation refers to the evaluation of the
collective social utility. When dealing with two alternative facilities giving the
service, one might wish to consider the utility achieved at both the facilities (is the
transfer of one customer from one facility to the other results in socially losing all his

utility ?).

Even if we do not consider the last model presented by Edelson and Hildebrand, there
still remains the open question, what causes the basic difference between their results
(in the first two models) and Naor’s. Indeed, Naor’s results show that the socially
optimal toll cannot exceed the revenue-maximizing toll, while Edelson and
Hildebrand show that small structural differences can impose equivalence of the tolls.
One wonders if there is a consistency in this change, and if it can be expected under

some rule-of-thumb. We discuss this point later on after presenting our model.




1.1.3 Other models

Levhari and Luski [8] and Luski [12] deal with the same model of competition
between servers in a queueing model: two identical servers with exponential service
rate, and a joint poisson arrival process. Customer’s time value C is distributed by a
continuous distribution function F(C), The value for service R is identical for all
customers. The two servers compete with fixed prices they set for the service, and the
customers decide which server to join, maximizing their expected utiliies. The

customers cannot observe the queues before making their decision.

The customers’ reaction-functions to the prices, namely, the distribution of customers
between the servers, are analytically described, However, the general solution for the
servers’ profit-maximization problem cannot be reached analytically, and the results

are reached numerically.

They reach the following results:
¢ The equilibrium prices may either be equal or differ. The socially-optimal
prices are never reached.
e In case of a price-differentiation, the profits differ as well.
» Usually, equilibrium competitive-prices will be above monopoly prices and

below socially-optimal prices.

Loch [11] considers a competition between two identical M/G/1 servers with
unobservable queues. Customers are inhomogeneous with respect to their evaluation

of the service — an aggregate decreasing demand function is applied.

He concludes that there has to be a symmetric equilibrium in which both servers set

the same price and serve the same rates of arriving customers.

Loch also reaches the conclusion that the competitive result for the total arrival rate is

bigger than the result for a monopolist and smaller than the socially optimal result.

Chen and Frank [1] investigate the pricing-strategy of a monopolist that faces a
potential stream of customers, and serves them via a queue which they cannot

observe.




The basic model is very similar to the one we present in this work (following Edelson
and Hildebrand’s no-balking model), and indeed they reach similar conclusions for
the case of a monopolist. They also show the significance of the assumption of linear
preferences: they investigate a model where the preferences of the customers are not

necessarily linear and show that the conclusions of the basic model do not hold.

An interesting observation is that of the long-run maximization problem: Chen and
Frank present a model where in the long run, the monopolist can choose his service
rate. Under the assumption that the costs of maintaining the service rate are linear
(per unit of the intensity parameter), they show that a monopolist will either choose
not to operate at all or will choose such a service rate so that he will serve all the
potential customers. This observation, however, does not hold for the kind of

competition we present in our model.

Li and Lee [9] construct the following model: two servers with different exponential
service (different parameters - 1i); Identical customers with time value C; Joint
arrival Process; Customers observe the queues continuously, and can move from one
queue to the (end of the) other; The case of indifference is resolved by a
randomization with equal probabilities. The servers compete by choosing fixed prices
to be charged from customers that receive (complete) the service. The customers only

pay the server in which they actually complete being served.

The servers’ strategies are supposed to be such that if, for an empty system, the
general price (combined of the fixed price and the expected time cost) at one of the
servers is lower than the general price at the other (so that an arriving customer will
prefer to join the first), this difference in the general price can be expressed as an
integer multiple of the first server’s service-time cost (C/u). This integer, m, will
serve the first customers as a threshold strategy, namely, if there are up to (m)
customers in the system, they will all prefer waiting in the queue of the first server.
The (m+1)th customer will be indifferent between the servers and randomize. The
choices of the next customers arriving, are not important for Li & Lee as they
consider the fact that in any state of the system where there are more than (m+1)
customers in the system, both servers will be busy. Hence, they consider the system

as one-dimensional.




Maximizing the servers’ revenues, they arrive at the result that m=0, namely, under
equilibrium a customer who arrives at an empty system is indifferent between the two
servers. The faster server determines a higher price and still gets a higher share of the

market.

Stidham [16], on investigating a single-server queueing system, uses an interpretation
of demand and service curves to the customer’s problem of choosing an actual
arriving rate. He uses the term “demand”-curve for the total benefit to the customers
for any given arrival rate, and the term “supply”-curve for the total cost they will
endure (including the costs of spending time in the system) for any given arrival rate

given the (predetermined) price for service.

IHe also uses the graphical interpretation to check for the convergence and stability of

the reached equilibrium using “cobweb” diagrams.

We later use these techniques while analyzing our model to gain further insight to the

solutions, and check for its stability.
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1.2 Goals

QOur goal may be generally described as reaching a better understanding of the kinds
of equilibria that may be reached under different structures of congestion models, and

further our ability to analyze (and make rational decisions in) real-life applications.

This is of course, quite a general goal, and we have no pretensions of giving a
complete all-around manual of what will happen in any such model. Rather, we focus
our attention on a specific model, and aim at two main goals, which can generally be
described as achieving explicit analytic ready-to-use results and gaining some

rules-of-thumb.

1.2.1 ready-to-use

As mentioned in the previous section, a lot of work has been done in the field of
analyzing the kind of equilibria that may be reached under different models of
queucing systems. Most of the models developed produce important qualitative
results and intuitive thumb-rules for the application and expected results of such

systems.

However, most of the models do not produce specific analytic results. Even the most
robust results available, while holding under different assumptions are, a lot of times,

difficult for use in relevant applications,

The ability to produce specific analytic "ready-for-use" results, even under very
specific assumptions, may be considered an important characteristic of a model. This
is especially true in models dealing with Nash-equilibrium. The concept of such a
model is based on the assumption that all the decision-makers in the system may be
able to understand it and find their rationally-optimal behavior. The harder it is to
find this optimal behavior in specific situations, when one needs to use complicated
computer-programs in order to reach specific results, the harder it is to accept the

applicability of such a model.

The main model that we present involves competition between service suppliers in a
queueing system. The competition examined is not of the type usually considered in

previous works — between two or more servers, but rather between two separate

"




entrepreneurs that divide the service between them. Specifically, the service is
separated into a parking service, and the usual service. This interpretation helps us
analyze different situations, and develop a different price structure: one which

consists of a constant, along with a cost differentiated by time spent in the system.

We reach results of analytic form. Specifically, we give results for the behavior
chosen by the customers and by each of the profit maximizing entrepreneurs, These
results are compared to the socially-optimal results, and to the results expected when

the all system belongs to onie monopolistic entity.

1.2.2 rules-of-thumb

However important one might consider specific analytic results, we want to achieve

some more general conclusions about the behavior of such systems.

We seek rules-of-thumb that can help us predict in which model a monopolist will
produce the socially optimal result and in which he will divert from this policy ;
predict what will happen to the prices (and the congestion in the system) when we add

competition to the system.

Our results help us develop some intuitive rules-of thumb that may be applied to other
models of congestion. To further our understanding, we analyze a few variations to
our main model, so we can get a feeling og what will happen when small changes in

the model take place.

These rules-of-thumb we develop, help us, for example, in the comparison of the
papers of Naor [13] and of Edelson & Hildebrand [3]. These papers seem to produce a
contradiction, although based on very similar assumptions. Naor reaches the
conclusion that a monopolist will always charge more than the socially optimal price.
Edelson & Hildebrand show that the monopolist's price may also be equal to or lower
than the socially optimal price. Using the intuition developed, we can easily

understand why this happens.
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Part 2 — The Model

2.1  General outline

Consider a given service, which is given in a “facility” in which customers have to
line up in queue and be served in their turn. The queue’s properties (the distributions
of queueing times, service times, queue’s length, idle time, etc.) are determined by its
basic parameters which may vary widely (arrival and service rates, service-discipline,

number of servers and places in queue, etc.).

Generally, Our model may be considered an extension to the models first analyzed by
Naor and by Edelson & Hildebrand, in which the question is raised of an optimal

price to be charged from each of the customers who receive the service,

We focus our discussion on a profit-maximizing service-supplier and parking-
supplier as follows: when a customer arrives to receive service he needs to use a
“parking lot” for the duration of his stay in the system. The “parking” service is
considered as a separate service run by a separate entity. The customer has to pay

both for the parking and for the service itself.

According to the “rules-of-behavior” of the customers, and the other parameters
involved, the service-supplier and parking-supplier act in their pricing-policy to

maximize their profits.

For comparison, we also check the optimal pricing-policy of a monopolist (owning
both the service and the parking facilities), and of a social planner (maximizing the

collective social utility).
2.2 Specific structure of the main Model and definitions

We adopt Naor’s assumptions 1 through 7 (see 1.1.1) as they are. We change the g
assumption in the spirit of Edelson & Hildebrand and state the alternative assumption

as follows:

8. At the time a customer’s need for service arises, he does not know the queue

size, but he is well informed about its statistical distribution, on which he is
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basing his decision whether to join the queue or not. The decision to join or balk

is irrevocable.

We are dealing with a queueing system of the type M/M/1 with infinite population,

infinite queueing positions and a First-Come-First-Served discipline.

Before we proceed, we give some definitions to the symbols that will be used
throughout this paper (2.2.1) and give some thought to the justification and

problematic character of some of the assumptions (2.2.2).

2.2.1 parameter & symbol definitions

R: Rational numbers.
u: Expected utility for a single customer.
A The basic potential Poisson rate of arrival of customers to the system. This

parameter is considered fixed and exogenous to the decisions of the
participants. We consider A as the rate in which the need for the service arises

among the customer population (which we consider infinite).

A The actual rate of arrival to the system. This parameter is the decision vatiable
of the customers as follows: when the need for service arises for service a
customer employs a mixed strategy to the decision whether to join the system
or not. The probability every customer gives to joining the system in
equilibrium is A/A. This interpretation to the customers’ strategy allows us to
consider the actual arrival rate A as Poisson (This is due to the nature of the

Poisson process).

[TH The service facility’s intensity parameter of the exponentially distributed

service times (assumption 2)

R: The reward (in monetary units) endowed to the customer on service

completion (assumption 3)

C: The monetary cost of time to a customer per time unit (assumption 4)
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W The expected time in the system (including queueing and service times) for a

customer.,

Tg: The profit of the Service-supplier. Constitutes the objective function of the

revenuc-maximizing service supplier.

T : The profit of the parking-supplier. Constitutes the objective function of the

revenue-maximizing parking supplier. We use N here rather than P to avoid a
mix up between the parking supplier and different Probabilities; N is borrowed
from queueing literature as it usually refers to treatment of the queue (as

opposed to treatment of the service itself — S).

Tar: The profit of a Monopolist. Constitutes the objective function of a

revenue-maximizing monopolist who owns both the service and the parking

facilities.

Ty . The collective social Welfare. Constitutes the objective function of a social

planner.

P, PY P The priceftoll collected for the Service. Serves as the decision variable

of the revenue-maximizing service facility owner / revenue-maximizing

monopolist / social (Welfare) planner, respectively.

P,, Py PY:  The price/toll collected for the parking. Serves as the decision variable

of the revenue-maximizing parking facility owner / revenue-maximizing
monopolist / social (Welfare) planner, respectively. In this model we assume
that this toll is collected per time unit spent in the facility (queueing and being

served).

2.2.2 Definition of objective functions

We specify here the objectives of the different participants in this model. The Leading

principal in later finding and checking for Nash-equilibria is that each of the
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participants acts to maximize is objective function, given the strategies he expects the

other participants to follow.
For each of the customers we have:
U=R-P3-PN-W-C-W

As we expect the customers to generate an aggregate arrival rate (following together

the same mixed strategy} we write:
U(A)=R-Pg-Prw(A)-C-w())
For the revenue-maximizing service supplier, we have:

ng(Ps) =X - Ps
For the revenue-maximizing parking supplier, we have:

min(Pn) = A - Py - wi(A)

For a monopolist, we have:
nm(Ps,Pn) = A - Ps +A - Py - w(A)
And for the social planner, we have:

’J“Cw(Ps,PN) = ?\(R-CW(}\.))

2.2.3 Focus on some assumptions

The following assumptions are somewhat “side™-assumptions, as they are not the ones
that give the real-life picture the model represents but rather they serve as
mathematical simplifications for our convenience. However these assumption are not
to be taken as trivial — their adequacy to real life situations is far from obvious, and a

change in these assumptions may change the results considerably.

Still, as we seek analytic results that will help us understand what is going on, we

stick to them, while pointing out the issue here.
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Assumption 5 - This assumption of linear preferences might be considered
problematic when applying the model to realistic situations. Chen and Frank [1] show

that when this assumption does not hold, the comparative results change.

To justify the use of this assumption, we point out that while considering customers
for whom the relative expenses are of small consequence, we can relax the

assumption to risk neutral in the relevant range, which will be quite realistic.

Another problem with this assumption, is the principal that customers maximize their
expected utilities. This widely used assumption requires that each of the customers is
aware of his own utility function and is able to analyze the system properly in order to
derive his utility-maximizing behavior. We can only suggest that in a case where a
Nash-equilibrium exists and is applied in effect, a stable system will justify itself in
the sense that even if we don’t expect the customers to be acquainted with the
mathematics used here, they will statistically find out the relative information through

some kind of a learning process.

Assumption 6 - is needed for the comparative calculation of the socially optimal
solution. The utilities of the entrepreneurs are considered in the same way as the
customers’ utilities, and all are considered linearly additive for the purpose of
computing the collective utility. This implies that the distribution of funds among the

population is of no importance, a point that might be criticized.

We use this assumption in the context of our background of other existing models that
regularly use this assumption in comparing the strategies of social planners to those of

private entrepreneurs.
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2.3  Main Results

The following use of the concept Nash-equilibria relates to sets of strategies by all the

relevant “players” in our model, namely solutions of the kind: (Ps, Py, A).

Theorem 2.1: Under assumptions 1-8, in the case of separate revenue-maximizing

service provider and parking provider, there always exists at least one

2
Nash-equilibrium. There is a unique Nash-equilibrium when A > }.L—?“C;L , and a

2
convex set of Nash-equilibria when 0 <A <p- 31’ C; .

Specifically, the strategics and results are as follows:

2
A= Min {uﬂ CRH ,A}

(PNsPS)=
— AV 2
{[x,R—JH-C] E{C.H —C',(PL A) R—C:|} 0<A<M—3CM
LL-A L—A il R
2 2 2
[[ﬁfc-szM —\/Ej ,(JR-MJ\/CZ-R-M] J Azu~-3 CRH
(“N=ﬂ5)=

Cou?

Theorem 2.2: When the solution is not limited by A (i.e. Azp-3 ), the service

provider is better off than the parking provider: ©s > ny.

2
When the solution is limited by A (A < p—%/c}e” ), the relation between the revenues

of the service-provider and the parking-provider depends on the specific values of the
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parameters, and the parking-provider’s profit may be greater equal or less than that of

the service-provider.

Theorem 2.3: Under assumptions 1-8, in the case of a revenue maximizing
monopolist that owns both service and parking facilities, there always exist

Nash-equilibria. The result for the customers’ strategy is unique.

Specifically, the results are:

. C-
Ay = Min {u— TM’A}

P{[LR_ R-(x+C)2J
W-C
k{(x,R—:ji]

(results limited to positive prices are given in sec. 2.4, see 2.21a and 2.22a)

xeiﬁ} Azp— cr
R

(eif )=

xe‘R} 0<A<p- %

(i R-vCf Azp- Sk

R

A-R_ﬁ O<A<Hh »g._,_u._
p—A V R
Cn p-A

Theorem 2.4: Under assumptions 1-8, the Nash-equilibrium in the case of a
monopolist is socially optimal. Specifically, the possible sets of prices chosen by the
monopolist are either the same chosen by a social planner or serve as an upper bound

of a convex set of sets of prices that may be reached by a social planner, The set of
results for the prices when A <p- % is explicitly given in equation 2,23,

Theorem 2.5: The result (for A) reached in the case of a competition between revenue
maximizing service and parking providers is lower than the socially optimal one. The

set of prices set in equilibrium is socially too high,
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Theorem 2.6: The prices are monotone decreasing as a function of the potential rate

of arrival (A).
Theorem 2.7: In the unbounded case:
For low values of C (up to C= %pR }, the parking provider’s price is an increasing

function of C, and for higher values of C, it is a decreasing function of C.

For low values of C (up to C= %LLR ), the parking provider’s profit is an increasing

function of C, and for higher values of C, it is a decreasing function of C.

2.4 Mathematical Proofs

Consider a single customer’s utility from receiving the service:
U=R-Py~Py-w-C-w

From the no-balking rule (assumption 8) we know that the actual time in the system is
not relevant to the customer’s decision whether to join the queue. Furthermore, we
know that the customers are risk-neutral and therefore we can consider w as the
expected time spent in the system by a single customer, and U the expected utility

gained by joining.

In case the above expression is negative, the customer will choose to give up his need

for service and avoid joining the system.

In case the above expression is positive, the customer will choose to join the queue,

incur the costs and get the reward.

We know from basic queueing theory that w is influenced from the actual rate of

arrival to the system:

1
w(h) = 1=
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This means, that if the expected utility is positive and all potential customers will
decide to join the queue, the costs may increase as to turn the expected utility to

negative.

This means that as long as the potential stream of customers is big enough {(we shortly
discuss what that means), we can expect the expected utility of each customer to be

zero, where he will be indifferent between joining the queue or giving up service.

In these circumstances, we can expect a mixed strategy to be taken by the customers
such that a probability is chosen by which a customer actually joins the system when

the need arises.

We get an actual rate of arrival to the system: A, which is a Poisson rate of arrival due

to the use of probability on the potential rate of arrival A.

We keep in mind that 0 < A £ A. We also assume A<y - otherwise, there will be an
endless queue and no point coming to receive service. This enables us to use the
existing simple results of queueing-theory. We will assume for now that A is “big
enough” so that we will get an internal solution to the problem (unbounded solution).
This could be either defined as A or we can settle for A>p. Later, we show what

happens when this does not hold.

2.4.1 Unbounded Solution (Non-limiting A) - Competition

Under these definitions (U=0), we can expect the following:

R=B +P, - WA)+C-w(2)
Or:
R=F +(P,+C) L
Hence, given a set of prices, we can expect the customers to act so that we get an

actual rate of arrival;

(2.1)
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We now turn our attention to the service and parking providers.

We have:

’J'Es=7\.'PS

.ﬂa'PN
TEN’—"?L‘PN'W(?L): -2

Using our available result for A, we get:

P, 22

and:

Py wR-Py wP Py -P,C
T = 2.3
Y Py +C 23)

Each of the suppliers acts to maximize his profit, using the price he controls, given the

behavior of his counterpart.

We have:
Ong :M—(PN +C)'(R—PS)+2PS-(PN+C) ong =M—(PN +C)-2R 2.4
OFs (R_PS) OPg (R—PS)

And to check that we will get a Max-point:

O'ng _ 2Py +C)-R We need R>Pg, which is a trivial demand. We can

7P T (R-Pyy

expect unreasonable outcomes if this will not be the case. We will check later to

verify that our outcome will, in fact, satisfy this.

For the parking-supplier, we have:
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an_,\,=(;J-RAH»PS.-sz—C)-(PN+C]-(PN.u.R—PN'pPS-P;—PN-C): which can be
apP, Py +CY

reduced to: ony Cn(R- f)“') ~1 (2.5)
OPy (Py +C)

And again:  2my 205 (R-Py) | we need R>Ps.

8" Py (Py+C)

We are now ready to try and find equilibrium points. We do this by Equating

equations 2.4 and 2.5 to zero.

We first extract the reaction functions of the service provider and parking provider

from equating 2.4 and 2.5 respectively to zero, for later use:

PS(PN)=R—1I-(5’_LC— )R (2.4a)

PN(PS)=VC'H‘(R“PS)_C (2.5a)

2
From 2.4, we can easily extract: Py +C= @ (2.4b)
P2
We use this in 2.5, to get: ,mg_f____z__l =0
M- (R - PS)
2
Which means: (R-P) = C:R
n
2
So we get: Pi=R-3 ¢ MR (2.6)

We have a single solution, which reassures us that R>Ps, so that we get maximization

for both suppliers.

Using 2.6 in 2.4b, we get: Pyt (= 3#%15{21
g

So that: P, =yu-C*-R-C| (2.7

Using the results in equations 2.1,2.2,2.3 we get:
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(2.8)

(2.9)

w =({Ru-gfR-C? '“]2 (2.10)

5y = ({0 R -JET @2.11)

2.4.1.1 Theorem 2.3
We want to show that g 2 1y - (2.10) = (2.11)

We begin with assumption 7: R 2 C.
YRu =3C

{5 /R - 2T fRe - 4C)

JRu ~§/R*0C 2§{{RuC? —\JC

) (70
And we’re done.

2.4.1.2 Theorem 2.7

Here, we find the first derivatives of the parking provider’s price and profit to C, and

show that they are positive for certain low values of C (and then negative).

Py 2 [urR

—.3

The derivative of Py is:
oC 3 C

-1.
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Comparing to zero, we can see that it is positive when |C < 2—-uR, and it is negative

when C > i-uR .
27

2.2
The derivative of my is: %:2[6\/@2%2 MJE)[% Fe ] \/gJ

o2
Under assumption 7 (uR = C), we know that §CrR*u® -C >0, so we only have to
2.2
compare lﬂR = —l\/z to zero.
6y C? 2¥C

The comparison shows that the derivative is positive when |C <—-uR|, and 1t is

negative when C > 517—, UR.

2.4.2 Bounded solution (Limiting A) - Competition

We now focus our attention on the case where A is actually smaller than the

equilibrium-A we found, meaning when it actually poses a limitation.

Clearly, adding a limitation of A smaller than the optimal A will result in a situation
where the actual rate of arrival will be A (every potential customer will wish to join

the system as long as the optimal A for them is at least A).

What about the two entrepreneurs 7 Obviously, if they know that raising their prices
won’t lower the actual rate of arrival (which is A), they will raise them. They will
raise the prices until the customers’ optimal A will be exactly A, They won’t raise
them above that level, because as we showed already, their derivatives to their own
prices are negative beyond the optimal result, when there is no bound (unimodal profit

functions).

Together with 2.8, we get the more general results for A and w;

= Min {H_ Cf ,A} (2.12)
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R

w = Min {3

1

Cou® u-A

}

(2.13)

A can be expressed as a function of the prices (from 2.1} as follows:

A =Min {u -

PN+C,A
R-P

(2.14)

Since A is the maximal possible value for A, we can extract from 2.14 the reaction

functions for the extreme (bounded) case:

(2.15)

PSmin =R_PN +C
p—A
or: [P =(u-A¥R-P)-C

(2.16)

We use the terms P™, P2 to express the lower-bound response-function strategies of

the service- and parking- provider, respectively.

We note at this point that both lower-bound response-functions (2.15 and 2.16) are

monotone decreasing functions of A. Since in the unbounded case, the

response-functions are not influenced by A, this proves theorem 2.6.

For each of our two players we have a strategy which is a combination of the higher

between our former strategy rule and our new rule of limitation.

Thatis: Ps(Pn) =Max { (2.4a), (2.15) }, and Pn(Pg) =Max { (2.53) , (2.16) }:

Po(P)= Max{ R~ H(PNJ’Cj'R,R—PN*C (2.17a)
L u-A

P (Py)= MaxlC - (R= P) = C,(u = AYR = Py}~ C] (2.17b)

Whenever [Azp-3

before,

(2.17¢c), holds, we have the non-limited resulis as

When 2.17¢ does not hold, we have a continuum of equilibria as follows:
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From 2.17b we get the maximal value for Pg as the intersection point of the two
values for Py(the interpretation is that only the service-provider increases his price to
meet the bounded demand, and the parking provider remains on his original response

function — at the point where it crosses the lower-bound response function):

JC - {R=P)-C=(u~-AXR-P;)-C

C-u

(-a)y

or:  R-Ps=

which is associated with the minimal value for Py (by 2.16): P, = EQHX“C .
}’L —

From 2.17a we similarly get the maximal value for Px:

o (PN+C)-R=R__PN+C
Vo p-A

2
or: PN =M_C
i
50 we have:
2 2
{%/p-C"‘-RmC,R~ fg—&J Azu-1 C;
13
(PN»PS)= (2-18)
2 2
5, R-FHC C”—c,(lLl AY-R 0<A<p-y<H
n—A p-A U R

We check for the solution of the equilibrium with the customers in the bounded case:

Py +C x+C
k:u_RN—P =p- - =pu—{u—A)=A
s R—(R-—x‘{_ ]
n—A

Looking at the structure of mg(Ps) and mn(Py) (see 2.2-2.5), we see that they are both
unimodal and concave, It is trivial to conclude that when we impose an upper bound
on the prices’ range, which is lower than the optimal unbounded choice, the bound
will constitute the optimal choice, so that each of the points defined in 2,18 will be a
Nash-equilibrium.
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In order to derive the results for the profits in the bounded case, we remember that in

the bounded case:

P
ry = AP, = AR-A-DEC

p—A

. n-A
Ty = APy A and equivalently: P, = myloh)
p—A A
AC : . .

so that we have: Mg = AR—— "™~} and notice that this result emphasizes the

fact that the customers’ utility is zero, as the entrepreneurs’ utilities complement each

other to the collective social utility.

To find the range of results of this kind, we substitute Py using our limitations of its

range from 2.18 in my and get:

min CAE

T Ay

(W-A) AR CA

max

T n-A
2
(e ) (e ) e
(nmns):*
2 2
(x,A-R—ﬁ—xJ el S JoAVAR_CA L gl
\ n—A (w-A) m A R

(2.19)
This completes the proof of theorem 2.1

2.4.3 The monopolist and the social planner

The objective functions of the monopolist and of the social planner are quite straight

forward, and as was defined in 2.2.2:
TEM(Ps,PN) =3 - Psg+h- Py w(h)

w(Ps,Pn) = A-(R-C-w(L))
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Case I - unbounded

We begin by intuitively proving theorem 2.4 (an equilibrium reached by the

monopolist is socially optimal).

To do this, we show that in this model, for the case of non-limiting A the objectives
coincide (when A is limiting the solution this does not necessarily hold, and we will

discuss this later).

We showed that the customers’ expected utility will be zero in equilibrium. We recall

that the expected utility for each customer is:
U=R-Ps-Py-w-C-w, and the total utility is: A-(R-Ps-Py-w-C-w).

This total utility is exactly equal to the difference between the objective functions of

the social planner and of the monopolist: =, (P, Py )-=,,(Ps, Py ). Since this value is

zero, the results coincide, and they will reach the same solution.

This is not a formal proof, but consider that in order to reach this outcome, they both

have to achieve a specific A, which in turn is based on a specific set of prices.

To make this proof more formal, we substitute % in both objective functions (the
social planner’s and monopolist’s), using our available result 2.1. This shows that the

objectives totally coincide in our model for the unbounded case:

(u-R—p-Py - P, —CYC Py +R-Py )
(PN +C)(R_PS)

nM(PSDPN)=ﬂW(PS’PN):

The relation between the prices can be derived by equating the first derivatives of the
above expression to zero. We use here a simpler way (based on theorem 2.4) which

produces the same results:

We know that the social planner (and by theorem 2.4 this applies to the monopolist as

well), wants to maximize;

nW=K-R—Li
M_
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Mgy = oy =y =2 (2.20)

where J,Aw represent the optimal selution for A, in the eyes of the monopolist and

social planner respectively.

Of course, from the customers’ point of view, 2.1 still holds, so that:

P [C.
W= N+C2M_ .gu_}ll'..
R-P, R

and we have:

2
i = g R ) 2.21)

Basically, any result of this type will be true mathematically (and therefore, this is the
result given in sec. 2.3), but a more reasonable result will be one with no negative

prices, This easily translates to:

0Py < p-R-C-C (2.21a)

We can calculate the profit to be: Ty = (\m-R -Jc )2 (2.20a)

Case Il — Bounded solution (A = - %E }

) fC-
Now consider the case where Azp— w}éﬂ .

Clearly (according to similar reasoning to that given in the case of competition), the

optimal solution for both the social planner and the monopolist 18 A=A.
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However, in this case, there can be price policies, which are optimal for the social

planner but not for the monopolist.

The monopolist will raise his prices as long as the rate of arrival does not drop below

A, and make sure the utility for the customers is zero.

The social planner is indifferent about the distribution of the utility between the
facility and the customers, so that the optimal prices for the monopolist serve as an

upper bound for his optimal prices (this completes the proof of theorem 2.4).

Setting the customers’ utilities to zero, the monopolist will make sure the customers’

optimal A is A:

which turns to:

Py +C
pi gty
g A 2.22)
and: |0< P} <R-(u-A)-C| for positive prices (2.22a)

The results of the objective functions are easily found by using any set of the results
in the objective functions. The explicit arguments are given in section 2.3 (theorem

2.3).
This completes the proof of theorem 2.3.

As mentioned above, 2.22 is the upper bound for the prices set by the social planner:

P +C

Py <R
n—A

(2.23)

and with positive prices:
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o< Py sR-(u—A)_c'

(2.232)
Py +C

0<Pl <R- -
I’L_

To complete this section we need to show that (2.20) 2 (2.8) in order to prove

Theorem 2.5:

We use assumption 7 - uR/C 2 1, than (rearranging):

] C3 _MS ] CZ .u‘i
R? R?
: _jcr
R R

v

v
=

L

which is the desired result. Now, since A is a decreasing function of both prices, this

means that the set of prices in competition is socially too high.

2.5 Graphical Interpretation, Convergence and Stability

We now {ry to show these results graphically.

The mathematical proofs given above should be considered sufficient. However, we
feel that a graphical interpretation might help with the intuition about what is going
ou, especially in the case where the rate of arrival is limited by the potential rate of
arrival A. Another important issue we address in this section is the convergence to

and the stability of the Nash-equilibria we found.

The importance of the convergence and stability outcomes is emphasized in light of
the question we raised about the adequacy of assumption 5. We expect the customers
to know what is best for them — the stability/convergence outcome is important for the

notion that this will be done through a learning process.

Stidham [16] relates to “demand” and “supply” curves in analyzing the dynamics in

his model and the resulting equilibrium. Our model is different from that of Stidham,
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and so, we refer to curves of benefit and expenditure for the customers, rather than

pure demand and supply.

The following is (at least at some parts) parallel to the mathematical proofs given in
the previous section. We try to avoid giving the same proofs again, and instead refer

whenever we can to the available results from section 2.4,

2.5.1 Customers

We begin with the market itself. Qur curves are not those of demand and supply
suggested by classic economics. We use the function D(A) (which may be considered
the parallel to Stidham’s demand) for the net benefit to the customers, subtracting
their costs of time (which is basically what they will be willing to pay, and S(A)
(which may be considered the parallel to the supply function) for the expenditure
(which is what they will be asked to pay). These are not the standard demand\supply
curves, because we relate here to a predetermined set of prices, and the changes in the
“supply curves” here, are due to changes in the rate of arrival (demand) and not due to
marginal costs. We draw the curves as functions of A, and expect an equilibrium in
the intersection of the curves, because as long the benefit exceeds the expenditure,
each of the customers will benefit from increasing his chosen probability for joining
the queue, thus increasing A. Similarly, we will draw the same curves multiplied by
% this will represent total benefit DD()) vs. total expenditure SS(A) with the same

intersection.

At this point, we regard the set of prices as externally given (we will consider how

they are set shortly).

We know that with a rate of arrival - &, each arriving customer will get

D[Al=R- p_(ji from the service, (2.24a)
and pay for it: \S(x)= B, + HP L (2.25a)
Alternatively, we have: DD(A)= 1 R~ Ml-% (2.24b)




AP,

and: SS() =TI ) =mg (W) +m, (A) =2 Py +
p-—A

(2.25b)

SS(A) represents the total revenues for both entrepreneurs together, while DD(})

equals the collective utility in our model.

Our case is different from that of a monopolist in the sense that we have two
companies in competition that choose their price independently, forming the total
price to be paid for the service. Moreover, the price-structure is different here, as can
be easily observed from 2.25a (a predetermined price in regular models of supply and

demand will be represented by a straight horizontal line — S=P).

We draw 2.24a and 2.25a in figwre 2.1a. One can casily find D(A) to be strictly

decreasing and concave with slope - —, while S(%) is strictly increasing and

_C
(-2)
P

M=y

convex with slope

In order to have a solution we need S(0) not to exceed ID(0). This means:

R_E > P, %N (2.26)

We check this condition for the optimal prices we found earlier: using our results 2.6

and 2.7, we get:
.R* Yp-C*R-C )
R—ng—s C-R L which reduces to:
B i B

7“ >1, which is our basic requirement in assumption 7.

It is interesting to observe figure 2.1b. DD(%) here represents the total benefit of the

system which correlates with the usual interpretation of soctal welfare (assumption 6).

Chu

(-2

The slope of the demand curve is DD'(A)=R- . That means DD(A) is strictly

concave (0< A <u), and it has a peak when:
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R =

()
Ay =p- % (where Aw is the optimal solution for A in the eyes of the social
planner). This is the result we got in 2.20.

JC U/ R

The value at this (socially optimal) peak equals: DD(p,, )= [p. L ]{R S J, or

alternatively: DD(r,, )= (,/ n-R-yC )2 (as in 2.20a)

Since we do not consider marginal costs here, it is obvious that a single monopolist

would have chosen %,, =4, (1,,1s the optimal A for the monopolist) , thus gaining a

“social optimization” and collecting the maximum possible.

S

, total price

S8(0)

total revenue \ social utility
L f f L 2 M y

DD( A,y

DD(L)

DY)

x T T T .)\_ ) T T T T 1} ]\:
figure 2.1a figure 2.1k

We have an intersection of DD{(A) with the x-axis (2.24b=0} either when 2=0 (trivial

solution) or when A = u—% .

The slope of the expenditure curve is: SS'(A)=P; + (:"" ;)12 . That means SS(A) is

strictly increasing and convex in [0,u).
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Both curves begin from the origin, so we will have a solution if DD’(0)>SS’(0) which

is parallel to condition 2.26.

It is easy to see that the intersection occurs at 2.1, and for the competitive-equilibrium

set of prices: 2.8

We have already showed in the previous section that the intersection point (2.8) is

smaller than the peak of DD(A) (2.20):

Since SS(A) increases with the chosen prices, this result means that our set of prices is

too high from a social point of view.

2.5.2 Entrepreneurs

Now, let’s consider the decision of the service and parking suppliers about the set of
prices. We observe their behavior in the prices-plane, where we have Pg on the

vertical axis and Py on the horizontal axis.

Each of the two “players” has an optimal price for each “state of nature”-composed of
the customers’ known preferences and the specific behavior of the other “player”.
These strategies can be drawn in this plane as the functions Pg(Pyn) for the
service-supplier’s strategy, and Pn(Ps) for the parking-supplier’s strategy (which we
will define on Py as PN'I(PN). See figure 2.2,

We already have these functions from the previous section:

For the service supplier;

(2.42): RT(PN):RM\]@
n

. I R . . .
with a slope: — =, |————, so we have a strictly decreasing and convex function.
2\ (P, +C)

For Pn=0 we get P, =R- ﬁ.

1

For Ps=0 we get Py= n-R-C.
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For the parking supplier:

(2.58): | Py (P)={/C-p-(R=P)~C

which turns to:

P, +Cy

po= |77 (5, )= r- P 2.28)

Py +C

with a slope: -2 oo so we have a strictly decreasing and concave function.

For Pny=0 we get 2, =R —CL.

i
For Ps=0 we get P, =R-C-.u-C.

Using assumption 7 again, we can compare the intersection points with the horizontal
and vertical axis of both functions to find that Ps(Py) begins below Py'(Py) and ends
above, so we have one intersection point between them (and hence, the one solution

we found).

al

figure 2.2
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2.5.3 Bounded case

We now focus our attention on the case where A is smaller than the equilibrium-2 we

found, meaning when it actually poses a limitation,

First consider figures 2.1b and 2.3: adding a limitation of A to the left of our optimal
A will result in a situation where the actual rate of arrival will be A, and for the
“optimal” set of prices, the expenditure curve will be lower than the benefit curve at
the point. Since the benefit curve is given and unchangeable, we expect the
entrepreneurs (either one, or both) to raise the prices, so that the expenditure curve

will rise, until the curves intersect at A=A.

In case of a limitation imposed by A, the prices in equilibrium will be higher than

those achieved without a limitation.

lity,

SS(L)

DD(.)

total revenue \ social uti

figure 2.3

With this intuition in mind we turn to figure 2.2.

Think of a given set of prices for which an equilibrium is reached in figure 2.3 at
A=A. As we have already seen, lowering one of the prices (without changing the

other) will result in a bigger A, which is “impossible” with our limitation. If we draw
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this set of prices as a point in figure 2.2, we will expect the equilibrium not to be
below or to the left of that point. This is true for any set of prices for which the

intersection in figure 2.3 will be at A=A.

The set of points in the Ps-Py plane satisfying this rule generate a straight line which

is defined by the limitation rule on the result of figure 2.3 (for A):

P, +C
N+ =A

Upper Bound(3)=1—
P (A)=n R_P,

Equivalently, we have the line:

P +C

(2.15): Lower Bound(P )= R -
L—A

Notice that in case A=p, there will be no points of this kind in figure 2.2,

We can easily add this line to figure 2.2 (we do it in figure 2.4), which is strictly

decreasing with slope: _ _—LX beginning at (0, R —LA) and ending at (R(u-1)-C, 0).
. T
/
Each of the two entrepreneurs will now choose a strategy, which is a combination of

the higher between his former strategy (reaction curve) and the lower bound.

o a
o [+

Py(Py)

figure 2.4a

Py figure 2.4b Pu
Figure 2.4 is separated to the resulting reaction curves of the service-provider (figure
2.4a), and the parking-provider {figure 2.4b). In figure 2.4¢, the combination of the

two integrated curves is shown, to point out the range of possible Nash-equilibria.
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figure 2.4¢

2.5.4 Convergence \ Stability

Now that we understand the graphical system we try to see how it reaches the

designated equilibrium \ equilibria, and whether it stays in equilibrium.

First, consider figure 2.1b. Unfortunately, the benefit and expenditure functions, are
both functions of A, so there is no point engaging a method of “cobweb” diagrams

here.

Still, one can see from the diagram, that whenever the market will be to the left of the
convergence point, there will be an incentive for the customers to increase their rate of
arrival, as they will encounter on average positive net utilities. Whenever the market
will be to the right of the convergence point, there will be an incentive for the
customers to decrease their rate of arrival, since they will encounter on average

negative net utilities.

It is true that this fact was used to construct the customers’ strategy. Hopefully, the

graphical interpretation helps the intuitive justification of this strategy.

Now, consider the figure 2.2. Remember that the service provider’s reaction function

is a function on Py, and the parking supplier’s reaction function is a function on Ps.
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In addition, based only on assumption 7 (UR 2 C), we found that that Ps(Pn) begins

below Py (Py) and ends above.

This allows us to easily follow where the system will converge to from any starting
point. We draw a segmented line to show the dynamics of the reactions of the two

entrepreneurs to each other from any starting state, until equilibrium is reached.

N figure 2.5b

figure 2.5a

It can be seen in figures 2.5a and 2.5b that the system will always converge to
equilibrium, with no extra conditions needed. To show this we use here “cobweb”

diagrams to follow the process of convergence (following stidham).
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Part 3 — Variations to the Model

In this part, we present some variations on the basic model.

Each variation is aimed to clarify a certain point, to strengthen our general grasp of
the model and sensitivity to different possibilities, and to raise further questions to be
explored in the future. A part of the models produce results which could be reached

intuitively - we use this chance to verify the intuition.

We do not fully explore the variations in the way we did with the basic model, usually
just checking the unbounded case (which is the case usually explored in related
models). We try to avoid giving the explicit proofs whenever we feel they are

unnecessary since they resemble the ones given for the basic model.

We generally just give the results, and discuss them later in section 4.
3.1 Marginal Costs

We add marginal costs to the basic model, to see how the basic results change, and to
make sure we know how these costs influence the outcomes (for example, how the
marginal cost of the parking supplier affects the service supplier’s profits) so we don’t

have to rely on intuition alone.

We assume:

A marginal cost ys per served customer for the service-supplier.

A time-based marginal cost yy per customer per time unit for the parking-supplier.

We skip the proof, which exactly follows the proof of the basic model, and give the

results:
PS =R—3\/(C+YN)ELRWYS)2 (31)
Py =3\/PT(C+YN)2(R_YS)_C (3.2)
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2
st Cr1x) (3.3)
R-vg

s = (JR=10) - e, P R=1,)) G4

S (e e Grem) | (3.5)

Also, similar arguments to those given for the basic model show that theorem 2.4

holds here as well:

m(Ps,Pn) = A« (Ps + P W(k) - vs- - W(h) )
aw(Ps,Pn) = A < (R-Cw(r) - ys - yn - W(R) )
Tw-mmM=A (R-Cwl)—=Ps—Py - w(R))=A -U=0

So that the objectives of the monopolist and the social planner coincide.
3.2 Fixed Parking Price

We now change the model just slightly, by using a different price-structure, in which
both the service-supplier and parking-supplier charge a fixed sum (each still choosing

his price independently).

We want to find out whether the basic results hold under this price-structure as well,
and we compare the result for the parking provider. Since the arguments are similar to
those used in the proof of the basic model (but still, with some differences), we’ll run
through them.

The single customer’s utility from receiving the service is now:
U:R-Ps-PN-C'W

Instead of (2.1) we have:

C

A=p————
Ty (3.6)
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The Service- and parking- suppliers now have the same structure for their

revenues\profits:
T =A-P; where ie (S,N)

Using our available result for A, we get:

P
m=Pop——— i) ; i,jelSN) (3.7)

To maximize the profits, we have:

o, C-R-C-P,

R ey (3.8)

And to check that we will get a Max-point:

Z 27;' =lc.r-c.p)2R-P -P,) (-1) which is obviously negative as long as

R>Py+Py, which is a trivial demand.

From (3.8) we get (equating to zero): F=R-P - e (3.9

This symmetry leads us to conclude that in equilibrium, both prices are the same:

C{\R- AR -
poerop, - |[CRB) o, pop [CR=P)
K H
C(R-P
And we also have: P, =R-P, - " )
So we get P=P, =P, (3.10)

We can now try to solve for P:

C{R-P
h

P=R-P-
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(R-2P) = clr-F)

4P +(C—4uR)-P+(iR* —CR)=0

Solving, we get:

P 4uR-C £ C* +8uCR

8.

On account that P should be smaller than R/2, we can ignore the (+) possibility

immediately, so:

_ _ 2
p_ApR-C JC? +8uCR (3.11)

8u

Now, let’s consider a monopolist, collecting one fixed sum from every customer who
joins the queue and receives the service, This fixed sum covers both the parking and

the service. We’ll denote it by Pw.

Given the price set by the monopolist, the customers will choose A such that:

C C
R=P, +—— A=
M oY = K R-P,
P, C
T, =AP, = -
M M =l R-P,
dn,, _MHC(R—PM)JrPM C_,
dPy, (R-£, )

w-PL—2uR-P,, +pR* —~CR=0

Solving, we get:

Py —rs [
v

Again, a result higher than R is not relevant, so we have:
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#CR
PM:R— T (312)

First we note, that the monopolist still takes all the customers’ utility, and reaches as

before, the socially optimal result.

We want to show that Theorem 2.5 still holds. We show that the price chosen by the

monopolist and social planner is lower than the set of prices chosen by two separate

entrepreneurs:
Monopolist-Price (Pm) Competition-Price (2P)
2
R CR < R_MC;_ C* +8uRC
W 4 16p°
2
C, lc*+8ure < CR
4u 16u° il
Jc +4/C +8uR < 4\@
4p 44/p

NC +JC+8uR < JuR +3JuR

4u ap

«/E-o—\fC-}-S},LR < \/},L_R-’r»\HLR-i-SFLR
L

4 4y

Clearly, The competition set of prices is higher (as pR = C) than that of the

monopolist and the social planner (and the rate of arrival will be smaller).

We also note that since the price structure is of no consequence for the social planner,
the optimal % and the socially optimal collective utility (which equals the

monopolist’s maximal revenue) are the same as before.

Using the result we got for the set of prices (3.11) in (3.6) and in our definition of

each of the firms’ profits (3.7), we get:

4ul

A=u-
C+4C*+8pR-C

(3.13)
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. _2u-R+C 12p-R.C

i
4 AC+44/C? 48 R-C

ie(S,N) (3.14)

For the monopolist \ social planner, the parallel results are as in theorem 2.3.

Theorem 3.1: If the parking supplier can choose a pricing system (between a fixed
price and a time-based price), he will prefer the fixed price system, which is also

socially preferred (the social utility is higher).
Proof:
( Following, we will use supersctipt writing to distinguish the equilibrium results for

the modular parking-price system and the fixed parking-price system. For example:
?\‘modular )

We begin by proving that the value of % under the fixed pricing system is bigger than

its value under the modular (time based) pricing.

Consider the function: f{x)=x*-2x+1

It is easy to check that this function is always greater or equal {only when x=1) to

Zero; x* =2x-1

We now replace x with 3\/% and get:

2

3{%} =23 ﬂ_ﬁl 8.3 £+1

C \!c C

2

Mﬂzlé-l HR -8-3 EEH
C C 'S
8 c? :
BuR-C+C7 4.3/&5_1

ok C

2
JBUR - C+C 24‘][ﬁ_1
C C
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YBUR-C+C? 2 4uC -y ‘f ~C
pec

R
—4uc-3/M2C z—(\/sm-cwz +c)

2
>-_3“'C

4ul
C+C?+8uR-C VR

4ul uiC
u- >pd
so that; 9 Jixed ?\‘mOdll]ar

Note that the equality only holds when R= C/p..

We've already seen that the social utility function is concave, and that under
competition (as in this model) the result for A is under the socially desired A. This is

true both when the parking pricing is fixed and when it is modular.

This means that between the two options, the one with the higher result for 2, is
socially preferred, or in other words: the social utility gained under fixed pricing is

higher than the social utility gained under modular time-based pricing.

Now consider the profits of the two entrepreneurs. Since They divide between
themselves all of the social utility (the customers get zero utility), we just proved that

the total profit (mg+7n) is bigger under fixed parking pricing.

We also know that under the fixed pricing system we got a symmetrical equilibrium
(ms=nn), while under the modular pricing system, the service supplier was better off

than the parking supplier (rg 2 mn).

Fixed > nﬁNdadu!crr

Obviously: 7y , which completes our proof.
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3.3 Another Service provider

An alternative service provider decides to join the market. The parking service for his
customers will be provided by the same parking-supplier, which cannot distinguish

between the customers of the two facilities (which seems a reasonable assumption).

In equilibrium, the custoners will choose A| — the Poisson arrival rate of customers to
be served by S: these customers pay the parking provider Py-wi(};) and pay the first

service provider #.

Similatly, they will choose A, - the Poisson arrival rate of customers to be served by
S,: these customers pay the parking provider Py-w2(2) and pay the second service

provider 2§ .

Service times at both facilities are exponentially distributed with parameter p.
We can assume that the ufility for the customers served at both facilities is zero.

Solving this kind of system is very similar to what was done in the basic model. The
results are the same as well. For the parking provider, the result is as in (2.7), and for

each of the service providers, the result is as in (2.6).

This means that for the 2-servers case there is actually no difference, each acts with
the parking provider as a monopolist, taking all the utility from the customers

(together with the parking provider).

Fach of the separate service providers sets the same price and gets the same profit as
the single service provider does in the basic model. In fact, the two service providers
could actually offer different services (and not be in competition between themselves
at all) — as long as the customers of both use the same parking facility, and the

potential demand is unbounded, these results hold.
The parking provider doesn’t change his price, and doubles his profits.

Obviously, even if the characteristics of the two facilities differ, each of them can be
expected to behave in the same way, given the price for the parking service (same

reaction functions).
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However, if the service facilities differ, the parking provider may have to change his

strategy (price).

3.3.1 Non-similar servers

We now change just one feature - the two facilities differ in the distribution of their

service times (different intensity parameters) - and check how the results change.

Service provider i serves with intensity parameter y;, and charges P{ for the service.

P, +C
T T A ) 3.15
i ""‘ R—P_S{ ( )
; Py +C
nh=h, Py =Pop, - P R"’ . i=12 (3.16)
—1y
Ty =( M + a2 ]-PN
Hy—hy By =2,
R-P; R-P;
RN:PNLL}( PA)J“PNMZ( .S)_ZPN (317)
P, +C

Again, equating the first derivatives to zero, we get:

Py =yt Rl i | fa-c (3.18)

(3.19)

4 2
P§=R6‘jC2R (‘/“-‘:‘/E) i=12

4u,

32 2
x,:u,_ij“*c Werrdie] (3.20)

4R*

4R?
W, = i=12 (3.21)
ij»ﬁcﬂ(mm

And note that |2t = [F2 (3.22), the ratio between the times spent in the two facilities
Wy Hy

equals the root of the ratio between their service times.
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s =(JR_M—§/02R(\/E+\/E)2/4Y i=12 (3.23)

Ty =[6\/R2c(@ W) /szsz (3.24)

We can see that the parking-provider will use a kind of rooted average method, when
relating to the servers’ service-rate, and it can be easily seen that when p=p,, this will

result in the original outcomes (while the parking provider doubles his revenue).

3.4 Partial Intervention of the Social Planner

Consider the case when one of the two separate entities (the service provider and the
parking provider) is public (maximizes social utility) while the other one is private

(maximizes revenues).

We denote:
5 AC : _ e o
n° =h-R— Y the social (governmental) objective function,
” —
nh =h-P; a private service provider’s objective function,
s APy . . o :
Y a private parking provider’s objective function.
B

We use our result (2.1) for A, to get:

o5 —ypPyRFCR pCR-uC-Py
R-P, Py +C

We already have the formulas for the private entrepreneurs’ objective functions and

their derivatives from the basic model (2.2-2.5).

We find the derivatives of n° to Ps and to Py, so we can solve both cases later;

§
on =_PNR+C1§+ ns (325)
2P (R*‘Ps) P, +C
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8’n’ _y PyR+CR

= 0 => M
8P, (R-p,) < “

on® R pC(R-Py)
== 3.26
OPy, (R_PS)+ (P, +C) ( )

o'n’ > nC(R-P,)

- 0 (R>P.)= M
8*p, (p, +CY <0 (R>75)= Max

Case I — Governmental service provider Vs. private parking provider:

We use (3.29)=0 and (2.5)=0 to get:

P, =R C-n-C (3.27)

Py =0 (3.28)

Case Il — Governmental parking provider Vs. private service provider:
We use (3.30)=0 and (2.4)=0 to get:

Py =0 (3.29)

P =r- <& (3.30)

Cp
A= MJ_
AR

In both cases, we find that the government will choose to “give way” by sefting

zero-prices, and allow the private entrepreneur to act as a monopoly, achieving the
socially optimal result (in the basic model we showed that a monopoly will achieve

the socially desired result for A (2.20), which is the same result we got here).
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3.5 Two Part Tariff (Socially Optimizing Monopolist with Balking)

To complete our work, we present a model where the customers are able to balk (give
up service) after observing the queue. Naor [15] (see 1.1.1) found that in such a
model, the monopolist’s price is socially too high (with a socially too small rate of
arrival). Edelson and Hildebrand [5] (see 1.1.2) changed the model by allowing the
owner of the facility to sell in advance rights for the service (with a predetermined
price for the service if the customers later decide to be served) to the all population.
They found that in their model, the monopolist chooses to socially optimize the

system (by his set of prices).

We describe here a model, which is basically similar to the one of Edelson and
Hildebrand, using our interpretation for the separation of the parking-facility from the

service-facility.

There are no explicit analytic results for this model, and we find no incentive in
engaging in numerical research here, since such results are available from Edelson
and Hildebrand. Rather, we show that the result they reach (the monopolist
reaching socially optimal Nash-equilibrium) can be expected from analyzing the

model, in the same way we did with the previous models..

3.5.1 Model’s Structure

There is a potential Poisson arrival rate of customers A per time-unit who need

service.

Those who decide to arrive at the system have to pay a lump sum Py to the

parking-supplier.

Having paid the Parking-supplier, they can go to the service-facility to observe the
queue. Observing the current size of the queue at the time of his arrival, a customer

can decide whether he wants to join the queue, or balk.

If a customer decides to join the queue, he has to pay another lump sum: Ps to the

service-supplier, and wait his turn. When he is served, he is endowed with a reward

53




of R. There is a fixed cost per time-unit spent in the system for each of the customers:

C.

Say a customer arrives at the service-facility and finds i customers in the facility.
His expected utility, whether he decides to join the queue, is:
E[U]=R-Pn-Ps-C-E[W(i+1)]

Where E[W(i+1)]=(i+1)/p is the expected time it takes (i+1) customers to finish

service under a exponential distribution of service-times.

Any customer (of the original stream of A) has 3 options (which divide to two

separate decisions):
1. He may decide not to join the system at all, thus gaining zero.

2. Having decided to arrive at the system and observing the size of the queue, he

may decide to balk, thus gaining a negative utility: U= -Px.

3. Having decided to arrive at the system and observing the size of the queue, he

may decide to join the queue, thus gaining an expected utility of:
R-Py-Ps-C- (i+1)/p.

3.5.2 How the Result is Reached

The second decision is an “on-line” decision where each customer, upon is arrival at
the system decides whether to join or balk, according to the specific queue-length he

encounters.

This decision is based on whether the utility of the third “option” is expected to be
higher (where he will join) or lower (where he will balk) than the utility of the second

Moption”.

Before arriving at the service facility itself (after paying for the parking), the

customers have no idea whether they will actually decide to join the queue and be

served or not. Rather they evaluate the expected utility of arriving at the facility in

order to decide what to do. Obviously, if this expected utility is positive, all the
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customers will decide to arrive at the facility. If it is negative, no customer will arrive
at the facility. This means that we can expect the customers to adopt a mixed strategy,

similar to the one from our basic model.

An actual rate of arrival A will be set collectively, which will result in a zero expected
utility, Of course, the calculation of A is totally different than the one in the basic

model.

This conclusion may be considered sufficient to understand that a monopolist will
reach the socially optimal resulf, but we analyze the system a bit further to show more

clearly why this is so.

We analyze the 2" decision, so we can find out what will be the expected utility of

arriving at the system, given A.

We know that an arriving customer will decide to join the queue if he finds the
expected utility of the 3" option to be higher than that of the 2% This is easily
translated to: R-Pg-C(i+1)/p 2 0.

Or: l+1g(R_P¥)IJ‘

(3.36)

(3.36) is the decision-rule for the 2" decision.

Thus, we can define an integer K, which is the maximum number of customers that

we can find in the service-facility (either waiting in queue or being serviced).

This integer, K, is the highest possible (i+1) that will satisfy (3.36):

K= [—(Rﬁ—gs)l&} (the highest integer from below) (3.36)

This is obviously a blocked queueing system, of the type: M/M/1/K, with
-1
state-probabilities:  Pr, =p'-Pr, ; Pr, = {i p! } where p= (A/LL), as can be

found in any textbook of queueing theory.
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On finding K customers already in the service-facility, a customer will balk,
otherwise, he will join the queue, and according to the specific number of customers

he found in the facility, will gain an expected utility in accordance with option 3.
Elu]= %{Pr,.-(fe .y wg(fr—l_)ﬂ—PN
i=0 H

3.5.3 Social Planner - Monopolist

We consider a solution to be a set (A,K,Pg,Px) which is the set of decision variables in
the system. Notice that K is a function of Ps, while A is derived from E[U]=0, which
means it is a function of Ps and Py. That means, solutions are reached through the

setting of prices (Ps,Pn).

Since the queue is of the type M/M/1/K, the expected time E[w] in the system (before

watching the queue), is a function of both A and K.

We now define the objective functions involved:

E[U] = (1-Pr(K))-R-A-Pn-A-(1-Pr(K})-Ps-A-(1-Pr(K))-C-E[w(ALK)] = 0
ns = A-Ps-(1-Pr(K))

TNy = MPy

Tip = T + TN

w = AR(1-Pr(K)) - A C-E[w(AK)]-(1-Pr(K))

One can easily see that Tw - T = AE[U] =0

So we see that the objectives of the social planner and of the monopolist coincide, as

we have seen before.
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Part 4 — Discussion of Results

In this section, we try not to repeat the results we gave in parts 2 & 3. Rather, we try

to understand how they help us in view of our goals (see 1.2).

The model analyzed is a model of a service facility where impatient customers have to
line up in a queue to get the service. The customers are being served by a
service-facility, but they have to use a parking-facility as well, for the duration of their
stay in the system. The service-provider and the parking-provider, separately charge
the customers for the service each of them provides. The service-provider charges a
bulk sum, and the parking-provider charges a modular sum, according to the time the

customer spends in the system.
4.1  Analytic Results

First, the reader is directed to section 2.3, where a summary of our main analytic
results is given, These results speak for themselves: in any real-life application which
resembles this model, they can be readily used in the process of decision-making. In
part 3, there are a few extensions that show how these results change under different
variations of the model. Explicit analytic results are available both for the case of two
separate entrepreneurs, and for a monopolist who owns both the facilities (and follows

the same strategy as that of a social planner).

The sensitivity of the results to the different parameters could be easily observed
(sometimes, using assumption 7: uR>C), and are usually quite intuitive (the

equilibrium arrival rate is a monotone increasing function of R and p, etc.).

We find it unnecessary to bother the reader with a full list of all the derivatives of the

results.

However, two specific issues should be noted:

4.1.1 Pricing sensitivity to Demand

Our intuition suggests that when demand for the service increases, so will the prices.
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Our results (theorem 2.6) seem to suggest otherwise — when A increases, the
entrepreneurs (be it a monopolist or two separate competing entities) respond by
raising the prices. This could be observed most easily in our graphical interpretation
of the price-plane (figure 2.4): we have seen that when A increases, the limitation-line
lowers toward the origin. Since the limitation-line presents a lower bound for the set

of prices in equilibrium, this results in the lowering of prices.
A similar result was reached by Chen and Frank [1], for the case of the monopolist.

Why does this happen ? Does this result contradicts existing results and our basic

intuition ?

When considering this result more closely, we can see that this result is not really
unique for this model or for congestion systems. We have to remember that A is not a
demand-function, but rather an upper bound on the demand. Actually, observing the
analytic result for the prices, we can see that they are raised when the relevant

parameters (R, p,C) change to increase the demand.

Think of the demand-supply market with a monopolist (figure 2.1) — regularly,
whenever the demand curve rises, the monopolist will increase his price. Now, add an
upper bound on the demand, which cuts the demand curve before it reaches the
equilibrium point (lower demand), the monopolist will react by increasing his prices.
When this upper bound increases, the monopolist will lower his price in order to

capture all the demand again.

4.1.2 Sensitivity to Customers’ Impatience

Considering the customers’ behavior, we expect that when the customers’ impatience
increases (as is expressed through an increase in C), their demand will decrease,
resulting in a lower rate of arrival, lower prices, and lower profits for the

entrepreneurs.

Again, we find that our results (theorem 2.7) are in partial disagreement with this

intuition.
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Indeed, when the customers’ evaluation of time increases, this always results in a

lower rate of arrival, and lower price and profit for the service-provider.

However, the results for the parking-supplier suggest that for certain low values of C,
the opposite is true — when the value of C is very low, the parking supplier will

increase prices and profits when C increases.

The issue is sharpened when observing that without the assumption that the customers
are impatient (C=0), the result is that the parking provider sets his price to zero and

gets nothing.

Remember also that we found that the parking provider will generally prefer a

fixed-price system than the one suggested in our model (theorem 3.1).

It seems that the suggested price construction is only rational when C is bigger than a
minimum value, and even then, the parking provider will prefer to charge a bulk sum.
We have also seen that a fixed price charged for the parking-service is socially

preferred.
So how come we can observe modular prices for parking in real-life situations ?

This takes us to the part of future research, which will be discussed later. A lot of
situations involve a mix of alternative assumption (we checked for a few separately,
but a mix of them might produce different results) — for example, theorem 3.1 might
not hold in the model of a few service providers with different service times (our
guess is that it will not change), or a model could be thought of, where the

service-providers are of different services with different values (R).
4.2 Rules-of-Thumb

In addition to the specific analytic results we found, there are several, more general,
rules that we found, that may be applied to other similar models on more intuitive

basis.
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4.2.1 Socially optimizing Monopolist

We defined a solution to the model to be a set (Pn,Ps,A); or in models that permit
balking: (Pn,Ps,A.K), where K represents the threshold in the customers’ rule of

decision.

From the monopolist’s point of view, it seems that all of the solution’s components

influence the ouicome,

However, from the social planner’s point of view, the only components that influence
his objectives are those representing the customers’ behavior, namely, (A,K). This is
true because of assumptions 3 and 6 (all the individuals’ utilities are identical,
risk-neutral, and additive) — the social planner considers the payments as utility

transfers, which do not influence the total utility.

So what makes the monopolist act to maximize the social utility in our models ?
What is the underlying difference between the models constructed here and in the

paper of Edelson and Hildebrand [5], and the model presented by Naor {15] ?
Hopefully, the answer to these questions should be clear at this point.

If in a certain model, a revenue-maximizing monopolist is able impose tolls on the
customers in such a way that he collects all their expected gained utility (no consumer
surplus) under any specific set of tolls, he will always choose to impose tolls in such a
way that the solution reached, will be the socially optimal one. Otherwise, he might

divert from this solution.

This is quite straightforward. No customer will agree to pay more than he is expected
to gain (unless the service is imposed upon him, which is not the case in the discussed
models). This means, that for any solution, there cannot be any way to collect more
than all the customers’ gains, In case this can be done for every solution, certainly the
monopolist’s interests coincide with those of society, and therefore we can expect him

to reach (if possible) the socially optimal solution, along with the socially optimal toll,

(Note however, that since K is chosen stepwise (in models with balking), there may

be a range of socially optimal tolls resulting in the same optimal behavior by the
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customers. The revenue-maximizer’s optimal toll however, may be a specific point in

that range, and not the all range).

The way to easily check this point is given in the basic model, and is repeated for the
two-part-tariff model (sec. 3.5). The basic idea is that, under our assumption
concerning the utilities’ structure (5&6), the social utility is composed of that of the
monopolist, together with that of all the customers. When we know that for any
solution, the customers® utilities are set to zero (the expected utilities, of course), this

means that the objectives of the monopolist coincide with the social objectives.

4.2.2 Competition between Service and Parking Suppliers

We found that when the service and parking suppliers are separated into two
independent entities that engage in a price-competition, rather than a single
monopolist, the set of prices reached in equilibrium is higher than that reached by the

monopolist (and the resulting rate of arriving customers is lower).

This might sound a bit strange and opposed to the intuition usually related to the word

“competition”.

However, we have to remember that the service and parking facilities represent
complementary products, as any customer who wants to be served has to pay both

entrepreneurs.

Consider the equilibrium reached by a monopolist. At the equilibrium’s set of prices,
the monopolist knows that the extra revenues that will be gained by raising his prices
will be contradicted by the decrease in demand. However, when this set of prices is
separated for the two entrepreneurs, each of them will find it worthwhile to raise his
price at this point, because the relative influence of the contradicting decrease in

demand will be divided between himself and his counterpart.

This is certainly no new concept to economics: as presented in Economides and Salop
[4], a model of two separate monopolists that produce complementary goods was
considered by Cournot [3] back in 1838. He showed that indeed, a joint ownership by
a single integrated monopolist reduces the sum of the two prices. The explanation

given is similar in nature: the two independent firms ignore the effect of their
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individual markups on each other, while the integrated monopolist internalizes this

externality.

4.2.3 Other rules

In the third section we checked a few alternatives to see how certain changes in the

model might change the results.

We saw that when the parking provider sets a modular price that depends on the time
the customer spends in the system, the service provider is better off than the parking
provider (bigger revenue). When the price for parking is set as a bulk sum, the
solution is symmetrical (for the two suppliers), and this is preferred both by the

parking provider and socially.

We found that the basic results do not change dramatically when we add marginal
costs, and gave the specific analytic expressions. Both costs have negative influence

on the resulting rate of arrival by customers, and on both the entrepreneurs’ profits.

When we increase the marginal cost of the service (parking) supplier, the service
(parking) supplier will increase his price, while the parking (service) supplier will

decrease his.

We saw that when there are two separate identical service providers (in the case of
unbounded rate of arrival), they will both set the same price and get the same rate of
arrival as the single service provider set in the basic model. The single parking
provider sets the same price as before, and serves twice as many customers (doubling

his profit). The social utility doubles as well.
In case the two servers differ in their rate of service, we saw that the parking provider
will base his pricing-policy on a rooted-average rate of service, n, as follows:

w= (\/E +4u, )2 /4 . Also, the resulting ratio between the expected times spent in the

two facilities equals the root of the ratio between their service times.

Last, we found that when he social planner gets hold of any one of the two facilities in
our basic model (service \ parking), He will set the price at that facility to zero, so that

his private counterpart will act as a monopolist and reach social optimality,
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4.3 Dependence on Assumptions

In this section we want to specifically mention the strong dependence of the results
given here on assumption 5 and 6. These assumptions concerning the structure of the
individual and social utilities are very common in related research, and more
generally- in economic modeling, as a tool to simplify the research and reach

manageable results.

We found that a wide range of models will reach the very appealing result that a
monopolist will reach a social optimality. But consider these solutions, the underlying
rule for this to happen, is that the monopolist gains all the social uvtility and the
customers are left with nothing. Does our society really considers this situation to be

optimal ?

Actually, this problem may be attributed to the assumption concerning the individual
utilities. Even if we consider the individual utilities to be similar and additive in the
social view, if we considered concave individual utility functions, than society as a

whole prefers a more even spread of incomes than the one we reach.

To justify the result as holding under different assumptions, one might claim that
arguments concerning the spread of incomes are irrelevant since this could always be

fixed through an efficient taxing system.

Another issue concerning the structure of the individual utility functions is that of the
customers’ behavior in equilibrium. In the models presented here, the customers
choose what to do based on expected utilities under different alternatives. For
non-linear utilities, this does not hold and we have to engage in much more complex

calculations.

Chen and Frank [1] explored the option of non-linear preferences by the customers,
and found that in models in which a monopolist will reach a socially optimal
equilibrium, when preferences are not linear — the equilibrium (monopolist) will not

normally be socially efficient.

This point might be excused by arguments of approximate local linearity of the

customers’ utilities, meaning that for the sums involved, the customers’ preferences
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are mote ot less linear. This is quite reasonable, if we consider sums that are small

relative to the customers’ wealth.

Part 5 — Summary and Future Research

In this thesis, we investigated a model of a service facility, where impatient customers

have to line up in queue to get the service.

We introduced complementary competition by dividing the service facility into two

separate entrepreneurs: a service-supplier and a parking-supplier.
Explicit analytic results where found, and are given in sec. 2.3.

We found that under such a competition, the prices set in equilibrium are higher than
those set by a single monopolist that supplies the parking and the service. This result
is similar to that reached for regular (without time-cost considerations) models of

supply and demand by Cournot [3].

We also found that in our model, a monopolist will reach a socially optimal result, and

gave the conditions under which, such an outcome should be expected.

A more detailed discussion of the results is given in part 4.

Future Research

Some thought should be given to future regearch,

First, one might consider the long-run case, where the service-provider is able to
choose the rate of service, and pays for it. This point was investigated by Chen and
Frank [1], who found that a monopolist in a similar model will either choose not to
produce at all (u=0) or set the rate of arrival as to accommodate all the population
(and if the potential demand is infinite, will choose an infinite rate of service).
However, the rational behind the result of Chen and Frank does not apply in the case

of complementary products (basically, when the service-provider pays to increase the
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rate of service, the parking-provider will exploit it for his own good and raise his
price). The task of analytically finding the long-run rate of service is not a simple one
when considering our model, and it may be the case that one will have to be satisfied

with numerical results.

Our results in part 3 of the thesis are true for the case of unbounded potential demand.
However, whenever the potential demand poses a realistic bound on the results, other
considerations should be taken into account. Specifically, in the case of two
service-suppliers, in case of a realistic bound, we can assume that this bound will be
the actual rate of arrival, but the specific prices that will be chosen, and the division of
the total utility between the entrepreneurs and the customers is not obvious (existing
works of competition between suppliers with impatient customers show why the

prices will not be set fo zero, see for example Levhari and Luski [8]).

Basically, by small changes in the assumptions, a lot of variations to this model can be
explored, while finding which results are indeed robust. Basic examples may be
heterogeneity between customers in relation to their appreciation of time-costs or

appreciation of the value of service.

We found that in our model, the parking-provider will prefer to charge a bulk sum
rather than a modular sum based on the time spent in the system. In real life
situations, we observe cases in which parking-providers choose to charge modular
sums. Different explanations can be offered as to the difference between our model
and these situations, but indeed, further research is in order to arrive at a suitable

model with this result.
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