
A SURVEY ON DICHOTOMOUS SEARCH AND

RELATED PROBLEMS

Thesis submitted towards the degree of Master

of Science in Operations Research

Anna Sarid

June 2013

Supervisor:

Prof. Rafi Hassin

Tel-Aviv University

The Raymond and Beverly Sackler Faculty of

Exact Sciences

The Department of Statistics and Operations

Research

A SURVEY ON DICHOTOMOUS SEARCH AND RELATED

PROBLEMS

ANNA SARID

Abstract. An object is searched for in an integer interval of length N .
Queries for the object are sequentially conducted. Each query reveals
whether the object lies to the left or to the right of the searched location.
The objective is to find the object within minimal expected number
of queries. This problem is called the “dichotomous search” problem
and has various versions and formulations. In this paper a survey of
dichotomous search problems is conducted.

Acknowledgements. I would like to thank Prof. Rafi Hassin for his great
help on all aspects of research and writing.

Dedication. I would like to dedicate this thesis to my dear husband Adi
and my sweet son Eitan.

Date: June 16, 2013.

Table of Contents

Page

1 Introduction 1

2 Definitions and formulations of the dichotomous search
problem 4
2.1 Formulation of dichotomous search in terms of binary trees . 4
2.2 A prefix-free code formulation of the dichotomous search prob-

lem . 6

3 The optimal alphabetic binary tree problem 7
3.1 Towards an O(N logN) algorithm 7
3.2 o(N logN) algorithms for special cases 10
3.3 Applications of optimal alphabetic trees 13
3.4 Verification of optimality . 16
3.5 Keeping optimality while merging optimal alphabetic trees

and inserting nodes into them 16
3.6 Bounds on the cost of an optimal binary alphabetic tree . . . 17
3.7 Parallel construction of binary alphabetic trees 19
3.8 Approximation algorithms for the optimal alphabetic binary

trees. 21

4 The monotonicity property - conditions and benefits for
the various costs problems 21

5 Search for an object distributed uniformly or as pk = ck−a 24

6 Different objective and costs formulations 27
6.1 Asymmetric error costs . 27
6.2 Search with travel costs . 35
6.3 Different costs for search at different points 45
6.4 Minimizing the sum of errors 47
6.5 Maximazing the probability of finding a hidden object 47
6.6 Alphabetic trees with non-constant leaf costs 48
6.7 Alphabetic minmax trees . 49
6.8 Alphabetic trees with exponential costs (alphabetic minsum

trees) . 51

7 The depth restricted problem 52

8 Dichotomous search with unreliable answers 55

9 Search for multiple objects, by multiple searchers or in
high dimensions 57
9.1 Search for several objects . 57
9.2 Parallel search . 59
9.3 Multidimensional search . 63

TABLE OF CONTENTS

10 Generalizations of both the alphabetic tree problem and
the Huffman tree problem 66

11 Search for rationals 68

12 Dichotomous search games 69

13 Search for a state transition point in production processes
with geometric or arbitrary failure rate 74
13.1 Algorithms and heuristics for the basic problem 74
13.2 Various cost formulations- perfect information, zero defects

and economic optimization. 78
13.3 Search for a state transition point with ability of process re-

covery after failure . 81
13.4 Search for a state transition point with process’ ability to

conduct rework on non-conforming units. 82
13.5 Search for a state transition point with unreliable answers . . 84
13.6 Search for a state transition point with non-conforming ob-

jects in the normal state and conforming objects in the ab-
normal state . 87

14 Applications of dichotomous search games in economics 89
14.1 Gathering information from inventories 89
14.2 Wage bargaining - optimal wage request 91

DICHOTOMOUS SEARCH 1

1. Introduction

We consider a family of search problems called “dichotomous search prob-
lems”. The simplest form of a dichotomous search problem can be for-
mulated as follows: An object to be searched for lies at location x and is
represented by an integer in an interval of length N . Queries for the object
are sequentially conducted. Each query returns whether or not the object
lies to the left of the point. Using this information the search converges to
the location of the object. The objective is to find x after minimal expected
number of queries.

The basic problem and various versions of it have been widely studied in
the last fifty years. At first those problems were investigated out of pure
mathematical interest (see [25, 130, 101, 102]). Later the problem was refor-
mulated in terms of alphabetic binary search trees to be used in computer
science for efficiently retrieving information from storage places. The first
article to do that was [87] (1971). Simultaneously the basic problem was
again reformulated in the language of game theory, applied to optimization
of wage bargaining and gathering commercial information from inventories
(see [7, 8, 9, 114, 116, 117]) and provided a basis for optimizing quality
control of production lines ([60, 111] etc.). The problem has many applica-
tion in coding theory, where it is equivalent to prefix-free alphabetic code
problem.

The literature on the topic of this survey comes from several disciplines -
computer science, applied mathematics, operations research, statistics, in-
dustrial engineering and economics. Figure 11 illustrates the distribution of
the articles on this subject over the different disciplines. The research on
dichotomous search problems began in the 50’th and continues to this day,
as can be seen from figure 2. The objective of this paper is to provide a
comprehensive survey of publications in the area of dichotomous search, on
its different variations and applications.

The survey is organized as follows:

§2 provides the necessary definitions to introduce the dichotomous search
problem in terms of graph theory, such that a search policy resembles build-
ing a binary alphabetic tree with minimal weighted path length; and in
terms of coding theory as an alphabetic prefix-free code. Throughout the
survey we freely switch between the formulations.

A comprehensive survey of the basic alphabetic binary tree problem with
minimal path length is the subject of §3. We describe in general terms the
basic ideas of some fundamental results, starting from an O(N3) (in terms
of computational complexity) algorithm of Knuth, through O(N logN)-time
algorithms of Hu-Tucker and of Garsia-Wachs, to linear time algorithms for
special cases.

1Next to each discipline, it is shown how many publications from it are included in this
survey, by an absolute number and by a percentage of all articles in the survey.

DICHOTOMOUS SEARCH 2

Figure 1. The number of publications on dichotomous
search in different disciplines.

Figure 2. The number of publications on dichotomous
search over decades.

In some variations of the alphabetic binary tree problem the computational
complexity can be cut using what is called a monotonicity property or

DICHOTOMOUS SEARCH 3

“Knuth method”, first introduced by Knuth [87]. §4 delimits the search
problems, to which this property is applicable.

When an a priori distribution of the location of the object is known, addi-
tional solution methods are available. §5 explores the dichotomous search
problem with a uniform a priori distribution and a more general distribution
pk = ck−a.

Sometimes real life situations arise variations on the basic dichotomous
search problem. For example, travel time between two subsequent queries
may also have its cost, thus encouraging the searcher to travel smaller dis-
tances. At another example, traveling to the right costs more than traveling
to the left, as it happens when heavy equipment, looking for an appropriate
ground to build a tunnel, has more expenses moving uphill than downhill.
Those situations can be formulated as dichotomous search problems with
appropriate corrections in the objective function and costs. They are the
topic of §6.
§7 surveys the literature on the restricted dichotomous search problem,
where the number of queries is a priori limited, or equivalently the alpha-
betic tree’s depth must be limited and the objective remains to minimize
the expected cost of the search within this limitation.

§8 describes optimal policies in a dichotomous search problem where answers
are unreliable - the searcher may be told that the object searched for is to
his left, while in fact it is to his right. Such misleading information may cost
the searcher additional resources, but being a priori aware of its possibility
allows the searcher to build an optimal policy.

The dichotomous search problem has been generalized to various “multiplic-
ity” problems. §9 discusses the problems of searching for several objects at a
time; searching for one object, but by several parallel queries; and searching
for a vector among lexicographically ordered set of vectors.

In §10 we shall see several generalized search problems, of which both the al-
phabetic tree problem and the Huffman tree problem are special cases.

§11, describes a specific problem of searching through rationals rather than
natural numbers.

Dichotomous search problems can also be viewed as games of two players:
a searcher and a hider. The hider wishes to hide the object well enough
to enlarge the searcher’s effort to find it, while the searcher wishes to find
the object with minimal effort. Such a formulation allows the application
of tools from game theory to solving dichotomous search problems. That is
the topic of §12.
In §13 the following problem is discussed: Suppose a machine that produces
items sequentially in a production line is subject to random failures. Once
a failure occurred while producing a certain item, that item is flawed and so
are all the following items until the failure is discovered by quality control.
We are given a batch of produced items, such that the first is satisfactory
and the last is flawed. The objective is to find the first flawed item, whose

DICHOTOMOUS SEARCH 4

location has a known distribution which is commonly geometric, using mini-
mal expected number of queries, in order to dispose of all the unsatisfactory
production.

§14 discusses two applications of dichotomous search games to the world
of economics: “How to make an optimal wage request while applying for
a new job?” and “How to optimize the scope of production by gathering
information from inventories?”.

Throughout the survey logN denotes logarithm with the basis of 2, unless
stated otherwise.

2. Definitions and formulations of the dichotomous search

problem

2.1 Formulation of dichotomous search in terms of binary trees

A t-ary tree is a rooted tree in which every node has t or zero edges emanating
downward from it and every node, except the root, is met by an edge from
an upper node. A 2-tree is also called a binary tree. Nodes having no
edges emanating downward from them are called terminal nodes or leaves
or external nodes. A terminal node has no children, while the other nodes,
called internal nodes, have two nodes as their children. The number of
internal nodes is always one less than the number of terminal nodes.

The path length of a node is the length (number of arcs) of the unique path
from the root to that node. The path length of the node is sometimes also
called the depth of the node or the level of the node and is denoted by l (j),
where l(root) = 0. The depth of a tree is the maximal depth of its node,
among all nodes.

One can easily prove that in a 2-tree with N terminal nodes with depths
l(1), . . . , l(N),

N∑

j=1

(
1

2

)l(j)

= 1. (2.1)

A node j is called an ancestor of a node i at a higher level if the path from
the root to i passes through j. In many problems the terminal node j has
associated with it a positive weight wj. The weighted path length of a tree

T , denoted by |T |, is defined to be
∑N

i=1 wj l(j). In problems where there
are no weights associated with the terminal nodes, the path length of the
tree is defined as

∑
l(j).

Binary alphabetic trees. In some problems we are interested in binary
trees where the terminal nodes 1, 2, ..., N appear from left to right consec-
utively. Such binary trees are called alphabetic trees. A binary alphabetic
tree are of interest, because such a tree represents a strategy for the solution
of the dichotomous search problem. Say we are searching for a point among
1, 2, ..., 5. The tree in figure 3 represents the following strategy: First search
at 3. If the object lies among 1, 2, 3 then search at 2. Otherwise search at

DICHOTOMOUS SEARCH 5

4. After at most three stages the object will be found. The path length of
node x is the number of queries needed to find the object using that search
policy, given that the object lies in x. Thus the depth of the binary tree
corresponds to the maximal number of questions needed to find the object
(three in our example) and the (weighted) path length of the tree is N times
the (weighted) average number of queries needed to find the object wherever
it is hidden.

1 2

3 4 5

Figure 3. A 2-tree is a search strategy

A binary alphabetic tree with minimum weighted path length is an optimal
binary alphabetic tree. The weight wi of a terminal node is associated with
the a priori probability pi =

wi∑N
i=1

wi
of the object to be located at the corre-

sponding location i. An optimal binary tree is therefore associated with an
optimal search strategy given the a priori location distribution p1, p2, ..., pN .

Binary Huffman trees. A binary Huffman tree is also a binary tree with
weights w1, w2, . . . , wN attached to leaves 1, 2, . . . , N , only that in contrast
to alphabetic binary trees, the leaves do not necessarily appear in order
1, 2, . . . , N from left to right. An optimal binary Huffman tree is a binary
Huffman tree with minimal weighted path length. A simple algorithm for
the optimization problem was found by Huffman [74] (1952): First find
two nodes with smallest weights, say w1 and w2. Then combine these nodes
(they have a common parent). Next replace the subtree formed by the two
nodes and their parent by a new terminal node having weight w1 + w2 and
repeat the same procedure on the reduced problem of N − 1 terminal nodes
with weights w1 + w2, w3, ..., wN . The process of letting two nodes have a
common parent will from now on be reffered to as combining the two nodes.
Continue until the tree is formed.

Binary search trees. A binary search tree is a data structure for retrieving
objects associated with keys. We are given n names A1, . . . , An and 2n +
1 frequencies β1, . . . , βn, α0, α1, . . . , αn with

∑
βi +

∑
αi = 1. βi is the

frequency of encountering Ai, and αj is the frequency of encountering a
name which lies between Aj and Aj+1 for j = 1, . . . , n − 1. α0 (αn) is
the frequency of encountering a name which lies before A1 (after An) A

DICHOTOMOUS SEARCH 6

binary search tree for the names A1, . . . , An is a tree with n interior nodes
labeled Ai in increasing order from left to right and n + 1 leaves labeled
by intervals (Aj , Aj+1) in increasing order from left to right. Let bi be
the distance (number of arcs) of interior node Ai to the root, and let aj
be the distance of leaf (Aj , Aj+1) to the root. The weighted path length
of T , i.e., the expected number of comparisons needed to locate a name
is
∑n

i=1 βi(bi + 1) +
∑n

j=0 αjaj . A binary search tree is optimal if it has
minimal weighted path length. Note that the optimal alphabetic binary
tree problem is just a special case of the optimal binary search tree problem,
letting β1 = β2 = · · · = βn = 0.

Throughout the survey we will be interested in alphabetic binary trees and
binary search trees, as results about binary search trees directly imply results
on alphabetic binary trees. Search for the optimal Huffman tree is beyond
the scope of this survey (except for the elegant Huffman algorithm which is
described below).

2.2 A prefix-free code formulation of the dichotomous search

problem

Let Σ = {σ1, . . . , σt} be an encoding alphabet. Let Σ∗ represent all finite
words written using Σ. Word v ∈ Σ∗ is a prefix of word v′ ∈ Σ∗ if v′ = vu
where v′ 6= v. A code over Σ is a collection of words C = {v1, . . . , vn}. Code
C is prefix-free if for all i 6= j vj is not a prefix of vi. Let cost(v) be the
length or number of characters in v. Given a set of associated probabilities
p1, . . . , pn, the cost of the code is

∑n
i=1 picost(vi). The prefix-free coding

problem, sometimes known as the Huffman encoding problem is to find a
prefix-free code over Σ of minimum cost. There is equivalence of the Huffman
encoding problem to the minimum weighted path-length Huffman t-ary tree
problem on n leaves, where cost(vi) is the path length of node vi, pi is the
weight attached to node vi and the objective is to find a minimum weighted
path length t-ary tree. For t = 2 this is the Huffman binary tree problem.
The letters {σ1, . . . , σt} can be thought of as t children of the root. Then,
every internal node also has children named {σ1, . . . , σt}. Traveling from
the root to a leaf vi is equivalent to collecting letters from Σ to build the
word vi. The prefix-free property means, in terms of t-ary trees, that the
words are located at the leaves only, thus the combinations of letters created
in the internal nodes are non-words.

Alphabetic coding is the same problem with an additional constraint: the
codewords must be chosen in increasing alphabetic order (with respect to
the words to be encoded). This corresponds to the problem of constructing
optimal (with respect to average search time) search trees for items with
the given access probabilities or frequencies. Thus the alphabetic coding
problem is equivalent to the alphabetic t-ary tree problem.

DICHOTOMOUS SEARCH 7

3. The optimal alphabetic binary tree problem

3.1 Towards an O(N logN) algorithm

As stated in §2, the alphabetic binary tree is a special case of the binary
search tree. Let N be the number of terminal nodes. The first algorithm
running in time polynomial in N for this special case is given by Gilbert
and Moore [48] (1958). It requires O(N3) time and O(N2) space and uses
dynamic programming. This method is extended by Knuth [87] (1971) to
include the more general case where the successful and unsuccessful search
probabilities are both taken into account. Knuth’s extension also runs in
time O(N3), but he also shows that by refining the method the running
time can be cut to order O(N2). Dynamic programming is applicable to
this problem since all subtrees of an optimal tree are optimal. We do not
elaborate on Gilbert and Moore’s algorithm, since the algorithm of Knuth,
described below, (without the cut of running time) includes it.

Recall the definitions of A1, ..., AN , α0, α1, ..., αN , β1, ..., βN from §2. Let
|T |i,j denote the weighted path length of an optimal search tree for all words

lying between Ai and Aj+1 (including Ai and Aj+1), when i ≤ j; let Wi,j =
αi + βi+1 + αi+1 + βi+2 + · · · + βj−1 + αj; and let Rij denote the label of
the root of this tree, where i < j. The following formulas determine the
algorithm:

|T |i,i = Wi,i = αi for 0 ≤ i ≤ n,

|T |i,j = Wi,j +mini<k≤j(|T |i,k−1 + |T |k,j) for 0 ≤ i < j ≤ n.

(3.1)

The complexity of the algorithm defined by (3.1) is O(N3). Refinement
of the algorithm is achieved in [87] using the result that there is always a
solution to (3.1) satisfying Ri,j−1 ≤ Ri,j and Ri,j ≤ Ri+1,j for 0 ≤ i <
j − 1 < n. This result allows to fasten the algorithm, since we usually will
not have to search the entire range i < k ≤ j when determining Ri,j . In fact,
only Ri+1,j −Ri,j−1+1 values need to be examined when Ri,j is calculated,
and the calculations are conducted in growing order of j − i. Summing for
fixed j − i gives a telescoping series, therefore the total amount of work is
O(N2). This method of reduction the complexity of dynamic programming
solution is called “the telescopic method” or “Knuth method”.

In [71] Hu and Tucker (1971) present an O(N logN) algorithm for con-
structing an optimal alphabetic tree. Any alphabetic tree can be built as
follows: Start with an initial sequence of terminal nodes, also called square
nodes, V1, ..., VN ; Combine some adjacent pair of nodes Vi, Vi+1 and form a
new sequence: V1, V2, ..., Vi−1, v(i,i+1), Vi+2, ..., VN , where v(i,i+1) is an inter-
nal node, also called a round node, and the other nodes are still terminal;
now combine some adjacent pair in this new sequence and replace the com-
bined pair by a new internal node in the sequence representing their parent
in the tree which the algorithm constructs; and so on. The intermediate
sequences and the initial sequence are called construction sequences. To

DICHOTOMOUS SEARCH 8

form an alphabetic tree N − 1 combinations are needed. When combin-
ing two nonadjacent nodes in a construction sequence, let the parent take
the position of its left child in the resultant construction sequence (and of
course the right child no longer appears). Two nodes in a given construc-
tion sequence are called tenative-connecting (T-C for short) if the sequence
of nodes between the two nodes is either empty or consists entirely of round
nodes.

The T-C algorithm, presented in [71] has two parts: The first part constructs
a tree T ′ which does not satisfy the ordering restriction: In each successive
construction sequence (starting with the initial sequence), it combines the
pair of T-C nodes with the minimum sum of weights (that pair of nodes is
called a lmcp - local minimum compatible pair). Figure 4 illustrates the first
part of the T-C algorithm (the initial weights are in the square nodes). The
algorithm starts by combining the lmcp 1 and 3, the rightmost pair of square
nodes, to get a new round node with weight 4. It proceeds to get round nodes
with weights 5, 9, 12, 13, 17, 25, 37, 62. The parents are placed over their left
children to indicate their position in the successive construction sequences.
In figure 4, the left part illustrates the construction of tree T ′, and in the
right part T ′ is presented in its proper way to emphasize that the ordering
property is not preserved through the construction.

Figure 4. T ′ and ”arranged” T ′

In the second part T ′ is converted into an alphabetic tree T ′
N with the same

cost. For that the following definitions are established:

• A T-C tree built on a given initial sequence is a tree which can be
built up in successive construction sequences such that each succes-
sively combined pair of nodes is T-C in its construction sequence.
T ′ is a T-C tree.

• For a given T-C tree, a T-C level-by-level construction of it com-
bines all nodes on the highest level (the farthest level from the root)
first, then all nodes on the next-to-highest level, and so on. For ex-
ample, if the T-C tree is as shown in figure 4, a T-C level-by-level
construction would create the internal nodes in the following order:
5, 9, 4, 17, 13, 20, 12, 37, 25. Those T-C trees for which the T-C level-
by-level construction is possible are called T-C level-by-level trees.

DICHOTOMOUS SEARCH 9

• A T-C forest and T-C level-by-level forest are similarly defined.

Let C(S) be the class of all level-by-level forests. Obviously all alphabetic
forests are in C(S). It is shown that for every forest T in C(S), there is
an alphabetic forest TN of the same cost. Then by proving that T ′ ∈ C(S)
and that it is optimal in this class, there exists an alphabetic tree T ′

N of the
same cost as T ′. TN is obtained from T as follows: Let level q be the highest
level of a leaf in T . There is an even number of nodes, say 2k, on this level.
Reassign the parent-child relationships between the k parents on level q− 1
and the 2k children on level q so that the leftmost parent has as children the
two leftmost nodes on level q, according to the initial ordering of the nodes
and so on. The key fact is that this reassignment does not change the path
length of any terminal node. By repeating the reassignment on successively
lower levels of T , the tree TN is obtained.

Figure 5 illustrates the alphabetic tree T ′
N resulting from the tree T ′, pre-

sented in figure 4, by the second part of the algorithm. Note that T ′
N is

alphabetic and the level of each leaf of T ′
N equals its level in T ′. Thus the

cost of T ′
N equals the cost of T ′.

Figure 5. The tree T ′
N

The tree T ′
N is an optimal alphabetic binary tree. The T-C algorithm needs

O(N logN) operations. This result is the best known for arbitrary weights
(i.e., arbitrary probability distribution of the location of the object).

DICHOTOMOUS SEARCH 10

In a subsequent work [70] Hu and Tan (1972) show that when the terminal
nodes have monotonically increasing weights from left to right, the T-C al-
gorithm for optimal alphabetic binary trees actually coincides with the Huff-
man’s algorithm for optimal binary non-alphabetic trees. Further, in [66],
Hu (1973) provides another, simpler, proof of the T-C algorithm.

In 1977 Garsia and Wachs [45] propose an algorithm, closely related
to the Hu and Tucker algorithm in [71], providing a way to compute an
optimal alphabetic binary tree. Both the complexity and the algorithm are
similar to that at [71], therefore it is not covered thoroughly here. Kingston
[82] (1988) provides another proof of correctness of the Garsia-Wachs algo-
rithm.

In [80] (1996) Karpinski, Larmore and Rytter present several new ob-
servations which lead to new correctness proofs of the the two known algo-
rithms (Hu-Tucker and Garsia-Wachs) for construction of optimal alphabetic
trees. A generalized version of the Garsia-Wachs algorithm is given, that
permits any non-negative weights, as opposed to strictly positive weights
required in the original Garsia-Wachs algorithm. We do not elaborate on
this article.

3.2 o(N logN) algorithms for special cases

In [84] (1995) Klawe and Mumey make an attempt to improve the
O(N logN) complexity of the optimal alphabetic binary tree problem. They
show that any natural method employing either the idea of construction
lmcp-tree (see definition below), as Hu-Tucker and Garsia-Wachs, or the
idea of region processing, presented in their paper, may force us to sort a
substantial amount of input. Thus the basic question of whether there is a
general o(N logN)-algorithm for finding optimal alphabetic binary trees re-
mains open. Yet they introduce an idea for finding optimal alphabetic trees
which they refer to as region processing and use this method to produce
O(N)-time algorithms when all weights {w1, . . . , wN} are within a constant

factor of one another (i.e., max
{

wi

wj

}
< σ for some constant σ) and when

they are exponentially separated - an input weight sequence w1, w2, . . . , wN

is defined to be exponentially separated if there exists a constant C such that
|{i |⌊logwi = k⌋}| < C for all k ∈ Z.

Recall the Hu-Tucker algorithm and definitions: the Hu-Tucker algorithm
begins with a list of leaf nodes containing the weights w1, . . . , wN in that
order. This list is called the the initial construction sequence and is used
to determine how the nodes combine to form the intermediate tree. Nodes
in the worklist are designated either as square or round. This affects the
way the nodes may combine. Initially all nodes are square. The parent
resulting from the combination of two nodes is called round and assigned
a weight that equals the sum of the weights of its children. The combined
nodes are removed from the worklist and the new parent node occupies the
former position of its left child. The authors repeat the definition of lmcp
from the Hu-Tucker algorithm using new terms: A compatible (also called

DICHOTOMOUS SEARCH 11

“tenatively-connected”) pair of nodes va, vb is said to be local minimum
compatible pair (lmcp) if:

(1) wb ≤ wx for all nodes vx compatible with node va.

(2) wa ≤ wy for all nodes vy compatible with node vb.

To obtain the lmcp tree, keep combining the local minimum compatible pairs.
The result is the intermediate tree (T ′ in [71]) which is not alphabetic, but
whose leaves have the same levels as the optimal alphabetic tree.

In [84], the authors classify the input weights wi according to their order
of magnitude, base 2. The category of a node of weight w is ⌊logw⌋. A
maximal length sequence in the worklist of weights with the same category
is called a region. By keeping a stack of regions and considering only regions
whose adjacent regions have a higher category, the attention is restricted
only to the node combinations occurring within these regions. This is called
region-processing.

Using region-processing the authors prove that there is a linear-time algo-
rithm for finding an optimal alphabetic tree on a sequence of input weights
which differ at most by a constant factor. The authors note that for σ = 2
Garsia and Wachs [45] also gave a linear-time algorithm.

When the weights are exponentially separated, an O(N) algorithm is also
given for constructing an optimal alphabetic tree, again using the idea of
region processing. It is observed that there are at most 2C nodes (recall
C from the definition of exponentionally separated weights) in any region
processed. It is shown that every region of size r can be processed in O(r)
time and use their region processing method to construct the lmcp tree in
O(N) time. Once the lmcp tree is constructed, the second part of the H-T
algorithm constructs the optimal alphabetic tree in O(N) time, thus the
overall complexity is O(N).

Hu and Morgenthaler [69] (1996) discuss special conditions on the
weights of the leaves where the alphabetic binary tree can be built in linear
time. They divide the Hu-Tucker algorithm into three steps:

(1) Combination. Keep combining lmcp until a tree T is obtained.

(2) Level Assignment. Find the level number of every leaf in tree T , say
l(1), . . . , l(N).

(3) Reconstruction. Use a stack algorithm to construct an alphabetic
binary tree based on l(1), . . . , l(N).

Steps 2 and 3 take linear time, while step 1 takes O(N logN) time. Several
definitions are needed to describe the main results of [69]:

• A weight sequence is increasing if w1 ≤ w2 ≤ · · · ≤ wN .

• A weight sequence is decreasing if w1 ≥ w2 ≥ · · · ≥ wN .

• A weight sequence is a valley if w1 ≤ w2 · · · ≤ wi ≥ wi+1 ≥ . . . wN .

DICHOTOMOUS SEARCH 12

• A weight sequence is bimonotonal increasing if w1+w2 ≤ w2+w3 ≤
· · · ≤ wN1

+ wN .

• A weight sequence is bimonotonal decreasing if w1+w2 ≥ w2+w3 ≥
· · · ≥ wN1

+ wN .

• A weight sequence is a bimonotonal valley if it contains a single lmcp.

The authors prove that if the leaves form an increasing sequence or a de-
creasing sequence, the combination phase of the Hu-Tucker algorithm can
be performed in linear time by queuing the round nodes as they are created.
Compatible round nodes are placed at the end of a sorted queue as they are
formed. Only the bottom two nodes of this queue need to be examined to
determine the next lmcp.

For the bimonotal increasing sequence the combination phase can also be
performed in linear time, since the bimonotal condition guarantees that the
leftmost square (external) node will always be smaller than the node two to
the right. For a bimonotonal valley sequence consisting of a bimonotonal
decreasing sequence followed by a bimonotonal increasing sequence the com-
bination phase is still linear, since we are guaranteed a single queue of round
nodes by the presence of a single initial lmcp.

Any weight sequence can be broken into a set of bimonotonal valley se-
quences in linear time. The only thing that prevents the modified algorithm
from running in linear time for an arbitrary weight sequence is the need
to “merge” two queues when the mountaintop (a notion defined in the pa-
per) between their valleys combines. Each merge requires linear time, but
as O(N) queues could be merged at one time, the merging may require
O(N logN) time.

In [95] (1998) Larmore and Przytycka study the complexity of the opti-
mal alphabetic binary tree problem relative to the complexity of sorting and
priority queue operations. They present an O(N log P (k))-time algorithm
for the general optimal alphabetic binary tree problem and an O(N

√
log k)-

time algorithm for the integer optimal alphabetic binary tree problem (in
the integer optimal alphabetic binary tree problem, the weights {wi} are all
integers), where k is a number bounded above by the minimal leaf weight
and P (k) is the time complexity of priority queue insert/delete - min op-
eration. This, depending on the computational model, gives an O(N log k)
or O(N log logN)-time algorithm. For the integer case, this algorithm com-
bined with the Johnson integer priority queue data structure leads to an
O(N log logW)-time algorithm for the integer optimal alphabetic binary

tree problem, where W =
∑N

i=1wi.

The authors also relate the complexity of the optimal alphabetic binary
tree problem to the complexity of sorting. They show that on the standard
comparison model the problem reduces to O(

√
log k) instances of sorting.

This, for the integer case leads to O(N
√
log k) optimal alphabetic binary

tree algorithm. For an arbitrary k this is worse than the O(N log logN)-
time priority queue approach, but it provides an improvement for small
values of k.

DICHOTOMOUS SEARCH 13

Further progress in the field of efficient computation of optimal alphabetic
trees we find in [68] (2005) by Hu, Larmore and Morgenthaler. They
improve the implementation of the Hu-Tucker algorithm [71] for the optimal
alphabetic binary tree problem, using an additional assumption that weights
can be sorted in linear time, for example if weights are all integers in a small
range. Their result is an O(N) time algorithm for that special case. Thus,
the overall complexity of the integer algorithm given in [95] is reduced from
O(N

√
logN) to linear.

The original Hu- Tucker algorithm takes O(N logN) to construct the lmcp
tree (T ′), because it requires O(logN) time to find the minimum compatible
pair and update the structure, and this action must be done N − 1 times.
The authors in [68] improve the O(logN) complexity of finding an lmcp to

O(1), provided all weights are integers in the range 0, . . . , NO(1). We do not
elaborate here on the implementation details.

We shall see in §13 that in the special case when the leaves have weights
equal to the geometric probabilities (i.e., the dichotomous search problem
with a proiri geometric distribution), that there exists an O(N) algorithms
that finds an optimal solution [54].

3.3 Applications of optimal alphabetic trees

Garey and Hwang [44] (1974) investigate group-testing procedures that
isolate a single defective item within a finite set of items I = {I1, . . . , IN}
with a minimum expected number of tests. They prove that an optimal
procedure can be found by constructing an optimal alphabetic tree. The
item Ii is defective with an a priori probability pi. A “group test” is a test
of any set of items, which either determines that all members of that set are
non defective or that the set contains at least one defective item.

Any group-testing procedure which isolates a single defective from I can be
specified with a labeled binary tree called a binary testing tree, which has
the following structure:

(1) “Each nonterminal node is labeled with a subset of I, denoting a
particular group test, and has its left arc labeled D for “defective”
and its right arc labeled N for “non defective”.

(2) Each terminal node is labeled with a single item from I which has
the property that whenever the sequence of group tests on the path
from the initial node (or “root”) to that terminal node is performed,
with outcome identical to the sequence of arc labels on that path,
then that item is certainly defective.”

The testing procedure described by such a binary testing tree is as follows:
perform the test labeling the initial node, apply next the group test labeling
the node obtained by following the arc corresponding to the most recent
test result, stop upon reaching a terminal node. The item labeling that
terminal node is isolated as defective. The path length of a terminal node in
a binary testing tree is simply the number of arcs occurring in the path from

DICHOTOMOUS SEARCH 14

the initial node to that terminal node. Given a binary testing tree, if l(i)
denotes the path length of the ith terminal node and if wi is the probability
of reaching that node when applying the test procedure, then the expected
number of tests required by the procedure is given by the total weighted
path length,

∑
i l(i)wi.

The authors show that an optimal testing procedure for the problem can be
obtained by ordering the items so that p1 ≥ p2 ≥ · · · ≥ pN and constructing
an optimal alphabetic binary tree for the sequence of weights w1, w2, . . . , wN

with wi =
(
1−∏N

j=1 [1− pj]
)−1

pi
∏i−1

j=1 [1− pj].

Anily and Hassin [11] (1989) investigate the problem of ranking a K-
best binary tree (i.e., the best binary tree excluding K − 1 better binary
trees), both alphabetic and Huffman. To fit the scope of this survey, we
elaborate on the ranking of alphabetic trees only. The problem arises when
we want to construct the best tree satisfying certain constraints, and no
efficient algorithm is known to find this tree. We can then rank the best
trees ignoring these additional constraints starting from the best to the next
best until the best tree obeying the constraints is reached.

Two algorithms are developed for this problem - an O(KN3)-time and an
O(KN4)-time. We elaborate on the more efficient one. A binary tree T is
uniquely identified by the sequence of levels of its leaves T = (l(1), . . . , l(N)).
The objective is to find a binary tree with the K-best weighted path length
(the K-lowest cost). Let T k

ij and Ck
ij denote the k-best tree and its cost

for a problem consisting of the weights wi, wi+1, . . . , wj , and define Wij =∑j
r=1wr. Then C1

ii = 0 for i = 1, . . . , N and

C1
ij = min

i≤r≤j−1

{
C1
ir + C1

r+1,j

}
+Wij for i < j. (3.2)

For k > 1, Ck
ij is given by Cu

ir + Cv
r+1,j + Wij for some i ≤ r < j and

u, v ≤ k. Thus Ck
ij is fully characterized by the triple (r, u, v) and we denote

T k
ij = (rkij , u

k
ij , v

k
ij). Let

U(i, j, r,K) = max
{
u
∣∣∣rkij = r and ukij = u, for some k = 1, . . . ,K − 1

}
,

(3.3)

LAST (i, j, r,K, u) = max
{
v
∣∣∣vkij = v, ukij = u, rkij = r for some k = 1, . . . ,K − 1

}
.

Let MN = 1
N

(
2N−2
N−1

)
be the number of distinct alphabetic binary trees with

N leaves [120]. For K ≤MN the proposed algorithm is the following:

DICHOTOMOUS SEARCH 15

Algorithm 1.
Compute C1

ij for all 1 ≤ i ≤ j ≤ N using recursion (3.2).
For m = 1, . . . , N − 1 do begin
For i = 1, . . . , N −m do begin
For k = 2, . . . ,min (K,Mm+1) do

Ck
i,i+m = Wi,i+m+ min

i≤r<i+m

{
min

1≤u≤U(i,i+m,r,k)+1

[
Cu
ir +C

LAST (i,i+m,r,k,u)+1
r+1,i+m

]}
.

(3.4)

end
end
end

Maintaining the appropriate data structure of
{
Cu
ir + C

LAST (i,i+m,r,K,u)+1
r+1,i+m |r = i, . . . , i+m− 1, u = 1, . . . ,K

}

for each pair (i,m), the O(K) minimizations in the inner loop require
O(N +K log(N +K))-time. Since K ≤ logMN = O(N), the overall com-
plexity of the algorithm is O(KN3).

Normally, a search through a search tree requires a three-way comparison:
is the present key equal to, less than, or greater than the search key. An-
dersson [10] describes a method by which it is possible to perform a single
two-way comparison at each internal node, with one final comparison when
an external node is reached. To do that the author uses a pointer that maps
every external node onto an internal node (recall that in a full binary tree
the number of external nodes is equal to the number of internal nodes plus
one, hence we can associate the external nodes one-to-one with the internal
nodes, with one leftover. By dropping the first external node, we take the
rest in order (left to right) and pair them up with the internal nodes, also
taken in order). Now, suppose that we start at the root of the search tree
and go left at every internal node whose key is < the search key, and right
otherwise (i.e., when the nodes key is ≥ the search key). When we get to
an external node, the pointer points back to the last node at which a right
branch was taken. We then make an equality comparison with the key at
that node: if not equal, then the key is not in the tree2.

Hu and Tucker [72] (1998) introduce an application of alphabetic binary
trees to accelerate the search in binary search trees. The authors show
that the application of the two-way search procedure introduced in [10] fits
exactly the alphabetic tree model, which speeds the complexity of finding
an optimal binary search tree from O(N2) to O(N logN).

2The description of Andersson’s method is taken from Hu and Tucker [72], rather than
from the original article.

DICHOTOMOUS SEARCH 16

3.4 Verification of optimality

Ramanan [108] (1992) shows that, in some special cases, a given alpha-
betic tree on a sequence of weights can be checked for optimality in O(N)
time . Using the correctness of the Hu-Tucker algorithm, the author derives
necessary and sufficient conditions on the weight sequence for a given tree to
be optimal and concludes that the optimality of very skewed trees (a skewed
tree is a tree whose maximum number of nodes in any level is bounded by
some constant) and well balanced trees (i.e., trees in which the maximum
difference between the levels of any two leaves is bounded by some constant)
can be tested in linear time.

To do so, the author explores the geometric properties of alphabetic trees.
There are CN−1 binary trees on N leaves, where Ck is the k-th catalan
number Ck = 1

(k+1)(2kk)
= 2Θ(k). Since the weighted path length is a linear

function of w1, . . . , wN , the conditions for the optimality of T are given by
the CN−1 linear inequalities of the form |T | ≤ |T ′|, where T ′ is any other
alphabetic tree with N leaves. The region determined by these inequali-
ties is an unbounded convex closed polytope poly(T) in R

N . The author’s
motivation to study poly(T) is as follows: In the problem of constructing
an optimal alphabetic tree, the weight sequence w = {w1, . . . , wn} can be
thought of as a point in the first orthant of RN . This orthant is partitioned
into convex polytopes, each polytope being a poly(T) for some T . We are
required to find a T such that w ∈ Poly(T). The complexity of this task
depends on the number of poly(T)s as well as on the structural complexity
of the individual poly(T)s.

3.5 Keeping optimality while merging optimal alphabetic trees

and inserting nodes into them

Belal, Selim and Arafat [20] (2002) introduce an O(N)-time algorithm
to merge two optimal alphabetic trees with n1, n2 nodes into an N = n1+n2

nodes optimal alphabetic tree. Given two sequences of lmcps3 (i.e., se-
quences of pairs of nodes, which were chosen as lmcps) generated for two
weight sequences of lengths n1, n2, it is required to find the corresponding
sequence of lmcps after concatenating the two weight sequences into one
weight sequence of length n1 + n2.

The sequence of lmcps for an old tree is called the old tree list. A general form
of an old lmcp is two compatible nodes that constituted the local minimum
compatible (or tenative-connected, as denoted in the original Hu-Tucker
paper) pair for its old tree. The set of nodes that needs to be examined
to determine each new lmcp is called the working sequence. When the two
nodes of an old lmcp are examined in the working sequence and one of
them combines to form the new lmcp, the old lmcp must be deleted from
all further appearances in the old tree list since it is no longer a valid entry
for the new tree.

3Recall the definition of lmcp from [71]

DICHOTOMOUS SEARCH 17

The idea of the algorithm is to emulate the effect of rebuilding the optimalN -
node tree using the Hu-Tucker algorithm and making use of the information
already obtained during the process of building the two previous trees. The
processing starts when the two boundary nodes, the rightmost node of the
left tree and the leftmost node of the right tree, appear in their corresponding
lmcp lists. As long as these two nodes are external, nodes from one tree
cannot combine with nodes from the other tree. Thus, old lmcps formed in
both trees before those two boundary nodes appear remain valid lmcps for
the new tree. When the new lmcp list is completely formed, these entries
that were originally valid lmcps for the old trees, although sorted amongst
themselves, will cause the new list of lmcps to be unsorted. A final merging
phase is required to merge three lists, the list of valid lmcps from each old
tree, and the list of newly formed lmcps.

In [21] (2002) Belal, Selim and Arafat show how the merging algorithm
described in [20] can be applied successively in order to recursively construct
an optimal alphabetic tree. Given a weight sequence of N nodes, it is
required to find the lmcp list for the optimal alphabetic tree of that weight
sequence. The algorithm is as follows: The set of weights is divided into
subsets of length 2, where the lmcp list contains a single entry, the existing
pair of nodes with the node with smaller index on the left (i.e. an lmcp entry
reserves the relative order between its two nodes). The N

2 sublists are then

grouped into N
4 pairs, where each pair contains two adjacent sublists. The

two lmcp lists of each group are merged, using the merging algorithm from
[20], giving the lmcp list for the subtree of the 4 nodes in the group. The
process is repeated, at each step the existing N

k
sublists each containing k

nodes are merged into N
2k sublists each containing 2k nodes. In the last step,

two trees are merged, each of length N
2 , to get the final tree. The algorithm

has complexity of O(N logN) as the known Hu-Tucker or Garsia-Wachs
algorithms.

Belal, Selim and Arafat [22] (2004) give an O(N)-time algorithm to
insert an element into an optimal alphabetic tree with N external nodes,
keeping the resulting (N + 1)-leaves tree optimal. The idea is to emulate
the effect of rebuilding the optimal N + 1 leaf tree using the Hu-Tucker
algorithm and making use of the information already obtained during the
process of building the previous N -leaf tree. We do not elaborate on the
inserting algorithm in this survey. Deleting a node q between nodes l, r
is accomplished by inserting the negative weight node (−q) between them.
This works fine as long as the two nodes q,−q are guaranteed to be combined
in the final tree thus forming a node of weight zero. The required tree is
obtained by removing the node of weight zero and its two children and
decrementing by one the level of the node that formed a lmcp with the zero
node.

3.6 Bounds on the cost of an optimal binary alphabetic tree

Melhorn [99] (1975) discusses the following “rule of thumb” for construct-
ing nearly optimal binary search trees (recall this model and the relevant

DICHOTOMOUS SEARCH 18

notations from §2): choose the root so as to balance the total weight of the
left and right subtrees as much as possible, then proceed recursively4. The
weighted path length of a tree constructed according to this rule is bounded
above by 2 + 1.44 · H, where H =

∑
βi log

1
βi

+
∑

αi log
1
αi

is the entropy

of the frequency distribution. Bayer [18] (1975) improves this bound to
2 +H.

In a later work [100] (1977) Melhorn proves an upper bound of 1+
∑

αj+H
for the weighted path length, and that this bound is best possible. The
approximation algorithm, that creates the upper bound, uses bisection on
the set

si

∣∣∣∣∣∣
si =

i−1∑

p=0

(αp + βp) + βi +
αi

2
and 0 ≤ i ≤ n

 , (3.5)

i.e., the root k is determined such that sk−1 ≤ 1
2 and sk ≥ 1

2 . It then
proceeds recursively on the subsets {si |i ≤ k − 1} and {si |i ≥ k}. This
rule can be implemented to work in linear time and space.

Yeung [132] (1991) proves that the cost |T |opt of an optimal alphabetic

tree (i.e., β1 = β2 = · · · = βn = 0 in the binary search problem) is upper
bounded by

|T |opt < H + 2− α0 − αn. (3.6)

Actually, Yeung proposes a linear time algorithm to construct an alpha-
betical binary tree, whose cost is ≤ H + 2 − f(α0) − f(αn) where f(x) =
x(2− log x− ⌈− log x⌉).
In [34] De Prisco and De Santis propose a linear time heuristic that con-
structs binary search trees whose cost is near to optimal. In fact they prove
that the cost |T | of the binary search trees constructed by their algorithm
satisfies

|T |opt ≤ |T | < H + 1− α0 − αn + αmax, (3.7)

where αmax is the maximum value among α1, . . . , αn. This provides an
upper bound on the optimal cost which improves on [99] and also improves
on [132] when restricted to alphabetic trees.

Kleitman and Saks [85] (1981) obtain an upper bound on the cost
of alphabetic binary trees by finding the “worst possible” order of the
leaf weights. The authors raise the following question: given a leaf set
E = {e1, . . . , eN}, with wi the weight of ei, with the elements listed from
least to greatest weight, what linear order of E maximizes the minimum

4In [97] Lepala studies the same heuristic for the special case of the alphabetic tree
problem

DICHOTOMOUS SEARCH 19

cost of an alphabetic tree? They show that the most expensive order is
e1, eN , e2, eN−1, . . . (they call it a “sawtooth order”). The bound implied
by the above solution is as follows: let H ({w1, . . . , wN}) be the cost of the
optimal Huffman (unrestricted) tree on the set. The cost of the optimal
alphabetic tree for the worst case ordering is then

H

({
wi + wN−i+1

∣∣∣∣i = 1, . . . ,
N

2

})
+

N∑

i=1

wi (3.8)

for even N , and

H

({wN+1

2

}⋃{
wi + wN−i+1

∣∣∣∣i = 1, . . . ,
N − 1

2

})
+

N∑

i=1

wi−wN+1

2

(3.9)

for odd N .

Chu [26] (1985) extends the result of Kleitman and Saks [85] to the re-
stricted alphabetic binary trees. The author shows that the “sawtooth”
sequence is also the most expensive sequence for the L-restricted alphabetic
binary trees where L is the maximum depth of the leaves and ⌈logN + 1⌉ ≤
L ≤ N .

3.7 Parallel construction of binary alphabetic trees

The computational complexity of an algorithm that seeks an optimal alpha-
betic tree can be reduced if several computer processors are available. The
binary search tree problem can be solved using parallel dynamic program-
ming in O(log2N) time with roughly N4 processors, using a concave matrix
multiplication algorithm (a result by Atallah, Rao Kosaraju, Larmore, Miller
and Teng, [13], 1989). An O(log2N)-time, N2-processor algorithm that uses
dynamic programming to compute an approximately optimal binary search
tree was also given in [13]. The optimal alphabetic tree problem is a spe-
cial case of the optimum binary search tree problem, thus those algorithms
can be used to obtain an approximately optimal alphabetic tree. On the
other hand, the best currently known sequential algorithm to construct an
optimal alphabetic tree does not use dynamic programming. Thus one can
ask whether, if several computer processors are applied, one can also find
a non-dynamic programming algorithm whose complexity is less than the
complexity of parallel known optimum binary search tree algorithms.

DICHOTOMOUS SEARCH 20

In [93] Larmore and Przytycka (1991) provide a partial answer to this
question. They present an O(K logN)-time N -processor CREW PRAM5

algorithm which constructs an optimal alphabetic tree with height restric-
tion K. As a consequence, they obtain an O(l log2N)-time, N -processor
algorithm that constructs an almost optimal alphabetic tree (more precisely
a tree whose cost differs by at most 1

N l from the cost of an optimal tree).
Furthermore, if the input sequence of weights does not contain two consec-
utive elements of weight less than 1

N l , the algorithm produces an optimal
tree. Their algorithm is based on the Package Merge technique (see further
details in §7) and is not described here.

In [96] (1993) Larmore, Przytycka and Rytter present a way to par-
allelize the algorithm of Hu and Tucker [71] (or the equivalent version of
Garsia and Wachs [45]). Their algorithm constructs an optimal alphabetic
tree in O(log3 N) time with N2 logN CREW PRAM processors. In this sur-
vey we don’t provide the necessary background from the theory of parallel
algorithms, thus we suffice with a general overview of the algorithm. The
algorithm has the same two phases as the Hu-Tucker and the Garsia-Wachs
algorithms. In the first phase, a certain tree called the l-tree (short for “level
tree”) is constructed. This is a binary tree whose leaves are the nodes in the
list, and whose internal nodes are what Hu and Tucker call “round nodes”,
and are called packages in [93]. In the second phase, the alphabetic tree
is found where each item is at the same level as in the l-tree. This is the
optimal alphabetic tree.

Arafat [12] introduces a simple parallel algorithm that builds an optimal
alphabetic tree using p (p < N) processors in O(N

p
logN + N) time. The

algorithm is an extension of a sequential divide and conquer algorithm for
the problem, published by Belal, Selim and Arafat in [21]. The sequential
algorithm builds the optimal alphabetic binary tree by repeated merging of
subtrees, using a previous result [20] that showed how optimal alphabetic
binary trees can be merged in linear time: The initial sequence of nodes
is divided into sublists of two elements each, the optimal alphabetic binary
tree for each pair is trivial to find. Each two adjacent optimal alphabetic
binary trees are merged into one optimal alphabetic binary tree. This step
is repeated till all nodes are merged into the final optimal alphabetic tree
(logN steps).

The parallel proposed algorithm, given N items and p processors (where p
is a power of two) has two phases:

(1) “Each processor is assigned a contiguous list of no more than N
p

elements. All processors build an optimal alphabetic tree of their

5In computer science, a parallel random-access machine (PRAM) is a shared-memory
abstract machine. As its name indicates, the PRAM was intended as the parallel-
computing analogy to the random-access machine (RAM). In the same way, that the
RAM is used by sequential-algorithm designers to model algorithmic performance, the
PRAM is used by parallel-algorithm designers to model parallel algorithmic performance.
Read/write conflicts in accessing the same shared memory location simultaneously are
resolved by the CREW (Concurrent Read Exclusive Write) strategy: multiple processors
can read a memory cell but only one can write at a time.

DICHOTOMOUS SEARCH 21

lists in parallel using any sequential algorithm of time complexity
O(N logN) (the divide and conquer algorithm or the Hu-Tucker
algorithm for example), then all processors synchronize.

(2) At this stage, there are p optimal alphabetic trees, each with N
p

nodes in it. These optimal alphabetic binary trees need to be merged
together into one optimal alphabetic binary tree. Merging is done
successfully in log p steps, where subtrees are merged two by two
in parallel at each step. Each merge lasts O(N

p
) time according to

[20].”

3.8 Approximation algorithms for the optimal alphabetic binary

trees.

Hwang and Tsai [76] (2003) derive asymptotic approximations for the
sequence f(n) defined recursively by f(n) = min1≤j<n {f(j) + f(n− j)} +
g(n), when the asymptotic behavior of g(n) is known. Following are some
of their results:

(1) If g(n) is rapidly growing, i.e., g(n) satisfies g(n)

max{g(⌊n2 ⌋),g(⌈n2 ⌉)}
−→

∞ as n −→∞, then f(n) ≈ g(n).

(2) If g(n) ≈ nal(n), where a > 1 and l(n) is slowly varying, i.e l(⌊bn⌋)
l(n) ≈

1 for all b > 0 and n −→∞, then f(n) ≈ nal(n)
1−21−a .

The results are also applicable to problems where the function g = g(j, n−j)
is dependent on both j and n. The general pattern of such a recurrence is
f(n) = min1≤j<n {f(j) + f(n− j) + g(j, n − j)} with f(1) given. Functions
g(x, y) = ax+ by and g(x, y) = ax(x+ y) + b(x+ y) appear in dichotomous
search problems, thus the results of [76] are of an interest in this survey.
For example, the function g(n) = nf(n) with f(n) defined in (6.10) has a
structure that admits the model of [76].

4. The monotonicity property - conditions and benefits for

the various costs problems

Hassin and Henig (1993) address in [56] a general formulation of vari-
ous cost search problems and explore the limits of “the Knuth method” of
reducing the computation effort of solution. An object is searched in an
interval 1, . . . , N . Let pi be the probability that the object lies in i, for
i = 1, . . . , N . A query at k reveals whether the object lies in {1, . . . , k} or
in {k + 1, . . . , N}. Define “Problem (m,n)” the instance where an object is
known to be located in the interval {min(m,n),max(m,n)}.
Two types of costs involved in the search are considered:

• Dl(m,n, k) for placing the lth query at k in Problem (m,n).

• Cli if the object is found in i after l queries.

DICHOTOMOUS SEARCH 22

The problem can be solved by applying the following recursive equations:
Denote pij = pi + · · · + pj . For l = 0, . . . , N − 1, m = 1, . . . , N

F l(m,m) = Clm, (4.1)

for m < n and l = 1, . . . , N − (n −m)

F l−1(m,n) = min
m≤k<n

{
Dl(m,n, k) +

pmk

pmn

F l(k,m) +
pk+1,n

pmn

F l(k + 1, n)

}
,

(4.2)

and for m > n and l = 1, . . . , N − (m− n)

F l−1(m,n) = min
n≤k<m

{
Dl(m,n, k) +

pnk
pnm

F l(k, n) +
pk+1,m

pnm
F l(k + 1,m)

}
.

(4.3)

F l(m,n) is the minimum expected cost involved with locating the object
in Problem (m,n) when l queries have already been placed. Let k be a
minimizing value for the right-hand side of (4.2) or (4.3), then F is said
to be attained at k. The minimum total cost of the search is F 0(1, N).
The complexity of the algorithm is O(N4). It can be reduced to O(N3) by
applying ideas from [87] in cases when the following “monotonicity property”
holds:

The monotonicity property : If F l(m,n− 1) is attained at k′, then for some
k ≥ k′, F l(m,n) is attained at k.

Knuth in [87] proved that the monotonicity property holds when C is linear
in l and constant in i, and D is constant. The authors in [56] prove that the
monotonicity property holds also under more general conditions.

Define Gl(m,n) = pmnF
l(m,n) if m ≤ n and Gl(m,n) = pnmF l(m,n)

if m > n. Let dl(m,n, k) be equal to Dl(m,n, k)pmn for m ≤ n and to
Dl(m,n, k)pnm for n < m. Let clm = Clmpm. Rewriting the dynamic
programming equations (4.1)-(4.3) for G, it can be seen that Gl(m,n) is
attained at the same values as F l(m,n).

The main result of [56] states that the following “submodular” property
of G is sufficient for the monotonicity property to hold, and thus for the
reduction of the complexity of the dichotomous search to O(N3):

“For l = 0, . . . , N−1, let dl be defined over the lattice Φ = {(m,n, k) : 1 ≤ m,n < N,min {m,n} ≤ k <
Let cln be defined over {(l, n) : l = 1, . . . N − 1, n = 1, . . . N}. We make the
following assumptions:

• dl is submodular for every fixed l, i.e., for every pair of points
(mi, ni, ki) i = 1, 2 conditions (4.4),(4.5),(4.6) hold:

DICHOTOMOUS SEARCH 23

dl(m1, n1, k1) + dl(m2, n2, k2) ≥ (4.4)

dl (min {m1,m2} ,min {n1, n2} ,min {k1, k2})+

dl (max {m1,m2} ,max {n1, n2} ,max {k1, k2}) ,

d
l(n − 1, n, n − 1) + d

l(n, n + 1, n) ≤ (4.5)

min
{

d
l(n − 1, n + 1, n − 1) + d

l+1(n, n + 1, n), dl(n − 1, n + 1, n) + d
l+1(n, n − 1, n − 1)

}

,

d
l(n, n − 1, n − 1) + d

l(n + 1, n, n) ≤ (4.6)

min
{

d
l(n + 1, n − 1, n − 1) + d

l+1(n + 1, n, n), dl(n + 1, n − 1, n) + d
l+1(n − 1, n, n − 1)

}

.

• c is convex in l for every fixed n, i.e., 2cln ≤ cl+1,n + cl−1,n for
l = 2, . . . , N − 2.

• c is nonnegative and nondecreasing in l for every fixed n.

Under these assumptionsGl is submodular, i.e., for 1 ≤ m ≤ m+a ≤ N , 1 ≤
n ≤ n+ b ≤ N and 2 ≤ l ≤ N −max {|m− n− b| , |m− n+ a|} − 1:

Gl(m,n) +Gl(m+ a, n+ b) ≤ Gl(m,n+ b) +Gl(m+ a, n). (4.7)

Also, the monotonicity property holds under these assumptions.”

The authors provide some applications of the theorem to reduction of com-
plexity of various problems. For example, it is applicable to dichotomous
search with position-dependent query costs, a version of which (search for a
record on a tape) was discussed in [125]. Here the cost of placing a query
varies according to the position of the query. Let dl(m,n, k) = dl(k). It is
easy to check that the necessary conditions hold.

Hinderer and Stieglitz [62] (2000) continue the work of Hassin and Henig
and weaken the requirement on submodularity of function Gl from set Z

2

to a smaller set.

The authors consider a family of problems SPDK of dichotomous search of
at most K queries in the interval of integers [1, N]. Their main result is a
method for the problem SPDK that derives natural conditions under which
at each stage k, 1 ≤ k ≤ K, the smallest optimal place for search in [i, j] is
increasing both in i and in j.

As in [56], the crucial point is to find conditions under which the l-stage
transformed minimal cost function Gl is submodular on the momentary state
space Sl ⊂ Z

2 (we do not delve into the precise definition of spaces Sl). The
authors inherit this property from Gl−1 to Gl based on two ideas:

DICHOTOMOUS SEARCH 24

(1) They make systematic use of the work of Topkis (1978) [122].
This allows, under the natural assumptions that G0 and also the
expected one-stage search cost functions are submodular, to inherit
submodularity of Gl−1 on Sl−1 to submodularity of Cl on a certain
“large” sublattice S′

l of Sl.

(2) Gl turns out to be submodular on the whole set Sl if in addition
to assumptions in (1) we require that Gl is submodular on a certain
“small” sublattice S′′

l of Sl such that S′
l

⋃
S′′
l = Sl, provided that “S′

l

and S′′
l overlap sufficiently”. This completes the analysis since that

additional assumption can be expressed in a straightforward manner
as a system of inequalities in terms of the data of the search problem
considered.

5. Search for an object distributed uniformly or as pk = ck−a

In this section we consider the dichotomous search problem with an a priori
assumption on the distribution of the object. We start with the assumption
of uniform distribution, and further proceed with a more general assumption
- distribution pk = ck−a.

Dichotomous search with uniform distribution is an alphabetic binary tree
problem in which the weights attached to the leaves are all equal. An integer
x is searched for through the set of integers 1, ..., N . The a priori distribution
of the location of x is uniform, meaning that the probability that x = i
equals 1

N
for all i = 1, 2, ..., N . In a comparison of x against xi two possible

outcomes exist, namely x > xi or x ≤ xi. The goal is to minimize the
expected number of comparisons per successful search.

Ferguson [37] (1960) analyzes the performance of Fibbonaci search for
this problem when N is a Fibonacci number. The Fibonacci numbers are
defined by:

ui = i 0 ≤ i ≤ 2
ui = ui−1 + ui−2 i ≥ 2

(5.1)

The Fibbonachi search is defined as follows: Suppose the interval to be
searched through is of size uk for some k (at start uk = N in case N is a
Fibonacci number. If N is not a Fibonacci number, the algorithms fails),
and the location of the item searched for is uniformly distributed in it. If at
some point in the process the item has been isolated to an interval of size ui,
beginning at A, compare the value of the argument to A+ ui−1. If the item
is to the left, then it is now isolated to an interval of size ui−1, otherwise it
is in an interval of size ui−2.

The expected number of comparisons while searching a list of N elements
(N is some Fibonacci number) is O(log2N), and the maximum searching

time is O(logϕN) where ϕ = 1+
√
5

2 is the “golden section” (note that the
expected and the maximum search times are asymptotically identical). The

DICHOTOMOUS SEARCH 25

original motivation of the author to explore the Fibonacci search is not to
reduce the number of computations relative to choosing the middle item each
tome (the classic binary search), but to replace the mathematical operations
needed from divisions to substractions.

Overholt [105] (1973) holds a more exact analysis of the Fibonacci search
performance. He shows that this method has a mean search length some 4%
greater than the ordinary binary search and also a much greater maximum
search length and standard deviation. In contrast to the ordinary binary
search, where the greatest search length is one or two tests longer than the
mean search length, the Fibonacci maximum search length is nearly 40%
greater than the mean.

A search procedure based on Fibonacci numbers can be used in approximat-
ing the maximum of a function as Hassin (1981) shows in [53]. A function
f is called unimodal on [a, b] if there exists a ≤ x ≤ b such that f(y) is
strictly increasing for a ≤ y ≤ x and strictly decreasing for x ≤ y ≤ b.
The maximum point x is the search argument. Suppose that only N f -
evaluations are available. The property of unimodality enables, after two
evaluations of f , to obtain a smaller interval of uncertainty regarding the lo-
cation of x. The Fibonacci method divides the initial interval (whose length
itself is a Fibonacci number) to two intervals, such that the proportion of
their lengths is the proportion of sequential Fibonacci numbers. Earlier, it
has been shown at [14] and [81] that the Fibonacci search method guaran-
tees the smallest final interval of uncertainty among all methods requiring
a fixed number of function evaluations. In [53] the author shows that Fi-
bonacci search guarantees the smallest final interval of uncertainty of the
maximum also when f is not unimodal. The author also suggests a refine-
ment of the algorithm for the case that the initial interval’s length is not a
Fibonacci number.

Wong [130] (1964) develops optimal solutions for the search problem with
a uniform a priori distribution. The author assumes that in a comparison
of x against xi three possible outcomes exist (and not two, as considered
earlier), namely x > xi, x < xi or x = xi. Let n∗(N) be the first step of an
optimal strategy (of course n∗(N) need not be unique). The objective is to
minimize the expected number of comparisons per successful search. The
author depicts the complete set of optimal strategies:

For N = 2k+1+2m ifm < 2k−1 then n∗(N) =
{
2k, 2k + 1, . . . , 2k + 2m+ 1

}
.

If m ≥ 2k−1 then n∗(N) =
{
2k + 2m+ 1, 2k + 2m+ 2, . . . , 2k+1

}
.

For N = 2k+1+2m−1 if m ≤ 2k−1 then n∗(N) =
{
2k, 2k + 2, . . . , 2k + 2m

}
.

If m > 2k−1 then n∗(N) =
{
2m, 2m + 1, . . . , 2k+1

}
.

For example, consider N = 24 + 9 = 25. Then n∗(N) = {9, . . . , 16}. This
is a surprising result since, intuitively, one would expect that the optimal
solution n∗(N) should divide the remaining N − 1 cells into nearly equal
subsets. Thus, the large multiplicity of solutions is not expected. The author
also computes the optimal value of the problem, produced by applying the
optimal strategies described above.

DICHOTOMOUS SEARCH 26

In order to construct a lower bound for the expected number of comparisons
required to sort a table of N items, Morris [101] (1969) solves the following
binary search problem with uniform a priori distribution: Suppose that
(N − 1) items A1, ..., AN−1 have already been sorted into linear order. The
goal is to compute F (N), the minimal expected number of comparisons
required to insert the next object AN into the linear order.

Via the dynamic programming equation (5.2) and the convexity property of
the function G(N) = NF (N), the author proves for the first time the lower
bound of ⌈log2N⌉ for F (N). Moreover, Morris proves that if N is a power
of 2 then F (N) = log2N .

F (1) = 0,

F (N) = 1 + mink=1,..,N−1

{
k
N
F (k) + (N−k)

N
F (N − k)

}
.

(5.2)

For N that is not a power of 2, an explicit description of G(N) is provided:
the function G(N) is linear in any interval 2l ≤ n ≤ 2l+1 and coincides with
the function h(n) = n log2 n at the points n which are powers of 2.

Several other papers on this subject are available with the assumption of a
uniform a priori distribution. Gal (1974) [42] considers the problem as a
zero-sum two-person game in which a searcher tries to identify an integer
that has been chosen by a hider from 1, ..., N . This paper will be covered in
§12.
Another class of papers considers the dichotomous search problem with an
a priori distribution assumption but also with various cost and goal formu-
lations. Examples of such are [102, 65, 61, 25], which will be discussed in
§6.
Now, suppose that the a priori distribution of the object in the interval of
integers [1, 2, . . . , N] is known to be pk = ck−a. Lepala [97] (1979) studies
the generalized binary search heuristic of searching for the object at the loca-
tion that divides the set [1, . . . , N] to two parts with equal probability of con-
taining the object. More formally, to search the interval of integers [l, u], di-

vide it into two parts by determining index i = argminl≤i≤u

∣∣∣
∑i−1

k=1 pk −
∑u

k=i+1 pk

∣∣∣.
The same heuristic was previously defined and considered in [99] (1975) for
the more general problem of binary search trees. In case of the uniform
distribution, this method coincides with the standard binary search. Yet
when other distributions are taken into account, this heuristic has better
performance than the ordinary binary search.

Let pk = ck−a be the a priori probability that the object lies at k for
(1 ≤ k ≤ N), where a ≥ 0 and c = 1∑N

i=1
i−a

is a normalization constant. For

a = 0 the uniform distribution is obtained, for a = 1 the Zipfian distribution.
The objective is to minimize the expected number of comparisons.

By the definition of pk, and by approximating the series
∑ 1

k
by the integral∫

x−a we get:

DICHOTOMOUS SEARCH 27

i =

⌊√
lu
⌋

a = 1
(
l1−a+u1−a

2

) 1

1−a
a 6= 1.

(5.3)

For a = 0, the bisection rule of binary search is obtained, and for the Zipfian
distribution (a = 1), we have the geometric mean of l and u instead of the
arithmetic mean of the regular binary search.

For 0 ≤ a < 1 the expected number of comparisons using the generalized
binary search is:

CN ≈
2 logN

2
1−a
− log(2

1

1−a − 1)
(5.4)

It is of the same order as the corresponding result CN ≈ logN of binary
search, but the coefficient is smaller than 1 for all 0 < a < 1.

In the case a = 1 of Zipfian distribution, the expected number of comparisons
is CN ≈ 2 log logN , an order of magnitude smaller than the result of the
ordinary binary search.

When a > 1, the expected number of comparisons using the generalized
binary searched is constant, thus by far superior to the ordinary binary
search.

6. Different objective and costs formulations

This section is a survey of the literature on dichotomous search problems, in
which the costs and objective functions are different from the basic version
discussed earlier. In particular we describe problems where the cost for
traveling right is different from the cost of traveling left (“asymmetric error
costs”) and where the travel itself has a cost proportional to the distance
traveled (“search with travel costs”). As for the objective function, here we
encounter goals different from minimizing the expected sum of search costs,
such as minimizing the overall traveled distance (“minimizing the sum of
errors”) and maximizing the probability of finding the object within a given
number of queries.

6.1 Asymmetric error costs

The earliest work on the search problem with asymmetric error costs is that
of Cameron and Narayanamurthy [25] (1964). An event is presented
by a point in an interval and the distribution of its location is uniform on
the interval (the distribution is continuous). It is desired to locate the event.
The only available test is to select a point and find out whether the event
lies to its left or to its right. The cost of the test is 1 unit if the event lies

DICHOTOMOUS SEARCH 28

to the left of the test point and k units (it is assumed that k > 1 6) if it
is to the right. The search is terminated if the event is located within an
interval of length equal to or smaller than 1. The objective is to derive a
search policy that minimizes the expected cost.

Any policy can be represented by a function g(x), x > 1, such that if the
interval is of length x0 the point to be tested divides it in the ratio g(x0) :
1−g(x0). Each test locates the event within a smaller interval, and repeated
application of the policy to the diminishing intervals constitutes the search
procedure. Intuitively, it is seen that for large x the optimal g(x) must
approach asymptotically a constant value α that depends only on k.

Let f(x) be the expected cost of the search procedure using an optimal policy
for the interval [0, x]. Then

f(x) =

{
0 0 ≤ x ≤ 1,
ming(x)

[
1 + g(x)f(xg(x))], [k + f(x(1− g(x)))]

]
x > 1.

(6.1)

Considering only functions g(x) that approach a constant value r asymptot-
ically, for large x we have the functional equation:

f(x) = min
r

[r[1 + f(rx)] + (1− r)[k + f((1− r)x)]] . (6.2)

The optimal value α of r must satisfy the equation obtained by setting to
zero the derivative of the quantity within brackets in (6.2). By solving that
equation it is proven that the optimal value of f(x) is given by f(x) =
p log(x) + c with p calculated by (6.3):

p log(1− α1−k) = k, (6.3)

and α uniquely determined by (6.4):

αk + α = 1. (6.4)

There is a unique positive p that satisfies equation (6.3) and lies in the
range 0 < p < k

log 2 . Equation (6.3) does not determine the constant c. The

resulting policy of testing at the point that divides the interval in the ratio α :
1−α until the event is located within a unit interval is not optimal because
only constant ratio policies are considered. The authors call this policy
the suboptimal policy. Via (6.1) the exact optimal solution is computed for
special cases. Comparison leads to the conclusion that the suboptimal policy
is likely to be satisfactory for most applications.

Murakami [102] (1971) continues the work of Cameron and Narayana-
murthy [25] by deriving an explicit representation of the constant c for the

6Note that it is not assumed that k is an integer

DICHOTOMOUS SEARCH 29

function f(x) discussed above, thus completing the suboptimal solution of
[25]. Moreover, Murakami presents an optimal search strategy for this prob-
lem. Notable is the fact that the author does not use dynamic program-
ming:

The author formulates an equivalent problem to that in [25]: the search is
for an object located uniformly in an interval of length 1 and the objective
is to find it in an interval of length 1

n
for a given n. The cost of a test is 1

unit if the event lies to the left of the test point and k units if it lies to the
right of the test point, with k being a positive integer7. E(n, x) is defined
to be the expected cost of the search procedure required when we select first
a test point x and thereafter use an optimal policy. The objective function
is therefore defined as f(n) = min0≤x≤nE(n, x). For the exact optimal
solution two series N(i) and g(n) are computed:

N(i) =

{
1 i = 2− k, 3− k, . . . , 0, 1.
N(i− 1) +N(i− k) i = 2, 3, 4 . . .

(6.5)

g(n) =

{
1 + k n = 1
g(n − 1) + ϕ(n) n = 2, 3, 4, ...

(6.6)

where ϕ(n) = 1 if there exists an integer j satisfying the equation n = N(j)
and ϕ(n) = 0 otherwise.

The values of N(i)8 and g(n) are computable recursively. First compute
g(n), afterwards compute N(g(n)). An explicit formulation of f(n) is pre-
sented:

f(n) = g(n)− N(g(n))

n
, for n = 1, 2, ... (6.7)

Moreover, the author presents the set x∗(n) of optimal test points for any
fixed n. The algorithm for computing x∗(n) and f(n) is constructive, but
the recursive computation is rather complicated. Therefore, an approximate
expression of the optimal solution is also derived, thus completing the pre-
vious work of Cameron and Narayanamurthy. Recall the asymptotic result
in [25]

f(n) = p ln(n) + c, (6.8)

where p is a function of k. The author finds an exact expression for the
constant c:

c = 2− 1

1− α
+ p ln(α+ k(1 − α)), (6.9)

7Note that this assumption is not needed in the work of Cameron and Narayanamurthy
8The formula for N(i) makes use of the assumption that k is a positive integer.

DICHOTOMOUS SEARCH 30

where α is the optimal value for the division ratio r, calculated in [25].

Hinderer [61] (1990) expands the results of Murakami to a more general
case, in which the costs for tests to the left and to the right of the current
test point can also be rational (as opposed to natural in [102]) . Let c > 0
be the cost for moving right to the previous location, and c′ > 0 the cost
of moving left (c and c′ are rational numbers). Let f(s) be the the minimal
expected search cost for an object initially hidden in Ns = {1, 2, . . . , s},
s ≥ 2. Then f(1) = 0 and

f(s) = min
a∈Ns−1

{
(c+ f(a)) · a

s
+ (c′ + f(s− a)) ·

(
1− a

s

)}
(6.10)

:= min {W (s, a) |a ∈ Ns−1 } .

Let D∗(s) denote the set of minimum points of W (s, a). Assume that c
c′
= m

k
for positive integers m and k. In the simplest case m = k = 1 an explicit
solution was obtained by Morris [101]. If m = 1 and k ∈ N, Murakami [102]
provided an explicit solution. Hinderer provides an explicit solution also for
the more general case, in which m,k are any natural numbers.

For m,k natural numbers let (N(i), i ∈ N) be the solution of:

N(i) = N(i−m) +N(i− k) i ≥ 2
N(i) = 1 2−max(m,k) ≤ i ≤ 1.

(6.11)

Define H(s) = sf(s), since the analysis of H is simpler then that of f . Let
Si = {s ∈ N |N(i) ≤ s < N(i+ 1)} and S̄i = {s ∈ N |N(i) ≤ s ≤ N(i+ 1)}.
The main theorem of [61] states:

(1) “If i ≥ 2 and Si 6= ∅, then H(s+1)−H(s) = i+m+k−1 for s ∈ Si.

(2) Moreover, D∗(s) = {s ∈ N |L(s) ≤ s ≤M(s)}, where for i ≥ 2 and
s ∈ Si

L(s) = max(N(i−m), s−N(i− k + 1)),
M(s) = min(N(i −m+ 1), s −N(i− k)).′′

(6.12)

The author also analyzes the asymptotics of the function f(s), seeking for a
good approximation A(s). Recall that Murakami [102] proved that for the
case m = 1, for explicitly given p = p(k) and b = b(k) statements (6.9,6.8)
hold, which can be rewritten for i→∞ as:

f(N(i))− p ln[N(i)] − b→ 0. (6.13)

The approximation (6.13) is excellent. However, computing f(s) for a given
s (not just s = N(i)) by means of (6.13) requires first to calculate js =
max {i ∈ N |N(i) ≤ s} and N(i). Then for A(s) := p ln(s) + b:

DICHOTOMOUS SEARCH 31

f(s) = f(N(i))
N(i)

s
+

(
1− N(i)

s

)
(i+ k) (6.14)

≈ A(N(i))
N(i)

s
+

(
1− N(i)

s

)
(i+ k).

On the other hand, the exact solution given in (6.12) requires not much more,
namely the computation of N(i + k). Thus (6.14) seems to be preferable
to (6.12) only if k is large. The approximate computation of f(s) could
have been possible without computing js and N(i) if the statement f(s) =
p ln(s)+ b+o(1), s→∞ was true. The question whether it is true remained
open by Murakami in [102] but receives an answer in [61].

The main approximation result of this paper shows that for arbitrary m and
k (assume that g.c.d(m,k) = 1) and appropriate constants p = p(m,k) and
b = b(m,k) (defined in the paper) the following holds:

(1) The approximation (6.13) holds and f(N(i))−(i+m+k−1− 1
1−α

)→
0 for α ∈ (0, 1) determined by αm + αk = 1.

(2) The minimum and maximum of f(·)−A(·) on Si tend for i→∞ to
zero and to some explicitly given positive constant M = M(m,k),
respectively. Thus f(·) can be approximated by A(·). In particular
f(s) 6= p ln(s)+ b+ o(1) but f(s) = p ln(s) + b+O(1). From this we
derive that f(s) cannot be calculated without calculating js first.

Itay [77] (1976) discusses the problem of asymmetric error costs on σ-ary
alphabetic trees. We elaborate on this article below in §9.2.1.
Abigadol and Ben-Tal [1] (1985) consider the following problem: k com-
ponents compose a system. Each component is subject to failure if temper-
ature is above an unknown critical level. The system as a whole fails when
at least one component fails. If zi is the critical temperature of the ith
component then z∗ = min {zi | i = 1, 2, . . . , k} is defined as the critical level
of the system. It is given that z1, . . . , zk ∈ (0, 1]. No assumption on the
distribution of z1, . . . , zk is taken9. The components are tested individually
at different temperature levels. If the temperature is below the critical level
the cost is 1, otherwise the test is destructive and the cost is m > 1. A search
procedure is a strategy specifying at each iteration which component to test
and at what level, according to information on previous tests. The tests
continue until the initial budget of size n is exhausted (n and m are positive
integers, inputs of the problem). The relevant interval of zi, denoted by Li

is a subinterval of (0, 1] such that zi /∈ Li =⇒ zi 6= z∗. The authors illustrate
the problem by the case of two components, z1 and z2, at an intermediate
stage of the search, where both have the relevant interval [a, b]: “Suppose
that the next observation is on z1 at x ∈ (a, b). If the outcome is that z1 is

9In a simulation study of the performance of the algorithm, several distributions of
the points are examined, among them a uniform distribution and a normal distribution
truncated to the interval [0, 1]

DICHOTOMOUS SEARCH 32

to the left of x, then the relevant interval of both points is [a, x], while, if
the result is that z1 is to the right of x, the relevant interval of z1 is [x, b]
and the one of z2 remains [a, b].” At each stage of the search, the error ǫ
is defined as the length of the maximal relevant interval. sk(n) is a search
procedure with k components and initial budget n, and v[sk(n)] the value
of sk(n), i.e., the maximum possible error induced by it. The objective is to
develop a search procedure that minimizes the maximum possible final error
v[sk(n)] over all possible z1, . . . , zk ∈ (0, 1). If after a query is conducted,
it appears that the remaining budget is not enough to pay for it, than that
last query is canceled and the error of the search is the length of the last
relevant interval before the query was conducted.

For k = 1 the solution is calculated using dynamic programming: “Let v(n)
be the maximal length of the relevant interval resulting from an optimal
minmax search, given initially a budget of size n (n ≥ m). Then

v(n) =

{
1 0 ≤ n < m
min0<x<1max {xv(n−m), (1 − x)v(n− 1)} n ≥ m.

(6.15)

Let x = xn be the minimizer of (6.15). Then clearly

v(n) = xnv(n −m) = (1− xn)v(n − 1), (6.16)

and hence

xn =
v(n − 1)

v(n− 1) + v(n −m)
. (6.17)

Substituting (6.17) into (6.16) we get

v(n) =

{
1 0 ≤ n < m
v(n−1)·v(n−m)
v(n−1)+v(n−m) n ≥ m.

(6.18)

In another form, letting λn = 1
v(n) , equations (6.17,6.18) become xn =

λn−m

λn
,

λn =

{
1 0 ≤ n < m
λn−m + λn−1 n ≥ m.

(6.19)

The sequence λn is the solution of a linear difference equation. Note that
for m = 2 it is the Fibonacci sequence.”

For k = 2, the optimal search procedure is the following: Starting with
relevant intervals both of size one, one proceeds sequentially to test the
location of one of the components, to obtain smaller relevant intervals. To
specify the search procedure two questions must be answered: (a) which
component (z1 or z2) to test, and (b) where to place the observation point

DICHOTOMOUS SEARCH 33

x. As for the first question there is an optimal answer - at every stage test
the component with the largest relevant interval. To get a precise answer to
the second question, dynamic programming equations must be solved.

For k = 2 (and for larger k also) the dynamic programming is very costly.
Thus the authors develop a computationally feasible upper bound to the
final error for k = 2. Let E(al, a2;n) be the length of the maximal relevant
interval resulting from an optimal (minmax) search given a budget n and
current relevant intervals of lengths a1, a2 (it is shown that each stage is fully
characterized only by the length of the relevant intervals and not by their
exact positioning). Due to the homogeneity property of E (E(a1, a2;n) =
a1E(1, a2

a1;n
)) one can always look at a problem where the longest relevant

interval is of size one. Denote H(t, n) = E(1, t;n). The main theorem of
the research states that H(t, n) ≤ αn(1 + βnt) where

αn = v(n), (6.20)

and

βn =

{
1 n = 0, . . . ,m− 1
(αn−1+αn−m)(βn−m+1+βn−1βn−m)

αn−1βn−1+αn−mβn−m+αn−m
n ≥ m.

(6.21)

This upper-bound error is attained by the following algorithm, reffered to
as the linear bound algorithm: test at distance x∗ from the right-hand side
of largest relevant interval, where x∗ is given by:

x∗ =

{
αn−m−αn−1βn−1t

αn−1+αn−m
t ≥ t∗

αn−m+(αn−mβn−m−αn−1)t
αn−1βn−1+αn−mβn−m+αn−m

t ≤ t∗,
(6.22)

where

t∗ =
αn−m

αn−m + αn−1 + αn−1βn−1
. (6.23)

This algorithm is shown to be asymptotically optimal, i.e.: A possible per-

formance measure of a search procedure is rk = limn→∞
{
v[sk(n)]

1

n

}
. It

measures the asymptotic reduction factor of the error per observation, i.e.,
if for budget of size n the error is ǫn, and n is large, then the error after the
next observation is approximately rkǫn. A lower bound for r2 is computed,
and it is shown that the linear bound algorithm achieves that lower bound,
meaning that it is asymptotically optimal.

This “linear bound algorithm” is extended to the case k > 2, but the asymp-
totical optimality is not shown to be preserved. The resulting complexity is
O(nk log k).

DICHOTOMOUS SEARCH 34

Efraimidis [36] (2010) generalizes the Fibonacci search to fit the dichoto-
mous search problem with asymmetric error costs. The (a, b) binary search
problem is defined as follows: An array V of N items sorted in increasing
order is given. Each item of the array can be accessed in time O(1). For
any value x and any item vk of V the cost of the comparison of x to vk is a
if x ≤ vk and b otherwise. a, b ∈ N. The cost of a search is equal to the sum
of the costs of all comparison operations performed during the search. The
objective is to minimize the worst-case cost of the search.

Given integers a ≥ 1 and b ≥ 1, the (a, b) Fibonacci sequence is given by the
recurrence relation:

g(k) = g(k − a) + g(k − b), (6.24)

with initial values g(k) = 0, for k < 0, and g(0) = 1.

The (a, b) decision tree is defined as follows: “The root node of the tree has
level 0. Let v be a node at level dv of the tree. Then node v is either a leaf
of the tree, or it has a left child at level (dv + a) and a right child at level
(dv + b). Note that the term level is used to represent the weighted depth of
the tree nodes. Each level of the tree corresponds to a particular cost value.
The level of an (a, b) decision tree is the maximum level of any of its nodes.
The depth of a node is the common depth of tree nodes, i.e., the number of
links from the root to the node. The depth of an (a, b) decision tree is the
maximum depth of any of its nodes. The distinguishing property of (a, b)
decision trees is that nodes which have the same parent may be located at
different tree levels.”

To obtain a lower bound for the worst case cost of the search, the author
defines a sequence G(k): given integers a, b ≥ 0 and l = min {a, b} let:

G(k) =

l∑

i=1

g(k + 1− i), (6.25)

where g(k) is the (a, b) Fibonacci sequence.

The number of nodes at level k of a complete (a, b) decision tree is the
value of term g(k) of corresponding (a, b) Fibonacci sequence of equation
(6.24). The number of leaf nodes of a complete (a, b) decision tree of level
k is G(k), where G(k) is the (a, b) Fibonacci sequence of equation (6.25). It
turns out that the G(k) sequence is also an (a, b) Fibonacci sequence but
with its own initial values. The worst-case cost for an (a, b) binary search
problem with N items is at least k, where k is the minimum index such that
G(k) ≥ N .

Based on that lower-bound, the following (a, b) Fibonacci search algorithm
is presented:

Algorithm 2.
“Input: A sorted array V with n items and a requested item x in V . The

DICHOTOMOUS SEARCH 35

items in V are indexed from 0 to n− 1.
Step 0: (a, b) Fibonacci numbers. Prepare the (a, b) Fibonacci numbers
up to index k such that G(k) ≥ n.
Step 1: Initializations. Let z = k − a, left = 0, right = n− 1.
Step 2: Search Loop.
While (left < right)
(a) index = left+G(z); if (index > right) then index = right;
(b) value = v[index];
(c) Compare (x ≥ value):
true: right = index; z = z − a;
false: left = index+ 1; z = z − b.”

The algorithm approximates (this is not an optimization algorithm) the
worst case cost of the asymmetric costs search problem and the correspond-
ing (a, b) decision tree in time O(logN). The level of the implicit (a, b)
decision tree obtained by the algorithm is at most max {a, b} ⌈logN⌉.

6.2 Search with travel costs

Among many problems encountered in real life, there are cases where travel
costs are not negligible and need to be considered. Commonly discussed
versions of the dichotomous search problem are those in which the cost
of the search depends not only on the number of queries, but also on the
traveled distance during the search operation or on the direction of travel
between each two sequential queries.

For example suppose an underground communication line is found to be cut
off. A technician wants to locate a segment of the line, of unit length, that
contains the cut off point, and replace it. Assuming that the line is cut off
in exactly one point, it follows that from each point on it, it is possible to
communicate with exactly one of its ends. This provides a mechanism for
testing whether the cut off point is “before” or “after” the inspected point.
Two costs are involved with the search: a travel cost, proportional to the
traveled distance, and a query cost, proportional to the number of points in
which a test is performed. The technician’s objective is to locate the object,
within a segment of unit length, with minimum expected cost (the example
is taken from [57]).

A search is conducted in the interval of integers [1, . . . , N] (the initial un-
certainty interval) and starts at the left endpoint 1. ax is the travel cost
required for a searcher to move distance x at any stage of the search, to any
direction. Each query costs b. a, b,N are all non-negative real numbers. Af-
ter each query the search continues from the point of the last query, whether
it is the left or the right end of the new uncertainty interval.

Murakami [103] (1976) views the problem of determining a sequence of
queries so as to minimize the maximum cost required to diminish the
existing interval of length N to unit length. The author constructs an ex-
plicit formulation of the optimal strategy and calculates the value of the
appropriate objective function.

DICHOTOMOUS SEARCH 36

Let h(N) denote the maximum cost of the search over all possible locations
of the target. The following equation (6.26) is governing h(N):

h(N) =

{
0 1 ≥ N ≥ 0
min0≤x≤n[ax+ b+max (h(x), h(N − x))] N > 1.

(6.26)

For a real numberm define g(m) as the unique integer such that 2g(m) < m ≤
2g(m)+1. Then the solution of equation (6.26), i.e., the value of the objective
function for the optimal policy is obtained by the following equation:

h(N) =

{
0 0 < N ≤ 1
(N − 1)α + (g(N) + 1)b n > 1

(6.27)

The optimal policy is described as follows: Having diminished the initial
interval [1, . . . , N] to an interval of size n, execute your next search at point
S(n) which is given by:

When n > 2:

S(n) =

{x|n − 2g(n) ≤ x ≤ n/2} a, b > 0
{x|0 ≤ x ≤ n/2} a > 0, b = 0

{x|n − 2g(n) ≤ x ≤ 2g(n)} a = 0, b > 0

(6.28)

When 2 ≥ n > 1,

S(n) =

{x|x = n− 1} a, b > 0
{x|0 ≤ x ≤ n− 1} a > 0, b = 0
{x|n − 1 ≤ x ≤ 1} a = 0, b > 0

(6.29)

A.J. Hu [65] (1986) develops a heuristic to solve a dichotomous search
problem with travel costs. N , a and b are defined as earlier. The objective
function discussed here is to minimize the expected (as opposed to minmax
in [103]) total cost of the search. The a priori distribution of the object’s
location is assumed to be uniform. Hu limits the discussion to one family
of search procedures - uniform partition search, thus conceding finding the
optimal solution, but only the best solution out of the examined class. A
uniform partition search is one which consists of recursively dividing the
list [1, . . . , N] into sublists of uniform size (a sublist can be thought of as
an interval of integers), traveling among sublists from left to right and con-
ducting queries as “Does the desirable record lie in sublist x?”. When we
reach a first point of a sublist, we pay the appropriate price for traveling
there and the cost of a query and are told if the object lies in that sublist. If
it does, we narrow our search to that sublist, dividing it again. If it doesn’t,
we travel to the first point of the next sublist, pay the additional travel fee

DICHOTOMOUS SEARCH 37

and the cost of a query, conduct the following query and so on. It takes one
read to discover that the desired record lies in the first sublist, two reads, in
the second sublist and so forth. Travel costs are proportional to the traveled
distance, i.e., if the searcher needs to move through sublists (1, . . . , k), each
of size N

n
, he shall pay ak

n
for the travel expenses. After finding the proper

sublist, it is again partitioned and the search problem is diminished.

Some definitions are required: The integer p, 2 ≤ p ≤ N , determines the
search algorithm ranging from the traditional binary search, when p = 2,
to the sequential search, when p = N , i.e., p denotes the number of parts
the list is divided to. Also, the word “level” is used to denote partitioning
the list into p parts, for example, one level of a search with p = 7 entails
partitioning the list into seven sublists and finding the sublist which contains
the desired record (the search among sublists is done one by one, starting
with the first sublist); the next level consists of repeating this partitioning
process on the sublist.

Since search cost is the sum of travel costs and read costs, we have

f(p) = br(p) + at(p). (6.30)

where

• f(p)= the expected cost function

• r(p)= the expected number of reads needed to complete the search

• t(p)= the expected distance (in records) traveled to complete the
search

r(p) is computed the following way: Searching a list of N records will require⌈
logpN

⌉
levels, since each level produces a sublist which is 1

p
the size of the

list. One read is needed to discover that the desired record is in the first
sublist; 2 reads - that it’s in the second and so forth. However, if the desired
record is in the p-th sublist, we will know it after p− 1 reads. Via the sum
of arithmetic series, we get the expected number of reads:

r(p) =
⌈
logpN

⌉ (p + 2)(p − 1)

2p
. (6.31)

1
p
of the list is traveled through for each read. On the first level, the list

is N records long, so 1
p
of the list is N

p
. Therefore the expected distance

traveled in the first level is N(p+2)(p−1)
2p2 . Each successive level will have the

same expected travel, except that it will be 1
p
as much. The expected travel

t(p) is the sum of geometric series, i.e.,

t(p) =
N(p + 2)

2p
. (6.32)

DICHOTOMOUS SEARCH 38

Combining equations (6.31)-(6.32), the author finds f(p):

f(p) = b
⌈
logpN

⌉ (p + 2)(p − 1)

2p
+ a

N(p + 2)

2p
. (6.33)

The cost function is the objective function, that we wish to minimize. By
differentiating (6.33) and setting it equal to zero the author discovers an
interesting relationship (6.34) which allows p to be computed easily from
a, b,N .

p2

ln(p)
=
(a
b

) (
√
N)2

ln(
√
N)

. (6.34)

Note that p is dependent of the initial N . After one iteration the list size
is smaller than N , but p remains the same as earlier and is not calculated
again for the new list size.

Hu and Wachs [73] (1987) introduce an O(N) constructive algorithm for
computing an optimal binary tree that minimizes the expected number of
comparisons and movements for the case a = b = 1.

The authors characterize the optimal trees by giving explicit expressions
for the sizes {m1, ...mk} (for some k) of the subtrees that hang from the
right-most path of the tree, as demonstrated in figure 6.

m1

m2

mi

mk

Figure 6. The tree 〈m1, . . . mk〉.

For binary trees A and B, A ∧ B denotes the tree whose left subtree is A
and whose right subtree is B; Ā denotes the binary tree obtained from A by
interchanging the left and right subtree of each node; |A| denotes the number
of nodes of A. Suppose A = A1 ∧A2 has N nodes. For a binary tree A, let
T (A) denote the sum of the total expected number of movements needed to
search for every node of A and the total expected number of comparisons.
Then:

DICHOTOMOUS SEARCH 39

T (A1 ∧A2) =

{
(|A1|+ 2)N + T (A1) + T (A2) if |A| = N > 0
0 if |A| = 0

(6.35)

A binary tree is defined to be optimal if T (A) ≤ T (A′) for all A′ such that
|A| = |A′|. The rightmost optimal tree with N nodes is an optimal tree
A such that if A = A1 ∧ A2 then A1 and A2 are rightmost optimal and if
B1 ∧B2 is optimal with N nodes, then |A2| > |B2|. The tree [m1] ∧ ([m2 ∧
([m3] ∧ . . . ([mk] ∧ [0]) . . .)), where [n] denotes the rightmost optimal tree
with n nodes, will be denoted by 〈m1, . . . mk〉 (see figure 6).

It is shown that if 〈m1, . . . mk〉 is optimal then the mi are non-increasing.
Trees 〈m1, . . . mk〉 for which m1 ≥ m2 ≥ · · · ≥ mk are called trimmed trees.
For m ≥ 0 and ai ≥ 0, i = 0, . . . ,m, let (am, am−1, . . . , a0) denote the
trimmed tree
〈m,m, . . . ,m,m− 1, . . . ,m− 1, . . . , 0, 0, . . . , 0〉 where each i appears ai times.
If ai > 0 ∀i = 0, . . . ,m, the tree is called a proper trimmed tree.

It is proven that every optimal tree is equivalent to a unique proper trimmed
tree (am, am−1, . . . , a0). From now on the sequence of integers A = (am, . . . , a0)
is uniquely identified with a proper trimmed tree A.

Let A = (am, . . . , a0) be a sequence of integers. We define a growing operator
G:

Gi(A) =

(am, am−1, . . . , ai + 1, ai−1 − 1, . . . , a0) for i = 0, . . . m
(am, am−1, . . . , a0 + 1) for i = 0
(1, am − 1, am−1, . . . , a0) for i = m+ 1

(6.36)

Let S = {i1, . . . , ij} ⊆ {0, . . . ,m+ 1} and denoteGS(A) := Gi1Gi2 . . . Gij (A).

Finally, the solution is the following: w0, w1, w2, . . . are defined recursively in
the article. For each m ≥ 0, let Nm =

∑m
i=0(i+1)wi. Let Nm−1 ≤ N < Nm

and let d and r be determined by N−Nm−1 = d(m+1)+r, where d ≥ 0, 0 ≤
r < m+1. Then a tree with N nodes is optimal if and only if it is equivalent
to GS(d,wm−1, wm−2, . . . , w0) for some S ⊂ {0, 1, . . . , N} with |S| = r. The
rightmost optimal tree with N nodes is (d,wm−1, . . . , wr−1 + 1, . . . , w0) if
r > 0 and is (d,wm−1, . . . , w0) if r = 0.

Moreover, the cost of an optimal tree can be expressed in terms of wi:

T (N) =
N−1∑

j=0

(wj − 1)(N − j) = (N +1)
N−1∑

j=0

wj −NN−1−
N(N + 1)

2
.

(6.37)

DICHOTOMOUS SEARCH 40

It follows that the cost of an optimal tree lies between N(N+1)
2 and N(N+1).

Since N(N + 1) is the cost of sequential search, we see that the optimal
strategy is at best twice as fast as sequential search.

Moreover the authors show that in a more general search problem with travel
costs, where each movement costs a and each comparison costs b, optimal
trees can also be grown in a greedy fashion: If A is an optimal tree with N
nodes, then an optimal tree with N +1 nodes can be obtained by attaching
a leaf to A. This gives an O(N) algorithm for finding optimal trees in the
general case.

Nishihara and Nishino [104] (1987) consider the problem of dichotomous
search with travel costs, where a = 1 and b = 0, i.e., moving one unit
of distance costs 1, while conducting a query is free. The objective is to
minimize the total expected cost of the search. The authors compare the
performance of three algorithms: the ordinary binary search (BS), Fibonacci
search (FS10, given an interval of length k, the algorithm moves to the
(1 − ϕ−1)k-th key, where ϕ is the “golden ratio”, and compares it to the
search key.), and movement-minimizing Fibonacci search (mFS) - the latter
algorithm is introduced in the article for the first time, while the two others
are commonly known.

The FS algorithm builds a binary tree in which at each point of decision the
sizes (number of nodes) of the two resulting subtrees form two successive
Fibonacci numbers. The mFS algorithm modifies the basic FS algorithm,
in a way that the amount of movement is kept as small as possible, by
moving “lazily”, trying to check a key placed close to the present head
position.

Chung, Chen and Lin [30] (1992) analyze the same special case of the
dichotomous search problem with travel costs as [104]. They study the ex-
pected costs of four search algorithms: the three introduced in [104] and
sequential search. Assume that the sorted file that we search through con-
tains Fn − 1 records, where Fn is the nth Fibonacci number. The authors
show that the expected costs of the sequential search, BS, FS, and mFS are
asymptotically equal to 0.5Fn, Fn, 0.882Fn and 0.809Fn respectively.

Hornick, Madilla, Mucke, Rosenberg, Sol Skiena and Tollins [64]
(1990) bring to our attention that the “simpler” problem discussed in [104]
and [30] (where a = 1 and b = 0), to which the performances of FS and mFS
algorithms are analyzed, has in fact an obvious optimal solution - the linear
search. While the mFS algorithm has less expected head movement than
the conventional binary search (≈ 0.809N − o(N) versus N − o(N), where
N is the number of keys in the list), the linear search achieves an expected
cost of N

2 .

The authors investigate heuristics for the dichotomous search problem with
travel costs where N is the length of the sorted list, a, b ≥ 0, and the objec-
tive is to minimize the expected traveled distance and the cost of queries.

10see [37]

DICHOTOMOUS SEARCH 41

Recall that in [65] a family of heuristics for this the problem was examined.
The objective function here in [64] is (similar to (6.30) in [65]):

S̄A(N, a, b) := aM̄A(N) + bC̄A(N). (6.38)

where M̄A(N) is the expected traveled distance and C̄A(N) is the expected
number of queries made by algorithm A.

The authors examine two classes of algorithms, fixed-ratio search and block
searching, and point out the optimal solutions from each class.

A fixed-ratio search is parametrized by a fixed ratio r ∈ (0, 1) (recall discus-
sion of this family of search policies for the asymmetric search cost problem
in [25]). Given an interval of length k, the algorithm moves to the rk-th
key and compares it to the search key. For binary search r = 0.5, for the
Fibonacci search in [104], r = 1 − ϕ−1, where ϕ is the “golden ratio”. It is
shown that the expected total cost for a fixed-ratio search with parameter
r is:

S̄FR(r)(N) =
aN

2(1 − r)
+

b logN

−r log r − (1− r) log(1− r)
. (6.39)

By taking the derivative of (6.39) with respect to r one can find an asymp-

totically optimal value r∗ for r is r∗ ≈ 2
√

b
aN

. The value of the optimal

fixed-ratio algorithm is:

S̄FR(r)(N) = a(N/2) + 2
√
baN + o(

√
N). (6.40)

In a block search algorithm with parameter r we partition the data into
blocks of size rN , and sequentially compare the last element of each block
to the search key. Once we have found the block containing the key, any
further search procedure is possible, and ones discussed here are the block
binary search (BB) (i.e., subsequent partitioning of the relevant block into
halves) and block linear search (BL)(i.e., searching the search keys in the
relevant block one after another from left to right).

The optimal r for the BB asymptotically approaches r∗ ≈
√

b
3aN and the

expected cost is given in (6.41), which is somewhat better than the optimal
fixed ratio search.

S̄BB(r∗)(N) = a(N/2) +
√
3baN + o(

√
N). (6.41)

The optimal r for the BL is r∗ =
√

b
N(2a+b) and the optimal expected cost

is:

DICHOTOMOUS SEARCH 42

S̄BL(r∗)(N) = a(N/2) +
√

b(2a+ b)N +
a

2
+ b. (6.42)

The BL search is asymptotically better than BB search if and only if b < a,
but it can never achieve expected total time less than aN

2 +
√
2abN .

Hassin and Hotovely [57] (1992) develop heuristics to the search problem
on the continuous interval [0, N] with travel costs. Each query costs b and
travel per unit distance costs a. The problem is to determine a sequence of
queries that minimizes the expected sum of query and travel costs required
to locate the object within an interval of unit length. Let F (N) be the
expected cost function. Fπ(N) is the expected cost associated with searching
an interval of length N while using policy π at each decision point. A policy

π is called asymptotically optimal if limN→∞
Fπ(N)
F (N) = 1. If an arbitrary

function g(N) is an approximation for another function f(N), then the

relative error of this approximation is defined as
∣∣∣f(N)−g(N)

f(N)

∣∣∣. The authors

analyze the performance of several simple approximations to the optimal
policy: fixed-step policies, fixed-ratio policies and myopic policies.

A fixed step policy is one where the searcher advances by a fixed distance
as long as the direction of his movement is fixed. The authors prove that a

step of size
√

Nb
a

is asymptotically optimal for this class of policies, and its

relative error converges to 0 as fast as 1√
N
. The expected cost of this policy,

h(N), satisfies

h(N) = 0.5aN +
√
Nba+ o

(√
N
)
. (6.43)

A fixed ratio policy is characterized by a number p ∈ (0, 1). Given an
interval of size N > 1 that contains the object, the next query is placed at
a distance of Np from the endpoint in which the searcher is located. The

fixed-ratio policy with p = 2√
N

√
b
a
is asymptotically optimal and its cost

h(N) also satisfies (6.43). In [64] the same result is achieved (see (6.40)).
The proof of this result here in [57] uses the notion of binary entropy H(p) =
−p log p− (1−p) log(1−p). It is shown that the expected number of queries
for a fixed ratio policy with parameter p, S(N, p), admits the following
approximation for p < 1

3 :

∣∣∣∣S(N, p)− logN

H(p)

∣∣∣∣ <
1

pH(p)
log

4

p
. (6.44)

As a corollary, the relative error of the approximation logN
H(p) to S(N, p) con-

verges to 0 at least as fast as 1
logN .

DICHOTOMOUS SEARCH 43

Let D(N, p) be the expected travel distance under a fixed ratio policy with
parameter p. It is shown that the relative error of the function d(N, p) =
N−1
2(1−p) to D(N, p) converges to 0 at least as fast as logN

N
.

The authors define F̂ (N, p) = b logN
H(p)+ad(N, p), take a derivative with respect

to p, equate to zero and let N −→ ∞, thus obtaining p = 2√
N

√
b
a
and

F̂ (N, p) ≈
√
Nab+ aN

2 , which is asymptotically optimal.

In fact, [57] discover that by a fixed-step policy one can get a result with is
asymptotically similar to the best fixed-ratio policy.

Myopic policies intend to maximize the reduction in the interval’s length per
unit of cost associated with the first query. By investing b+xa we reduce the
size of the interval to x with probability x

N
, and to N − x with probability

N−x
N

. A myopic policy is one that maximizes the expected reduction in the

size of the interval x
N
(N − x) + N−x

N
x per unit of cost. The optimal result

for this class of policies is achieved by a first step of

⌊√
Nb
a

⌋
. The cost of

this policy is of order aN + 2
√
Nba.

Wachs [125] (1989) considers the following problem: A search is held for
an object at locations {α1, . . . , αN}, 0 ≤ α1 ≤ α2 ≤ · · · ≤ αN and it can be
found at one of those locations or between two subsequent locations. Let pi
be the probability that the object lies at αi and qi the probability that the
search is unsuccessful with the search argument lying between αi and αi+1

(with corresponding definitions for q0 and qN). In order to make a query
at a particular location we must first move from the last location at which
a query was made to the given location. Each query reveals if the object
lies at the searched location, to its left or to its right. The travel cost for a
unit distance is a > 0, i.e., the cost of traveling from αi to αj is a |αi − αj|.
Each comparison costs b. The goal is to find a search strategy with expected
minimal cost.

Let u(i, j) = a(αj−αi)+b. The cost of moving from αi to αj and conducting
a query at αj is u(i, j) if αi < αj and u(j, i) if αi > αj . The cost of the first
query at αk is u(0, k). Let c′(i, j) be the cost of an optimal search strategy
for the reduced problem on set of locations {αi, . . . , αj}, i < j, such that
the search begins at αi. Let d

′(i, j) be the cost of an optimal search strategy
for the reduced problem on set of locations {αi, . . . , αj}, i < j, such that
the search begins at αj. Let w(i, j) = pi+1 + · · ·+ pj−1 + qi + · · ·+ qj−1 for
0 ≤ i < j ≤ N + 1.

The dynamic programming recurrence relations can be expressed as:

c′(i, j) = mini<k<j

[
u(i, k) + w(i,k)

w(i,j)d
′(i, k) + w(k,j)

w(i,j) c
′(k, j)

]
for i < j − 1

c′(i, j) = 0 for i = j − 1

d′(i, j) = mini<k<j

[
u(k, j) + w(i,k)

w(i,j)d
′(i, k) + w(k,j)

w(i,j) c
′(k, j)

]
for i < j − 1

d′(i, j) = 0 for i = j − 1

DICHOTOMOUS SEARCH 44

(6.45)

By setting c(i, j) = w(i, j)c′(i, j) and d(i, j) = w(i, j)d′(i, j) we get

c(i, j) = mini<k<j [u(i, k)w(i, j) + d(i, k) + c(k, j)] for i < j − 1
c(i, j) = 0 for i = j − 1
d(i, j) = mini<k<j [u(k, j)w(i, j) + d(i, k) + c(k, j)] for i < j − 1
d(i, j) = 0 for i = j − 1

(6.46)

Indeed, k minimizes (6.45) for c′ or d′ if and only if αk is the first query
of an optimal search strategy for the reduced problem on {αi, . . . , αj}. If
the object lies to the left of αk, the additional cost is d′(i, k), while if it lies
to the right of αk it is c′(k, j), and the cost of the first query is u(i, k) for
c and u(k, j) for d. The straightforward dynamic programming algorithm
determines the minimizing k for both cost functions c and d and all i, j and
therefore constructs the optimal tree in time O(N3).

Some more definitions are needed in order to explain the technique of re-
duction of this complexity to O(N2):

• “A real valued function f(i, j), where 0 ≤ i ≤ j ≤ n + 1, is said
to satisfy the quadrangle inequalities if f(i, j) + f(i′, j′) ≤ f(i, j′) +
f(i′, j) for i ≤ i′ ≤ j ≤ j′. Such a function is also called super-
modular.

• The function f(i, j) is said to be monotone if f(i′, j) ≤ f(i, j′) for
i ≤ i′ ≤ j ≤ j′.

• f(i, j) is said to be standard-monotone if f(i, j) ≤ f(i′, j′) for i ≤ i′

and j ≤ j′.”

Yao [131] (1980) proved the following general result, which was applied to
the problem of binary search trees among numerous other examples. Let
the following recurrence equations describe a solution to an optimization
problem:

c(i, i) = 0
c(i, j) = w(i, j) + mini<k≤j {c(i, k − 1) + c(k, j)} for i < j,

(6.47)

for 1 ≤ i, j ≤ n. If the increment function w is monotone and satisfies
the quadrangle inequalities, then the function c defined by (6.47) can be
computed in O(n2).

In the dichotomous search problem, discussed above, where u(i, j) is identi-
cally 1 (a = 0, b = 1) and w(i, j) defined as earlier, the increment function w
is monotone and satisfies the quadrangle inequalities (in fact as equalities).
For u(i, j) ≡ 1 equation (6.46) has the form of equation (6.47), thus Yao’s
result can be applied to this problem.

DICHOTOMOUS SEARCH 45

Wachs extends this idea to a problem where u(i, j) is not identically 1. In
order to do that he proves the next two results:

Result 1: “Let u(i, j) and w(i, j), 0 ≤ i ≤ j ≤ n+1, be monotone functions
that satisfy the quadrangle inequalities. If u(i, i) ≥ 0 for all i and w(i, j) ≥ 0
for i < j then the functions c(i, j) and d(i, j) satisfy the strong quadrangle
inequalities for i ≤ i′ < j ≤ j′:

c(i, j′)+c(i′, j)−c(i′, j′)−c(i, j) ≥
(
u(i, i′)− u(i′, i′)

) (
w(j, j′)− w(j, j)

)
,

(6.48)

d(i, j′)+d(i′, j)−d(i′, j′)−d(i, j) ≥
(
u(j, j′)− u(j, j)

) (
w(i, i′)− w(i′, i′)

)
.

(6.49)

It is shown that the assumptions of Result 1 hold for the cost functions c′

and d′.”

Result 2: “Let kc(i, j) and kd(i, j) be the roots of the optimal left and right
subtrees: kc(i, j) = max {k |c(i, j) = u(i, k)w(i, j) + d(i, k) + c(k, j)},
kd(i, j) = max {k |d(i, j) = u(k, j)w(i, j) + d(i, k) + c(k, j)}. Under the con-
ditions of Result 1, the functions kc(i, j), kd(i, j) are standard-monotone.
Moreover, the functions kc(i, j), kd(i, j), c(i, j), d(i, j) can be computed in
O(N2) time.”

6.3 Different costs for search at different points

Knight [86] (1988) analyzes the following problem: An item is searched
for in the set of locations {1, 2, . . . , N}, and it is equally likely to be found
in any of them or not to be found at all (each possibility has probability

1
N+1). The cost of search at point k is P (k). Let TN be the binary search

tree11 corresponding to a unique search strategy: if the answer is yes, go
left; if the answer is no, go right; stop only when the location of the item
is identified, which happens when a query occurs at a parent of a leaf or at
a leaf. There are N internal nodes, at which the item may be located, and
N+1 leaves. The situation that the last query occurs at a leaf corresponds to
an unsuccessful search (otherwise the last query occurs at a parent of a leaf).
Wk(TN) denotes the number of internal nodes in the subtree of TN rooted

at k. The expected cost of the search using TN is 1
N+1

∑N
k=1 P (k)Wk(TN)+

1
N+1

∑N
k=1 P (k). For computational convenience the constant factor 1

N+1

and the constant term
∑N

k=1 P (k) are discarded, and the remaining sum is
called the search cost of TN and denoted SP (k)(TN):

11Recall the definition of a binary search tree from §2

DICHOTOMOUS SEARCH 46

SP (k)(TN) =

N∑

i=1

P (i)Wi(TN). (6.50)

The author calculates upper and lower bounds for SP (k)(TN) for various
functions P (k). For P (k) ≡ 1, the lower bound for every search tree TN is
given by (6.51):

S1(TN) ≥ (N + 1) [log(N + 1)− 1] + 1. (6.51)

For linear inspection cost function P (k) = k, the lower bound is given by
(6.52):

Sk(TN) ≥ 1

2
(N + 1)2 [log(N + 1)− 1.070] +

1

2
(N + 1). (6.52)

For any linear inspection cost function P (k) = αk + β (α, β ≥ 0), a lower
bound is (6.53):

Sαk+β(TN) ≥ α

2
(N + 1)2 [log(N + 1)− 1.070] +

α

2
(N + 1) + β [(N + 1) log(N + 1)−N] . (6.53)

When P (k) is linear, ordinary binary search gives near-optimal results (the
near-optimality is shown by extensive computer calculations): Let B(N) be
the tree corresponding to the ordinary binary search strategy. Then for all
(α, β ≥ 0) we have:

Sαk+β(BN) ≤ α

2
(N + 1)2 [log(N + 1)− 0.9138] +

α

2
(N + 1)+

+β
[
(N + 1)(⌊log(N + 1)⌋+ 1)− 2⌊log(N+1)⌋+1 + 1

]
. (6.54)

For a nonlinear polynomial function P (k) = kp where p is a positive inte-
ger:

Skp(TN) ≥ 1

p+ 1
(N + 1)p+1 log(N + 1)− (N + 1)p+1. (6.55)

Again, the ordinary binary search (with the corresponding tree B(N)) is
nearly optimal:

DICHOTOMOUS SEARCH 47

Skp(BN) ≤ 1

p+ 1
(N + 1)p+1 [log(N + 1)− 0.9138] +

1

2
(N + 1)p.

(6.56)

6.4 Minimizing the sum of errors

Yet another version of a search cost is discussed in [17] by Baston and Bo-
stock and in [5] by Alpern. A searcher wishes to locate point H ∈ [0, 1]
by successive guesses g1, g2, ..., each with the knowledge of whether the pre-
vious guess was high or low. When putting a guess, the searcher knows
the results of all previous guesses. The cost function is the “sum of errors”
c =

∑∞
i=1 |gi −H|. The discussed approach considers the problem as a two-

person (a hider and a searcher) zero-sum game, with cost as a payoff. The
searcher’s goal is to minimize the maximum cost of the search, while
the hider’s goal is to maximize the minimum payoff.

Baston and Bostock [17] (1985) found a pure search strategy that guar-
anteed that the searcher’s cost does not exceed 0.628. Moreover they showed
that the hider can always ensure an expectation of at least 0.6. They did
not prove that such a game always has a value, but only that if such value
exists then it lies in an interval of length 0.028 = 0.628 − 0.6.

The main result of Alpern [5] (1985) is the proof that the game has a value
and the construction of the approximately optimal search strategy. The
optimal minimax strategy has a simple description in terms of a sequence
{λk}∞k=−∞ of constants with 1

2 = λ0 < λ1 < · · · < 1 and λ−k = 1 − λk.
Suppose (a, b) is the interval of uncertainty after the guesses g1, . . . , gn have
been made. Suppose that of these n numbers, k more of them have been to
the left of (a, b) than to the right. Then gn+1 = (1−λk)a+λkb. Approximate
values of the λi are also constructed.

Such a search game has been adapted to suit economic models of production
and of wage bargaining by Alpern and Snower, and both of these models
have been extended by Reyniers (see §14).

6.5 Maximazing the probability of finding a hidden object

Berry and Mensch [24] (1986) consider the following problem: The ob-
ject is hidden in one of N cells (0 < N ≤ ∞). pi is the probability that
the object is in cell i; The act of searching a cell for the object is called a
“look”.

A strategy σ is an infinite sequence of positive integers that indicates the
order to search the cells. The probability of finding the object within n
looks when following strategy σ is called the n-return of σ and written
rn(σ). The maximal n-return is written r∗n and a strategy σ is n-optimal if
rn(σ) = r∗n.

DICHOTOMOUS SEARCH 48

The author introduces a class of bisection strategies. Define the n-bisection
region as the set of all cells if 2n − 1 > N , and as the set of cells numbered
2n−1 to N − (2n−1 − 1) if 2n − 1 ≤ N . Define an n-bisection strategy as
one that always allocates the next look to any site in the current bisection
region and define the n-coverage of a strategy σ as the set of sites such that
an object in one of the sites would be found within n looks with probability
1. Let sn(σ) be the number of sites in the n-coverage of strategy σ. If σ is
any n-bisection strategy then sn(σ) = min {N, 2n − 1}.
The main result states the following: Suppose n looks are available. Then a
strategy is optimal if and only if it is an n-bisection strategy on a set of sites
with the 2n−1 largest probabilities, and r∗n is the sum of 2n−1 largest prob-
abilities. For example if pi = 1/N for i = 1, . . . , N (uniform distribution),
then any n-bisection strategy on any set containing min {N, 2n − 1} sites is
optimal and r∗n = min

{
1, 2

n−1
N

}
. For a geometric case pi = (1 − p)pi−1,

the sites with 2n − 1 largest probabilities are {1, 2, . . . , 2n − 1}, and so
r∗n = 1− p2

n−1.

6.6 Alphabetic trees with non-constant leaf costs

Fujiwara and Jacobs [40] (2010) analyze the optimal alphabetic tree
problem, where the cost of each leaf is not constant, but rather dependent
on its depth. Assume that the cost of leaf vi, having distance l(i) from the
root is determined by fi(l(i)), where fi : N0 −→ R

0
+ is an arbitrary function.

There are N cost functions f1, . . . , fN , one for each leaf. The General Cost
Alphabetic Tree Problem (GAT) is defined as follows: Given N arbitrary
functions f1, . . . , fN the objective of GAT is to determine a binary tree T
whose leaves in left-to-right order are v1, . . . , vN such that

∑N
i=1 fi(l(i)) is

minimized.

The authors show that an extension of the Gilbert-Moore Algorithm, based
on dynamic programming, solves the general cost alphabetic tree problem
in time O(N4) and space O(N3), regardless of the cost functions. Speedup
of the algorithm by a factor of N is possible if the cost function fulfills one of
the following properties: subtree optimality or structural continuity.

• Structural Continuity. The property of structural continuity was
proven by Knuth [87] to hold for the classical alphabetic tree prob-
lem12. It roughly states that the root of an optimal alphabetic tree
can only move left when the interval under consideration is extended
to the left.

• Subtree Optimality. This property states that an optimal tree for
f1 . . . , fN is a combination of optimal trees for f1, . . . , fi and fi+1, . . . , fN
for some i ∈ {1, . . . , N}. By induction it follows that for any internal
node v in an optimal alphabetic tree, the subtree under v is an opti-
mal alphabetic tree for the sequence of leaves that are descendants
of v.

12In §4 Hassin and Henig provide more conditions for the existence of the monotonicity
property in the classical alphabetic tree problem

DICHOTOMOUS SEARCH 49

The speedups are independent from each other, so problem instances whose
cost functions satisfy both properties admit aO(N2) time optimal algorithm.
The authors prove that if the cost functions are nondecreasing and convex,
then the property of structural continuity is satisfied. Therefore, this case
can be solved in time O(N3).

6.7 Alphabetic minmax trees

In this subsection we present results concerning alphabetic minmax trees,
rather than alphabetic trees with minimal path length. By an alphabetic
minmax tree we mean a binary (or t-ary) alphabetic tree for which the
maximum value of an objective function of the path lengths and the weights
of the leaves is minimized. Several objective functions have been considered
in the literature, as maxiwi2

l(i) or max1≤i≤N {wi + l(i)}. Note that the
minimal value of maxi l(i) is ⌈logN⌉. Surprisingly, we found no literature
that explores the minimum, of maxiwil(i).

Hu, Kleitman and Tamaki [67] (1979) investigate the problem of find-

ing an alphabetic binary tree that minimizes f = maxiwi2
l(i). They find

that the Hu-Tucker [71] algorithm for the minimal weighted path length
alphabetic tree problem can be modified to minimize the other objective
function and thus obtain a O(N logN)- time algorithm for the alphabetic
minmax problem. The authors note that the modification of the Hu-Tucker
algorithm for the alphabetic binary minmax problem works also for finding
the alphabetic ternary minmax tree.

Due to the complexity of the algorithm on the one hand and to similarity
to the original Hu-Tucker algorithm on the other hand we do not elaborate
on it here. Yet, though out of the scope of our survey, we note that for the
non-alphabetic version of the minmax problem the modification of the fa-
mous Huffman algorithm is rather simple: Given a set of weights w1, . . . , wN

construct a binary tree such that maxiwi2
l(i) is minimized. Among the N

weights w1, . . . , wN find the two smallest weights w1 and w2, say. Replace
the two nodes by one single node having weight t · max {w1, w2} and two
children with weights w1 and w2. Do this recursively for the N − 1 weights
{t ·max {w1, w2} , w3, . . . , wN}. The final single node is then the root of the
binary tree. Thus the only difference between this algorithm and the original
Huffman algorithm lies in the nature of the replacement step that assigns a
new weight to the merged node.

From now on to the end of this subsection, we relate to the following prob-
lem (t-ary Problem A): Given vertices vl, . . . , vN with weights w1, . . . , wN ,
construct a t-ary tree with leaves vl, . . . , vN in left to right order, such that
if l(i) denotes the length of the path from vi to the root for each i, the
function f(w1, . . . , wN) = max1≤i≤N {wi + l(i)} is minimized. An equiva-
lent version of the problem is to consider weighted t-ary trees in which the
weight of each internal vertex is 1+ the maximum of the weights of its chil-
dren. In this formulation we are trying to construct a weighted t-ary tree
with leaves vl, . . . , vN in left to right order, such that the weight of the root
is minimized.

DICHOTOMOUS SEARCH 50

Kirkpatrick and Klawe [83] (1985) present a linear time algorithm for a
t-ary Problem A, for the case where all the weights are integers, and this is
used to obtain an O(N logN) algorithm for general weights. Moreover it is
shown that the minmax value obtained is bounded above by 2+logt (

∑
twi).

Also, if desired, by solving k versions of the integer problem, with overall
complexity O(kN), one can approximate the solution to a general alphabetic
problem with error at most 1

2k−1 .

Coppersmith, Klawe and Pippenger [32] (1986) relax the constraint
on the degrees of internal vertices of the tree - while in [83] all internal
nodes need to be of degree t, in [32] all internal nodes must have a degree no
larger than t. As in [83] the authors obtain a linear algorithm for the case
of integer weights, a O(N logN) algorithm for the case of real weights and
prove a tight upper bound on f(w1, . . . , wN) in terms of w1, . . . , wN :

f(w1, . . . , wN) < 1 + logt 2 + logt

(
N∑

i=1

twi

)
. (6.57)

Gagie [41] (2009) develops an O(Nd log logN)-time algorithm for t-ary
Problem A with real weights, where d is the cardinality of {⌊wi⌋ |i = 1, . . . , N }.
This is an improvement of [83] when d is small. The algorithm uses a data
structure, developed especially for it, that enables to avoid some sorting
operations, and thus improve the O(N logN) result of [83]. We do not
elaborate on this algorithm here.

The author brings an example for the motivation to investigate the min-
max alphabetic tree problem - a problem concerning alphabetic prefix codes
(recall the definition from §2): “Suppose we want to build an alphabetic
prefix code with which to compress a file (or, equivalently, a leaf-oriented
binary search tree with which to sort it), but we are given only a sample of
its characters. Let P = p1, . . . , pN be the distribution of characters in the
file, let Q = q1, . . . , qN be the distribution of characters in the sample, and
suppose our codewords are C = c1, . . . , cN . An ideal code for Q assigns the

ith character a codeword of length log
(

1
qi

)
(which may not be an integer),

and the average codeword’s length using such a code is H(P) +D(P ‖ Q),
where H(P) =

∑
i pi log

1
pi

is the entropy of P and D(P ‖ Q) =
∑

i pi log
pi
qi

is the relative entropy between P and Q. Consider the best worst-case
bound we can achieve on how much the average codeword’s length exceeds
H(P)+D(P ‖ Q). As long as qi > 0 whenever pi > 0, the average codewords
length is:

∑

i

pi |ci| =
∑

i

pi

(
log

1

pi
+ log

pi
qi

+ log qi + |ci|
)

=

= H(P) +D(P ‖ Q) +
∑

i

pi (log qi + |ci|) . (6.58)

where the first equation is true since log 1
pi

+ log pi
qi

+ log qi = 1 (if qi = 0

DICHOTOMOUS SEARCH 51

but pi > 0 for some i, then the formula is undefined). Notice that each |ci|
is the length of the ith branch in the tree for C. Therefore, the best bound
we can achieve is

min
C

max
P

{
∑

i

pi (log qi + |ci|)
}

= min
C

max
i
{log qi + |ci|} =

= f (log q1, . . . , log qN) . (6.59)

and we achieve it when the tree for C is an alphabetic minmax tree for
log q1, . . . , log qN .” To understand the last equation recall that f(w1, . . . , wN) =
max1≤i≤N {wi + l(i)} and note that c(i) has in fact the same interpretation
as l(i) in terms of trees.

Gawrychowski [46] (2012) develops a linear time algorithm for 2-ary
Problem A, which improves the previously known O(N logN) algorithms
of [83] and [32] and the O(Nd log logN) algorithm of [41].

The author starts with a simple linear time algorithm for the case when all
wi are integers and then develops an O(Nd) time algorithm for the more
general case when wi are arbitrary real numbers, with d being the cardinality
of {⌊wi⌋ | i = 1, . . . , N}. Then the complexity is improved to linear using the
word RAM model 13.

6.8 Alphabetic trees with exponential costs (alphabetic minsum

trees)

In this section we describe a variation on the optimal alphabetic tree prob-
lem, where the objective function is a non-linear function of the path lengths
(l(i)’s), rather than a linear combination of them. We consider the problem

of finding an alphabetic tree that minimizes loga
∑N

i=1wia
l(i) rather than∑N

i=1wil(i).

Three papers ([67], [107], [75]) independently consider this problem for a > 1
for non alphabetic trees, the solution of which is very similar to that of
Huffmans algorithm. [67] further notes that an algorithm similar to Hu and
Tucker’s solves the alphabetically constrained version of this problem. Baer
[15] shows that it is not always correct.

Baer [15] (2010) presents an O(N3) time and O(N2) space algorithm for the
alphabetic version that is somewhat similar to Gilbert and Moore’s method
[48] for the alphabetic weighted path length problem. The algorithm is
based on dynamic programming formulation of the problem. Let Wj,k be
the maximum tree weight for items j through k. The algorithm starts with

13By the word RAM model we mean that we are allowed to perform operations on
integers consisting of logN bits in constant time. No specific encoding of the real numbers
given in the input is assumed, but we do require that their representation allows performing
a few basic operations (comparing, subtracting, extracting the fractional part and rounding
to an integer if its value does not exceed N) in constant time.

DICHOTOMOUS SEARCH 52

Wj,j = wj and finds Wj,k for each value of k− j from 0 to N − 1 (in order),
by computing inductively:

Wj,k = a max
s∈{j+1,j+2,...,k}

[Wj,s−1 +Ws,k] . (6.60)

The author shows that the Knuth’s method for speeding up dynamic pro-
gramming fails for a < 1 and provides the following counter-example: “De-
fine the splitting point of an internal node (or the corresponding subtree) as
the smallest index among the leaves of the right subtree. Knuth uses the
fact that the splitting point of an optimal tree of size N must be between
the splitting points of the two optimal subtrees of size N − 1. With the dis-
cussed problem this no longer holds. Consider a = 0.6 with input weights
w = (8, 1, 9, 6). The splitting point of (8, 1, 9) is s = 3 (w(s) = w(3) = 9,
yielding subtrees with (8, 1) and (9)), and the splitting point of (1, 9, 6) is
s = 4 (w(s) = 6). However, the optimal splitting point of (8, 1, 9, 6) is s = 2
(w(s) = 1).”

The author also shows, using a counter-example, that the Hu-Tucker-like
method, that is optimal for a > 1 does not work for a < 1.

Finally, approximation algorithms are built, related to those for the linear
problem, which find suboptimal solutions in O(N) and O(N logN), leading
to simple bounds for both these solutions and the optimal ones.

7. The depth restricted problem

In some applications an additional restriction is necessary to binary alpha-
betic trees of minimum weighted path length problem. In this subsection
we consider the optimal binary alphabetic tree problem with the restriction
that no depth of a leaf is permitted to exceed a given bound K. In terms of
dichotomous search, a restricted depth limitation means that after at most
K queries the object must be found.

Garey [44] attended this problem in 1974 for non-alphabetic (Huffman) trees.
He developed an algorithm that requires O(KN2) operations to find such an
optimal tree, thus improving earlier results of Karp, Gilbert, Hu and Tan
[70]. An O(KN3) algorithm easily results from a dynamic programming
formulation of the problem, but the author’s innovation is an improvement
of the application to O(KN2). This result was further improved in 1987
by Larmore [89], who cut the running time for the non-alphabetic case to
O(N1.5K

√
logN).

Since our focus in this paper is on the optimal alphabetic binary tree prob-
lem, we do not describe Garey’s and Larmore’s solution in detail. Moreover,
we do not conduct the appropriate research to find out whether Larmore’s
result was further improved. Yet we note that in his paper Garey posed an
“open problem” - the constructing of an optimal K-restricted alphabetic bi-
nary tree. He noted that the basic O(KN3) algorithm can be easily adapted

DICHOTOMOUS SEARCH 53

to the alphabetic case and posed a question whether it can be further im-
proved.

Itay (1976) provides such an improvement in [77] - an O(KN2) algorithm
for the depth restricted alphabetic version. Recall the notation |T | of the
weighted path length (cost) of a tree T . Let T be an optimal tree, v an inter-
nal node of T of depth l(v). Then the subtree of T with root v is an optimal
(K − l(v))-restricted alphabetic tree for its own sequence of weights.

The basic O(KN3) algorithm, introduced by Garey and by Itay is the fol-
lowing: Let [i, j, k], 1 ≤ i ≤ j ≤ n and 0 ≤ k ≤ K, denote the subproblem
of finding an optimal tree of depth at most k for (wi, wi−1, ..., wj). Let
T [i, j, k] be the optimal alphabetic tree for the restricted problem [i, j, k]. If
k < ⌊log2(j − i+ 1)⌋, then no solution exists, and we set |T [i, j, k]| = ∞.
Otherwise set:

|T [i, i, k]| = 0 i = 1, 2, . . . , n

|T [i, j, k]| =∑j
r=iwr +mini≤b<j {|T [i, b, k − 1]|+ |T [b+ 1, j, k − 1]|} ,

i = 1, . . . , n− 1, j = i+ 1, . . . , n

(7.1)

The value b0, for which (7.1) produces the minimum, is the last node (in
postorder) of the left subtree and is called the breakpoint. If b0 is a breakpoint
for [i, j, k], we can construct an optimal tree for [i, j, k] by building an optimal
tree for [i, b0, k−1] and [b0+1, j, k−1] and combining the two trees. Solving
[i, j, k] for all i, j, k results in an optimal tree T [1, n,K] for the original
problem. The resulting algorithm requires execution time O(KN3).

For a given K, the necessary conditions for implying the monotonicity prop-
erty (the “Knuth method” described in §2) hold. This enables to reduce com-
plexity to O(KN2). The Knuth method is widely explored in [56], which is
covered in §4.
In [129] Wessner (1976) gives an algorithm for optimal binary search
trees (recall the definition of a binary search tree from §2). The algorithm
is a modification to optimal binary search trees of Garey’s [44] algorithm
for an optimal non-alphabetic binary trees, and runs in time O(KN3) (here
the total number of nodes is 2N + 1). The author shows that the “Knuth
method” can be applied to the optimal binary search tree problem, thus
cutting the running time to O(KN2). The methods in [129] and [77] are
quite similar - the articles were published simultaneously and are products
of independent work.

Larmore and Przytycka [92] (1994) use the Package Merge algorithm
to reduce the computational complexity of the restricted alphabetic tree
problem to O(NK logN). In [91] and [90] the Package Merge algorithm
is introduced for length-limited Huffman (non-alphabetic) binary trees. A
radical departure from the dynamic programming methods, the O(NK)-
time Package Merge algorithm returns to the original greedy approach of

DICHOTOMOUS SEARCH 54

the Huffman algorithm. The alphabetic version of the Package Merge algo-
rithm, an O(NK logN) procedure that is the algorithm of [92], is quite sim-
ple to describe, but appears hard to prove. The algorithm first appeared in
[91] (1988) by Larmore and Hirschberg but without proof of correctness.[91]
consists of two parts: A full solution for the non-alphabetic version of the
problem, including proof of correctness, and a suited solution for the alpha-
betic problem. For simplicity of description, we don’t elaborate on Larmore
and Hirschberg’s paper, but rather describe the Package Merge algorithm
as part of [92].

In [92] the authors describe the Package Merge algorithm for a more general
problem, which they call the weighted binary tree problem, including proof
of correctness.

An instance of the weighted binary tree problem consists of a weight matrix
wi,l, for i = 1, . . . , N and l = 0, . . . ,K for some given K ≥ ⌈logN⌉, such
that

(1) wi,0 = 0

(2) wi,l+1 ≥ wi,l (monotonicity)

(3) 2wi,l ≤ wi,l−1 + wi,l+1 (concavity)

The cost of a binary tree T with respect to a weight matrix {wi,l} is defined
as

|T | =
N∑

i=1

wi,l(i),

where l(1), . . . , l(N) is the leaf sequence of T , i.e., the list of leaf depths.
The problem is to find the tree T with minimal cost. For example, the
depth-restricted by K alphabetic binary tree problem, discussed in §7 ,
reduces to the weighted binary tree problem by letting wi,l = lwi for all
0 ≤ l ≤ K.

Define a tile as an ordered pair of integers (i, l) such that i ∈ [1, N] and
l ∈ [0,K]. The tile (i, l) is said to have index i, level l and width 2−l. We
define the weight of (i, l) to be wi,l −wi,l−1 for l > 0, and zero if l = 0. If A
is a set of tiles, define its weight as the sum of the weights of its members;
The width of A is defined to be the sum of the widths of its members; the
index of A is defined as the minimum of the indices of its members. If T
is any binary tree, with leaf sequence l(1), . . . , l(n), we define the associated
set of tiles to be skyline(T) = {(i, l) : l ∈ [0, l(i)]} whose weight is defined
as cost(T). The Package Merge algorithm operates by finding skyline(T),
the minimal weight set of tiles which has width (2n − 1), subject to the
condition that it is a geometric tree (this term is defined in the article, but
we don’t define it here). The set of tiles generated by the Package Merge
algorithm will always satisfy this condition. T can then be recovered from
skyline(T).

Recall the Hu-Tucker algorithm for constructing a minimal alphabetic binary
tree. Initially, there is a list of N “square nodes” (terminal nodes) each of

DICHOTOMOUS SEARCH 55

which has a weight, and during each step, two square nodes are combined to
form a new “round” node, whose weight is equal to the sum of the weights
of its children. The Package Merge algorithm has many features in common
with the Hu-Tucker algorithm. “Square” nodes of Hu-Tucker correspond
to tiles in the Package Merge algorithm, and “round” nodes correspond to
packages. A level-l package, where l is a nonnegative integer, is a certain kind
of tile set that has at least two members, and whose width is 2−l. Packages
and tiles are together called items. F l is the list of all level-l tiles, ordered by
index, for l = 0, . . . ,K. A pair of items in F l is tenatively connected if there
is no tile which is strictly between them in the list. Starting with l = K − 1
and ending with l = 0, optimal packages of level l are formed by combining
“tenatively-connected” items in F l+1. These optimal level-l packages are
then merged with the list of level-l tiles to form F l, a list ordered by index,
where a tile is always in front of a package of the same index. The set
skyline(T) is simply the union of the items in F 0, from which T can be
easily recovered.

The authors suggest using a list of mergeable priority queues to represent
F l+1. A pair of items will be tenatively connected if and only if they are both
in the same priority queue. Using this data structure, it takes O(logN) time
to select the minimal weight, tentatively connected pair. Since that selection
must occur at most (N − 1) times on each of K levels, the time complexity
of the Package Merge algorithm is O(NK logN).

In [94] (1996) Larmore and Przytycka develop a O(K logN)-time N -
processor parallel algorithm for construction of an optimal alphabetic bi-
nary tree with depth restricted to K. Thus the order of the total work of
their algorithm is the same as that of the best known sequential time. The
algorithm provides a parallel implementation of the Package Merge proce-
dure ([91], [92]). The authors also obtain an O(l log2 N)-time N processor
algorithm that constructs an alphabetic binary tree whose cost differs by at
most 1

N l from the cost of an optimal tree. If the input sequence of weights

does not contain two consecutive elements of weight less than 1
N l , then this

approximation algorithm produces an optimal tree. We don’t dive into the
precise description of the algorithms in this survey.

8. Dichotomous search with unreliable answers

Sometimes while conducting a dichotomous search, erroneous information
may be received. Rivest, Meyer, Kleitman and Spencer [118] (1977)
consider such a problem. A search is held for x ∈ {1, 2, . . . , N} via questions
of sort “Is x ≤ a?”. It is assumed that up to k of the answers we receive
may be incorrect. The erroneous answers are detected only after the object
is found. It is proven that in the worst case log(N) + k log log(N) + O(k)
questions are sufficient, and a search strategy is demonstrated to achieve this
upper bound. A lower bound of number of questions required for a fixed
k is log(N) + k log log(N) + O(1), meaning that the upper bound is within
an additive constant of optimal. The lower bound log(N) + k log log(N) +

DICHOTOMOUS SEARCH 56

O(1) holds also when more general questions of sort “Is x ∈ T” for T ⊂
{1, 2, . . . , N} are allowed to be asked.

Rivest, Meyer, Kleitman and Winklmann [119] (1980) continue the
work of [118]. They show that there is a unique optimal strategy for the
continuous problem with only comparison questions allowed: Given ǫ > 0,
how many comparison questions about an unknown x ∈ (0, 1] are necessary
in the worst case to determine a subset A of (0, 1] of size less or equal to
ǫ which contains x, when up to k answers may be erroneous? Note that
A is not required to be an interval. The authors show that the number of

questions needed is q = min
{
q′
∣∣∣ǫ ≥ 2−q′ ·∑k

i=0

(
q′

i

)}
. This defines q not

only for k being a constant, but also for k being a function of ǫ. The optimal
comparison strategy is described.

This comparison strategy for the continuous case does not translate into a
strategy for the discrete problem just by setting ǫ = 1

N
, since the region

A which is found to contain x may not be an interval. Yet, it is shown
that k extra comparisons are always sufficient to cut A down to an interval.
This then yields a comparison strategy for the discrete problem using no
more than logN+k log logN+O(k log k) questions in the worst case, which
is optimal even among strategies using arbitrary “Yes-No” questions about
x.

Cicalese and Vaccaro [31] (2003) discuss a binary search problem where
answers to questions are received with a delay of d time units and up to c of
the answers may not be received at all. A number is hidden in {1, . . . , N}.
Questions of the form “Is x ≤ a?” are sequentially asked (at times i =
1, 2, 3, . . .). The ith question is the question formulated in time i. The
answer to the ith question is delivered only with a delay of d, i.e., at time
i+ d. This problem is called “the (N, d, c) problem”.

Let A
(c)
d (t) be the largest integer N such that the (N, d, c) problem is solved

with t questions. The main result of the paper determines recursively the

value of A
(c)
d (t) for c = 1: For any integers t, d ≥ 0

A
(1)
d (t) =

{ ⌊0.5t⌋ + 1 if t ≤ d+ 1

A
(1)
d (t− 1) +A

(1)
d (t− d− 1) if t ≥ d+ 2.

(8.1)

As a corollary, let kd be the largest positive real root of xd+1 = xd + 1.
Then logkd(N +1)+O(1) questions are necessary and sufficient to solve the
(N, d, 1) problem.

For the general case c ≥ 1 a lower bound on A
(c)
d (t) is established. It is

shown that A
(c)
d (t) ≥ B

(c)
d (t), where

B
(c)
d (t) =

{
1 for t ≤ 0∑t+1

i=1 G
(c)
i (t, d) otherwise,

(8.2)

where, for all i = 1, 2, . . . , t+ 1

DICHOTOMOUS SEARCH 57

G
(c)
i (t, d) = min

0≤j≤min{i−1,c}

{
B

(c−j)
d (t− d− i+ j)−

j∑

k=1

G
(c)
i−k(t, d)

}
,

(8.3)

and G
(c)
i (t, d) = 0 for i ≤ 0. The question of an upper bound remains open

in this paper.

Sheu et al. [121] (2003), Wang [126] (2007), Chun [27] (2007) and Tzimer-
man and Herer [124] (2009) consider the case where unreliable answers might
be accepted during the inspection of a production batch, where the location
of the first non conforming object has a geometric distribution. That subject
is covered in §13.5.

9. Search for multiple objects, by multiple searchers or in

high dimensions

In this section we discuss three generalizations of the dichotomous search
problem:

(1) Where not only one object is searched for, but several objects;

(2) Where one object is searched for, but several queries may be con-
ducted in an instant;

(3) Where the search is conducted in a multidimensional space.

9.1 Search for several objects

In [58] Hassin and Megiddo (1985) formulate the following problem:
Let f : {0, 1, ..., N} 7−→ {0, 1, . . . ,K} be a monotone nondecreasing step
function satisfying f (0) = 0, f (N) = K. The objective is to find a policy
that locates all the jumps of f using minimal number of f -evaluations in the
worst case. Obviously, by performing K binary searches one may recognize
f (i) ∀i, so that K ⌈log2 N⌉ f -evaluations should suffice.

When K ≥ N , N − 1 f -evaluations are sufficient and may also be necessary
in the worst case. For the general case the authors find that the exact
upper bound on the number of f -evaluations required for the recognition

of all the jumps of f is K
⌊
log
(
N
K

)⌋
+
⌊
(N − 1) 2− log(N

K)
⌋
, where log (x) =

max (0, log2 x).

The authors also state an optimal strategy that reaches the bound: “Place
your first search at i = 2m such that m =

⌊
log
(
N
K

)⌋
. Suppose that f (i) =

K1. Proceed recursively with the two resulting problems, namely finding all
the K1 jumps of f over the set {0, 1, ..., i} (if K1 > 0) and K − K1 jumps
over {i+ 1, ..., N} (if K1 < K)”.

DICHOTOMOUS SEARCH 58

In [55] (1984) Hassin and Henig explore the problem of finding all the
jumps of an integer function in {0, 1, . . . , N} using the minimum expected
number of queries (rather than minimizing the worst case scenario as in
[58]). Let I be the information function defined on subintervals of [0, N].
Initially, an information I(0, N) is known and an a priori joint distribution
of the jumps is given. At stage m = 1, 2 . . . a list of points 0 = t0 < t1 <
· · · < tm = N is given, the information I(t0, . . . , tm) is obtained and the
joint distribution of the jumps is updated. If all the jumps were identified,
the search terminates, otherwise we split an interval (ti−1, ti) for some i =
1, . . . ,m by selecting ti−1 < t∗ < ti. A selection strategy is a set of rules
telling us at each stage, based on the given information, which point to
select. An interval (ti−1, ti) is said to be resolved at stage m if I(t0, . . . , tm)
identifies all the jumps in the interval. A selection strategy is called optimal
if it minimizes the expected number of stages until (0, N] is resolved.

The main result of the paper suggests a selection strategy which is proven to
be optimal under the following conditions: Let R(ti−1, ti, I(t0, . . . , tm)) = 1
if I(t0, . . . , tm) indicates that (ti−1, ti] is unresolved, and 0 otherwise.

• Condition A: “R(ti−1, ti, I(t0, . . . , tm)) = R(ti−1, ti, I(t0, . . . , t
∗, . . . , tm))

for every tj−1 < t∗ < tj, j 6= i. This condition means that se-
lection of points outside the interval (ti−1, ti] does not affect the
value of R. This condition implies a common value R(a, b) :=
R(a, b, I(t0, . . . , tm)) for every set of points t0 < t1, · · · < tm such
that a = ti−1, b = ti for some 1 ≤ i ≤ m”.

• Condition B: “Pr[R(a, a + d, I(t0, . . . , tm))] = 1 is independent of
a and monotone increasing and concave in d for every list t0 <
t1, · · · < tm such that ti−1 < a < ti − d for some i = 1, . . . ,m.
This condition states that the probability function that an interval
(a, a + d] ⊆ (ti−1, ti] is unresolved given I(t0, . . . , tm) depends only
on its length d and is monotone increasing and concave.”

If both conditions hold then the following strategy is optimal: In each stage
arbitrarily select an unresolved interval (ti−1, ti] and split it at ti−1 + 2t(d)

or at ti − 2t(d) where d = ti − ti−1 and t(d) is the unique integer satisfying

3 · 2t(d)−1 ≤ d < 3 · 2t(d).

For example14 suppose that several objects are independently uniformly
distributed over the interval (0, N]. Let f(t) be the number of objects
in [0, t]. At stage m of the search the information obtained is whether
(ti−1, ti], i = 1, . . . ,m, is empty (contains no objects) or not. Thus, (ti−1, ti]
is resolved if it is either empty or ti − ti−1 = 1. Condition A is trivially
satisfied since splitting at t∗ /∈ (ti−1, ti] cannot change the fact that (ti−1, ti]
is empty or nonempty. Let q(d |k) be the probability that that the interval
(a, a + d] ⊆ (ti−1, ti], d > 1, is empty, given that (ti−1, ti] contains k empty
points. Clearly the empty points are uniformly distributed over (ti−1, ti] and
therefore

14The example is quoted from [55].

DICHOTOMOUS SEARCH 59

q(d |k) =
d−1∏

j=0

[
k − j

ti − ti−1 − j

]
for d ≤ k, and (9.1)

q(d |k) = 0 for d > k

It is easy to verify that q(d |k) is monotone decreasing and convex in d.

Therefore,
∑ti−ti−1

k=0 q(d |k)Pr {(ti−1, ti]contains k empty points}, which is the
probability that (a, a + d] is empty, is monotone decreasing and convex in
d, which implies condition B.

In [79], Karp (1993) finds more solutions for the problem discussed in
[58]. While [58] finds an optimal algorithm for this problem, [79] also states
that there is usually more than one solution. In fact each i ∈ [0, ..., N]

such that i or N − i is a multiple of 2⌊log(K
N)⌋ is a first step of an optimal

algorithm.

Damaschke [33] (1997) considers the following problem: An n×n matrix
is given, whose entries are from the set {0, 1} and are subject to the following
condition: The right and the lower neighbor of an entry 0 are also 0; the
left and the upper neighbor of an entry 1 are also 1. We may query any
matrix entry to determine its contents. The aim is to determine the matrix
completely by such queries in an efficient way. The problem is equivalent to
the search for a discrete monotone nondecreasing function f by threshold
queries (f(i) can be thought of as the number of 1’s in column i). That
means, we have an unknown function f from the set of integers {0, 1, . . . , n}
into the same set, with the only condition that x < z always implies f(x) <
f(z), and for any pair (x, y) we may ask whether f(x) ≥ y. Note that this
problem is different from that discussed earlier in [58], where a query at
argument x returned f(x).

The main result of the paper states that an unknown discrete monotone
function with domain and range of size n can be found optimally in O(log n)
time using O(n) independent15 threshold queries and arithmetic operations
on an EREW PRAM.

9.2 Parallel search

In this section we explore a variation of dichotomous search, where more
than one query may be made at once.

In [77] (1976) Itay analyzes alphabetic trees of degree σ > 2, also
called σ-ary trees. The objective is to find optimal alphabetic σ-ary trees,
i.e., σ-ary trees, with minimum weighted path length (recall that definition

15A set of threshold queries asked during the search process is called independent if
simultaneous queries (asked in the same unit of time) always call mutually distinct x and
mutually distinct y, respectively; or in the matrix formulation - simultaneous queries must
involve entries in mutually distinct rows and columns, respectively.

DICHOTOMOUS SEARCH 60

from §2). This model is equivalent to search in which σ−1 queries are made
simultaneously.

Let an s-forest be a sequence of s trees. The cost of an s-forest is the sum
of the costs of its trees. Denote a minimal cost (optimal) alphabetic s-forest
on weights (wi, ..., wj) by Fs[i, j]. The cost of the s-forest, s > 1, is

WFs[i, j] = min
i≤b<j

{WFs′ [i, b] +WFs−s′ [b+ 1, j]} , (9.2)

for any s′ such that 1 ≤ s′ < s. We search for WF1[1, N], and the initial
conditions are WF1[k, k] = wk ∀k ∈ {i, . . . , j}. The cost of a σ-ary tree

is f [i, j] = Wij + WFσ[i, j], where Wij =
∑j

r=iwr. Using these equations
the dynamic programming solution can be extended to find optimal trees
and forests. When δ = j − i ≥ σ, there is always an optimal σ-ary tree for
(wi, . . . , wj) with exactly σ subtrees. For each δ = 1, . . . , N − 1, the author
finds optimal σ-trees and s-forests for weights (wi, . . . , wj), j = i + δ. By

choosing s′ in an economic way at each stage (for example s′i = 2⌊log s′i−1⌋ −
1), the resulting complexity is O(N3 log σ). The author uses the “Knuth
method” (see §2) to cut the running time to O(N2 log σ), but later, in [51],
Gotlieb and Wood explain why in fact the Knuth method is not applicable
to alphabetic σ-ary trees.

Gotlieb [50] (1981) considers the following problem: We are given keys
K1 < K2 < · · · < KN , a page capacity m ≥ 1, and nonnegative weights
{p1, . . . , pN , q0, . . . , qN}. W := p1 + · · · + pN + q0 + · · · + qN . pi

W
is the

probability that Ki is the search argument, and
qj
W

is the probability of the
search argument to be betweenKj andKj+1. The problem is to construct an

m+1-ary search tree which minimizes the cost
∑N

i=1 pil(pi)+
∑N

j=0 qj(l(qj)−
1) (recall that l(j) is defined as the level of the node j).

The basic dynamic programming solution is presented and it runs in time
O(N3m). In case that the q’s (the missing-key weights) are all zero16, the
author shows an adaptation of the Knuth monotonicity property which al-
lows to cut the running time to O(N2m).

The running time in both cases can be further cut to O(N3 logm), or
O(N2 logm) when the q’s are all zero using a technique employed in Itay
[77].

Gotlieb and Wood [51] (1981) discuss the applicability of the mono-
tonicity principle (also called the “Knuth” method) to the m-ary search tree
problem. They show, by a counterexample, that the monotonicity principle,
when using the dynamic programming construction, cannot be extended to
m-ary optimal alphabetic code trees, i.e., trees where the weights appear
only at the leaves, contrary to what is claimed by Itay [77]. Yet, the mono-
tonicity principle can be applied to the case where the q’s are all zero, and
the running time can be reduced to O(N2 logm) in that case. In general,

16The reader should pay attention that an m-ary (m > 2) search tree with the q’s all
zero is not an alphabetic m-ary tree, as opposed to the case of m = 2.

DICHOTOMOUS SEARCH 61

the O(N3 logm) time bound is best possible for the dynamic programming
method, for both alphabetic and Huffman trees.

Herer and Raz [60] (2000) use the information theoretic approach to con-
struct a heuristic for the search problem, where several units are allowed to
be inspected simultaneously. The problem is formulated as follows: A batch
is produced on a production line, that is subject to failures under a known
probability distribution function (not necessarily geometric). Suppose it is
known that the last unit of the batch is nonconforming. Also it is assumed
that once one unit was produced with a defect, so must be all the next units
in the batch. By means of inspection of units the goal is to find the first
nonconforming unit (FNU) by minimal expected cost. Two cost parameters
are involved: a fixed cost of performing an inspection round (independent
of the number of units inspected, can be thought of as the waiting time
through the round) and the cost of each inspection. Let M be the num-
ber of simultaneous inspections carried out during each inspection round.
Let N be the batch size, and let pi be the probability that i is the FNU.
P := (p1, . . . , pN).

Let K = (k1, . . . , kM) be the inspection vector, used to denote all the units
inspected during that round (also define k0 = 0, kM+1 = N , and call unit 0
conforming). Let a(k,N, P) denote the probability of shifting to the abnor-

mal state no later than unit k. U0(N,P) = −∑N
i=1 pi log pi is the uncertainty

before the inspections start. When M units in parallel are inspected there
are M + 1 possible outcomes, and the uncertainty (entropy) regarding the
FNU after inspecting according to K is

Uk(N,P) = (9.3)

[
M+1∑

i=1

(a(ki, N, P)− a(ki−1, N, P)) · U0

(
ki − ki−1,

pki−1+1, . . . , pki∑ki
i=ki−1+1 pi

)]
.

The main results in [60] state that:

(1) “If M units are to be inspected in parallel, then the amount of re-
maining uncertainty regarding the location of the FNU is minimized
by inspection according to the inspection vector that is closest to
dividing the batch into M + 1 segments that have equal probability
of containing the FNU,” i.e., by the choice of an inspection vector

K = argminK
∑M+1

i=1

∣∣∣a(ki, N, P)− a(ki−1, N, P)− 1
M+1

∣∣∣.

(2) “The maximum reduction in uncertainty achieved by M inspections
in parallel is log(M + 1). Thus, by dividing the initial amount of
uncertainty by log(M+1) a lower bound is obtained on the expected
number of inspection rounds required to precisely locate the FNU.”

By computational tests it is shown that the proposed heuristic has better
performance than the (M +1)-ary search (i.e., dividing the batch to M +1

DICHOTOMOUS SEARCH 62

segments of equal size), the natural extension of the binary search. Also an
algorithm is provided for calculating the most cost-effective number of units
that should be inspected in parallel at each inspection round.

9.2.1. Unequal inspection costs in parallel search Recall that in the optimal
σ-ary alphabetic tree problem the level of a leaf is the number of edges
connecting it to the root. Equivalently, suppose that each traversing each
edge costs 1. A level of a leaf is the cost of traversing through all the
edges from the root to it. An interesting problem arises when we consider
structuring an optimal alphabetic tree with unequal costs of the edges. Let
the cost of an edge (a, b) of a σ-ary tree be ci, where b is the i-th child of a,
1 ≤ i ≤ σ. In general, the σ-ary tree need not be full, i.e., not every node
has σ children (for σ = 5 a node may have a second and forth child while
lacking the first, third and fifth children). The cost of a node is the sum of
the costs of the edges of the unique path from the root to that node. The

cost of a alphabetic tree is F [1, N] =
∑N

i=1 piwi where wi is the weight of
leaf i and pi is the cost of the node associated with it. The objective is to
find, for given weights, an alphabetic tree of minimum cost.

Itay [77] (1976) formulates the dynamic programing equations for this
problem: Let Fα,β[i, j] be the cost of an optimal tree for weights (wi, . . . , wj)
in which the root has no child smaller than α and none greater than β,
1 ≤ α ≤ β ≤ σ, 1 ≤ i ≤ j ≤ N .

Fα,α[i, i] = cαwi for 1 ≤ i ≤ N, (9.4)

Fα,β[i, i] = min
α≤γ≤β

{Fγ,γ [i, i]} for 1 ≤ i ≤ N, (9.5)

For i < j and 1 ≤ α ≤ σ:

Fα,α[i, j] = cαWij + min
i≤b<j
1≤γ<σ

{Fγ,γ [i, b] + Fγ+1,σ [b+ 1, j]} , (9.6)

and for i < j, α < β:

Fα,β[i, j] = min

{
Fα+1,β [i, j], min

i≤b<j
{Fα,α[i, b] + Fα+1,β [b+ 1, j]} , Fα,α[i, j]

}
.

(9.7)

The computation time can be reduced by the Knuth method by a factor N
to O(σ2N2).

The unequal inspection costs problem in parallel search can be also reformu-
lated in terms of coding theory: recall the formulation of the dichotomous
search problem as an alphabetic prefix free coding problem from §2. One
well studied generalization of this problem is to let the encoding letters have

DICHOTOMOUS SEARCH 63

different costs, which is equivalent to unequal costs of the edges in σ-ary
binary trees. Let Σ be the coding alphabet and let σi ∈ Σ have associated

cost ci. The cost of codeword w = {σi1 , . . . , σil} is cost(w) =
∑l

k=1 cik , i.e.,
the sum of the costs of its letters (rather than the length of the codeword)
with the cost of the code still being defined as Cost(w) =

∑n
i=1 cost(wi)pi

with this new cost function.

Golin and Lin [49] (2008) 17 write the research history on the unequal let-
ter cost prefix-free coding, which we find important to include in this survey.
The unequal letter cost coding problem was originally motivated by coding
problems in which different characters have different transmission times or
storage costs. One example is the telegraph channel in which Σ = {·,−}
and c1 = 1, c2 = 2, i.e., in which dashes are twice as long as dots. Another
is the (a, b) run-length-limited codes used in magnetic and optical storage,
in which the codewords are binary and constrained so that each 1 must be
preceded by at least a, and at most b, 0’s. This example is the unequal-
cost letter problem with an encoding alphabet of r = b − a + 1 characters{
0k1 : k = a, a+ 1, . . . , b

}
with associated costs {ci = a+ i− 1}.

The alphabetic coding problem has a polynomial O(tN3) time algorithm
[77] that we described earlier in this section.

9.3 Multidimensional search

The multidimensional search problem deals with the complexity of finding
a given vector among an ordered (lexicographically or otherwise sorted) list
of vectors.

Generalization of the dichotomous search to high dimensions opens a hatch
to problems from computational geometry. We do not elaborate on that
subject in this survey, but describe only one example by Dobkin and Lip-
ton [35] (1976): Given a point (x, y) in R

2 and a collection of m lines
L1, . . . , Lm we are to find whether the point lies on any of the lines. The
main result is that the determination can be done in O(logm) steps given
that the lines have been previously preconditioned (put in a convenient or-
der). The preconditioning condition is a strong request but no stronger than
in the ordinary binary search problem, where the items are assumed to be
sorted.

The basic algorithm: Let the intersections of the lines be given by the points
z1, . . . , zn n ≤ m(m − 1)/2 and let the projections of these points onto the
x-axis be given by p1, . . . , pn (the preconditioning of the lines ensures that
p1, . . . , pn are ordered). These points define a set of intervals I1, . . . , In+1

such that within the slice of the plane defined by each of these intervals
no two lines intersect. Define a relation <i (1 ≤ i ≤ n + 1): Lj <i Lk iff
∀x ∈ R if pi ≤ x ≤ pi+1 then Lj(x) ≤ Lk(x). Thus we can define for each
i (1 ≤ i ≤ n + 1) a permutation π(i, 1), . . . , π(i,m) of 1, 2, . . . ,m such that
Lπ(i,1) <i · · · <i Lπ(i,m).

17The article of Golin and Lin [49] concerns mainly with the non-alphabetic coding
problem and not the alphabetic one, thus falls beyond the scope of this survey.

DICHOTOMOUS SEARCH 64

To discover whether (x, y) lies at any of the lines, first find the interval Ii
such that x ∈ Ii. This can be done by a dichotomous search with questions
of the form “Is x > zj”. Once the interval Ii is discovered, conduct a di-
chotomous search for y by queries of the form “Is y > Lj(x)”. An algorithm
consisting of a dichotomous search into a set of at most m(m − 1)/2 + 2
objects (the points pi) and a dichotomous search into a set of m objects
(the lines Lπ(i,1), . . . , Lπ(i,m) for the proper choice of i) requires at most
g(m) + g(m(m− 1)/2 + 2) steps where g(m) = ⌊logm⌋+1, and since g is a
monotonically increasing function with g(m2) ≤ 2g(m), this quantity is at
most 3g(m).

This algorithm is further extended to R
n. As a result, for any set of lines

L1, . . . , Lm in R
n, in can be determined whether a point x ∈ R

n is on any of
the Li’s in O((n + 1)g(m)), given that the lines have been preconditioned.
Actually, for any set of linear varieties a1, . . . , am of dimension k in R

n,
there is an algorithm that determines whether x is on any of the ai’s in time
O((3 · 2k−1 + (n − 2))g(m)) for any x ∈ R

n, given that the ai’s have been
preconditioned.

Now consider another version of multidimensional search- the problem of
finding a given vector among a lexicographically ordered list of vectors.
Given is a k-vector x = (a1, . . . , ak) and n k-vectors yi = (bi,1, . . . , bi,k) for
i = 1, ..., n such that y1 < y2 < · · · < yn by lexicographic order. Comparison
of an ai with a bj,k returns ai ≥ bj,k or ai < bj,k and is counted as a step.
The goal is to find the worst case time complexity for the search problem.
Hirschberg [63] (1980) showed that ⌊log(n)⌋+k comparisons are necessary
and, for n ≥ 4k, k

⌈
log(n

k
)
⌉
+ 2k − 1 comparisons are sufficient.

In 1980 Rao Kosaraju [109] improved both upper and lower bounds for
this problem known at that time: The upper bound was improved in [109]

to log(n) +
√
2(k − 1)

√
log(n) + 2k +O(1) and the lower bound of [63] was

improved to log(n)+ 1
2

√
k log(n)−h(k) where h is a function of k only.

Belal, Ahmed and Arafat [19] (1998) explore the problem of obtaining
an optimal alphabetic tree for the M ·N two-dimensional array of weights.
This problem is in fact equivalent to the problem of minimizing the cost of
sequentially cutting the array into individual cells using vertical and horizon-
tal cuts. In terms of dichotomous search, if we search for an object (x, y) in
the two dimensional array, then each horizontal cut is equivalent to a query
of the form “Is y > j”, while each vertical cut means “Is x > i”. The root
of a tree corresponds to a cut. This two dimensional problem can be solved
in polynomial time O(N4) when M = O(N) using dynamic programming.
The authors use a measure of goodness for each cut to limit the number
of feasible solutions to the problem and thus reduce the number of possible
choices for the root of the optimal tree and improve the computational com-
plexity. The complexity of the new method is not computed in the article,
but experimental results show improvement in the run time relative to the
dynamic programming algorithm.

First, the authors define a lower bound on the cost of the optimal alphabetic
tree: If T (Ri) and T (Cj) denote the cost of optimal trees for row i and

DICHOTOMOUS SEARCH 65

column j respectively, the cost of the optimal tree for the two dimensional
array is bounded by

Toptimal ≥ Bound =

M∑

i=1

T (Ri) +

N∑

j=1

T (Cj). (9.8)

This bound is achieved when all rows, or all the columns, have the same
optimal tree. Define limit L as L = Tapprox − Bound, where Tapprox is
obtained using a fast greedy algorithm for finding an approximate optimal
alphabetic tree, given in [4]. Suppose that a vertical cut divides an M · N
array into a left array and a right array. If each of the resulting arrays can
be solved such that their respective lower bounds are achieved, then the cost
of the tree of left part equals

c(left) =
∑

i

T (R′
i) +

∑

j

T (R′
j),

and the cost of the tree of right part equals

c(right) =
∑

i

T (R′′
i) +

∑

j

T (R′′
j),

where R′, C ′ are the rows and columns of the left part, and R′′, C ′′ are the
respective ones of the right part. The resulting tree obtained by making this
vertical cut will have the cost C(left)+C(right) +W , where W is the sum
of the weights of the original array.

The expense of a cut (Ex) is defined as the deviation of its cost from the
bound, and is computed as follows:

Ex =
∑

i

T (R′
i)+
∑

j

T (C ′
j)+
∑

i

T (R′′
i)+

∑

j

T (C ′′
j)+W−

∑

i

T (Ri)−
∑

j

T (Cj)

(9.9)

giving

Ex(vertical cut) =
∑

i

T (R′
i) +

∑

i

T (R′′
i) +W −

∑

i

T (Ri) (9.10)

and

Ex(horizontal cut) =
∑

j

T (C ′
j)+

∑

j

T (C ′′
j)+W−

∑

j

T (Cj) (9.11)

As an example, also given in the article, for the array with two rows R1, R2

and N columns the horizontal cut has zero expense, using equation (9.11)
and noting that in this case T (C ′

j) = T (C ′′
j) = 0 for j = 1, 2 and

∑
T (Cj) =

W . The optimal tree in this case has the lower bound of equation (9.8) and

DICHOTOMOUS SEARCH 66

its cost. This is expected since in the 2 ·N arrays, all columns have the same
optimal tree.

The algorithm is as follows: “given an M · N array of weights, the limit
L is computed, and then the expenses of all possible (M − 1) + (N − 1)
vertical and horizontal cuts are computed. Only the cuts with expense less
than L are retained as candidates to an optimal solution. Then for a given
candidate with expense Ex < L, the two parts generated by the cut are
explored for candidate cuts by looking for a pair of cuts, one for each part,
whose sum of expenses is less than the new limit (L−Ex). Finally, when the
size along one of the dimensions reaches the value 4, no further exploration
is needed and dynamic programming can be used to obtain the optimal tree
for this array.”

10. Generalizations of both the alphabetic tree problem and

the Huffman tree problem

Some literature exists on problems that generalize the alphabetic tree prob-
lem. The problems we describe here are general enough to have the Huffman
tree problem as a special case also.

Rao Kosaraju, Przytycka and Borgstrom [110] (1999) introduce the
optimal split tree problem, that generalizes both the Huffman tree problem
and the alphabetic tree problem. Consider a set A = {a1, . . . , aN}, with
each element ai having an associated weight w(ai) > 0. A partition of A
into two sets B,A − B is called a split. A set S of splits such that for any
pair a, b ∈ A there exists a split {B,A−B} in S such that a ∈ A and b ∈ B
is called a complete set of splits. A split tree for a set A with a complete set
of splits S is a rooted tree T in which the leaves are labeled with elements
of A and internal nodes correspond to splits in S. More formally, for any
node v of a leaf labeled tree T , let L(v) be the set of labels of the leaves of
the subtree rooted at v. Then a split tree is a full binary tree such that for
any internal node v with children v1, v2 there exists a split {B,B′} ∈ S such
that B ∩L(v) = L(v1) and B′ ∩L(v) = L(v2). Note that such a split tree is
guaranteed to exist when the set of splits is complete. Then the cost c(T) of

a split tree T is defined in the standard way: c(T) =
∑N

i=1 l(i)w(ai) where
l(i) is the length of the path from the root to leaf ai. The optimal split tree
problem is to compute for a given (A,S) a minimum cost split tree. The
problem is a generalization of the classic Huffman coding problem, in which
the set of splits S contains all possible splits of A.

A split tree problem can be viewed as a problem of constructing a search
tree, where the elements we search for are located in the leaves. Each split
corresponds to a property that partitions the input set into two subsets.
If the weight corresponds to the probability of accessing a given element,
then an optimal split tree optimizes expected length of a search path. In
this context, the split tree problem generalizes the alphabetic tree problem:
That is, if we assume that the input set A = {a1, . . . , aN}, is linearly ordered
and define the set of splits to be N − 1 splits S1, . . . , SN−1 where Si =

DICHOTOMOUS SEARCH 67

(LEi, A− LEi) and LEi = {a ∈ A |a ≤ ai }, the optimal split tree problem
reduces to the classic optimal alphabetic tree problem.

The authors show that the optimal split tree problem is NP-complete. They
demonstrate that a modification of the greedy algorithm which always chooses
a best balanced split guarantees O(logN) approximation ratio.

Barkan and Kaplan [16] (2006) introduce a different generalization - the
partial alphabetic tree problem (PAT). In the partial alphabetic tree problem
a set of non-negative weights W = {w1, . . . , wN} is given, partitioned into
m ≤ N blocks B1, . . . , Bm. The objective is to find a binary tree T where
the elements of W reside in its leaves such that if we traverse the leaves from
left to right then all leaves of Bi precede all leaves of Bj for every i < j.
The order of the items within each block is arbitrary. Furthermore, among
all such trees, T has to minimize

∑N
i=1wil(i), where l(i) is the depth of wi

in T .

The Huffman problem is a special case of the PAT problem where there is
only one block. The minimal cost alphabetic tree problem is also a special
case of the PAT problem when there are m = N blocks, and block i contains
the single element wi. Partial alphabetic trees are useful when we want
to code a set of items with known frequencies subject to an alphabetic
restriction on some of the codewords.

The main result is an algorithm for the partial alphabetic tree problem which

runs in time O(
[
Wsum

Wmin

]2α
log WsumN2

Wmin
) where Wsum =

∑N
i=1 wi, Wmin =

min1≤i≤N {wi} and α = 1
logϕ ≈ 1.44 (ϕ is the golden ratio). In particular the

running time is polynomial in case the weights are bounded by a polynomial
function of N .

The proposed algorithm for the PAT problem relies on a solution to what is
called the layered Huffman forest problem which is of independent interest.
In the layered Huffman forest problem we are given a sequence of weights
w1, . . . , wN and a sequence of depths d1, . . . , dk. The goal is to find a forest F
of k binary trees that minimizes

∑N
i=1 widF (wi) where dF (wi) = dTj

(wi)+dj
if wi ∈ Tj . The authors build an algorithm for this problem that runs in
O(kN2) time.

Barkan and Kaplan also develop an algorithm for another problem, that is
also a generalization of the alphabetic tree and the Huffman tree problem.
That problem, which the authors call the parallel alphabetic tree problem
was first introduced by Abrahams (1997) in [2]. In the parallel alphabetic
tree problem the weights are also partitioned into disjoint sets, but this time
in the resulting tree the weights in the same set should be ordered while there
is no restriction on the order of weights from different sets. This model is
useful for encoding an alphabet that has several groups of characters such
as numbers, letters, and punctuation marks, and the alphabetic order of
characters in each group should be maintained. The authors [16] show that
the parallel alphabetic tree problem can be solved in polynomial time when
the number of sets is constant.

DICHOTOMOUS SEARCH 68

11. Search for rationals

How many queries of the form “is x ≤ p
q
” (for p, q ∈ N) are needed to deter-

mine a positive rational number x where the denominator and numerator
are integers bounded by an integer M > 0? An immediate solution to this
problem is to list all Θ(M2) possible rational numbers in an array, sort them
and perform a binary search on the sorted array. The maximum number of
queries needed in this solution matches the lower bound of 2 log2M , but a
preprocessing phase is needed that requires Θ(M2) time and space.

Efficient Θ(logM) - time algorithms that do not require a “preprocessing
phase” have been proposed by Papadimitriou [106] and Reiss [112].

Papadimitiou [106] (1979) shows that x can be determined exactly by
O(logM) queries of the form “is x ≤ p

q
”, where p, q ≤M and only O(logM)

other operations and comparisons of integers of size up to 2M . The proof
is based on Farey series, and we don’t elaborate on it here. Naturally, the
achieved bound is asymptotically optimal, since it takes O(logM) queries
just to distinguish among 0

M
, 1
M
, 2
M
, . . . , M

M
.

Reiss [112] (1979) uses continued fractions to solve the problem. The
author shows that it is sufficient to use binary search, or any other standard

technique, to find an approximate solution, x
y
, such that

∣∣∣pq − x
y

∣∣∣ < ǫ where

ǫ < 1
2M2 . This is true because the best continued fraction approximation to

x
y
with denominator bounded by M must be p

q
. Since this approximation

can be found in O(logM) arithmetic operations and since we can find an
appropriate x

y
using

⌈
log(2M3)

⌉
= O(logM) queries, we can determine p

q

in O(logM) steps (without the wasteful preprocessing phase of sorting the
array).

Zemel [133] (1981) notices that both methods, that of Papadimitrio and
that of Reiss, lend themselves easily to practical implementations. The au-
thor discusses two problems in which finding a rational number in a bounded
set of rationals is useful: minimization of ratio functions and the weighted p-
center problem on a tree. Here we elaborate on the first problem only.

Consider the problem (PR):

s∗ = min
c0 + cx

d0 + dx
subject to x ∈ F,

where c0, d0 ∈ Z, c, d ∈ Z
n and F is a set of 0 − 1 vectors in R

n. Consider
the linear version (PL):

s∗ = max cx subject to x ∈ F.

Obviously, any algorithm for (PR) can solve (PL) as well. The author recalls
previous results of Megiddo: Megiddo [98] proved that if problem (PL) can
be solved within O(p(n)) comparisons and O(q(n)) additions, then problem

DICHOTOMOUS SEARCH 69

(PR) can be solved in time O(p(n)[q(n)+p(n)]). However, Megiddo’s result
falls short of asserting that (PR) is solved in polynomial time if (PL) is. This
is due to the limitation on the type of operations allowed by the algorithm
for (PL), namely additions and comparisons only. Zemel, using the result
on search for rationals, proves that (PR) is indeed solvable in polynomial
time iff (PL) is.

The author shows several examples for the use of the result on minimization
of ratio functions. For example, let G be a perfect graph. It is shown
in [52] how to find, in polynomial time, a subset of vertices of G which
is independent (i.e., no two vertices in the subset are connected with an
edge) and which maximizes a linear objective function. Thus, we can solve
in polynomial time the problem s∗ = max c0+cx

d0+dx
, where x is the incidence

vector of an independent set G, and where c, d are vectors of integers with
d0 + dx > 0 for every feasible x.

Kwek and Melhorn [88] (2003) present an algorithm that requires only
2 logM + O(1) queries, which matches the lower bound for this problem.
First express x as ⌊x⌋ + a

b
where a and b are relatively prime and a <

b. Searching for the integer part combines exponential search with binary
search: first compare x with 2k for k = 0, 1, 2 . . . until x ≤ 2k and then
use binary search to locate x in the interval [2k−1, 2k]. The number of
comparisons required so far is 2 log ⌊x⌋ + O(1). To determine a

b
efficiently,

the authors first determine the fraction in some interval of form
[

µ
2T 2 ,

µ+1
2T 2

]

for T :=
⌊

M
⌊x⌋

⌋
and some µ in 2 logM − 2 log ⌊x⌋ + O(1) queries, and then

prove that this fraction is unique in that interval.

12. Dichotomous search games

The dichotomous search problem appears also in game theory, considered as
a game between a hider and a searcher. In general, the hider makes the first
move, in which he hides the object in the “search space”, and the searcher
must make an effort to find its location. The search proceeds in discrete
steps, and after each step a feedback is provided.

To fit the focus of this survey, we only consider the search games in which:

(1) The hider H chooses the initial location of the object y and never
changes it during the entire game.

(2) The searcher S looks in the set of integers 1, 2, ..., N (“the search
space”). The game will be referred to as GN .

(3) No restriction on the order of the searcher’s queries are made.

(4) After each query xi the searcher receives a feedback whether y ≤ xi
or y > xi. The game proceeds until the searcher locates y.

(5) The payoff to the hider is the expected number of queries required to
locate y. The value of the game GN is denoted by v(N) and defined

DICHOTOMOUS SEARCH 70

as the maximal payoff that can be assured by the hider (i.e., the
minimal price the searcher must pay).

Gilbert [47] (1962) explores the game GN via two other games: G′
N and

G′′
N . In G′

N , H may change y before each guess of S (as opposed to game
GN , in which changes at the object’s location can never be made); in G′′

N , H
may change y after each guess of S, before providing an answer, The changes
in G′

N and G′′
N need to be in line with previous answers. The author uses

the two games G′
N and G′′

N to provide bounds on GN .

The game G′′
N is easy to explore: in G′′

N , H can pick a y at each step, which
gives S bounds as far apart as possible. S should pick each xi to bisect, as
nearly as possible, the range in which y is known to lie. The value of the
game is v′′(N) = 1+ logN . In the game G′

N , whose value is v′(N), optimal
strategies for S and H must pick 1 ≤ x1 ≤ N and 1 ≤ y ≤ N so as to solve
the game with N ×N payoff matrix:

MN (y, x1) =

1 + v′(x1 − 1) x1 < y
1 x1 = y
1 + v′(N − x1) y < x1

(12.1)

The symmetry MN (N +1− y,N +1−x) = MN (y, x) simplifies solving this
game. After the first guess of S in G′

N , H can change y within the diminished
interval obtained by the first query, thus by changing it (or leaving it in
place) there begins a new game Gx1−1 or GN−x1

. The argument which
treats the first game of G′

N as a separate game does not apply to GN .

Values v′(N) for N ≤ 6 are computed, and also the according optimal S
strategies are stated. No values for N ≥ 7 are presented since they require
fast computation, which was not available at that time. The values v′(A)
for small A are found useful for bounding v′(N) for large N : write N =
2nA + x such that A = 3, . . . , 6 and x = 0, . . . , 2n − 1 to get the bound
v′(N) ≤ v′(A) + n.

Several upper bounds for the game GN are derived. A simple upper bound
is:

v(N) ≤ v′(N) ≤ v′′(N) = 1 + logN. (12.2)

A more accurate upper bound is v(N) ≤ v′(N) ≤ v′(A)+n as shown above.
A lower bound for v(N) is

v(N) ≥ a− 1 +
2w + a

N
, (12.3)

where a = log(N + 1) and w = N + 1 − 2a. This bound is obtained as the
smallest expected payoff S can give to H in GN when H picks y = 1, 2, . . . , N
with probabilities 1/N each.

DICHOTOMOUS SEARCH 71

Johnson [78] (1964) proves necessary conditions for optimality of a strat-
egy for GN , which greatly reduce the computational complexity of comput-
ing the value. The hider plays {pk} for k = 1, . . . , N and the searcher plays
a strategy Si = {Sij} where Sij is the number of the guess when j is tried.
Si is chosen by the searcher with probability ti. The value of the game
is:

v(N) = min
ti

max
pj

∑

i

ti
∑

j

Sijpj . (12.4)

The author shows that in every optimal hider strategy, pj = pN−j and
p1 ≥ p2 hold. Moreover for N ≥ 5 p1 > p2. As for the searcher - suppose
that at a given stage the searcher, playing Si, has located his guess on the
interval k ≤ j ≤ m, and that Si calls for next playing at a, left of the
median of the hider’s frequent distribution on this interval, and if a is too
small, next playing at b to the right of a. Then a necessary condition for
optimality of Si against pj is that

∑

k≤j≤a

pj ≥
∑

b≤j≤m

pj . (12.5)

For example, if the searcher’s first try at 3 is too small, his second try must
be ≥ N − 2. Moreover, at each stage the searcher should make his guess
inside the middle third of the hider’s probability distribution on the current
interval of uncertainty.

Gal [42] (1974) considers GN and presents the optimal strategies for both
players. Let Q be a mixed strategy of S, and let q be a mixed strategy of H.
VN (q,Q) is defined as the expected number of queries used by the searcher
to locate y. Further definitions:

I = ⌈log2N⌉ , (12.6)

J =

⌈
N

2

⌉
, (12.7)

tN = I +
2N − 2I+1

N
, (12.8)

v(N) = sup
q

inf
Q

VN (q,Q) = inf
Q

sup
q

VN (q,Q). (12.9)

The main result of this paper is a formulation of optimal strategies of the
hider. It is shown that for N = 2J , the value v(N) of GN is equal to tN .
An optimal strategy of the hider must be one of the following:

DICHOTOMOUS SEARCH 72

• “z- the mixed strategy of H, according to which he chooses each
integer 1 ≤ y ≤ N with probability 1/N .

• z1- the mixed strategy of H defined only for even N , N = 2J ac-
cording to which he chooses each odd integer with probability 1/J .

• z2- the mixed strategy of H defined only for even N , N = 2J ac-
cording to which he chooses each even integer with probability 1/J .

If N = 2J + 1, then VN = I + 2N−2I+1

N−1 and the following strategy is opti-
mal:

• z3- the mixed strategy of H defined for N = 2J + 1 according to
which he chooses each even integer with probability 1/J .”

An optimal strategy QN of S is also constructed. If N = 2J QN is defined
as a mixture of J pure strategies, that are constructed in the paper, each of
them chosen with probability 1/J . For odd N an optimal strategy is also
presented. The value of the game using QN is of course tN . An interesting
remark is that the “natural” bisection strategy is not optimal for S. For
example, if N = 6, then the value of the game is proven to be V (6) = t6 =
22
3 . On the other hand, if S always chooses 3 first, then H can choose y to

be 2 and the payoff would be 3.

Gal [43] (1978) studies the game of locating the searched object in an
interval as small as possible in spite that the information that the searcher
obtains using dichotomous queries may be wrong. The hider H chooses the
point e ∈ [a, b) and the searcher S tries to locate it. In order to do so he
can obtain information by making a fixed number n of sequential queries of
the form “Is x greater than e?. For a ≤ t < b let the independent random
variables Yt have the distribution given by:

Pr(Yt = 1) = 1− α, Pr(Yt = 0) = α, for t ≤ e
Pr(Yt = 1) = β, Pr(Yt = 0) = 1− β, for t > e

(12.10)

where β > 1 − α. Pr(Yt = 1) is the probability of an affirmative answer to
the query “Is t greater than e”? The searcher looks at location t: If t ≤ e,
i.e., the searcher’s guess is too low, the probability of obtaining a wrong
indication of the location of e is equal to 1 − α, while if t > e, i.e., the
searcher’s guess is too high, the probability of a false indication is equal to
1− β.

A pure strategy of S consists of choosing the first point x1, and observ-
ing the value Yx1

, then choosing x2 and observing Yx2
etc., where xi =

g(x1, Yx1
, x2, Yx2

, . . . xi−1, Yxi−1
) are predetermined functions (that form the

search policy). After making these n observations, S chooses a set E =
E(x1, Yx1

, . . . xn, Yxn) and receives 1
µ(E) , where µ(E) is the Lebesque mea-

sure of E, if e ∈ E and 0 if e /∈ E. Thus S wishes to find a set which is
small and contains e with high probability. H, on the other hand, wishes to a
distribution function of the location of e in a way that minimizes 1

µ(E) .

DICHOTOMOUS SEARCH 73

Define recursively the pure strategy Dn(a
′, b′) of S as follows: D0(a

′, b′)
consists of choosing the segment [a′, b′) as the set E. For n ≥ 1 the strategy
Dn(a

′, b′) consists of choosing the first point of observation x1 according
to

x1 = a′ +
β

α+ β
(b′ − a′). (12.11)

If Yx1
= 0 proceed usingDn−1(x1, b

′) while if Yx1
= 1 useDn−1(a

′, x1).

The main result is the following:

(1) “The uniform strategy u(a, b) (i.e., choosing the point e according
to the uniform distribution on [a, b) is the unique optimal strategy
of H).

(2) Dn(a, b) is an optimal strategy of S.

(3) The value of the search game is equal to (α+β)n

b−a
.”

This result implies that by using the strategy Dn(a, b), S can ensure a pay-off

of at least (α+β)n

b−a
; while on the other hand H can ensure that the expected

pay-off to S will not exceed this sum, by using strategy u(a, b). That means
that this is a zero-sum game. Note that both optimal strategies are inde-
pendent of n. Dn(a, b) guarantees a payoff that increases exponentially with
n at a rate of α+ β (which is greater that 1). This is achieved by two con-
tradicting effects: For any e ∈ [a, b) the probability that the final interval
E actually covers the point e lies between (min(α, β))n and (max(α, β))n

so that it decreases exponentially. However, the length of E lies between{
min(α,β)

α+β

}n

(b−a) and
{

max(α,β)
α+β

}n

(b−a) so that it decreases exponentially

at an even faster rate.

Ferguson [38] (1996) considers the following simple game: The hider
chooses a number y in the interval [−1, 1]. The searcher chooses a num-
ber x in that interval and is informed whether x < y, x = y or x > y.
The searcher can choose a number x only once, after which he estimates the
value of y by z. The payoff given by the searcher to the hider is (y − z)2.
The objective of the hider is to maximize the minimum possible payoff and
the objective of the searcher is to minimize it.

The author proves that this game has a minimax value v = 1
2e . The unique

optimal strategy for the hider is to choose y ∈ [−1, 1] according to the
distribution F (y) that has a mass 1

e+1 at y = −1, a mass 1
e+1 at y = 1 and

density (12.12):

f(y) =
1

2e(e−1 + y2)1.5
for |a| < 0.5(1 − e−1). (12.12)

DICHOTOMOUS SEARCH 74

The unique optimal strategy for the searcher is to choose x ∈ [−1, 1] ac-
cording to the distribution G(x) that has a mass 0.25 at x = 0.5(1 − e−1),
a mass 0.25 at x = −0.5(1 − e−1) and density (12.13):

g(x) =
1

2(e−1 + x2)0.5
for |x| < 0.5(1 − e−1). (12.13)

If y < x, choose z = x−
√
e−1 + x2; if y > x, choose z = x+

√
e−1 + x2; if

y = x choose z = x.

Additional literature on search games is covered in this survey: see [17, 5, 43].
Applications of search games to economics are described in §14.

13. Search for a state transition point in production

processes with geometric or arbitrary failure rate

Suppose that an item produced by a certain machine is found to be defective.
It is known to be theNth item produced since the machine was last inspected
and found to be operating properly. The location of the first defective
item is known to have a certain distribution. All items produced after the
first defective item are also flawed. The producer’s goal is to minimize the
expected number of inspections required to locate the first defective item.
That is an instance of a dichotomous search problem, where a query at an
item reveals whether it is defective. If it is not defective, then the first
defective item is produced later. If it is flawed, then the first defective item
has been already produced.

In many applications the failure rate is assumed to be constant, i.e., the
location of the first non-conforming object is assumed to have a geometric
distribution. Yet, some results hold not only for the geometric distribu-
tion, but for any a priori distribution. Throughout this section we note the
assumptions at the basis of each article.

13.1 Algorithms and heuristics for the basic problem

Consider another example (introduced by Hassin [54]): A communication
system consists of N − 1 transmitting stations. A message is sent from the
source to the first station, then to the second and so forth, until it is sent
from the N − 1-th station to the final destination. The number of messages
a station transmits until it fails is geometrically distributed. Given that a
message has been sent from the source and has not arrived at the destina-
tion, the goal is to locate the defective transmitter using minimal expected
number of queries. A query at a transmitting station reveals whether the
message has arrived to it. If it has, then the defective transmitter is on
the way from the checked transmitter to the destination. If it hasn’t, then
the defective transmitter lies on the way from the source to the checked
transmitter.

DICHOTOMOUS SEARCH 75

Hassin [54] (1984) shows that the O(N logN) complexity of search derived
at [71] can be reduced to just O(N).

The problem is formulated as follows:

Given is a 2-state binary stochastic process {Ij} , j = 0, 1, ..., with initial
state I0 = 0. Once in state 1 the system remains there. If the system is in
state 0 at time t, it stays there with probability p < 1. State 0 is also called
the normal state, and state 1 the abnormal state Suppose that it is given
that IN = 1. The cost of each query is 1 and it reveals whether the first
defective item lies before or after the searched location. The objective is to
find the unique time period t ∈ {1, ...N} such that I0 = ... = It−1 = 0 and
It = It+1 = ... = IN = 1, with minimum expected cost. That unique time
period will also be referred to as FNU (first nonconforming unit).

The problem can be solved via dynamic programming: The probability that

we observe state 0 after j transitions is pj(1−pN−j)
1−pN

. Let f(n) denote the

expected cost of search under the optimal strategy in a problem of length
n. Then:

f(1) = 0, (13.1)

f(n) = 1 + min
x=1,...,n−1

{
px(1− pn−x)

1− pn
f(n− x) +

1− px

1− pn
f(x)

}
.

(13.2)

Let x∗n denote the argument that minimizes the right-hand side of (13.2).

The problem can be reformulated via the 2-tree formulation in the following

way: Find a 2-tree that minimizes
∑N

k=1 l(k)p
k−1 (the weighted path length),

where l(t), the level of node t, is the cost of reaching the tth node when the
search starts from the root. Such a tree is called optimal. §2 elaborates on
the terms discussed here.

A tree satisfying l(1) ≤ l(2) ≤ · · · ≤ l(N) is said to be nondecreasing. It is
easy to see that there is a one-to-one correspondence between nondecreasing
sequences of integers satisfying (2.1) and nondecreasing alphabetic 2-trees.
It is shown that the optimal tree is nondecreasing and the levels l(j) of its
terminal nodes solve the following problem:

Minimize
∑N

k=1 l(k)p
k−1

subject to: ∑N
k=1

(
1
2

)l(k)
= 1

l(1), ..., l(N) are integers.

(13.3)

An optimal strategy is constructed in linear time complexity O(N). The
efficient computation is enabled due to the major result:

DICHOTOMOUS SEARCH 76

x∗n+1 ∈ {x∗n, x∗n + 1} for n ∈ {1, . . . , N} . (13.4)

As a corollary, (13.2) can be modified as follows: Let F (n) = (1 − pn)f(n).
Then

F (N) = (1− pN) + min
x=x∗

N−1
,x∗

N−1
+1
{pxF (N − x) + F (x)} . (13.5)

Only x∗N−1 and x∗N−1 + 1 need to be considered as candidates to be opti-
mal, and thus only O(N) operations are necessary to construct the optimal
strategy.

Apart from the optimal strategy, Hassin also suggests an approximate solu-
tion to the posed problem applying the Lagrange approximation technique
based on relaxation of (13.3), thus treating l(k) as a continuous variable.

The approximate value F̂ (N) of F (N) is given as a closed formula (13.6).

If x∗N = logp

(
1+pN

2

)
is between k − 1

2 and k + 1
2 for an integer k, the

approximate strategy is k.

F̂ (N) = (1−pN) log2

(
p− pN+1

1− p

)
−
(
1− pN+1

1− p
− (N + 1)pN

)
log2 p.

(13.6)

Straightforward and approximate results for the optimal values are com-
pared in [54], and the difference is found not to exceed 0.5%.

A subsequent paper [59] of He, Gerchak and Grosfeld-Nir (1996) deals
with a version of the problem in [54], different only by the fact that at the
last time period t = N the state of the stochastic process is not a priori
assumed to be 1.

A simple modification to Hassin’s algorithm solves this problem: Check the
last state - if it is 0, then Ij = 0 for all j = 0, ..., N . Otherwise the problem
is reduced to Hassin’s version. The complexity of the search is O(N), and
the expected number of queries differs from the optimal solution by at most
one query.

The authors of [59] use dynamic programming to solve the case where IN is
not necessarily 1. It is given that I0 = 0. Let g(n) be the expected number
of inspections needed to find the state at which the switch is performed
among n numbers if the first number inspected is optimal. f(n) is the
expected number of inspections when In is known to be 1 and the first place
inspected is optimal. Note that g(1) = 1 and f(1) = 0.

Then we have the following two recursive equations:

g(n) = min
1≤k≤n

{
1 + pkg(n − k) + (1− pk)f(k)

}
, (13.7)

DICHOTOMOUS SEARCH 77

f(n) = min
1≤k<n

{
1 +

pk(1− pn−k)

1− pn
f(n− k) +

1− pk

1− pn
f(k)

}
. (13.8)

Note that in [54] it was assumed that IN = 1, so only recursion (13.8), which
is equivalent to equation (13.2) was needed.

The optimal location to inspect first is proved to have a limiting value of
logp(0.5) when N → ∞. Moreover, the optimal location to inspect first
converges to the same limiting value if it is known that IN = 1. This result
suggests the following search heuristic:

(1) “If N ≥ logp(0.5), inspect unit
⌊
logp(0.5)

⌋

(2) If N < logp(0.5), and quality of unit N is unknown, inspect unit N .

(3) If the last unit is defective, inspect unit N/2.”

Empirical comparison of the heuristic to the optimal solution over various
values of N and of p shows that the heuristic achieves expected number of
inspections very close to optimal.

Herer and Raz [60] (2000) apply Shannon’s information theoretic ap-
proach to find the FNU in a batch. Their work actually explores a wide
variety of search techniques, including both serial and parallel inspection.
In this paragraph we state the main results for serial inspection procedure
(meaning that the queries are made one after another, rather than in paral-
lel), while in §9.2 the results of parallel inspection will be introduced. The
following results can be applied to any probability distribution of the FNU’s
location, and the geometric distribution is presented as an example.

Let N be the batch size, and let pi be the probability that i is the FNU.
P := (p1, . . . , pN) is called the probability vector. The problem of mini-
mizing the expected number of inspections required to find the FNU ap-
pears to be closely related to the problem of determining which units, when
inspected, minimize the uncertainty regarding the location of the FNU.
This uncertainty can be measured by the notion of entropy U0(N,P) =

−∑N
i=1 pi log pi.

Let a(k, n, P) denote the probability of shifting to the abnormal state no
later than unit k in a batch of n units when the process probability vector
is P . a(k, n, P) can be computed for each probability vector P . The uncer-
tainty regarding the FNU after inspecting unit k in the batch becomes:

Uk(n, P) = (1− a(k, n, P))U0

(
n− k,

(pk+1, . . . , pn)∑n
i=k+1 pi

)

+ a(k, n, P)U0

(
k,

(p1, . . . , pk)∑k
i=1 pi

)
. (13.9)

The authors prove that if only one inspection is available, then it is optimal,
with regard to minimizing the amount of remaining uncertainty about the

DICHOTOMOUS SEARCH 78

location of the FNU, to inspect the unit that is closest to dividing the batch
into two segments that have equal probability of containing the FNU. For-
mally, the optimal unit to inspect is k̄ = argmink∈1,...,N |0.5− a(k,N, P)|.
For the geometric case denote p the probability that the process remains in

the normal state while producing a unit, i.e., for this case pi =
pi−1(1−p)

1−pN
.

Thus the unit to inspect first in order to minimize the uncertainty regard-
ing the location of the FNU is k̄ =

⌊
max(1, logp(0.5) + logp(p

N + 1)) + 0.5
⌋
.

The very same heuristic for the geometric case was proposed in [54] dis-
cussed earlier, though it was developed by a completely different method of
continuous relaxation of an integer programming problem. The authors in
[60] were aware of the result in [54], and in fact generalized it for an arbitrary
distribution of the location of the FNU.

Note that the proposed heuristic minimizes the uncertainty, but not nec-
essarily the number of inspections needed to locate the FNU. Each inspec-
tion reduces the uncertainty by exactly one unit, ignoring the fact that
inspections are conducted on integers. This relaxation means that the ini-
tial amount of uncertainty is precisely equal to the expected number of
inspections required to identify the FNU. Hence, D(N,P) - the expected
number of inspections in the optimal policy is higher than the uncertainty,
i.e., U0(N,P) ≤ D(N,P) for all N and P .

Numerical comparisons presented in [60] show that for the geometric case
this lower bound is very tight - an average deviation from the optimum is, in
most cases, less than one percent. Moreover, the proposed heuristic yields
better results (closer to optimum that is computed by dynamic program-
ming) than both the simple binary search and the heuristic developed in
[59].

13.2 Various cost formulations- perfect information, zero defects

and economic optimization.

Herer, Raz and Grosfeld-Nir (2000) explore in [111] a wider econom-
ical aspect of finding the FNU in a production batch. Sometimes it is not
economically wise to inspect many items and find the exact place where
the items start to be non-conforming (get “perfect information” about each
item). An alternative policy may be of “zero defects”, which does not allow
non-conforming units to reach the costumer, but may allow conforming units
to be scrapped. Yet another policy is the cost-minimizing policy (”economic
optimization”), where errors of both kinds are acceptable and the cost of
errors is taken into account.

Let p be defined as earlier (the length of time up to the FNU is geomet-
ric). Let CI be the inspection cost per unit; CP - the penalty of incorrect
acceptance: and CS - the penalty of incorrect rejection.

In the development of the optimal inspection/disposition policy, the authors
first find the optimal disposition policy if no inspections are performed at
all:

DICHOTOMOUS SEARCH 79

(1) If the quality of the last unit is unknown accept the first

j∗ =

log
(

CP

CS+CP

)

log p

 (13.10)

units, and reject the rest. Apparently, the break-even point does
not depend on the batch size. j∗ = 0 means that all units should
be rejected. When j∗ > N we set j∗ = N . The minimum expected
total cost for a batch of size N with no inspections and the quality of

the last unit is unknown is V 0(N) = Cp[j
∗−p1−pj

∗

1−p
]+CS

pj
∗
+1−pN+1

1−p
.

(2) If the last unit is known to be non conforming accept the first

j′ =

log
(
CP+pNCS

CS+CP

)

log p

 (13.11)

units, and reject the rest. As expected, j′ < N . The minimum
expected total cost for a batch of size N with no inspections and the
quality of the last unit is known as non conforming is

G0(N) = Cp

j′ − p
(
1−pj

′

1−p

)

1− pN
+ CS

[
pj

′+1 − pN+1

(1− p)(1− pN)
− (N − j′)pN

(1− pN)

]
.

In case that N is very large, pN is approximately 0, and the opti-
mal no-inspection policies with or without the knowledge of the last
unit’s condition coincide.

In order to find the optimal inspection/disposition policy, the following re-
cursive equations are developed:

V (k) = min

{
min
1≤j≤k

{CI +P[Ij = 1]G(j) + P[Ij = 0]V (k − j)} , V 0(k)

}

(13.12)

G(k) = min

{
min

1≤j≤k−1
{CI + P[Ij = 1|xk = 0]G(j) + P[Ij = 0|xk = 0]G(k − j)} , G0(k)

}
.

where:

• Ij = 0 if j conforms to specifications and Ij = 1 otherwise.

• V (k) is the cost of the optimal inspection/disposition policy, given
that the batch size is k and the quality of k is unknown.

• G(k) is the cost of the optimal inspection/disposition policy, given
that the batch size is k and unit k is non-conforming.

Boundary conditions are G(1) = 1 and V (0) = 0, and the computational
complexity is O(N2).

DICHOTOMOUS SEARCH 80

If we wish to use the perfect information approach, we should just set CS

and CP to be very large. To implement a zero-defect policy, just set Cp to
be very large.

The expected number of inspections is calculated for each case: for example
for batch size 100 and p = 0.99, for perfect information the expected number
of comparisons is 5.19, while for the zero-defect approach it is 4.17.

Chun [29] (2010) explores the following problem: An item is produced
on a high-speed mass production line which is subject to random failures
with geometric rate. Every defective item must be located and salvaged (as
opposed to [111], where accepting a defective item is possible and bound to
a fee). A non-defective item can be accepted or salvaged, in which case a
fee must be payed. The problem explored is not only about finding the first
defective item among a given lot, but also:

(1) “How often to conduct a regular inspection given a known inspection
cost c and an estimated failure rate from past data?

(2) Once a non-conforming item is found, how to conduct an inspection
in the last batch and when to stop it? The optimal policy may be to
salvage every item in this last batch, or on the contrary - to search
for the first defective item until it is detected, all depends on the
costs involved.”

The resolution of the second question is methodologically similar to that in
[111] and is not described here in detail.

To the first question, how often to perform a regular inspection, the au-
thor approaches from a Bayesian point of view. Since we assume that the
failure process follows a geometric distribution with parameter p, the num-
ber of regular inspections k taken until we detect a defective item is also a
geometric distribution with parameter pn (n is the inspection interval): for
k = 1, 2, · · · ,∞ P [k] = pn(k−1)(1− pn). Let c be the cost of one inspection.
The expected profit per a produced item π is:

π(n) = pnva + (1− pn)
EV ∗(n)

n
− c

n
. (13.13)

where EV ∗(n) is the maximum expected total profit obtained for a sequence
of n items, when the nth item is known to be flawed.

The optimal inspection interval n∗ is n that minimizes π(n). The author
also suggests a methodology to estimate p. If inspection data are available,
we may use one of the statistical estimation methods such as the method of
moments or the method of maximum likelihood. The author chooses to use
a Bayes based method, where the prior knowledge of the unknown geometric
variable p is expressed as a prior density function of a beta distribution. The
estimate for p is developed, but we do not elaborate on it here.

DICHOTOMOUS SEARCH 81

13.3 Search for a state transition point with ability of process

recovery after failure

Finkelshtein, Herer, Raz and Ben-Gal [39] (2005) extend the work of
Raz et al. [111] by taking into account the ability of the production process
to recover after failure. Their model is also based on economic optimiza-
tion - the objective is to define the inspection/disposition procedure that
minimizes the sum of the inspection cost and the penalty costs for incor-
rect disposition decisions. The status of the system during the production
of a batch is modeled as a discrete-time two-state (IN and OUT) Markov
process. The process typically starts in the IN state, it can switch to OUT
state at some point during the production of the batch and it can also switch
back to IN state later and so on. The probabilities of IN-OUT switch and
of OUT-IN switch are constant and known, pc and pn respectively.

Three costs are considered by the model: the cost of one inspection CI , the
cost of incorrect acceptance CP , and the cost of incorrect rejection CS . Let
Sb and Se be the status of the system before the start of the batch and at the
end of the batch respectively. Each of these variables can have one of three
possible values: c (conforming), n (non-conforming) and u (unknown).

Let PSb

i be the probability that unit i is conforming given that the initial
condition of the batch was Sb. Using an induction argument on i one can

show that for all i ≥ 0 PSb

i is expressible in terms of pc and pn:

P c
i =

(1− pn − pc)
ipc + pn

pn + pc
, (13.14)

Pn
i = 1− (1− pn − pc)

ipn + pc
pn + pc

. (13.15)

Let aSbSe

i (K) be the probability that unit i is conforming in a batch of size
K, given that before (after) the batch started (completed) the process was

in the Sb (Se) state. Then also aSbSe

i (K) can be computed in terms of pc
and pn:

aSbSe

i =

P c
i P

c
K−i

P c
K

(Sb, Se) = (c, c)
P c
i (1−P c

K−i
)

1−P c
K

(Sb, Se) = (c, n)
Pn
i (1−P c

K−i
)

1−Pn
K

(Sb, Se) = (n, n)
Pn
i P c

K−i

Pn
K

(Sb, Se) = (n, c).

(13.16)

In order to determine whether inspection is economically justified we must
consider the optimal policy if no inspections are performed. Let W SbSe(K)
be the minimal expected cost of classifying all the units in a batch of size
K without inspection, given initial state Sb and final state Se. Then:

DICHOTOMOUS SEARCH 82

W SbSe(K) =

K∑

i=1

min
(
aSbSe

i (K)CS ,
[
1− aSbSe

i (K)
]
CP

)
. (13.17)

The minimal expected cost GSbSe(K) of classifying all the units in a batch
of size K can be calculated using the following recursion:

GSbSe(K) = min

[
W SbSe(K), min

1≤j≤K
GSbSe

j (K)

]
. (13.18)

where GSbSe

j (K) is the minimal cost if classifying all the units in a batch
of size K, given initial state Sb, final state Se and that unit j is to be
inspected:

GSbSe

j (K) = CI + aSbSe

j (K)
(
GSbc(j) +GcSe(K − j)

)

+ (1− aSbSe

j (K))
(
GSbn(j) +GnSe(K − j)

)
. (13.19)

The computational time required for implementing this recursion for a batch
of N units is O(N2).

The authors also provide an easy to implement heuristic to this problem:
Take a batch of N units, divide it into sub-batches of l units each for some
l = 1, . . . , N and inspect the last unit of each batch. The expected cost is
equal to the sum of expected costs of each of the sub-batches. Evaluate the
expected cost for each l = 1, . . . , N and choose the l with the lowest cost.
The performance of the heuristic relative to the optimal solution improves
with higher values of failure and recovery probabilities, pc and pn.

13.4 Search for a state transition point with process’ ability to

conduct rework on non-conforming units.

W. Wang, Sheu, Chen and Horng [128] (2009) add another layer to
economic optimization considerations, the option to conduct rework of non
conforming items instead of scrapping them. It is assumed that the propor-
tion of defective units that can be reworked and repaired is constant, given,
and denoted by δ. For example, if unit j is found to be non conforming,
then a portion δ of units j +1 through N is assumed to be repairable while
the other portion is considered to be scrap. The reworking cost per unit is
Cr, and it is paid only for the units that are repairable. The objective is
economic optimization, as defined in [111].

Let Pj denote the probability that the FNU is larger than j − 1. Note that
it is not assumed that the distribution of the FNU is geometric, but the
results can definitely be applied to that special case.

The optimal solution is given by the following recursive formulas:

DICHOTOMOUS SEARCH 83

ERV (N) = max

{
max

1≤j≤N

[
ER1

V (N, j)
]
, ER0

V (N)

}
, (13.20)

ERG(N) = max

{
max

1≤j≤N−1

[
ER1

G(N, j)
]
, ER0

G(N)

}
, (13.21)

where ERV (N) is the expected profit from implementing the optimal inspec-
tion policy when the batch size is N , while ERG(N) is the same value when
the last unit is known to be non-conforming. ER1

V (N, j) is the expected
profit from implementing the optimal inspection policy given that the j th
unit will be inspected first. ER1

G(N, j) is the same value when the last unit
is known to be non-conforming. ER0

V (N) is the expected profit from imple-
menting the optimal no-inspection policy when the batch size is N , ER0

G(N)
is the same value when the last unit is known to be non-conforming.

The functions ER1
V (N, j) and ER1

G(N, j) are computed recursively and in-
clude the rework factor δ:

ER1
G(N, j) = Pr(FNU ≤ j |FNU ≤ N) {ERG(j) + (N − j)δ(U − Cr)}+

Pr(FNU > j |FNU ≤ N) {ERG(N − j) + U · j} − CI , (13.22)

ER1
V (N, j) = Pr(FNU ≤ j) {ERG(j) + (N − j)δ(U − Cr)}+

Pr(FNU > j) {ERV (N − j) + U · j} − CI . (13.23)

where ERG(j) is the expected profit from implementing the optimal policy
to the first j units in the batch given that the jth unit is known to be non
conforming, ERV (j) is the same value if the state of the j’s unit is not known
and U - the expected profit from the sale of one conforming unit.

The functions ER0
V (N) and ER0

G(N) are explicitly computed in manner
similar to that in [111], accompanied by a numerical study.

Tsai and C. Wang [123] (2011) claim that the results of W. Wang, Sheu,
Chen and Horng [128] are correct only if the distribution of the FNU is geo-
metric. Moreover, when an inspection policy is explored, not only reworking
the identified nonconforming units but also their rejection should be con-
sidered. Finally, the boundary conditions given in the solution procedure
of [128] should be corrected; more precisely, when a sub-batch has only one
nonconforming unit, the expected payoff is possible to be positive instead of
zero as used in [128] since rework is under consideration.

DICHOTOMOUS SEARCH 84

13.5 Search for a state transition point with unreliable answers

In some real life problems, the procedure of inspection for the FNU is not
free of errors: conforming units can be mistakenly classified as non conform-
ing and vice versa. Let α denote the type 1 inspection error, that is, the
probability of misclassifying a conforming unit; β is the probability of the
type 2 inspection error. A common assumption to the articles described
below is that each item can be tested only once during the search.

Sheu, Chen, W. Wang and Shin [121] (2003) use the same notations
and definitions as in [111] to explore search procedures for a geometrically
distributed object taking into account inspection errors that might occur
during the inspection process. Let xj receive the values 1 and 0 if unit j
is judged to be conforming or non-conforming respectively. Since α and β
are assumed to be known, the analysis is conducted in a same manner as
in [111], only with P[xj = 1] = pj(1 − α) + (1 − pj)β. Recursion equations
are developed and numerical analysis is conducted for the three inspection
policies defined in [111]: zero-defects, perfect information and the economic
policy.

C. Wang [126] (2007) noticed a flaw in the solution suggested in [121]-
since the process state is always unknown, the process’s Markovian properly
cannot be applied, i.e. after one inspection the distribution of the object’s
location ceases to be geometric. Moreover, the model suggested by [121]
underestimates the penalty costs associated with incorrect acceptances and
incorrect rejections - not only CP and CS should be considered, but also
additional loss caused by mistakenly accepting or discarding of several items.
For example, if unit j is found to be conforming then according to their
model units 1 to j are accepted and no longer searched through, and if unit
j turns out non-conforming, only penalty of CP is payed, while several other
items were also misclassified. That additional cost to the firm is ignored in
[121].

C. Wang reformulates the model of [111] for the two types of inspection
errors. Let (1 − p) (0 < p < 1) be the shift probability of the production
system. The distribution of the shift location is geometric. For a non-
inspection policy the break-even point (BEP) is found, i.e., a point such that
the expected penalty cost of rejecting all units after it and accepting all units
before it is minimal, provided that no inspections are done (in particular the
state of the last unit is unknown). The BEP for the non-inspection policy
is given in (13.10) in [111].

If the last unit in the batch (of size N) is inspected to be non-conforming,
the BEP moves to:

jg =

log
(
CP+CSp

N (1−δ1)
CP+CS

)

log(p)

 , (13.24)

where δ1 =
α

1−β
is defined as the probability ratio for “inspection is wrong”

to “inspection is right”. jg is increasing with δ1. The BEP values are also

DICHOTOMOUS SEARCH 85

calculated for case where the first unit of the batch has been inspected to
be conforming and for the case that the first and the last unit in the batch
have been inspected to be conforming.

A recursive algorithm for computing the optimal inspection policy is based
on the following equation:

V 1(k, j) = CI + [pjα+ (1− pj)(1− β)]G(1, j)+

[pj(1− α) + (1− pj)β]H(j, k − j + 1) + CSα

(
p1+j − p1+k

1− p

)
+

CPβ

(
j − 1− p− pj

1− p

)
, (13.25)

where G(f, k) is the cost of the optimal policy when a batch is of size k, the
first unit is f and the last unit has been inspected to be non-conforming,
and H(f, k) is the cost of the optimal policy when a batch is of size k, the
first unit is f and the first unit has been inspected to be conforming. The
complexity of the algorithm is O(N3).

To determine the batches for which the no inspection policy performs better
than the other inspection policies, the author investigates the threshold batch
size (TBS), i.e., the batch size at which inspection becomes economically
justified. If no inspection errors exist, the results are the same as in [111].
Under inspection errors the TBS increases with process reliability (it has
been checked for α = β = 0, α = β = 0.05, α = β = 0.1) when (1 − p)
is relatively small, since the first non-conforming product is produced later.
For large shift probabilities ((1 − p) > 0.1) no results are shown. Also, the
TBS is non-decreasing when α and β increase.

Another result is that for economic optimization18 the expected number of
inspections is non-decreasing when inspection errors increase. This is be-
cause when inspection errors increase, there will be a preference for choos-
ing the inspected unit as close as possible to the tail or the beginning of the
batch. This corrects the mistake in [121] that the expected cost is decreasing
with inspection errors.

Chun [27] (2007)19 argues that the problem of dichotomous search with
inspection errors is mistreated not only by Chen, Sheu et.al [121] but also
by C. Wang [126]. The basic argument is the following: In a model with-
out inspection errors with an a priori geometric distribution for the place of
the transition unit, the posteriori distribution (after one inspection) is also
geometric. This property is the one that makes dynamic programming ap-
plicable to this model. When the basic model is complicated by introducing

18recall from [111] that the three policies - economic optimization, perfect information
and zero-defects, are formulated as different combinations of the values of cost parameters
CI , CP and CS

19unpublished

DICHOTOMOUS SEARCH 86

inspection errors into it the posteriori distribution is no longer geometric.
Moreover, an inspection does not narrow the interval of uncertainty, since
inspection errors are possible. Chun does not offer a new way to solve this
problem, but rather shows that it is much harder than its counterpart which
has no inspection errors.

Chun [28] (2008) publishes a viewpoint summarizing the flaws in the paper
of Sheu et.al. [121], one of which is that discussed in [27]. In that viewpoint
Chun provides a reformulation of the equations to overcome those mistakes.
In a reply to Chun’s viewpoint Sheu et.al. accept their critique.

Tzimerman and Herer [124] (2009) also consider the problem of inspec-
tion errors in quality control over a production line, as do [121] and [126].
The main difference is that previous analyzes wish to classify all items with
minimal cost (the economic approach), while the present paper deals with
finding the transition unit with a confidence level γ using minimal number
of inspections. Accordingly, the previous analyzes assume that after a unit
is inspected and found to be conforming (non-conforming), all units pre-
ceding (following) the inspected unit are accepted (rejected). Tzimerman
and Herer, on the other hand, found that for the different objective a better
policy is possible if one considers all the inspection results before accepting
or rejecting units.

The location of the transition unit has an arbitrary distribution, in particular
it is not assumed to be distributed geometrically. As we shall see, the
complexity of the solution for an arbitrary distribution rises and is no longer
polynomial.

The method for finding the optimal solution is again dynamic programming.
To describe it notations must be introduced: α and β are type 1 and type
2 errors respectively. Xj is 1 if unit j is conforming and −1 otherwise;
Ij is 1 if the inspection result indicates that unit j is conforming and −1
otherwise.

Let tji be the status of unit j by iteration i: 0 if not-inspected, 1 if inspected
and found conforming, −1 if inspected and found non-conforming. Ti :=

(t1i, . . . , tNi). T
j+
i (T j−

i) is the state vector corresponding to iteration i and
the subsequent inspection of unit j, which identified the unit as conforming
(non-conforming). f(Ti, j) is the expected number of inspections remaining
at iteration i if unit j is inspected next; j∗ is the optimal unit to be inspected.
f∗(Ti) is the minimum expected number of inspections remaining at iteration
i (with state vector Ti), given that we inspect the optimal unit j∗. Thus,
f∗(Tj) ≡ f(Ti, j

∗).

The expected number of inspections remaining at iteration i, if unit j 6= 0
is inspected next is equal to one plus the expected number of inspections
remaining in the next iteration:

f(Ti, j) = 1 + Pr[Ij = 1 |Ti] · f∗(T j+
i+1) + P[Ij = −1 |Ti] · f∗(T j−

i+1).

(13.26)

DICHOTOMOUS SEARCH 87

As long as the stopping criteria is unmet (we have not yet identified the
transition unit with required confidence and there are still units to inspect),
we choose to inspect j∗ - the unit which, after its inspection, yields the
minimal expected number of remaining inspections. The complexity of the
dynamic program is O(N3N) because there are 3N possible Ti vectors and
fi(Ti, j) must be computed for each j.

Since the dynamic program is not practical for large batches, several heuris-
tic solutions are also introduced and compared, but we don’t describe them
in this survey.

13.6 Search for a state transition point with non-conforming ob-
jects in the normal state and conforming objects in the ab-
normal state

In another extension of [111], Bendavid and Herer [23] (2009) consider a
process in which non-conforming units can also be produced in the IN state
and conforming units in the abnormal state. The inspection is assumed to
be error free.

Let αI be the probability of producing a non-conforming unit when the
process is in the normal state, and αO the probability of producing a non-
conforming unit when the process is in the abnormal state. It is assumed that
αO > αI . CI , CP and CS are defined as previously. The distribution of the
transition point location is assumed to be arbitrary (not necessarily geomet-
ric)20. At each stage, we can inspect an item that hasn’t been inspected yet,
or to stop inspecting, accept all the non-inspected items and pay a penalty
CP for each for each Let S = (s1, . . . , sN) be a “vector of states” that de-
scribes the status of the units in the batch: si = u means that unit i has
not been inspected and its quality is unknown, si = n means that unit i has
been inspected and found to be non conforming, si = c means that unit i has
been inspected and found to be conforming. Let P (S) = (p1(S), . . . , pN (S))
be the vector of probabilities that the process remained in the IN state given
the vector S. Initially, P (u, u, . . . , u) = (p1, . . . , pN).

Pn
C(S) = (pn1 (S), . . . , p

n
N (S)) and P c

C(S) = (pc1(S), . . . , p
c
N (S)) are the vec-

tors of probabilities that the units are non conforming / conforming respec-
tively given the vector S. The authors explain how to compute the vectors
Pn
C(S), P

c
C(S) using a O(N) time complexity procedure. f(S) is the cost of

the optimal inspection/disposition policy for a given vector S. A notation
S |sk ← c instead of S is used to represent the vector of states S with its
kth element (which is presently u) replaced by c.

The cost of the optimal no-inspection policy, W (S) is calculated using O(N)
operations as the expected penalty cost for all the units, i.e., in the optimal
no-inspection policy we accept all units and pay penalties for every unit that

20Here also we see that the generalization of the problem to arbitrary distribution
rather than geometric causes a rise in the complexity of the solution, which ceases to be
polynomial

DICHOTOMOUS SEARCH 88

turned out to be non-conforming. The dynamic program is formulated as
follows:

• “Initial condition: f(S) = 0 when si 6= u for all i = 1, . . . , N .

• Recursive function:

f(S) = min

[
min

j∈{1,...,N |sj=u}

{
CI + pcj(S)f(S

∣∣sj ← c) + pnj (S)f(S |sj ← n)
}
,W (S)

]
.′′

(13.27)

• The goal: to find f(S) when S = (u, u, . . . , u).

In a preprocessing step, the authors calculate the vectors of probabilities
that the units are conforming or non conforming, for the 3N possible vec-
tors of states S, and keep them in a matrix of size 3N · N . Thus, all the
probabilities in the matrix can be calculated in O(3NN) time. For each of
the 3N vectors, the optimal cost of inspecting each of the N possible units
must be calculated, thus the computational complexity of the dynamic pro-
gram is O(3NN).

Since the computational complexity of the dynamic programming is very
high, the authors develop several heuristics:

(1) The “greedy in uncertainty” selection rule instructs us to inspect
unit i such that the probability that a transition occurs at or before

it is closest to 0.5, i.e., i = argmini∈{1,...,N |si=u}

∣∣∣0.5−
∑i

j=1 p
T
j (S)

∣∣∣.
Recall that Herer and Raz (2000) [111] demonstrated that such a
unit minimizes the expected remaining uncertainty regarding the
location of the transition point in the batch.

(2) Under the “greedy in cost” selection rule, we inspect the unit that
minimizes the expected no-inspection cost obtained after performing
one inspection:

i = argmini∈{1,...,N |si=u} {pci (S)W (S, si ← c) + pni (S)W (S, si ← n)} .

(3) In the “myopic” stopping rule we inspect unit i if disposing of the
batch without any additional inspection is more expensive than in-
specting unit i and then disposing of the batch without any further
inspections. We inspect i if W (S) > h1(S) ≡ CIp

c
i (S)W (S, si ←

c) + pni (S)W (S, si ← n).

(4) For the “look ahead” stopping rule the authors define

hj(S) = CI + pci (S)min
{
W (S, si ← c) · hj−1(S, si ← c)

}
+

pni (S)min
{
W (S, si ← n) · hj−1(S, si ← n)

}
. (13.28)

hi(S) can be interpreted as the expected cost obtained after per-
forming up to j inspections and then proceeding according to the

DICHOTOMOUS SEARCH 89

optimal no-inspection policy. In the “look-ahead” stopping rule we
perform the inspection iff W (S) > h⌊logN⌋+1(S).

The four combinations of a selection rule (1 or 2) with a stopping rule (3
or 4) create four heuristic policies, which are studied and compared in the
article. The major conclusion is the dominance of the heuristic composed
of the greedy in cost selection rule and the look-ahead stopping rule over all
others.

C. Wang, Shih and Tsai [127] (2011) also develop an inspection pol-
icy for this problem, only their objective is different - not minimizing the
overall cost subject to penalties for classification errors, but identifying the
transition unit with a given confidence level γ. In this model it is allowed to
inspect each unit more than once at a time, to increase the confidence level,
but it is not allowed to return to inspect a unit after other units have been
inspected. The suggested policy is not optimal in a sense of minimizing the
number of inspections or the total cost as in [111], but each selection of item
to inspect next is the one that minimizes the uncertainty of the transition
unit, or equivalently minimizes the expected entropy.

The authors do not wish to find an optimal policy, but to build a heuristic
according to the principle of minimizing the entropy with only one constraint
- a given confidence level of identifying the transition point.

The heuristic suggested is not a recursive algorithm, and not costly in run-
ning time. Numerical examples indicate that for a batch of size < 35, the
expected number of inspections to meet a confidence level of γ = 0.95 doesn’t
exceed 3.5. When the required confidence level is set to one, all units of the
batch should be inspected. The heuristic is not compared to any optimal
results or different heuristics.

14. Applications of dichotomous search games in economics

Some work is done in the field of applying dichotomous search models in
economics. We discuss here two examples of such applications: Gathering
information from inventories and making optimal wage request.

14.1 Gathering information from inventories

Firms may use their inventories to gain information about the product de-
mand they face: by observing the inventories remaining from its sales, the
firm can tell whether its quantity put up for sale is “high” or “low” relative
to the demand. In [7], Alpern and Snower (1987) develop a model for a
special case of this problem, where the price of the product is fixed through
time, and propose an optimal “learning strategy” for the firm. Let p be the
price of the firm’s output, f the unit cost of production and h the cost of
holding one unit of inventory for one period of time. The firm knows that
its product demand D is constant through time and lies in a known interval
[D
¯
, D̄] over which it is uniformly distributed. At the beginning of time pe-

riod k the firm produces an amount Qk. The inventory stock carried from

DICHOTOMOUS SEARCH 90

the previous period is (1− δ)Ik−1, where Ik−1 is the inventory stock held at
the end of that period and 0 ≤ δ < 1 is the inventory depreciation rate. At
period k the firm puts up for sale a quantity Gk = (1− δ)Ik−1+Qk, and the
amount which it sells is Zk = min (Gk,D). If Ik = 0, then the firm learns
that the true demand must lie in a smaller uncertainty interval [Gk, D̄]. If
Ik > 0 then the true demand is revealed D = Zk = Gk − Ik and the firm
future supplies will all be equal to D. If the demand is greater than the
supply, the difference (the “lost sales”) is not left for the next period.

Let α be the time discount factor. Let a “supply strategy” S = (S1, S2, . . .)
be a sequence of numbers which determines the supply decisions Gt given
the information set Jt = {G1, . . . , Gk−1, I0, . . . , Ik−1}. For a strategy S and
any D in [0, 1] the firm’s opportunity cost is defined by:

c(S,D) =

N−1∑

t=1

αt−1(D − St) + αN−1b(SN −D), (14.1)

where N = N(S,D) is the least t with St > D and

b =
h+ f(1− α(1− δ))

p− f
. (14.2)

The firm’s objective is to minimize the expectation of opportunity cost over
all supply strategies. The main result of the paper states that the optimal
quantity S∗

k for k = 1, 2, . . . to be put up for sale in the k’s period, provided
that the previous supplies have resulted in stock-outs, is

S∗
1 = λ =

αb− b− 1 +
√

(b− αb+ 1)2 + 4αb

2αb
, (14.3)

S∗
k = 1− (1− λ)k for k = 2, 3, . . . (14.4)

The minimum expected cost is

V =
αb− b− 1 +

√
(b+ 1− αb)2 + 4αb

4b
. (14.5)

In [8] (1988) Alpern and Snower address the same problem, but re-
stricted to one or two periods.

Extensions of this simple model above are surveyed in [7]: “Through the ap-
plication of the mathematical theory of dichotomous search, it has been ex-
tended to cover infinite time horizons (Aghion, Bolton and Jullien [3] (1987);
Alpern and Snower, [7] (1987)), “conservative” (minimax) production strate-
gies rather than Bayesian updating (Alpern and Shower [6] (1987)) and
random variations on the actual product demand (Reyniers [113], 1987).”

DICHOTOMOUS SEARCH 91

Alpern and Snower [9] (1988) set out a methodology for a more general case
of production decision, where the firm is allowed to change the price of the
product between periods of time. They present the general model of the
problem but do not propose a solution.

Subsequently, variations on the basic model have been studied. Among
these, an information delay in which the outcomes of sales on period k are
not known to the supplier until period k + 2 (Reyniers [114],[116]) and an
effect whereby stock outs decrease future demand (Reyniers [115]). Those
studies fall beyond the scope of this paper.

14.2 Wage bargaining - optimal wage request

Alpern and Snower (1988) [8] apply dichotomous search ideas to labor
economics. In their paper, the worker tries to find out his value to the firm
by making wage demands. If the wage demand is lower than the worker’s
value to the firm, the worker is hired at that wage demand. This wage then
becomes a new lower bound on the interval of uncertainty for the worker’s
value. It is assumed that the firm is myopic and hires the worker whenever
his wage demand is below his value. This means that the firm is not strategic,
i.e. does not try to manipulate the worker to lower his wage demand by not
hiring him when his demand is above his value to the firm. It is also assumed
that the worker approaches the same firm at every period.

For simplicity it is assumed that the worker only lives for two periods and
that his value is uniformly distributed in [0, 1]. Given that the worker is
trying to learn about his value he will take into account both scenarios
(hired/ not hired in the first period) when planning his strategy. The worker
can solve a simple dynamic programming problem trying to maximize his
total discounted expected payoff (0 ≤ δw ≤ 1 is the worker’s discount factor)
over the two periods, in which the second period wage demand is determined
first. It is shown that the optimal first period wage demand is w1 =

1+δw
2+1.5δw

and the optimal second period wage is w2 = max(w1, 0.5) if the worker is
hired in the first period, or w2 = 0.5w1 otherwise. The worker’s optimal
expected payoff is:

Pw =
(1 + δw)

2(1 + 0.75δw)

(2 + 1.5δw)2
. (14.6)

The authors also compute the total expected payoff to the firm. Let 0 ≤
δf ≤ 1 be the firm’s discount factor. First period unemployment probability
is w1 (since the worker’s value is uniformly distributed in [0, 1]) and second
period unemployment probability is zero for those already accepted in the
first period and 0.5 for those who were not accepted in the first period. The
total expected discounted payoff to the firm in this model is:

DICHOTOMOUS SEARCH 92

Pf = (1 + δf)

∫ 1

w1

(v − w1)dv + δf

∫ w1

0.5w1

(v − 0.5w1)dv =

=
δfw

2
1

8
+

1 + δf
2

(1−w1)
2. (14.7)

Note that in this model the firm is not strategic, thus its expected payoff is
determined by the worker’s optimal policy.

Reyniers [117] (1992) examines a wage bargaining problem where the
firm, which the worker approaches at every period, is allowed to behave
strategically rather than just hire the worker whenever his wage demand is
below his value. The firm has an incentive in preventing the worker from
learning that he has a high value and will therefore try to influence the
worker’s second period wage demand through its hiring/firing decisions in
the first period. The worker is assumed to be naive and believes that the
firm is myopic, and thus makes wage demands as described above. In the
second period, the firm does not have an incentive to be ‘deceptive’ and will
hire the worker if his wage demand does not exceed his value. It is shown
that the firm should hire the worker at his wage demand w1 in period 1 if
the worker’s value v satisfies v ≥ w1(1 + 0.5δf). The firm’s expected payoff
is

Pf =
δf
8
w2
1(1+ δf)

2+
1 + δf

2
(1−w1(1+

δf
2
))(1−w1(1−

δf
2
), (14.8)

and the worker’s expected payoff is

Pw = (1 + δw)w1(1− w1(1 +
δf
2
)) +

δw
4
w2
1(1 + δf). (14.9)

Thus, if the firm is extremely impatient (δf = 0) the worker’s expected
payoff reduces to his expected payoff in the myopic form model. The more
patient the firm is, the larger is the difference between worker’s expected
payoff in the two models.

Note that in [8] both the firm and the worker are assumed to be myopic,
while in [117] the firm is assumed to be strategic and the worker is assumed
to be myopic. We found no literature on the game where both the firm and
the worker are myopic.

References

[1] N. Abigadol and A. Ben-Tal. A minmax search for the critical level of a system:
The asymmetric case. Naval Research Logistics Quarterly, 32:137–154, 1985. (Cited
on page 31.)

[2] J. Abrahams. Code and parse trees for lossless source encoding. unpublished, 1997.
(Cited on page 67.)

DICHOTOMOUS SEARCH 93

[3] P. Aghion, P. Bolton, and B. Jullien. Learning through price experimentation by a
monopolist facing unknown demand. Working paper 8748, University of Californa-
Berkley, 1987, 1987. (Cited on page 90.)

[4] M. Ahmed, A. Belal, and K. Ahmed. Optimal insertion in two-dimensional arrays.
International Journal of Information Sciences, 99:1–20, 1997. (Cited on page 65.)

[5] S. Alpern. Search for a point in interval, with high-low feedback. Mathematical
Proceedings of the Cambrige Philosophy Society, 98:569–578, 1985. (Cited on page 47
and 74.)

[6] S. Alpern and D. Snower. Production desicions under demand uncertainty: the high-
low search approach. Discussion paper no. 223, Center for economic policy research
(CERP), 1987. (Cited on page 90.)

[7] S. Alpern and D.J. Snower. Inventories as an information-gathering device. World
Bank Development Research, Report no. DRD267, 1987. (Cited on page 1, 89,
and 90.)

[8] S. Alpern and D.J. Snower. ”high-low search” in product and labor markets. AEA
Papers and Proceedings, 78:356–362, 1988. (Cited on page 1, 90, 91, and 92.)

[9] S. Alpern and D.J. Snower. A search model of optimal pricing and production.
Journal of Engineering Costs and Production Economics, 15:279–284, 1988. (Cited
on page 1 and 91.)

[10] A. Andersson. A note on searching in a binary search tree. Software: Practice and
Experience 21, 10:1125–1128, 1991. (Cited on page 15.)

[11] S. Anily and R. Hassin. Ranking the best binary trees. SIAM Journal on Computing,
18:882–892, 1989. (Cited on page 14.)

[12] S.M. Arafat. An efficient simple algorithm for building optimal alphabetic trees
in parallel. Faculty of Computer and Information Sciences, Ain Shams University,
Egypt. (Cited on page 20.)

[13] M. Atallah, S. Rao Kosaraju, L. Larmore, G. Miller, and S. Teng. Constructing trees
in parallel. Proccedings of the 1st Symposium on Parallel Algorithms and Architec-
tures, pages 499–533, 1989. (Cited on page 19.)

[14] M. Avriel and D. Wilde. optimality proof for the symmetric fibonacci search tech-
nique. The Fibonacci Quarterly, 4:265–269, 1966. (Cited on page 25.)

[15] M.B. Baer. Alphabetic coding with exponential costs. Information Processing Let-
ters, 110:139–142, 2010. (Cited on page 51.)

[16] A. Barkan and H. Kaplan. Partial alphabetic trees. Journal of algorithms, 58:81–103,
2006. (Cited on page 67.)

[17] V.J. Baston and F.A. Bostock. A high-low search game on the unit interval. Math-
ematical Proceedings of the Cambrige Philosophy Society, 97:345–348, 1985. (Cited
on page 47 and 74.)

[18] P. Bayer. Improved bounds on the cost of optimal and balanced binary search trees.
M. Sc. Thesis, MIT, Cambrige, 1975. (Cited on page 18.)

[19] A. Belal, M.A. Ahmed, and S.M. Arafat. Limiting the search for 2- dimentional
alphabetic trees. Fourth International Joint Conference on Information Sciences,
North California, USA, 1998. (Cited on page 64.)

[20] A. Belal, M. Selim, and S. Arafat. Merging optimal alphabetical trees in linear
time. Proceedings of the First International Conference on Intelligent Computing
and Information Systems ICICIS, Cairo, Egypt, 2002. (Cited on page 16, 17, 20,
and 21.)

[21] A.A. Belal, M.S. Selim, and S.M. Arafat. Building optimal alphabetic trees recur-
sively. Proceedings of the Third WSEAS International Multiconference on Mathe-
matics, Wolin Island, Poland, 2002. (Cited on page 17 and 20.)

[22] A.A. Belal, M.S. Selim, and S.M. Arafat. Towards a dynamic optimal alphabetic tree.
International Journal of Cooperative Information Systems, 4:46–50, 2004. (Cited on
page 17.)

[23] I. Bendavid and Y.T. Herer. Economic optimization of off-line inspection in a process
that also produces non-conforming units when in control and conforming units when
out of control. European Journal of Operational Research, 195:139–155, 2009. (Cited
on page 87.)

DICHOTOMOUS SEARCH 94

[24] D.A. Berry and R.F. Mensch. Discrete search with directional information. Opera-
tionas Research, 34:470–477, 1986. (Cited on page 47.)

[25] S.H. Cameron and S.G. Narayanamurthy. A search problem. Operations Research,
12:623–629, 1964. (Cited on page 1, 26, 27, 28, 29, 30, and 41.)

[26] Yung-Ching. Chu. An extended result of kleitman and saks concerning binary trees.
Discrete Aplied Mathematics, 10:255–259, 1985. (Cited on page 19.)

[27] Y.H. Chun. Effects of inspection errors on dichotomous inspection procedures. sub-
mitted to Journal of Operational Research Society. (Cited on page 57, 85, and 86.)

[28] Y.H. Chun. Economic optimization of off-line inspection procedures with inspec-
tion errors (viewpoints). Journal of Operational Research Society, 59:863–870, 2008.
(Cited on page 86.)

[29] Y.H. Chun. Bayesian inspection model for the production process subject to a ran-
dom failure. IIE Transactions, 42:304–316, 2010. (Cited on page 80.)

[30] K.L. Chung, W.C. Chen, and F.C. Lin. On the complexity of search algorithms.
IEEE Transactions on Computers, 41:1172–1176, 1992. (Cited on page 40.)

[31] F. Cicalese and U. Vaccaro. Binary search with delayed and missing answers. Infor-
mation processing letters, 85:239–247, 2003. (Cited on page 56.)

[32] D. Coppersmith, M.M. Klawe, and N.J. Pippenger. Alphabetic minimax trees of
degree at most t. SIAM Journal on Computing, 15:189–192, 1986. (Cited on page 50
and 51.)

[33] P. Damaschke. An optimal parallel algorithm for digital curve segmentation. Theo-
retical computer science, 178:225–236, 1997. (Cited on page 59.)

[34] R. De Prisco and A. De Santis. On optimal binary search trees. (Cited on page 18.)
[35] D. Dobkin and R.J. Lipton. Multidimentional searching problems. SIAM Journal

on Computing, 5:181–186, 1976. (Cited on page 63.)
[36] P.S. Efraimidis. (a, b) fibonacci search. Technical Report LPDP-2010-02, Department

of Electrical and Computer Engineering, Democritus University of Thrace. (Cited
on page 34.)

[37] D.E. Ferguson. Fibonaccian searching. Communications of the ACM, 3:648, 1960.
(Cited on page 24 and 40.)

[38] T.S. Ferguson. A problem of minimax estimation with directional information. Sta-
tistics and Probability Letters, 26:205–211, 1996. (Cited on page 73.)

[39] A. Finkelshtein, Y.T. Herer, T. Raz, and I. Ben-Gal. Economic optimization of
off-line inspection in a process subject to failure and recovery. IIE Transactions,
37:995–1009, 2005. (Cited on page 81.)

[40] H. Fujiwara and T. Jacobs. On the huffman and alphabetic tree problem with general
cost functions. Algorithmica and Springer Science + Business Media New York,
2013. (Cited on page 48.)

[41] T. Gagie. A new algorithm for building alphabetic minimax trees. Fundamenta In-
formaticae, 97:321–329, 2009. (Cited on page 50 and 51.)

[42] S. Gal. A discrete search game. SIAM Journal of Applied Mathematics, 27:641–648,
1974. (Cited on page 26 and 71.)

[43] S. Gal. A stochastic search game. SIAM Journal of applied mathematics, 34:205–210,
1978. (Cited on page 72 and 74.)

[44] M.R. Garey. Optimal binary search trees with restricted maximal depth. SIAM
Journal on Computing, 3:101–110, 1974. (Cited on page 13, 52, and 53.)

[45] A.M. Garsia and M.L. Wachs. A new algorithm for minimum cost binary trees.
SIAM Journal on Computing, 6:622–642, 1976. (Cited on page 10, 11, and 20.)

[46] P. Gawrychowski. Alphabetic minimax trees in linear time. Institute of Computer
Science, Wroclaw, Poland, 2012. (Cited on page 51.)

[47] E.N. Gilbert. Games of identification or convergence. SIAM Review, 4:16–24, 1962.
(Cited on page 70.)

[48] E.N. Gilbert and E.F. Moore. Variable length binary encodings. The Bell System
Technical Journal, 38:933–968, 1958. (Cited on page 7 and 51.)

[49] M. Golin and J. Lin. More efficient algorithms and analyses for unequal letter cost
prefix-free coding. IEEE Transactions on Informatiom Theory, 54:3412–3424, 2008.
(Cited on page 63.)

DICHOTOMOUS SEARCH 95

[50] L. Gotlieb. Optimal multi-way search trees. SIAM Journal on Computing, 10:422–
433, 1981. (Cited on page 60.)

[51] L. Gotlieb and D. Wood. The construction of optimal multiway search trees and the
monotonicity pronciple. International Journal of Computer Mathematics, 9:17–24,
1981. (Cited on page 60.)

[52] M. Grotschel, L. Lovasz, and A. Schrijver. The elipsoid method and its consequences
in combinatorial optimization. Report No. 80151-OR, Institut fur Okonometry und
Operations Research, Universitat Bonn W.Germany, 1980. (Cited on page 69.)

[53] R. Hassin. On maximizing functions by fibonacci search. The Fibonacci Quarterly,
17:347–351, 1981. (Cited on page 25.)

[54] R. Hassin. A dichotomous search for a geometric random variable. Operations Re-
search, 32, 1984. (Cited on page 13, 74, 75, 76, 77, and 78.)

[55] R. Hassin and M. Henig. Dichotomous search for random objects on an interval.
Mathematics of Operational Research, 9:301–308, 1984. (Cited on page 58.)

[56] R. Hassin and M. Henig. Monotonicity and efficient computation of optimal dichoto-
mous search. Discrete Applied Mathematics, 46:221–234, 1993. (Cited on page 21,
22, 23, and 53.)

[57] R. Hassin and R. Hotovely. Asymptotic analysis of dichotomous search with search
and travel costs. European Journal of Operational Research, 58:78–89, 1992. (Cited
on page 35, 42, and 43.)

[58] R. Hassin and N. Megiddo. An optimal algorithm for finding all the jumps of a
monotone step-function. Journal of Algorithms, 6:265–274, 1985. (Cited on page 57,
58, and 59.)

[59] Q. He, Y. Gerchak, and A. Grosfeld-Nir. Optimal inspection order when process
failure rate is constant. International Journal of Reliability, Quality and Safety En-
gineering, 3:25–41, 1996. (Cited on page 76 and 78.)

[60] Y.T. Herer and T. Raz. Optimal parallel inspection for finding the first noncon-
forming unit in a batch - an information theoretic approach. Management science,
46:845–857, 2000. (Cited on page 1, 61, 77, and 78.)

[61] K. Hinderer. On dichotomous search with direction-dependent costs for a uniformly
hidden object. Optimization, 21:215–229, 1990. (Cited on page 26, 30, and 31.)

[62] K. Hinderer and M. Stieglits. Isotonicity of minimizers in polychotomous discreet in-
terval search via lattice programming. Mathematical methods of operational research,
51:139–173, 2000. (Cited on page 23.)

[63] D.S. Hirschberg. On the complexity of searching a set of vectors. SIAM Journal of
Applied Mathematics, 9:126–129, 1980. (Cited on page 64.)

[64] S.W. Hornick, S.R. Madilla, E.P. Mucke, H. Rosenberg, S. Sol Skiena, and I.G.
Tollins. Searching on a tape. IEEE Transactions on Computers, 39:1265–1271, 1990.
(Cited on page 40, 41, and 42.)

[65] A.J. Hu. Selection of the optimum uniform partition search. Computing, 37:261–264,
1986. (Cited on page 26, 36, and 41.)

[66] T.C. Hu. A new proof of the t-c algorithm. SIAM Journal of Applied Mathematics,
25:83–94, 1973. (Cited on page 10.)

[67] T.C. Hu, D.J. Kleitman, and J.K. Tamaki. Binary trees optimum under various
criteria. SIAM Journal of Applied Mathematics, 37:246–256, 1979. (Cited on page 49
and 51.)

[68] T.C. Hu, L.L. Larmore, and J.D. Morgenthaler. Optimal integer alphabetic trees in
linear time. Algorithms - ESA 2005, Lecture notes in computer science, 3669:226–
237, 2005. (Cited on page 13.)

[69] T.C. Hu and J.D. Morgenthaler. Optimum alphabetic binary trees. Lecture Notes
in Computer Science, Springer-Verlag, 1120:234–243, 1996. (Cited on page 11.)

[70] T.C. Hu and K.C. Tan. Path length of binary search trees. SIAM Journal of Applied
Mathematics, 22:225–234, 1972. (Cited on page 10 and 52.)

[71] T.C. Hu and A.C Tucker. Optimal computer-search trees and variable-length alpha-
betical codes. SIAM Journal of Applied Mathematics, 21:514–532, 1971. (Cited on
page 7, 8, 10, 11, 13, 16, 20, 49, and 75.)

DICHOTOMOUS SEARCH 96

[72] T.C. HU and P.A. Tucker. Optimal alphabetic trees for binary search. Information
Processing Letters, 67:137–140, 1998. (Cited on page 15.)

[73] T.C. Hu and M.L. Wachs. Binary search on a tape. SIAM Journal on Computing,
16:573–590, 1987. (Cited on page 38.)

[74] D. Huffman. A method for the construction of minimum-redundancy codes. Proc-
cedings of the Institute of Radio Engineers, 40:1098–1101, 1952. (Cited on page 5.)

[75] P. Humblet. Generalization of huffman coding to minimize the probability of buffer
overflow. IEEE Transactions Information Theory, IT-27:230–232, 1981. (Cited on
page 51.)

[76] H.K. Hwang and T.H. Tsai. An asymptotic theory for recurrence relations based
on minimization and maximization. Theoretical Computer Science, 290:1475–1501,
2003. (Cited on page 21.)

[77] A. Itay. Optimal alphabetic trees. SIAM Journal on Computing, 5:9–18, 1976. (Cited
on page 31, 53, 59, 60, 62, and 63.)

[78] S.M. Johnson. A search game. The RAND corporation, memarandum RM-3717-PR,
1964. (Cited on page 71.)

[79] R.M. Karp. A generalization of binary search. Lecture Notes in Computer Science,
709:27–34, 1993. (Cited on page 59.)

[80] M. Karpinski, L.L. Larmore, and W. Rytter. Correctness of constructing optimal al-
phabetic trees revisited. DIMACS Technical Report 96-54, 1996. (Cited on page 10.)

[81] J. Kiefer. sequential minimax search for a maximum. Proceedings of the American
Mathematics Society, 4:502–506, 1953. (Cited on page 25.)

[82] J.H. Kingston. A new proof of the garsia-wachs alorithm. Journal of Algorithms,
9:129–136, 1988. (Cited on page 10.)

[83] D.G. Kirkpatrick and M.M. Klawe. Alphabetic minimax trees. SIAM Journal on
Computing, 14:514–526, 1985. (Cited on page 50 and 51.)

[84] M. Klawe and B. Mumey. Upper and lower bounds on constructing alphabetic binary
trees. SIAM Journal of Discrete Mathematics, 8:638–651, 1995. (Cited on page 10
and 11.)

[85] D.J. Kleitman and M.E. Saks. Set orderings requiring costliest alphabetic binary
trees. SIAM journal of algorithms in Discreet Mathematics, 2:142–146, 1981. (Cited
on page 18 and 19.)

[86] W.J. Knight. Search in an ordered array having variable probe cost. SIAM Journal
on Computing, 17:1203–1214, 1988. (Cited on page 45.)

[87] D.E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971. (Cited
on page 1, 3, 7, 22, and 48.)

[88] S. Kwek and K. Melhorn. Optimal search for rationals. Information Processing Let-
ters, 86:23–26, 2003. (Cited on page 69.)

[89] L.L. Larmore. Heigth restricted optimal binary trees. SIAM Journal on Computing,
16:1115–1123, 1987. (Cited on page 52.)

[90] L.L. Larmore and D.S. Hirschberg. A fast algorithm for optimal length-limited huff-
man codes. Journal of the ACM, 37:464–473, 1990. (Cited on page 53.)

[91] L.L. Larmore and M. Przyticka. Length limited coding and optimal height-limited
binary trees. Tech report 88-01, ICS dept., University of California, Irvine, CA,
1988. (Cited on page 53, 54, and 55.)

[92] L.L. Larmore and T.M. Przyticka. A fast algorithm for optimal height-limited al-
phabetic binary trees. SIAM Journal on Computing, 23:1283–1312, 1994. (Cited on
page 53, 54, and 55.)

[93] L.L. Larmore and T.M. Przytycka. Parallel construction of trees with optimal
weighted path length. Proceedings of the 3rd ACM Symposium on Parallel Algo-
rithms and Architectures, pages 71–80, 1991. (Cited on page 20.)

[94] L.L. Larmore and T.M. Przytycka. A parallel algorithm for optimum height-limited
alphabetic binary trees. Journal of Parallel and Distributed Computing, 35:49–56,
1996. (Cited on page 55.)

[95] L.L. Larmore and T.M. Przytycka. The optimal alphabetic tree problem revisited.
Journal of Algorithms, 28:1–20, 1998. (Cited on page 12 and 13.)

DICHOTOMOUS SEARCH 97

[96] L.L. Larmore, T.M. Przytycka, and W. Rytter. Parallel construction of optimal al-
phabetic trees. SPAA ’93 Proceedings of the 5th annual ACM Symposium on Parallel
Algorithms and Architectures, pages 214–223, 1993. (Cited on page 20.)

[97] T. Lepala. On a generalization of binary search. Information Processing Letters,
8:230–233, 1979. (Cited on page 18 and 26.)

[98] N. Megiddo. Combinatorial optimization with rational objective functions. Mathe-
matical Operations Research, 4:414–424, 1979. (Cited on page 68.)

[99] K. Melhorn. Nearly optimal binary search trees. Acta informatica, 5:278–295, 1975.
(Cited on page 17, 18, and 26.)

[100] K. Melhorn. A best possible bound for the weighted path length of binary search
trees. SIAM Journal on Computing, 6:235–239, 1977. (Cited on page 18.)

[101] R. Morris. Some theorems on sorting. SIAM Journal of Applied Mathematics, 17
No.1:423–439, 1969. (Cited on page 1, 26, and 30.)

[102] S. Murakami. A dichotomous search. Journal of the Operations Research Society of
Japan, 14:127–142, 1971. (Cited on page 1, 26, 28, 30, and 31.)

[103] S. Murakami. A dichotomous search with travel cost. Journal of the Operations
Research Society of Japan, 19:245–254, 1976. (Cited on page 35 and 36.)

[104] S. Nishihara and H. Nishino. Binary search revisited: Another advantage of fibonacci
search. IEEE Transactions on Computers, C-36:1132–1135, 1987. (Cited on page 40
and 41.)

[105] K.J. Overholt. Efficiency of the fibonacci search method. BIT Numerical Mathemat-
ics, 13:92–96, 1973. (Cited on page 25.)

[106] C.H. Papadimitriou. Efficient search for rationals. Information Processing Letters,
8:1–4, 1979. (Cited on page 68.)

[107] D. Parker. Conditions for optimality of the huffman algorithm. SIAM Journal on
Computing, 9:480–489, 1980. (Cited on page 51.)

[108] P. Ramanan. Testing the optimality of alphabetic trees. Theoretical Computer Sci-
ence, 93:279–301, 1992. (Cited on page 16.)

[109] S. Rao Kosaraju. On a multidimensional search problem. STOC ’79 Proceedings of
the Eleventh Annual ACM Symposium on Theory of Computing, 1979. (Cited on
page 64.)

[110] S. Rao Kosaraju, T.M. Przytycka, and R. Borgstrom. On an optimal split tree prob-
lem. Lecture notes in Computer Science, Algorithms and Data Structures, 6th inter-
national Workshop WADS99, Vancouver, Canada, August 11-14 1999, proceedings,
1999. (Cited on page 66.)

[111] T. Raz, Y.T. Herer, and A. Grosfeld-Nir. Economic optimization of off-line inspec-
tion. IIE Transactions, 32:205–217, 2000. (Cited on page 1, 78, 80, 81, 82, 83, 84,
85, 87, 88, and 89.)

[112] S.P. Reiss. Rational search. Information Processing Letters, 8:89–90, 1979. (Cited
on page 68.)

[113] D. Reyniers. Active learning about the demand distribution in the newsboy problem.
1987. (Cited on page 90.)

[114] D. Reyniers. A high-low search model of inventories with time delay. Journal of
Engineering Costs and Production Economics, 15:417–422, 1988. (Cited on page 1
and 91.)

[115] D. Reyniers. Interactive high-low search: the case of lost sales. Journal of the Oper-
ational Research Society, 40:769–780, 1989. (Cited on page 91.)

[116] D. Reyniers. A high-low search algorithm for a newsboy problem with delayed infor-
mation feedback. Operational Research, 38:838–846, 1990. (Cited on page 1 and 91.)

[117] D.J. Reyniers. Information and rationality asymmetries in a simple high-low search
wage model. Economics Letters, 38:479–486, 1992. (Cited on page 1 and 92.)

[118] R.L. Rivest, A.R. Meyer, D.J. Kleitman, and J. Spencer. Binary search using un-
reliable comparisons. Proceedings of the 15th Annual Allertion Conference on Com-
munication, Control and Computing, Sept. 28-30, 1977, 1977. (Cited on page 55
and 56.)

DICHOTOMOUS SEARCH 98

[119] R.L. Rivest, A.R. Meyer, D.J. Kleitman, and K. Winklmann. Coping with errors in
binary search procedures. Journal of Computer and System Sciences, 20:396–404,
1980. (Cited on page 56.)

[120] F. Ruskey and T.C. Hu. Generating binary trees lexicographically. SIAM Journal
on Computing, 1977. (Cited on page 14.)

[121] S.H. Sheu, Y.C. Chen, W.Y. Wang, and N. Shin. Economic optimization of off-line
inspection with inspection errors. Journal of Operational Research Society, 54:888–
895, 2003. (Cited on page 57, 84, 85, and 86.)

[122] D. Topkis. Minimizing a submodular function on a lattice. Operational research,
26:305–321, 1978. (Cited on page 24.)

[123] W.C. Tsai and C.H. Wang. Economic optimization for an off-line inspection, dispo-
sition and rework model. Computers and Industrial Ingineering, 61:891–896, 2011.
(Cited on page 83.)

[124] A. Tzimerman and Y.T. Herer. Off-line inspections under inspection errors. IIE
Transactions, 41:626–641, 2009. (Cited on page 57 and 86.)

[125] M.L. Wachs. On an efficient dynamic programming technique of f.f.yao. Journal of
Algorithms, 10:518–530, 1989. (Cited on page 23 and 43.)

[126] C. Wang. Economic off-line quality control strategy with two types of inspection
errors. European Journal of Operational Research, 179:132–147, 2007. (Cited on
page 57, 84, 85, and 86.)

[127] C.H. Wang, N.H. Shih, and W.C. Tsai. Utilizing the information theory of entropy
to solve an off-line inspection problem. 4OR-Q Journal of Operational Research,
9:391–401, 2011. (Cited on page 89.)

[128] W. Wang, S. Sheu, Y. Chen, , and D. Horng. Economic optimization of off-line
inspection with rework consideration. European Journal of Operational Research,
194:807–813, 2009. (Cited on page 82 and 83.)

[129] R.L. Wessner. Optimal alphabetic search trees with restricted maximal height. In-
formation Processing Letters, 4:90–94, 1976. (Cited on page 53.)

[130] E. Wong. A linear search problem. SIAM Review, 6:168–174, 1964. (Cited on page 1
and 25.)

[131] F.F. Yao. Efficient dynamic programming using quadrangle inequalities. Proceedings,
12th ACM Symposium on Theory of Computing, pages 429–435, 1980. (Cited on
page 44.)

[132] R.W. Yeung. Alphabetic codes revisited. IEEE Transactions on Information Theory,
37:564–472, 1991. (Cited on page 18.)

[133] E. Zemel. On search over rationals. Operations Research Lettters, 1:34–38, 1981.
(Cited on page 68.)

E-mail address, Anna Sarid: annashva@yahoo.com

