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Abstract

Sets of points are called separable if their convex hulls are disjoint. We suggest a technique for
optimally partitioning of a set N into two separable subsets, N, N,. We assume that a mono-
tone measure, yu, is defined over the subsets of N, and the objective is to minimize
max{u(N,), u(N;)}.

1. Introduction

Let ¥ = {v,,v,, ...,v,} be a set of n points in the plane. The problem of partitioning
¥ into clusters has a wide range of applications and exaet and heuristic algorithms
have been developed to solve such problems.

A partition (V', V') of V is called separable if the convex hulls of ¥’ and V' are
disjoint.

In this paper we suggest a new approach for computing optimal separable parti-
tions with respect to a class of objective functions of the min-max type. The basic idea
of our approach relies on the possibility, under certain conditions, to apply binary
search in order to select the best separable partition from a sequence of nested
separable partitions, that is, a sequence of separable partitions (V;, V), j=1,...,1,
such that VicV,c...c .

For this idea to be useful, there must be a relatively small number of nested
sequences of separable partitions whose union contains all of those partitions that are
candidates for optimality. In such a case, the binary search is applied to find the best
partition in each sequence, and then the best (over all the sequences) partition is selected.

We continue this introduction with a formal definition of the class of objective
functions that fit into our framework. We also mention important special cases and
refer to the relevant literature. The next section describes a method for efficiently

* Corresponding author.

0166-218%/95/$09.50 © 1995—Elsevier Science B.V. All rights reserved
SSDI 0166-218X(93)E0173-V



216 M. Benelli, R. Hassin | Discrete Applied Mathematics 59 (1995) 215-224

constructing the smallest set of nested sequences whose union is the set of candidates
for optimality. This construction assumes a convenient representation of the parti-
tions, and the subject of efficiently obtaining such a representation is discussed in
Section 3. The last two sections discuss bounds and the expected value of a minimum
size set of sequences required to solve the optimal partitioning problem.

Let u:2"—+ &, be a given measure. Let f: &1 — &,. Denote for V'V,
V' = V\V'. The problem is to compute a separable partitioning (V’, V') of V such
that f(u(V'), u(V')) is minimum.,

The function [ is unimodal if for any nested sequence of partitions there exists k,
1 €k <1, such that

SV u(P) = (Vo) u(72) 2 - = f(p(Vi)u(P2))
< - < fpN)uV)).

In particular, the unimodality property holds when f is the max operator and y is
monotone (i.e., y(W) < u(W') whenever W W').

Let a cover be a set of nested sequences of separable partitions such that each
separable partition appears in at least one sequence. Given that fis unimodal, binary
search can be applied to compute the best partition in any nested sequence. Our task
reduces then to computing a cover of small size. The algorithm that we present below
requires O(n? log ) time to compute a cover of minimum size in a given class of nested
sequences of partitions. If the size of such a cover is ¢ then the total number of
partitions to be compared in order to compute an optimal partition is O(clogn).
Since the number of separable partitions can be as high as (%), our method is especially
useful when ¢ is much smaller than n?/logn, and when evaluating the cost of each
partition is time consuming.

We now describe several important special cases where the monotonicity property
holds. In some of them it has been shown that the optimal separable solution also
solves the relaxed problem where any partitioning is allowed. We implicitly assume
that distances are euclidean; however, in some cases the separability property also
holds with respect to other metrics. [13, 18] contain a discussion of some other natural
kinds of such measures used in partitioning problems.

(1) The diameter of a set is the largest distance between any two points of the set.
The radius of a point set in the plane is the radius of the smallest enclosing circle. Both
measures are clearly monotone. In [7] it is proved that the optimal partitioning under
each of these measures is separable even when the points are partitioned into several
subsets and f is any monotone increasing function.

[2] contains an O(nlogn) algorithm for the problem of partitioning V into two
clusters that minimize the maximum diameter.

The radius is the relevant measure in location problems where centers are to be
located in order to serve a set of customers, and each customer will be served by
the center which is closer to him. In the two-center problem, we wish to find
two closed discs whose union contains ¥ so as to minimize the maximum radius.
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[17] contains a linear time algorithm to compute p and [1] uses it in an O(n? log> n)
time algorithm for the problem. A slightly improved expected running time is
achieved in [9].

It may be worth noting that when the center must be located in one of the cluster’s
points, u is no longer monotone and the problem does not fit into our framework.

(2) Let u be the average (over the points in the cluster) sum of distances from a point
to all the others in the cluster, ie., u(V') = (i jev-di;)/|V']. We claim that u is
monotone, i.e., let V=N and ke N\V, then

Zi.jsVdij<2i,jeVu{k}dij
14 Vi+1

This inequality holds if ¥'; ey dij < 2| VY dij = i, jev (dix + di;), which holds by the
triangle inequality. In [4] it is proved that there exists a separable partition minimiz-
ing the sum of values of this measure over the clusters (see [6]). A related measure is
the sum of squares of all distances in the same cluster, This measure is clearly
monotone. (In [5] it is proved that under this measure an optimal solution can be
separated by a circle.)

(3) The Steiner—Weber problem (see [10]) is to find a point P in the plane
minimizing the sum of Euclidean distances from any point in V to the point P. This
measure is monotone. However, the partition of ¥ that minimizes the maximum of
this measure over the clusters is not necessarily separable. For example, consider four
points located at ( — 1,0), (1,0), (0, 1.9), (0, — 0.1). The solution inserts the two first
points into a cluster, and the two last points into another. The value of this solution is
2. It is clearly not separable, Similarly, the sum of distances over all of the pairs in
a subset is unimodal but, as shown by the same example, it is not true that a separable
optimal partition always exists.

(4) Two other related measures are the area and perimeter of the convex hull of the
point set. Both measures are monotone. As pointed in [7], it is obvious that when the
area is considered the solution need not be separable. On the other hand, the question
of whether such a result holds for all monotone functions is stated there as open.

Finally, we note that [3] considers partitioning problems of the following type:
k-dimensional vectors A!,..., A" are to be partitioned into m sets so as to maximize
a (quasi) convex function of the sum of vectors in each set. The size of the sets is
constrained by lower and upper bounds. They show that there exists a separable optimal
partition. We do not know of an application of our approach to this class of problems.

2. Minimum chain covers

Let the set of separable partitions of V' be denoted by #. We say that a slope
Se[0,n) is formed by two points v, 2’ if it is the slope of the line connecting these
points. Let the set of slopes of lines formed by pairs of points in ¥ be denoted by .

The following proposition is quite straightforward.
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Proposition 2.1. (%] < |#| < (3) and in particular, if || = (%) then also | 2] = (3).

A slope s induces a partition (V', V') if there exists a line of slope s separating ¥’ and
' in the sense that each subset lies in a different (open) halfspace defined by that line.
For Pe 2 denote by S(P) the set of slopes that induce P.

Consider a given separable partition P = (V', V’). A slope induces P if and only if
there is a line with this slope separating the convex hulls of ¥ and ¥*. From this it is
clear that S(P) is an open interval (mod x), bounded by two distinct members of &.

A graphic representation of the sets S(P) will be seen to be useful. Recall that the
slopes are in [0, ). Map [0, 7) onto (and one to one) the points of a circle. Each S(P),
P e 2, becomes an interval called an arc. A cover corresponds now to a set of points
on the circle intersecting all of the arcs. Note that each slope §¢ & covers exactly
n — 1 partitions, and these partitions are nested.

Consider now a maximal interval I of the circle with the property that each Sel
intersects exactly the same set of n — 1 (nested) partitions. Thus I = (§,,S;) where
81,8;€% and no slope of & corresponds to a point of 1. We call the sequence of
nested partitions covered by such an interval a chain. Let the set of chains be denoted
by €. Note that the cycle is partitioned into chains by the points of &. Thus we obtain
the following proposition.

Propesition 2.2. |4| = ||

Our goal is to find a minimum number of chains covering 2. Given the circular arc
representation, the minimum chain cover problem is an instance of the following
problem.

Problem 2.3. Let M be a circularly ordered set of points on a circle. Let & be a set of
open intervals of the circle, called arcs, such that (x, y) € & implies x, y € M. Find a set
of minimum size M’ of points on the circle such that for each Aesf AN M’ # .

A minimum cover can then be computed in O(]o#| log|.#|) time by applying the
algorithm of [14] (see also, [11, 12, 16, 19]). In our case |.&/| = |¥| = O(n?) so that
a minimum chain cover is computed in O(n?logn) time, Our task remains now to
present an efficient algorithm for constructing a circular-arc representation of the
chain cover problem, and in particular, identifying the arcs S(P) for all Pe#. In the
next section we describe how to accomplish this in O(n?) time.

3. Constructing a circular-arc representation
Leti,je V. Let L be the common line on which these points lie. (If i, j are contained

in a larger set of colinear points then we assume that they are adjacent on L. We make
this choice because if iy, ..., i; is a colinear set and the points lie on the common line in
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Fig. 1. The slope formed by i,j is the upper end of S(P) and the slope formed by i',j' is its lower end.

this order, then every separable partition will have for some 1 < k < Ithati,, ..., i, are
in one part while i;+, ..., are in the other part, so that the set is separated between
an adjacent pair.)

Now, §, the slope of L, is the upper end of an interval, S(P), corresponding to some
partition P. In particular, this is the partition separated by the line formed by a slight
clockwise rotation of L around any point between i and j. Let S’ be the lower end of
S(P). S’ is the slope of some line L' formed by some pair i, j' € V. (If this pair is part of
a Jarger colinear subset of ¥ then we choose as i,j' the unique adjacent pair on L’
which is separated by P.) Note that i and |’ are in one part of P and j and j in the other
part (see Fig. 1). For n > 2, either i #{ or j #j and we assume without loss of
generality that j # j'. We distinguish then between the cases i # ' and i = 1, as in Fig.
1(I) and 1(II) respectively.

Suppose that we have for each ve V' a circular list of ¥\ {v} sorted by the slopes of
the directions from v to these points in clockwise order. Such lists can be obtained by
the algorithm of [8] in O(n?) total time. Denote by n,(/) the next point in v’s sorted list
after /. See Fig. 1 for n;(i) and n,(j).

Lemma 3.1. If either j' + ny(i) or i' # n{j) then S(P'y<=S(P) for some P'e .

Proof. Suppose for example that j # n)(i). Let P = (A, B) where ic A and je B (see
Fig. 2).

Let A be the line common to j and j. Let £ be its slope. Let C be the subset of
B consisting of the points which lie on the same open halfspace defined by A as A, The
partition P’ = (A w C, B\C) is in & since it is induced by Z. Since £ also induces P it
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Fig. 2. The interval S(P) contains some other interval S(P').

follows that S(P) and S(P’') have a nonempty intersection. Since S and §’ are the ends
of S(P) while they are neither in S(P') nor its ends, it follows that S(P')c=S(P). O

We conclude that in the case described by the lemma the arc corresponding to P in
the circular-arc representation of the problem can be delected without affecting the
chain cover problem. This is so since every point covering S(P’') will also cover S(P).

The algorithm we propose checks whether a perturbation of each of the following
slopes induces P: The slope of the lines connecting n,(i) and n;(j); j and n,(j); n;(i) and i. If
one does then it is the lower end of §(P). Else, by the lemma, S(P) need not be represented.

Checking whether each of the three slopes induces P can be done in constant time.
For example, for the slope of the line connecting n,(i) and n,(j) all we have to check is
that n;(n;(f)) is on the same closed halfspace as i and that n;(n;(i)) is on the same closed
halfspace as j.

Altogether, forming the arcs or concluding which of them can be deleted requires
O(n?) time, as the preprocessing stage of sorting the lists of directions.

4. Bounds on the cover size

There is no lower bound on the size of a chain cover except for the trivial bound of
1. This bound is achieved when all the points are colinear. A nontrivial bound exists if
we assume that no three points are colinear and no two slopes formed by points in
V are identical.

Proposition 4.1. Suppose that || = (3), then at least [ 4n| chains are necessary to form
a cover. Furthermore, this bound is tight.

Proof. By Proposition 2.1 there are (3) partitions. Since each chain covers n — 1
partitions, then at least [ (3)/(n — 1)]=[4n7] chains are necessary to form a cover.

We now prove that this lower bound on cover size is achieved when the points in
V are the vertices of a perfect polygon.
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Let the points be ordered on the polygon. Recall that each partition is covered by
exactly n — 1 chains.

& can be partitioned into subsets &, ..., %, -, such that &, contains the slopes
formed by pairs v;, v;4y,i = 1,...,n(by i + k we mean i + k mod n). There are n slopes
in each set. All the slopes in a set, when positively perturbed, cover the same number of
partitions due to symmetry. On the other hand, between two consecutive slopes in the
same set there is a fixed difference, namely 2m/n. Between them there is exactly one
slope from each set &), j # k, and there are n — 1 partitions covered by each slope.
These partitions belong to consecutive members of €. Thus, to find a cover for # we
may pick a slope at random, skip n — 1 slopes of &, take as the next one the chain
induced by such slopes, etc., till we cover all the partitions. Altogether, we pick this
way [4n7] chains. O

We now discuss the other extreme where a large number of chains is needed to form
a cover. This is done by presenting an example.

Proposition 4.2. A minimum chain cover may contain ®(n?) chains.

Proof. We prove the proposition by constructing such an example. The construction
is the following (see Fig. 3):

We form three sets of points, each one with 4 points.

Set I contains 4n points, p,, ..., pys, on a tiny arc of a huge circle. They form an
almost straight line but no three points are colinear.

Set II contains 4n points gy, ..., 4,3, constructed successively so that the ranges of
slopes of the lines formed between any two successive points in Set II and all the
points in Set I are successive but will not overlap.

Each point in Set IIL, ry, ..., 7,3, is very close to a corresponding point in Set II so
that the slopes of the lines formed between the two points r;, g; and all the points in Set
I are alternating,

Positive perturbations of the slopes formed by one point in Set I and the second
point in Set IT or Set I1I will form the following sequence in & (we denote the slopes by
the points that form them):

Spprs
SPlv‘h
Sl’zv’l
Sl’zvqx
etc.

SPI"Z
S
Sl’z-"z

Ssz‘h
etc.
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ry

Fig. 3. Solid lines are of type L, ,,. Dotted lines are of type L,,r,- The dashed line is parallel to L, .

Without loss of generality (overlooking different behavior by first and the last line
of each sequence), any slope formed by p;, g; is the upper end of S{P) of some partition
P, obviously n, (p:) = pi+, and n,(q;) = r; and |S(P)| = 3.

The magnitude of the set of such partitions is 2n?/9, hence the magnitude of its
minimum chain cover is ®(n?). O

5. The average cover size

Processing random sets of points in the plane shows that in the average case the
number of chains covering all partitions is of order n'®.

In the actual experiment ten sets of random points in the unit square were generated
for each n,n = 10,20, ...,90. The sizes of the minimum chain covers are given by
Table 1.
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Table i
n Random points
10 7 8 7 9 8 8 7 9 8 8

20 22 26 22 25 24 22 25 24 26 22
30 44 45 43 50 46 46 54 47 46 49
40 72 71 74 73 71 80 75 75 76 80
50 105 107 101 160 106 114 105 109 100 103
60 144 142 144 141 143 139 142 147 149 138
70 183 174 184 178 175 178 174 180 176 173
80 221 212 223 210 211 220 220 218 226 214
90 271 266 274 270 261 245 258 279 269 251

Table 2

n Average n'%/5

10 7.900000 7.962143
20 23.799999 24.136705
30 47.000000 46.176819
40 74699997 73.168808
50 105.000000 104.563957
60 142.899994 139.981934
70 177.500000 179.137650
80 217.500000 221.806351
90 264.399994 267.804596

8/8
n
5

........ test results

200

average cover gize

100

o Il 1 L 1
(o] 20 40 [-1e] 80 100

number of peints (n)

Fig. 4. The numerical results,
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In Table 2 we compare the results with the function (n!-%/5).
In Fig. 4 we show the results of the test. The dotted line illustrates the numerical
results and the solid line is the function £n!-®,
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