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In a queuing system that does not serve each customer immediately upon his arrival, a risk-neutral
customer will attempt to arrive at a time that minimizes the expected length of his wait. The
consequences of such behavior are explored for a queue with scheduled service.

This paper extends the conventional analysis of
queues by examining a model in which each customer
can choose the time at which to join a queue. We
consider a system in which a finite number of cus-
tomers are simultaneously served at predetermined
times that follow a known schedule. Examples of such
queueing systems. are especially common in transpor-
tation markets. An interurban bus can carry several
passengers at once, and the lengths and times of trips
are usually predetermined. Airlines such as Conti-
nental operate on a schedule with planes that are
often full; this may induce customers to arrive early
in the hope of securing space on the next flight.
Long distance ferry boat service shares these char-
acteristics.

A customer who knows this schedule must choose
an arrival time that will minimize his expected waiting
costs. The length of this wait depends on the time of
the customer’s arrival, the capacity of the server, the
frequency of service, and the behavior of all other
customers. A customer can therefore be viewed as
finding an optimal strategy in a noncooperative game.
We show below how to find a Nash equilibrium for
this game; such an equilibrium is characterized by a
set of strategies such that no customer has an incen-
tive to change his behavior. In this way we extend
previous analyses: rather than treating the pattern of
customer arrivals as fixed, or supposing that interar-
rival times are exponentially distributed, we treat
arrival times as a choice variable.

A customer’s expected waiting time can be divided
into two parts: 1) the length of time between the
instant at which he arrives and the next instant at
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which service is provided to someone; 2) the length of
time the customer must wait because the facility is
congested and cannot serve all those who happen to
be in the queue. Some of our numerical results suggest
that the wait until a service begins can be significant:
for some reasonable values of the parameters it ac-
counts for about 85% of the total waiting time. Insti-
tuting a random queue discipline can eliminate this
wait.

A fairly extensive literature has studied customers’
decisions of when to leave for an event that will start
at a specified time, such as for a concert, football
game, or opening of the workplace (see, for example,
GAVER,"” HENDRICKSON and KOCUR,"ALFA and LE
MinH!). These papers consider the trade-offs be-
tween waiting costs, driving time, and penalties for
late arrival. A time-dependent arrival pattern aimed
at minimizing a customer’s waiting costs was also
considered by GLAZER and HASSIN''® in their analysis
of a system with known opening and closing times and
a single server.

We will be concerned here with the topic of queueing
systems in which customers are served in batches.
Most of the literature concerning this subject is de-
voted to the computation of efficient control limits: a
server commences service whenever a certain number
of customers is in the queue. Such queues with random
service time are discussed by BAILEY,® CHAUDHRY
and TEMPLETON,® DEB and SERF0Z0,' ' DOWNTON,")
MEDHL" NEUTS,'® and WEIss.1?® Batch service with
deterministic service times is studied by BARNETT,!
Chaudhry and Templeton,® INGaLL and KOLE-
SAR,*" and WEIss.' KosTEN" lucidly describes -
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two such queueing systems: a system in which a server
with infinite capacity commences service only when a
specified number of customers is in the queue, and a
system in which an idle server with finite capacity
commences service whenever there is at least one
customer in the queue. The literature analyzing sched-
ules is more limited; See ERLICH® and Weiss,'*! who,
however, do not study customers’ arrival decisions.
TAPIERO and ZUCKERMAN!'"" consider the scheduling
decisions of each of two competing firms. An interest-
ing element of their analysis lies in modeling the
decisions of customers—each will go to that firm
where he expects his wait to be shortest. In contrast
to our analysis, however, Tapiero and Zuckerman do
not consider the timing of customers’ arrivals. Finally,
TuURNQUIST and BowMAN!"® provide strong empirical
evidence that bus passengers coordinate their arrivals
with the bus schedule. They find, as our model pre-
dicts, that the distribution of arrival times is not
uniform, but rather shows a peak at some time before
the scheduled departure of a bus.

1. ASSUMPTIONS

CONSIDER a system in which service begins at fixed,
predetermined times, regardless of the number of per-
sons in the queue at the time a service is scheduled to
begin. A bus company, for example, can schedule
departures every hour on the hour, even if the bus is
then empty.

We suppose that a customer’s only objective is to
obtain service at the lowest possible waiting cost; for
present purposes we disregard any preferences cus-
“tomers may have for obtaining service at one time
rather than another. Service starts at times ...—2,
-1,0, 1, 2.... We call each interval between two
service starts a cycle. All customers are identical; they
are served according to a first-come first-served
discipline in batches that do not exceed N cus-
tomers (where N is thus the server’s capacity).
Customers who happen to arrive at the same instant
are assigned relative priorities by some method. If at
a scheduled service time N or fewer customers are
waiting in the queue, all of them will then be served.
If at a scheduled service time the queue length is
greater than N, éxactly N customers will then be
served; the rest will have to wait.

" Customers arrive from a very large population. A
customer first chooses the cycle during which to arrive,
and then chooses his exact arrival time. He makes this
decision independently of other customers and with-
out knowing the actual length of the queue at that
time; each customer, however, has full information
about the probability distributions of all relevant vari-
ables (such as of the queue length and the arrival rate

as a function of time). The mean number of customer
arrivals in each cycle is strictly less than N.

Each customer’s decision is affected by the behavior
of other customers; the decision about whether to
arrive, for example, at %2, %, or 0 time units following
the most recent service depends on the distribution of
the queue length at these instants. In short, we analyze
a customer’s arrival strategy in a noncooperative game
where all players are identical and share the same
information. The emphasis here will be to characterize
the solution to this game, or to determine the equilib-
rium arrival rate function. This characterization
requires the following definition.

Definition. Consider the set of all customers who
arrive during some cycle. Let ¢ be the time elapsed
since the beginning of the cycle. Let F(t) be the
expected proportion of these customers who join the
queue before time t. (Equivalently, F(t) can be defined
in these terms: consider some arbitrary customer who
joined the queue during a cycle. F(t) is the probability
that he arrived before time ¢.) Let w(¢) be the expected
waiting time of a customer who arrives at time
t € (0, 1]. Define the support of Fas T={0 <t < 1|
for all 0 < e < t, F(t) — F(t — €¢) > 0}. The intervals
contained in T can be thought of as times during
which the probability of an arrival is positive. F(t) is
an equilibrium distribution of customer arrivals if
there exists a value w such that

(i) w(t)=w foralltET,
(i) w¢)>w foralltE(0,1] andte T.

This says that if the distribution of customer ar-
rivals is in equilibrium, the expected waiting time of
all customers is identical. An example may prove
instructive. Suppose buses are scheduled to depart
every hour on the hour, and consider a cycle which
begins immediately after 8:00 a.m. and ends at
9:00 a.m. Consider then two customers: one arrives at
8:30 and the other at 8:45. The customer who appears
at 8:30 must wait half an hour until the next departure.
But having arrived early, he will probably find fewer
than N persons ahead of him; he is therefore likely to
get space on the 9:00 bus. (It is, of course, possible
that more than N persons are ahead of him, in which
case he will have to wait for a bus that departs at
10:00 or even later.) The customer who arrives at 8:45
will have to wait only 15 minutes until the next bus.
But his position in the queue is likely to be less
favorable than that of the customer who arrived at
8:30, and he is more likely than the latter to find at
least N persons ahead of him. The customer who
arrives at 8:45 is therefore less likely to get a seat on
the 9:00 bus, and may therefore have to wait a long
time until he finds a seat.



Any customer must decide when to arrive at the
station before he knows how many persons will be
there at the time he arrives. A customer does, however,
know the probability distribution of the number of
customers in the queue at any time. Under an equilib-
rium distribution of customer arrivals, a customer
contemplating arrival at 8:30 has the same expected
waiting time as one planning to arrive at 8:45. Were
the expected waiting times of customers arriving at
these two instants different, at least some customers
would wish to change their behavior. For example, if
the expected waiting time for an arrival at 8:45 were
longer than for an arrival at 8:30, some customers
would choose to arrive at the earlier time. This change
in behavior would change F(t), the distribution of
customer arrival times. Only if F(¢) is an equilibrium
distribution does no customer have any reason to

change his behavior, and thus only an equilibrium,

distribution can give a consistent description of
customers’ arrival times.

2. THE TIMING OF ARRIVALS

LET g; be the probability that exactly j new customers
arrive in a cycle of length one unit. Let r; be the
probability that exactly j persons are in the queue the
instant before a scheduled service. The probability, ro,
that no persons are then in the queue is equal to the
probability that the previous batch accommodated all
persons in the queue (which happened if no more than
N persons were in the queue) and that no one arrived
during the unit time interval between scheduled
departures. Thus,

To = Qo o (1)

Similarly, the probability that exactly j persons are
in the queue at the end of a cycle is equal to the sum
of the probabilities that the following disjoint events
occurred: 1) N or fewer persons were in the queue at
the end of the previous cycle so that they were all
served, and exactly j persons arrived during the unit
length of that cycle; 2) N + i persons were in the
queue at the end of the previous cycle (so that N of
them were served and i of them remained in the queue)
and an additional j — i persons arrived during the
cycle. Thus

ri =0 Lo ri+ Thay girnwi,  forj=1,2.... (2)
Equations 1 and 2 define a set of simultaneous
equations, whose solution can be obtained by the
method of successive approximations; see BAGCHI and
TEMPLETON® for an exposition of numerical meth-
ods, and Appendix I for a description of our solution
method.
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We turn now to characterize the arrival pattern
within a cycle under an equilibrium distribution.

PROPOSITION 1. Let F(t) be an equilibrium distribu-
tion. Then

(1) F(t) is continuous within each cycle.
(ii) Let to= Y55 r;. Then F(t,) = 0, and F(t) strictly
ncreases on [t,, 1].
(iii) The expected waiting time of any arrival in [£0, 1]
is

w= 2?;1 i ;‘:TAI[V_‘ I‘j. (3)

Proof. Consider part (i) of the proposition. Suppose
otherwise, that F(t) has a probability mass point at
some point, say ¢t;. Consider a customer who arrives
at time ¢,, when with positive probability other cus-
tomers also arrive. Let p > 0 be the probability that
exactly one other customer arrives at ¢,. Let
s > 0 be the probability that the customer under
consideration has lower priority than the other one
who arrives at ¢,. Let ¢ be the probability that the
number of persons in the system prior to time ¢, within
a cycle is one less than an integral multiple of N, so
that g is the probability that the wait of a customer
who receives the higher priority will be 1 unit of time
less than the expected wait of the other customer who
arrives at time ¢,.

Let & < & satisfy (1 — &) < (1 ~ t;) + pgs.
Then w(tz) < w(t), in violation of the equilibrium
condition.

Part (ii) of Proposition 1 claims that the support,
T, of F(t) is [to, 1]. Suppose otherwise, that there
exists a ¢, € [to, 1] and ¢; € (¢, 1], such that F(¢) is
constant in the interval [t,, ¢,). Then the expected
queue length at any time within this interval would
be the same as at ¢,, and a customer who arrived at ¢,
would have a shorter wait than one arriving at ¢,.

Since this violates the definition of F(t) as an
equilibrium distribution, we conclude that in equilib-
rium no such interval [t,, t,] exists. It follows that
T = [to, 1] for some 0 < ¢, < 1. The value of ¢ is
determined two paragraphs below.

Since 1 € T, the value of w can be computed by
considering a customer arriving at the end of the cycle.
He will be served immediately if fewer than IV persons
are ahead of him in the queue; he will have to wait i
units of time if upon his arrival the length of the queue
is between iN and iN + N — 1. His expected waiting
time is therefore described by Equation 3.

The waiting time of a customer arriving at ¢, con-
sists of (1 — &) units of time until the end of the cycle
and of an additional i units of time if he finds at least
IN but no more than (i + 1) N — 1 customers in the
queue upon his arrival. Since no one arrives-in (0, ),
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the length of the queue at time ¢, is between tN and

(i + 1)N — 1 if the number of customers in the
system at the end of the previous cycle was between
(i + 1)N and (i + 2) N — 1. The expected wait of this
customer is given by

(i+2)N—~1

w = (1 - to) + 2?.1 i jEU+1)N l‘j
=(1—t) Zp, (1 —1) TN p
Making use of Equation 3 we obtain
1—to=3m ZENY =S5,
so that
to = 2]]\;-01 ;. O
To complete the analysis we must calculate the
value of F(t). Let p;(t) be the probability that at time
t exactly j persons are in the queue; for succinctness
define p; as p;(t) for ¢t € (0, t). The probability that
no one is in the queue the instant after a scheduled
service is the probability that N or fewer persons were
in the queue just before service was scheduled; the

probability that j persons remain is the probability
that N + j persons were in the queue. Thus,

Po=3Nor; 4)
and
Dj = TN+jy forj=1,2.... (5)

In equilibrium, dw(t)/dt = O for £y < t < 1, where
w(t) is the expected waiting time of a customer who
arrives t units of time after the beginning of a cycle.
Such a customer will wait (1 — ¢) units of time until
the next scheduled service, and may then have to wait
further if the queue length is greater than the server’s
capacity. His expected waiting time is thus -

wt) =1 —t)+ T SENIpi(t), fortpstsl,

and
o iN+N-1 qr)
dw(t) ==1+ 2 i 2 dP;(t)
dt .. . Fry jeiN dt (6)

¥0, forta<t<1l.

To proceed, assume that the number of customer
arrivals during a cycle follows a Poisson distribution
with mean A. Thus arrivals follow a nonstationary
Poisson process with the arrival rate A(t) = MF(t)/
dt. The probability that exactly j persons are in the
queue at time ¢ + dt is then’

Po(t +dt) = po(8)[L = A(e)dt] forto<t<1 (7)

and
pi(t + dt) = pi1 (DAL)AL + pi(E)[L — A()dt),
fortpst<1 andj=1,2....

(8)

From (8) we find that

dp;(t)
—‘-’(’“— = )P (t) — pi(D)],
forto<st<l andj=1,2.... (9

Substitute (9) in (6) and equate to zero to conclude
that in equilibrium

1= At) T t{piv—1(t) = Darnv-1(t)]
= x(t) [2:,1 ip.‘N-l(t) - ?’=2 (i - l)plN—l(t)]
A(t) T pin-1(8)],

or
M) = [ pin-1 ()], fortp <t < 1. (10)
When N is equal to one, equation (10) simplifies to
At) = T (pia()] 7T =1,

Since [§ A(t)dt = A, it follows in this case that ¢, =
1 — X: the rate of customer arrivals is constant over
the appropriate interval. For other values of N Equa-
tions 7, 8, and 10 can be solved numerically but not
analytically, as described in Appendix I. Figure 1
shows some values of dF(t)/dt; we assume that
N =50 and let \ vary.

If A is small the number of customers in the queue
will rarely exceed the server’s capacity, so that a
waiting customer is very likely to be accommodated
in the next batch. The benefit of arriving early to
secure a favorable position in the queue is therefore
negligible and almost all customers will arrive imme-
diately before the start of a scheduled service. For
high values of A, however, many customers arrive early
to gain a good position on the queue.

We have assumed that customers are identical, and

fortpst=<1. (11)

_ that each one’s objective is to minimize his expected

waiting time. Under these conditions it is clear that
the arrivals of customers before a scheduled service
time are wasteful, and that customers would be better

N " _ time
0 Q26 033 0.78 092 1

Fig. 1. Equilibrium distribution of customer arrivals (N = 50).



off if they all arrived only the instant before a service
starts. The introduction of a random queue discipline
for arrivals within a cycle, instead of a first-come first-
served discipline, could lead to the desired behavior.
Column 2 of Table I shows customers’ expected
waiting time under scheduled service. Column 4 shows
what their expected waiting would be.if, in violation
of the equilibrium conditions, all customers arrived
only the instant before scheduled departure times. For
example, when A = 46 {(and N = 50), we find that a
typical customer’s expected waiting time is 0.428. But
only about 14% of this wait (0.061/0.428) is directly
due to his finding the server filled to capacity; most of
a typical customer’s waiting time arises from his early
arrival, and the subsequent wait for the next scheduled
service. Although customers may view a first-come
first-served discipline as fair and equitable, it causes
them to waste a significant amount of time waiting in
-line.

APPENDIX I

THE CRITICAL part in numerically solving the
equations which describe the queuing system is to
determine the values of r;, We use the method of
successive approximations. Let the kth approxima-
tion, r*, be a vector r* ... ra*, where M is a multiple
of N (we found that M = 3N + 1 yields sufficiently
accurate results). Assign values to the initial vector,
r°, that sum to 1. For each successive approximation
modify Equations 1 and 2 to obtain

ro**tt = Qo Zf!-o rd,
=g Yo rk + They @ity forj=1... M.

The expected waiting time, w, can be calculated from
these values of r substituted in Equation 3, and this

TABLE I
Waiting Times under Scheduled Service (N = 50)
a) [¢3] [~} )

Tise of Waiting

Mean First Time

Mean No. ‘Waiting Possible if No

of Arrivals Time Arrival Early
) w te Arrivals
40.0 0.078 0.922 0.005
41.0 0.108 0.892 0.008
42.0 0.147 0.853 0.012
43.0 0.197 0.803 0.018
44.0 0.259 0.741 0.026
45.0 0.336 0.644 0.039
46.0 0.428 : 0.572 . 0.061
47.0 0.539 0.462 0.098
47.7 0.634 0.372 0.147
478 0.649 0.359 0.156
47.9 0.665 0.345 0.166
48.0 0.680 0.332 0.177
48.1 0.699 0.317 0.190
48.5 0.761 0.267 0.241
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value can be used for a convergence test. The time of
first arrival, ¢, is computed from part (ii) of Proposi-
tion 1. The values of py(0) and p;(0) are calculated by
substituting the values of r in Equations 4 and 5;
Equations 7 and 8 are used to find the values of
pj(t + dt) as a function of p;(t) and A(t). The value of
A(t) is found by Equation 10 using values of p(t)
previously determined. The average waiting time if
there are no early arrivals is obtained by applying
Little’s formula. With probability r,.; there will be
J persons in the queue in a cycle. Since the average
number of arrivals in a unit time interval is A, the
average wait per customer is )7, jra+j/A\. This value
is shown in column (4) of Table 1.
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