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Abstract

In this paper we study the capacitated vertex cover problem, a generalization of the well-
vertex cover problem. Given a graphG = (V ,E) with weights on the vertices, the goal is to cov
all the edges by picking a cover of minimum weight from the vertices. When we pick a copy
vertex, we pay the weight of the vertex and cover up to a pre-specified number of edges i
on this vertex (its capacity). The problem is NP-hard. We give a primal–dual based approxim
algorithm with an approximation guarantee of 2, and study several generalizations, as wel
problem restricted to trees.
 2003 Elsevier Inc. All rights reserved.

Keywords:Approximation algorithm; Vertex cover; Capacitated network design

1. Introduction

LetG= (V ,E) be an undirected graph with vertex setV = {1, . . . , n} and edge setE.
Suppose thatwv denotes the weight of vertexv andkv denotes the capacity of vertexv
(we assume thatkv is an integer). Acapacitated vertex coveris a functionx :V → N0 such
that there exists an orientation of the edges ofG in which the number of edges directe
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into vertexv ∈ V is at mostkvxv . (These edges are said to becoveredby, or assigned
to v.) The weight of the cover is

∑
v∈V xvwv . The MINIMUM CAPACITATED VERTEX

COVER problem is that of computing a minimum weight capacitated cover. The pro
generalizes theMINIMUM WEIGHT VERTEX COVER problem which can be obtained b
settingkv = |V |−1 for everyv ∈ V . The main difference is that in vertex cover, by picki
a nodev in the cover we can cover all edges incident tov, in this problem we can onl
cover a subset of at mostkv edges incident to nodev.

The problem originated in research at Glycodata,3 a biotechnology company speciali
ing in the areas of glycobiology and bioinformatics. One of its projects related to ra
re-design of known drugs involves Glycoproteins. A glycoprotein is a protein that hU
attachment points, in which it binds to a glycan. The group,H , of glycans that may appea
in each attachment point is known and hence a glycoprotein has|H |U variants. The goa
of this project is to determine which are the building blocks of the glycans comprisin
variants of the glycoprotein found in a given (liquid) solution. Methods that identify
building blocks found in a solution exist. However, identifying the building blocks is
sufficient to determine the structure of any given variant found in the solution. It is t
fore crucial to determine which of the building blocks are found in each variant, i.e., fi
detailed description of the connectivity of the building blocks.

GMID (Glycomolecule ID) is a chip-based technology that is used to gen
fingerprints which uniquely identify glycomolecules. It is able to answer in a si
application a question of the form: For a given building block A, and for each me
B in a set S of building blocks, does the solution contain a molecule which con
both building blocks A and B? The size of the set S is restricted, because of the s
technology. When planning an experiment that would use the GMID method to o
information about a given solution, the required information may be presented as a
where the building blocks are its vertices, and an edge exists between two vertice
question regarding their connectivity is required. The device is able to answer|S| = K

questions at once if they share a common vertex. The problem of minimizing the num
experiments (i.e., GMID uses) needed to cover the required information graph, isprecisely
a capacitated vertex cover problem, with uniform capacities.

We denote byδ(v) the edges inE which are incident tov. We also denote byd(v) =
|δ(v)| the degree ofv ∈ V . For S ⊆ V we denote byG(S) = (V ,E(S)) the subgraph
induced byS. We denote an edge with end-verticesi, j as a set{i, j }.

Since this problem generalizes vertex cover, one of the most studied problems in th
of approximation algorithms [1,9], it raises several very interesting directions for fu
research. There are many interesting results known about vertex cover—for examp
bipartite case can be solved in polynomial time, fixed parameter tractability, stru
results, special properties about the fractional LP solutions etc [9]. It would be of in
to investigate all these properties in the context of capacitated covering.

Our problem is also related to work on the capacitated facility location problem
the model where multiple facilities can be opened at the same location, and each

3 URL: http://www.glycodata.com.
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can only handle at most a specified demand. See Jain and Vazirani [11], and Chud
Williamson [2] for recent work.

In fact, since the publication of an earlier draft of our work, several follow-up pa
have appeared. First of all, using a method calleddependent roundingGandhi et al. [5]
show how to get an alternate 2 approximation for the problem considered here, by
LP-rounding. If we add the constraint that only one copy of each vertex can be chose
for the unweighted case, Chuzhoy and Naor [3] have shown how to obtain a 3 appro
tion using LP rounding. This bound has recently been improved to 2 by Gandhi et al

1.1. Summary of results

The main results that we show are as follows. We give a primal–dual algorithm [8
yields a factor 2 approximation for the basic problem. We also consider a generali
where each edge has a “demand” ofde which has to be assigned to an adjacent ver
For this generalization we show a factor 3 approximation. These results extend tor-hyper-
graphs (each edge in the hypergraph is a subset of at mostr vertices and the edge must
assigned to one of theser vertices) with approximation factors ofr andr +1, respectively

Finally, when the graph is a tree we show that the problem can be solved in polyn
time, but for the more general version with edge demands the problem is NP-hard.

One can view Clarkson’s greedy algorithm [4] for approximating vertex cover
primal–dual algorithm. In this (and other algorithms) some vertices are chosen
final solution. The cost for these vertices is charged to the dual variables corresp
to the adjacent edges. Some edges are charged once and some edges are charged
vertex-cover, the fact that some edges are charged only once does not (apparent
in improving the approximation bound. For our proof, this savings is crucial and hel
improve the bound from 3 to 2. While the actual algorithm and proof are more compl
a high level this is the key insight for the improved approximation factor.

2. Integer programming formulation and a simple LP rounding scheme

A linear integer program (IP) of the problem can be written as follows. In
formulation,yev = 1 denotes that the edgee ∈ E is covered by vertexv. Clearly, the
values ofx in a feasible solution correspond to a capacitated cover. While we do not
need the constraintxv � yev v ∈ e ∈ E for the IP formulation, this constraint will play a
important role in the relaxation. (In fact, without this constraint there is a large integ
gap between the best fractional and integral solutions. For example, consider a co
bipartite graph between two sets of vertices,A andB. A has two vertices, with each wit
weightW and capacityp2.B hasp vertices, each with weight 0 and capacity 1. Since th
are 2p edges, the optimal solution must have costW since by picking all the vertices inB
we can only coverp edges. The fractional solution has cost at mostW/p, by setting thex
variables for the vertices inA as 1/(2p), and thex variables for the vertices inB as 1.)

Minimize
∑

wvxv

v
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yeu + yev � 1, e = {u,v} ∈E,

kvxv −
∑

e∈δ(v)
yev � 0, v ∈ V,

xv � yev, v ∈ e ∈E,

yev ∈ {0,1}, v ∈ e ∈E,

xv ∈ N0, v ∈ V. (1)

We suggest the following algorithm: Solve (1) by relaxing the requirement tha
variables take integral values. We require thatyev � 0 andxv � 0. If yev � 1/2 then we
define the rounded valuey∗

ev = 1 otherwise we define it as 0. For each edgee = {u,v}
either yeu or yev is at least 1/2, hence the edge can be assigned. (If both the rou
values,y∗

eu andy∗
ev are 1 then the edge can be assigned to either end.) Clearly,y∗

eu � 2yeu
for the rounded valuey∗.

We can now definex∗
v for v ∈ V , as� 1

kv

∑
e∈δ(v) y∗

ev�. We claim that this rounding give
a 4-approximation:

Let
∑

e∈δ(v) y∗
ev = akv + k′

v where 0� k′
v < kv anda � 0.

∑

e∈δ(v)
y∗
ev �

∑

e∈δ(v)
2yev � 2kvxv ⇒ akv + k′

v � 2kvxv,

implying thatxv � a/2+ (k′
v/2kv).

Clearly, x∗
v � (a + 1). We will prove thatx∗

v � 4xv. It is sufficient to prove tha
a + 1 � 4[a/2 + (k′

v/2kv)]. We need to show thata + 1 � 2a + 2k′
v/kv . If a � 1 we

are done. Ifa = 0, thenx∗
v = 1 while xv � 1/2, sinceyev � 1/2. The last case is whe

a = 0 andk′
v = 0 in which casex∗

v = 0 and the claim holds.

3. Primal–dual algorithm

We develop a primal–dual algorithm that gives a 2-approximation. While the algo
is quite simple, the proof is somewhat subtle.

The dual problem of the relaxation of (1) is given in (2):

Maximize
∑

e∈E
αe

kvqv +
∑

e∈δ(v)
lev �wv, v ∈ V,

qv + lev � αe, v ∈ e ∈E,

qv � 0, v ∈ V,

lev � 0, v ∈ e ∈E,

αe � 0, e ∈E, v ∈ V. (2)



S. Guha et al. / Journal of Algorithms 48 (2003) 257–270 261

ns, it
re

t to

s

High level description of the algorithm

Initially, no edges are assigned and all vertices are closed. As the algorithm ru
declares certain vertices as open. When a vertexv is marked open, certain edges a
assigned to it. In fact, whenv is marked open,all unassigned edges that are inciden
v are assigned to it. However, later on, if another vertexu that is adjacent tov is opened,
an edge betweenu andv that was previously assigned tov mayget re-assigned tou. In the
end, the algorithm chooses the value ofx∗

v to be�yv/kv� whereyv is the number of edge
assigned tov. The formal description of the algorithm is given in Fig 1.

Min_Capacitated_Cover
input

1. A graphG= (V ,E).
2. A capacity functionk :V → N0.
3. A cost functionw :V → N0.

output
A capacitated cover.

begin
E′ :=E [E′ is the set of unassigned edges].
V ′ := V [V ′ is the set of closed vertices].
for every v ∈ V

δ′(v) := edges inE′ incident withv. d ′
v := |δ′(v)|.

If d ′
v > kv thenDv := ∅; otherwiseDv := δ′(v).

w′
v :=wv .

end for
while E′ �= ∅
rv :=w′

v/min(kv, d ′
v), v ∈ V ′.

u := arg min(rv : v ∈ V ′). (break ties arbitrarily)
V ′ := V ′ \ {u}.
w′
v :=w′

v − ru min(kv, d ′
v), v ∈ V ′.

if d ′
u > ku

then
Assign the edges inδ′(u) to u.

else [d ′
u � ku]

Assign the edges inDu to u.
[For Du \E′ this is a re-assignment.]

end if
for every {u,v} ∈ δ′(u)
E′ :=E′ \ {{u,v}}. δ′(v) := δ′(v) \ {{u,v}}.
d ′
v := d ′

v − 1.
if d ′

v = kv
then Dv := δ′(v).

end if
end for

end while
return
x∗
v := �|edges assigned tov|/kv�.

end Min_Capacitated_Cover

Fig. 1. Algorithm Min_Capacitated_Cover.
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Initially, all the dual variablesαe are 0. This is a dual feasible solution (with allqv = 0
andlev = 0). We useE′ to denote the set of unassigned edges. We useδ′(v) to denote the
unassigned edges currently incident on vertexv. We used ′(v) to denote the number o
unassigned edges currently incident on vertexv. We now explain how vertices are mark
open. This is done by increasing all the dual variablesαe for theunassigned edgese ∈ E′
simultaneously. In the dual program, there are two kinds of constraints—vertex cons
and edge constraints.

To maintain dual feasibility of the edge constraintsqv + lev � αe , as we increaseαe , we
have to increaseqv or lev . If the vertex has a large number of unassigned edges inc
to it, then we increaseqv , otherwise we increaselev . Formally, if d ′(v) > kv then we
increaseqv , otherwise we increaselev .

For each vertex constraint,kvqv + ∑
e∈δ(v) lev �wv , initially the left-hand side is 0 an

the right-hand side is the weight of the vertex. While increasing the dual variables f
unassigned edges, we stop as soon as a vertex constraint is met with equality. (In Fig
is vertexu in the main loop.) We declare this vertex as open. We assign to this vertex,u, all
unassigned edges incident to it and have to stop increasing their dual variables. In a
to assigning edges inδ′(u) to u, we may also re-assign some of the previously assig
edges fromδ(u) to u. We now elaborate on this point further.

For any vertexv, as soon asd ′(v)� kv , wedefineDv to be the set of unassigned edg
incident to vertexv. If a vertex has its initial degree at mostkv then this condition is true a
the start of the algorithm. For other vertices, the initial degree may exceedkv, but as edge
are assigned, it may happen that at some staged ′(v)= kv . If this event happens we defin
Dv to be the set ofkv edges fromδ′(v) that are currently unassigned. Later on,δ′(v) may
change but notDv .

When a vertexv is declared open, ifd ′(v) > kv then we assign all unassigned edge
δ′(v) to v. If d ′(v)� kv then we assign all edges inDv to v. Note that some of these edg
may have earlier been assigned to other vertices. (Only the edges inδ′(v) are previously
unassigned.)

The pseudo-code description of the algorithm is given in Fig. 1.

Theorem 3.1. Min_Capacitated_Cover returns a2-approximation forMINIMUM CAPAC -
ITATED COVER.

Proof. The algorithm opens a multi-set of verticesS as centers. The total cost of th
solution can be represented byw(S), the total weight of the subsetS, counting multiple
copies. Any vertexv that is declared open has the property thatwv = kvqv + ∑

e∈δ(v) lev .
We will charge the weight forv (all copies of v) to edges inδ(v). We will show
(Lemma 3.2) that each edge gets a charge of at most 2αe. Since the dual solution ha
value

∑
e αe , and is a lower bound on the optimal solution, we get the required boun

other wordsw(S)� 2
∑

e αe � 2w(OPT) whereOPT is an optimal cover. ✷
Lemma 3.2. We can charge the weight of each open vertexv (all copies) to edges inδ(v)
such that each edgee gets a charge of at most2αe.
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Proof. Define a vertex to be a low degree vertex ifwhen it is declared opend ′(v) � kv ,
otherwise it is defined to be a high degree vertex. We will discuss the charging mech
for both low degree and high degree vertices.

Consider a low degree vertexv. We pick only one copy of the vertex. We will char
the weight of this vertex toall edges in the setDv . All these edges are assigned tov by
the algorithm when this vertex is declared open, regardless of having been assigned
In fact, some of the edges inDv may be assigned to other vertices later on and are
charged again.

If d(v) � kv thenDv = δ(v) andqv = 0, and since the vertex constraint is tight th
wv = ∑

e∈δ(v) lev = ∑
e∈δ(v) αe. We thus charge the cost of vertexv to all incident edges

by chargingαe to eache ∈ δ(v). If d(v) > kv then at some point of timed ′(v) = kv . At
this point we fix the value ofqv and subsequently increase thelev variables. Note tha
|Dv| = kv . When this vertex is declared open, we have thatwv = kvqv + ∑

e∈δ(v) lev . For
the edges not inDv , note thatlev = 0. Hencewv = kvqv + ∑

e∈Dv
lev . Since there are

exactlykv edges inDv , we havewv = ∑
e∈Dv

(qv + lev) = ∑
e∈Dv

αe. Thus, the cost fo
vertexv is charged to all edges inDv .

Now consider a high degree vertexv. Supposeδ′(v) is the set of unassigned edg
incident tov whenv is declared open. In our charging scheme these will be the only e
that will be charged byv, and previously assigned edges incident onv will not be charged
Some of these edges, a subsetRv ⊆ δ′(v), will be re-assigned to other vertices.

For a high degree vertexv, we havelev = 0 andαe = qv for each unassigned edg
when the vertex is declared open. Thuswv = kvqv. Sinceαe = qv the cost for a single
copy of v needs to be charged tokv edges. Letδ′(v) = pvkv + k′

v where 0� k′
v < kv . If

|Rv| � k′
v then the number of edges assigned tov is at mostpvkv . In this case the cos

for pv copies can be charged to anypvkv edges inδ′(v). Each edge is charged at mo
wv/kv = qv = αe . If |Rv|< k′

v then we needpv + 1 copies ofv. The cost for these copie
is charged to(pv + 1)kv edges. We can charge all the edges inδ′(v) once. We still need
to chargekv − k′

v edges. Since there are at leastpvkv edges that are not re-assigned, th
other ends are not charged. (If the other end is ever opened, if it is a high degree
then it does not re-assign these edges and does not charge them. If it is a low degre
then the edge is re-assigned and belongs toRv . The edges inRv are charged at most onc
by v.) Sincepv � 1, we have at leastkv edges that we can charge a second time.

Finally, for any edgee = {u,v} if only one end is open then the edge is charged at m
twice. If both ends are open, and both are high degree, then only the end that the
assigned to can charge it. If both ends are low degree then it is charged at most on
each end. If one end is low degree and one end is high degree, then the edge is a
to the low degree end and charged once from each end. This completes the proo
lemma. ✷
3.1. r-hypergraphs

The above primal–dual algorithm yields a factorr approximation algorithm forr-hyper-
graphs. The only difference is that one hyperedge contains at mostr vertices. To prove tha
the approximation factor isr we need to prove a lemma analogous to Lemma 3.2
course, in this case we would prove that a hyperedge is charged exactlyrαe .
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The proof of such a lemma is straightforward and we indicate the adjustments re
for the proof to go through. The definitions of “low” and “high” degree vertices remain
same. The critical observation needed is that a hyperedge cannot be assigned to
degree vertices.

Once again, if the hyperedge is attached to only one open vertex, the hypere
charged at most twice. If the hyperedge is adjacent only to open vertices with high d
then only the vertex to which the hyperedge is assigned to charges the hyperedg
charge in this case is also at most 2αe . Otherwise the hyperedge is adjacent to at least
low degree vertex and therefore assigned to some low degree vertex. In this case ea
vertex the hyperedge contains charges the hyperedge at most once.4 Thus the total charg
is at mostrαe. This yields anr-approximation.

4. Approximation with de

Consider the case that each edge has demandde, and each vertexv has the property tha
if r copies of it are open, then summing over the edges assigned tov,

∑
e de � rkv . In this

case we have a 3-approximation. The primal and dual linear programs in this case a

Minimize
∑

v

wvxv

yeu + yev � 1, e = {u,v} ∈E,

kvxv −
∑

e∈δ(v)
yevde � 0, v ∈ V,

xv � yev, v ∈ e ∈E,

yev ∈ {0,1}, v ∈ e ∈E,

xv ∈ N0, v ∈ V. (3)

Maximize
∑

e∈E
αe

kvqv +
∑

e∈δ(v)
lev �wv, v ∈ V,

qvde + lev � αe, v ∈ e ∈E,

qv � 0, v ∈ V,

lev � 0, v ∈ e ∈E,

αe � 0, e ∈E, v ∈ V. (4)

We growαe in proportion to thede values. If
∑

e∈δ′(v) de > kv raiseqv , otherwise raise
lev appropriately. Once again, as soon as a vertex is open assign all unassigne

4 Actually two high degree vertices cannot both charge a hyperedge. This is implicit in the case ana
Lemma 3.2 Therefore the worst case is when the edge is attached tor low degree open vertices orr − 1 low
degree open vertices along with a high degree open vertex.
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adjacent to it by sufficiently many copies. We do not perform any re-assignments. Ler be
the minimum integer such that for all adjacent unassigned edgese,

∑
e∈δ′(v) de � rkv .

It is easy to observe that ifr > 1 we haverkv �
∑

e∈δ′(v) de � 1
2rkv for assigned

edgese. In this caseαe = deqv for all assigned edges. We will charge all edges 2αe, and
since

2
∑

e∈δ′(v)
αe =

∑

e∈δ′(v)
(2deqv)� rkvqv = rwv

we can pay for all copies.
If r = 1 we open one copy and each adjacent edge paysαe ; in this case as before w

may charge an edge already assigned elsewhere. Over all these edges by dual fe
and the growing process,

∑
e∈δ′(v) αe �wv . Thus each edge gets charged at most 3αe.

Therefore we can claim the following,

Theorem 4.1. For the capacitated vertex cover problem with arbitrary demands on e
and arbitrary capacity and costs of vertices we have a factor3 approximation.

It appears that a re-assignment is feasible and that should reduce the cost toαe per
edgee. However no simple re-assignment exists since the low degree vertex (u
saturated, filled to less than capacity) may get over-saturated and a high degree
(over-saturated) becomes under-saturated, thus disallowing any reassignment.
illustrated in the example below.

4.1. Gap example

We observe that in the above primal dual method as long as we growαe in the intuitive
fashion as described above and only select the open vertices in the final solution
only hope for a factor 3 approximation.

Consider the chain of length three defined by verticesABCD. EdgesAB andCD have
demand 1.BC has demandk > 2. Capacity ofA, andD are 1. Capacity ofB, andC arek.
Weight ofC is c. Weight ofA, andD arec/k+cε′, and ofB is c(1+ε)with 1/k > ε′ > ε.
If both ε, ε′ are small, the optimal solution isAB being assigned toA, BC to C, andCD
toD.

It is easy to verify that in our process we will only declareB andC to be open. Since
C is cheaper, we can at best have a cost of 3c + cε. Thus the best ratio we can hope
3− (2+ 2kε′ − kε)/(k + 2+ 2kε′) > 3− 4/(k+ 4).

4.2. Ther-hypergraph case

In this case the 3-approximation algorithm for graphs yields anr + 1 approximation for
r hypergraphs. The critical observation is that a hyperedge cannot be charged by
more “high” degree vertices. A low degree vertex charges the edge at mostαe . Thus the
worst case would be when the edge is adjacent tor − 1 low degree open vertices and o
high degree open vertex. Thus the total charge is at most(r + 1)αe .
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5. Capacitated covers on trees

In this section we consider theMINIMUM CAPACITATED VERTEX COVER ON A

TREE (CVCT). In the most general version we assume that the input consists of v
weightswv , integer capacitieskv � 0, v ∈ V , and integer edge demandsde � 1 e ∈E. We
consider two variations with respect to whether or not the demand of an edgee = (u, v)

can be split so thatde = dve + due , wheredve is assigned tov anddue is assigned tou. For
both formulations CVCT is NP-hard.

Theorem 5.1. CVCT is NP-hard even whenkv = k ∀v ∈ V . This claim holds in both case
when edge demands can and cannot be split.

Proof. To prove NP-hardness we do a reduction from theKNAPSACK PROBLEM, which is
known to be NP-hard [7]. Consider an instance max

∑
v∈S cv | S ⊂ {1, . . . , n},∑v∈S av �

B of the knapsack problem. We create the following CVCT: The graph is a star with
0 and leaves{1, . . . , n+ 1}. kv = B + 1 for v = {0, . . . , n+ 1}. wv = cv for v = 1, . . . , n,
w0 >

∑n
v=1wv , andwn+1 >w0. d0,v = av for v = 1, . . . , n andd0,n+1 = 1.

Sincewn+1 >w0, it is optimal to assignd0,n+1 to the root 0. There is an unused capac
of sizeB at node 0. We wish to minimize the other costs by computing a subsetS of
{1, . . . , n} such that

∑
v∈S wv is maximized subject to the constraint

∑
v∈S dv � B. The

optimal solution for this CVCT gives an optimal solution for the knapsack problem.
that even if splitting the demand is allowed, it would be of no use because if a dema
an edge is split we pay for both ends and therefore increase the cost.✷

We now describe three special cases that can be solved in polynomial time. In ea
we assume that the input graph is a treeT = (V ,E). We rootT at an arbitrary vertex an
renumber the vertices so that a child of a vertex has a smaller index than its pare
defineTv as the subtree rooted atv.

The first special case assumes unit edge demands. It can be solved by algorithmk-
Cover unit demand (Fig. 2). The algorithm computes for everyv ∈ V two values defined
as follows: letev be the edge connectingv and its parent (en = ∅). Wout

v is the cost of a
minimum capacitated cover ofTv, andW in

v is the cost of a minimum capacitated cover
Tv ∪ {ev} under the restriction thatev is assigned tov.

Theorem 5.2. Algorithm Min_ k-Cover unit demand(Fig. 2) computes the minimum co
of CVCT whende = 1 for everye ∈E.

Proof. The proof is by induction on the indexu. We omit the straightforward details.✷
GivenWout

v andW in
v for v = 1, . . . , n, one can recursively obtain the assignment of

edges ofT .
Our next special case assumes uniform weights. We assume thatwv = 1 for everyv ∈ V .

A restricted version of this case in which the capacities are uniform (kv = k for every
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facility
emand

n_
Min_ k-Cover unit demand
inputs

1. T = (V ,E).
2. A capacity functionkv , v ∈ V .
3. A weight functionwv , v ∈ V .

output
The cost of a capacitated cover.

begin
for v = 1 to n
Wout
v := 0,W in

v :=wv .
end for
for u= 1 to n
Au := set of children ofu.
for every v ∈Au .
Cv =W in

v −Wout
v .

end for
Sortv ∈Au in non-increasing order ofCv .
while Au �= ∅
A := the firstmin{ku, |Au|} vertices inAu.
if

∑
v∈A Cv �wu

then Assign all edges{v,u}, v ∈A to u.
Au :=Au \A.

else
Assign edges{v,u}, v ∈Au to v.
Au := ∅.

end if
end while
S := {v: {v,u} is assigned tov}.
F := {v: {v,u} is assigned tou}.
Sk := {min(ku − 1, |S|) highestC-value vertices inS}.
Wout
u := ∑

v∈S W in
v + ∑

v∈F Wout
v +wu�|F |/ku�.

if |F | = 0 (modku)
then W in

u :=Wout
u + min(wu − ∑

v∈Sk Cv,minv∈F Cv).

else W in
u :=Wout

u .
end if

end for
return Wout

n .
end Min_ k-Cover unit demand

Fig. 2. Algorithm Min_k-Cover unit demand.

v ∈ V ) was solved in Jaeger and Goldberg [10] as a special case of the capacitated
location problem on trees. We first show how to solve this case assuming that the d
can be split.

Theorem 5.3. If wv = 1 for everyv ∈ V and the demand can be split then algorithm Mi
k_ d_cover_splitable_demand(Fig. 3) returns a minimum cost solution.

Again, the proof is straightforward and we omit the details.
We now turn to the case where the demand cannot be split.
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Min_ k_ d-cover splitable demand
input

1. T = (V ,E), with all wv = 1.
2. A capacity functionkv v ∈ V .
3. A demand functionde e ∈E.

output
A capacitated cover.

begin
for every v ∈ V , Dv := 0

[Dv is the total demand assigned tov ∈ V ].
end for
for v = 1 to n− 1
u := the parent ofv.
cv := �Dv/kv�kv −Dv .
[cv is the spare capacity ofv].
e := (v,u).
m := min{de, cv}.
Dv :=Dv +m.
d ′
e := de −m.

if ku � d ′
e or ku � kv

then Du :=Du + d ′
e .

else (ku <min{d ′
e, kv})

ae := �d ′
e/kv�kv .

Dv :=Dv + ae .
d ′
e := d ′

e − ae .
if ku <D′

e

then Dv :=Dv + d ′
e .

else (ku � d ′
e)

Du :=Du + d ′
e .

end if
end if

end for
return xu := �Du/ku� u= 1, . . . , n.

end Min_ k_ d-cover splitable demand

Fig. 3. Algorithm Min_k_d-cover splitable demand.

Theorem 5.4. If wv = 1 for everyv ∈ V and the demand cannot be split then algorith
Min_k_ d_cover_unsplitable_demand(Fig. 4) returns a minimum cost solution.

Proof. The proof is by induction on the indexu. The induction’s assumption is that th
algorithm returns an optimal solution for every subtree in the forest induced by the
connecting the vertices 1, . . . , u and their parents. Moreover, this solution has maxi
spare capacity at the root of the subtree, among all optimal solutions to this subtre
n= 1 these properties trivially hold.

Assume the claim holds forv < u. It is important to observe that by definition,cu < ku
so that using the spare capacity at a vertex may save at most one center.

Consider the assignment of the demandde wheree = (u, v). The assignment made b
the algorithm clearly preserves the induction’s hypothesis when�de/ku� �= Nv . A lower
cost is attained by constructing centers at the vertex that requires less centers. It
that the number of centers required atu to servede is greater thanNv by 1 and that by using
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Min_ k_ d-cover unsplitable demand
inputs

1. T = (V ,E), with all wv = 1.
2. A capacity functionkv , v ∈ V .
3. A demand functionde , e ∈E.

output
A capacitated cover.

begin
for every v ∈ V

Dv := 0.
[Dv is the total demand assigned tov.]

end for
for v = 1 to n− 1
u := the parent ofv.
cv := �Dv/kv�kv −Dv .
[cv is the spare capacity ofv].
e := (v,u).
Nv := max{�(de − cv)/kv�,0}.
[Nv is the number of centers one must place inv to coverde ].
if �de/ku� �Nv .

then Du :=Du + de .
else (�de/ku�>Nv)

Dv :=Dv + de
end if

end for
return xu := �Du/ku� u= 1, . . . , n.

end Min_k_ d-cover unsplitable demand

Fig. 4. Algorithm Min_k_d-cover unsplitable demand

the spare capacity atu a center can be saved. However, in this case both solutions ha
same cost whereas the one that assigns the demand tov come with a greater remainin
spare capacity atu.

Finally, if �de/ku� = Nv then the two options may come with the same cost
assigning the demand tou either lowers the cost by using spare capacity there or incre
the spare capacity.✷

If the edge demand is uniform the question of whether splitting is allowed determ
the hardness of the problem. If splitting is forbidden the problem is easy and algo
Min_Capacitated_Cover_for_Tree holds. In the case where splitting is allowe
problem is NP-hard as we show in Theorem 5.5.

Theorem 5.5. The CVCT with splitable demand is NP-hard even when the edge dem
are uniform.

Proof. To prove NP-hardness we apply a reduction from theKNAPSACK PROBLEM.
Consider an instance max

∑
v∈S cv | S ⊂ {1, . . . , n},∑v∈S av � B of the knapsack

problem. We solve the following CVCT: The graph is a two level tree with root 0 andn+1
children denoted 1, . . . , n and 2n+1. Each of the childrenv = 1, . . . , n has a child denote
by u = n+ v. Child 2n+ 1 of the root vertex 0 has no children. All edges have dem
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d where max{ai : i = 1, . . . , n} � d < B. The capacities arek0 = B + d , kv = 2d − av
for v = 1, . . . , n andkv = 1, n < v � 2n. The weights arewvcv for everyv = 1, . . . , n,
w0 �

∑n
v=1wv andwi �w0 for i > n.

It is optimal to assign the demand of(0,2n+ 1) to 0 and the demand ofe = (v,n+ v)

v = 1, . . . , n to v. After the assignment, vertexv, v = 1, . . . , n, has a spare capacity
d − av that we have already paid for. It is optimal to assignd − av of the demand o
edgee = (0, v) to v since it is the only edge that may use the spare capacity. After
assignment, the unassigned demand of edge(0, v) is av for v = 1, . . . , n. The remaining
problem is identical to the one in the reduction introduced in Theorem 5.1.✷
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