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Approximation Algorithms with Bounded
Performance Guarantees for the Clustered
Traveling Salesman Problem'

N. Guttmann-Beck,? R. Hassin,? S. Khuller,® and B. Raghavachari*

Abstract. Let G = (V, E) be a complete undirected graph with vertex set V, edge set £, and edge weights
[(e) satisfying triangle inequality. The vertex set V is partitioned into clusters Vi, ..., Vi. The clustered
traveling salesman problem is to compute a shortest Hamiltonian cycle (tour) that visits all the vertices, and
in which the vertices of each cluster are visited consecutively. Since this problem is a generalization of the
traveling salesman problem, it is NP-hard. In this paper we consider several variants of this basic problem and
provide polynomial time approximation algorithms for them.
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1. Introduction. Let G = (V, E) be a complete undirected graph with vertex set V.,
edge set E, and edge weights [(e) satisfying triangle inequality. The vertex set V is
partitioned into clusters Vi, ..., V,. The clustered traveling salesman problem (CTSP)
is to compute a shortest Hamiltonian cycle (tour) that visits all the vertices, and in which
the vertices of each cluster are visited consecutively. Applications and other related work
may be found in [3], [8], and [13] and an exact branch and bound algorithm is described
in [15]. The traveling salesman problem (TSP) can be viewed as a special case of CTSP
in which there is only one cluster Vy = V (alternatively, each V; is a singleton). We
deal with several variants of the problem depending on whether or not the starting and
ending vertices of a cluster have been specified. Since all the variants are generalizations
of TSP, they are all NP-hard.

In this paper we focus on the design of approximation algorithms with guaranteed
performance ratios, These are algorithms that run in polynomial time, and produce
suboptimal solutions, We measure the worst case ratio of the cost of the solution generated
by the algorithm to the optimal cost. We present approximation algorithms with bounded
performance ratios for several different variants of this problem. The previously known
related results are a 3.5-approximation for the problem with given starting vertices (2]
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(and this result extends to the case where no starting or ending vertices are given, with
the same approximation bound), a %—approximation for the problem in which there are
only two clusters with unspecified end vertices and a prespecified starting vertex [9], and
a %—approximation for the problem in which the order of visiting the clusters in the tour
is specified as part of the problem [1].

In this paper we describe a 1.9091-approximation algorithm for the problem in which
the starting and ending vertices of each cluster are specified. We give a 1.8-approximation
algorithm if for each cluster the two end vertices are given, but we are free to choose
any one as the starting vertex and the other one as the ending vertex. We give a 2.75-
approximation algorithm for the case when we are only given clusters with no specific
starting and ending vertices, and a 2.643-approximation algorithm if we are only given
the starting vertex in each cluster.

Our solutions use known approximation algorithms to three closely related problems:
the traveling salesman path problem (TSPP), the stacker crane problem (SCP), and the
rural postman problem (RPP). These problems are discussed in Section 2. In fact one of
the contributions of our paper is to design new algorithms for TSPP, and to show their use
in improving the previously known approximation factors for CTSP; along with careful
use of the algorithms for SCP and RPP.

Outline of the paper. In Section 2 we discuss some basic notation that is used in the
paper. In addition, we review algorithms for approximating TSPP, SCP, and RPP. In
Section 3 we address the case in which the starting and ending vertices in each cluster
are specified. In Section 4 we address the case in which the end vertices are given,
but either one could be chosen as the entry or exit vertex for the cluster. In Section 3
we address the case in which only the starting vertex in each cluster is specified. In
Section 6 we address the case in which no entry or exit vertex is specified for any cluster.
Finally, in Section 7 we study the problem when the number of clusters is a constant,
and describe a g-approximation algorithm for all variants. We also show that obtaining
an approximation ratio of « for k clusters (k > 4) with unspecified end vertices, implies
an approximation ratio of « for TSPP with specified end vertices. Thus, improving the
approximation ratio for a constant number of clusters is at least as hard as improving
the approximation ratio for TSPP (for which the best approximation ratio is currently
§ (o,

3

2. Preliminaries. Some of our algorithms use a directed cycle cover routine in di-
graphs. The directed cycle cover problem is to find a set of directed cycles of minimum
total weight that includes all the vertices in a given digraph. This problem is equivalent
to weighted bipartite matching, which is also called the assignment problem [14]. We
also use an undirected cycle cover algorithm that finds in an undirected graph a set of
undirected cycles of minimum total weight that includes all its vertices. This problem
can be solved by applying a weighted matching algorithm [16].

For a graph G = (V, E) we denote by /(e) the weight (also known as length) of
an edge ¢ € E. For a subset E' C E we denote L(E") = ), . [(e), the total weight
(length) of the edges. Let OPT denote both an optimal solution of the problem under
consideration and its total length. Similarly, let MST(G) denote both a minimum-weight
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spanning tree of G and its weight. We also assume that the edge weights obey the triangle
inequality.

2.1. The Traveling Salesman Path Problem. Hoogeveen [10] considered three varia-
tions of the traveling salesman path problem (TSPP), in which as part of the input instance
the following constraints are placed on the end vertices of the resulting Hamiltonian path:
(1) both end vertices are specified, (2) only one of the end vertices is specified, and (3)
no end vertices are specified. For the latter two cases, it was shown that a straightforward
adaptation of Christofides’ algorithm yields an algorithm with a performance ratio of %
The case with two specified ends is more difficult as we now elaborate.

Let s and ¢ be two specified vertices in G. We consider the problem of finding a path
with s and t as its two ends, that visits all vertices of G. One can solve this problem in a
manner similar to Christofides” algorithm for TSP [4], by starting with MST (G), adding
a suitable matching, and then finding an Eulerian walk of the resulting graph. We do not
geta %-approximation ratio since in TSPP the optimal solution is a path, and not a tour.
The bound of % OPT on the weight of a minimum-weight perfect matching of a subset
of the vertices, which holds for TSP (tour), does not hold here.

We obtain a %-approximation ratio as follows.

THEOREM 2.1. There exists a polynomial-time algorithm for TSPP between given end
vertices s and t, that finds solutions S| and S, which satisfy the following equations:

1(S)) < 2MST(G) —1(s, 1)
20PT —I(s, 1),
MST(G) + L(OPT +i(s, 1))

SOPT +31(s, ).

IA A A

1(S2)

IA

PROOF. We “double” the edges of MST(G) except for those on the unique s—t path
on it. The result is a connected multigraph whose vertex degrees are all even except
for those of s and . We now find an Eulerian walk between s and ¢ on this multigraph
and turn it into 2 Hamiltonian path between s and ¢ without increasing the weight by
shortcutting and applying the triangle inequality. We call it S;. The length of S is at
most 2 MST(G) — (s, t), which is at most 2 OPT —I(s, t).

To obtain S, we adopt the following strategy. Consider adding the edge (s, t) to OPT,
and making it a cycle. The length of this cycle is OPT +I(s, t). The cycle can be decom-
posed into two matchings between any even-size subset of vertices, and the length of the
smaller matching is at most % (OPT +1(s, t)). We use the strategy of Hoogeveen [10], and
add to MST(G) a minimum-weight matching of vertices selected based on their degree in
MST(G) (odd degree vertices of V'\{s, 7} and even degree vertices of {s, ¢} in MST(G)),
and output an Eulerian walk S, from s to ¢ in the resulting graph. This Eulerian walk
can be converted into a Hamiltonian path by shortcutting. Using the triangle inequality,
we obtain that [(Sy) is at most MST(G) + 3(OPT +I(s, 1)) < 3 OPT +1i(s, 1). O

COROLLARY 2.2. The shorter of the paths S| and S; is at most % OPT.
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PROOE. Using Theorem 2.1, observe that if I(s, ) > %OPT, then [(S7) < %OPT.
Otherwise, I(s, ) < § OPT, in which case I(S;) < 2 OPT. |

REMARK 2.3. Hoogeveen [10] proves the bound of % OPT in a different way. Solution
S, can be directly bounded as MST(G) + w(M), where w(M) is the weight of a min-
weight perfect matching on the subset of odd degree vertices of V\{s, ¢t} and even degree
vertices of {s, ¢} in MST(G). He showed that OPT U MST(G) can be decomposed into
three matchings, and this shows that w(M) < % OPT. Our algorithm for TSPP with
given end vertices is different, and this leads to improvements in the analysis of our
algorithms for CTSP.

2.2. The Stacker Crane Problem. Let G = (V, E) be an arbitrary graph that satisfies
the triangle inequality. Let D = {(s;, ;) : i = 1, ..., k} be a given set of special directed
arcs, each with length £;. The arc (s;, #;) denotes an object that is at vertex s; and needs
to be moved to vertex t; using a vehicle (called the stacker crane). The stacker crane
problem (SCP) is to compute a shortest walk that traverses each directed arc (s;, ;) at
least once in the specified direction (from s; to ;). Let D =  *, ¢; and A = OPT —D.

SCP is a generalization of TSP since TSP can be viewed as an instance of SCP in
which each vertex is replaced by an arc of zero-length. It is possible to derive a 2-
approximation algorithm for the problem using standard techniques such as the “twice
around the tree” heuristic. Algorithm StackerCrane by Frederickson et al. (7] is a 1.8-
approximation algorithm for SCP. It applies two different algorithms and then selects
the best of the two solutions generated by them. We briefly review the basic ideas behind
the two algorithms (for details, see (7] and [12]):

e Algorithm ShortArcs: Shrink the directed arcs and reduce the problem to an instance
of TSP. Use an approximation algorithm for the TSP instance, and then recover a
solution for the original problem (the algorithm itself is somewhat subtle and the
reader is referred to the original paper). This algorithm works well when D is small
compared with OPT.

e Algorithm LongArcs: Complete the set of directed arcs into a directed cycle cover.
Then find a set of edges of minimum total weight to connect the cycles together; add
two copies of each one of these edges, and orient the copies in opposite directions to
each other. The resulting graph is Eulerian, and the algorithm outputs an Euler walk
of this solution. The algorithm performs well when D is large.

The following theorem can be derived from [7].

THEOREM 2.4. Consider an instance of SCP in which the sum of the lengths of the
special directed arcs is D. Let OPT be an optimal solution, and let A = OPT —D. The
walk returned by Algorithm ShortArcs has length at most %A + 2D. The walk returned
by Algorithm LongArcs has length at most 3A + D.

2.3. The Rural Postman Problem. let E' C E be a specified subset of special edges.
The rural postman problem (RPP) is to compute a shortest walk that visits all the edges
in E’. The Chinese postman problem is a special case of RPP in which E' = E, ie,
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the walk must include all the edges, but the Chinese postman problem is solvable in
polynomial time by reducing it to weighted matching, whereas RPP is NP-hard.

The two algorithms, defined above for SCP, can be modified to solve RPP. We define
Algorithm LongArcs2 that is similar to LongArcs, but in this case, D is a set of undirected
edges, and we only change the algorithm so that it completes the set of edges into an
undirected cycle cover. The second part of Theorem 2.4 holds for this case as well.

Algorithm ShortArcs greatly simplifies when applied to RPP and turns out to be a
straightforward generalization of Christofides algorithm for TSP. As indicated by Fred-
erickson [6], it produces a %—approximation algorithm for the problem (see the survey
by Eiselt et al. [5] for more details and a paper by Jansen [11] for a generalization).

We denote by Algorithm RuralPostman the algorithm which executes these two
algorithms and returns the shorter solution.

REMARK 2.5. Insome of our algorithms for CTSP, we generate instances of RPP (SCP)
and run the above algorithms for them. In the RPP (SCP) instances that we generate the
special edges (directed arcs) are vertex disjoint. This in fact guarantees that the walks
are actually tours since each vertex is visited once. These instances are themselves
CTSP instances with |V;| = 2 (i = 1,...,k) and given end vertices (starting and
ending vertices, respectively). However, we note that if, for some constant ¢, |V;| < ¢
(1 <i < k), then we can obtain the same approximation ratios as for RPP (SCP) quite
easily since within each cluster we can obtain an optimal solution.

3. Given Start and End Vertices. In this section we consider CTSP in which the
starting vertex s; and ending vertex ¢; is given for each cluster V;. Our algorithm is based
on the following idea. We decompose the problem into two parts. Inside each cluster
Vi, we find path;, a path from the start vertex s; to the end vertex ¢; that goes through
all vertices of that cluster. This is TSPP with given end vertices. In addition, we need
to connect the paths by adding edges into a single cycle. We replace each cluster by
a special arc from s; to #; and get an instance of SCP. Find a tour that includes all the
special directed arcs. From this solution to SCP, we replace each arc (s;, #;) by the path
path; computed within that cluster.

Figure 1 describes the algorithm in detail. See Figure 2 for a sample execution of the
algorithm for three clusters with given starting and ending vertices.

THEOREM 3.1. Let Ty, be the tour returned by Algorithim GivenST in Figure 1. Then,

I(Tn) < 3 OPT < 1.90910PT .

PROOF. The algorithm consists of solving two subproblems: TSPP with given end
vertices, and SCP. Let L be the sum of the lengths of the paths of OPT through each
cluster. Let A be the length of the other edges of OPT that are not in L (edges of OPT
that connect the different clusters together). Let D be the total length of the directed arcs
(si,4),i = 1,..., k. By Theorem 2.1, the lengths of the two solutions to TSPP with
given end vertices are at most 2L — D and %L + %D. Using the fact that the minimum
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Algorithm GivenST
Input
1. A graph G = (V, E), |V| = n, with weights I(e), e € E.
2. A partition of V into clusters Vy, ..., V.

3. Start and end vertices s; and ¢, respectively, for each cluster V;,i = 1,..., k.
returns A clustered tour.

begin

Step 1

For each V;, compute path;, a Hamiltonian path with end vertices s; and t;.
Step 2

Apply Algorithm StackerCrane with special directed arcs {(s;, t;) | i

1,...,k}to obtain tour T.
Step 3
InT, replace the special directed arc (s;, t;) by path;, i =1, ..., k.
Step 4

return the resulting tour T,,.

end GivenST
Fig. 1. Algorithm GivenST.

of a set of quantities is at most any convex combination,

I(TSPP)

IA

min(2L — D, 1L + 1D)
9 2 /3 1
2L -=D)+ 7GL+5D)

21 8
oLl - D.

IA

There exists a solution to SCP of length at most A + D. Hence, by Theorem 2.4, the
lengths of the two solutions to SCP are at most %A + 2D and 3A + D. Therefore the
solution returned by the SCP algorithm is at most

I(SCP)

IA

min(3A +2D,3A + D)
$(3A+2D) + (3A+ D)
21 19

HA+ 3D

IA

"

In Step 3 of Algorithm GivenST, the two solutions are combined by replacing arcs of
length D in the TSPP solution by the SCP solution. We obtain an upper bound on the
length of the solution 7}, thus obtained by combining the above equations.

{(Tw) [(TSPP) — D + [(SCP)

21 8 21 19
(FL-D) =D+ (A+ D)
L+ A =3oPT. 0

IA
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Fig. 2. Sample execution of Algorithm GivenST. (a) Three clusters. (b) Compute paths in each cluster. (c) Solve
the Stacker Crane instance. (d) Combine the paths in each cluster with the solution for the StackerCrane instance.

4, Given End Vertices. In this section we consider CTSP in which for each i, i =
1,...,k, we are given the two end vertices, {sil, sf}, of cluster V;. The vertices of each
cluster must be contiguous on the tour, and the end vertices of cluster V; must be sl.1 and
sl.z, but we are free to select any one of them as the start vertex and the other vertex as
the end vertex. We modify Algorithm GivenST by executing Algorithm RuralPostman
rather than Algorithm StackerCrane, since path; can be oriented in any direction. The
solution obtained consists of the special edges (s,-l, s,.z), i =1,...,k,and otherundirected
edges between the end vertices. We replace the special edges by the corresponding paths
between s; to s? computed in Step 1. Figure 3 describes the algorithm in detail.

THEOREM 4.1. Let T, be the tour returned by Algorithm GivenEnds in Figure 3. Then

I(T) < 2OPT.

PROOF. The proof is similar to that of Theorem 3.1, and we provide only a sketch. The
length of the paths computed in Step 1 is at most

I(TSPP)

IA

min(2L — D, 3L + 1D)
2eL-D)+:GL+1iD)
9 2

$L—:D.

IA
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Algorithm GivenEnds

Input

1. Agraph G = (V, E), |V| = n, with weights [(e), e € E.
2. A partition of V into clusters Vy, ..., V.

3. Ineachclusteri,i = 1,...,k, two vertices sil and v,z

returns Returns A clustered tour.
begin

Step 1
For each V;, compute path;, a Hamiltonian path with end vertices s} and s?.
Step 2
Apply Algorithm RuralPostman with the special edges (s}, s}) i =1,..., k)
to obtain tour T
Step 3
In T, replace the special edge (s}, s?) by path;, i =1, ... k.
Step 4
return the resulting tour T,,.

end GivenEnds
Fig. 3. Algorithm GivenEnds.

There is a solution to RPP of length at most A + D. The lengths of the two solutions we
can find for RPP are %(A + D) and 3A + D. Therefore the solution returned by the RPP
algorithm is at most

[A

I(SCP) < min(3(A + D),3A + D)
12(A+D)+1BA+ D)

9 1
2A+1D.

[A

It

In Step 3 of Algorithm GivenEnds, the two solutions are combined by replacing edges
of length D in the TSPP solution by the RPP solution. We obtain an upper bound on the
length of the solution T,, thus obtained by combining the above equations:

)

[(TSPP) — D + [(SCP)

9 9

(3L—-3D)—- D+ (3A+1D)

2(L+A)={0PT. O

IA

5. Given Starting Vertices. Inthis section we consider the version of CTSP in which,
for each cluster i, we are given only its starting vertex s; and we are free to select its
ending vertex. We give an algorithm with an approximation ratio of 2.643. We propose
two different heuristics, and select the shorter of the tours generated. In the first heuristic,
we combine a tour of the starting vertices with tours of the individual clusters to generate
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Algorithm GivenStart
Input

1. Agraph G = (V, E), |V| = n, with weightsl(e), e € E.
2. A partition of V into clusters Vi, ..., V.

3. In each cluster i, starting vertex s;.

returns A clustered tour

begin

Step 1
Compute a tour T; that visits all vertices of V;, for each i € (1,2, ..., k}.
Compute a tour S of just the starting vertices {s1, Sz, . . ., Sg}.
Let T, be a tour obtained by shortcutting S U (UL] T).
Step 2
For each cluster V;, choose an end vertex t; that is farthest from s;.
Let Algorithm GivenST return tour T, with start vertices s; and end
vertices t;.
Step 3
return the shorter of the tours T, and T;.

end GivenStart

Fig. 4. Algorithm GivenStart.

a clustered tour. In the second heuristic, for each cluster, we select the end vertex ¢; to
be the farthest vertex from s; within the cluster. We then find a solution using Algorithm
GivenST (Section 3) that finds a clustered tour when the start and end vertices of each
cluster are given. Figure 4 describes the algorithm,

In Step 1 we compute k + 1 tours, one for each cluster V;, and a tour that visits
just the start vertices. All these tours can be computed using the TSP algorithm of
Christofides [4]. The intuition behind this heuristic is that it does well when the sum of
the distances between the start and end vertices of each cluster in the optimal solution is
small relative to the total cost. In Step 2 we select an end vertex #; € V; that maximizes
1(s;, t;). With that selection of end vertices, we can now apply Algorithm GivenST to
find a clustered tour.

We introduce some notation to analyze the algorithm. Let A be the total cost of those
edges of OPT that connect vertices of two different clusters (there are exactly k such
edges). Let L be the sum of the lengths of the paths of OPT through the clusters. By
definition OPT = A + L. Let d be the sum of the distances between the start and end
vertices of each cluster of OPT; note that we are summing the lengths of direct edges that
connect start vertices to the end vertices chosen by OPT. Let D be the sum of distances
between s; and ¢;, ie., D = Z:'(:l [(s;, t;). Since we chose f; in V; as the vertex that
maximizes [(s;, ;),d < D.

LEMMA 5.1.  Let T; be the tour computed in Step 1 of Algorithm GivenStart. Then

I(Ty) < 2 OPT +2d.
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""" edges of d
— edgesof L
-~ - edgesof A

Fig. 5. An optimal solution with three clusters is illustrated.

PrROOF. The Hamiltonian paths through each cluster can be converted to cycles by
adding an edge that connects s; with the end vertex in that cluster of OPT (see Figure 5).
Hence there exists a collection of k tours, one through each cluster V;, whose total cost
is L 4+ d. We now follow the analysis of Christofides [4]. The sum of costs of minimum
spanning trees through each cluster is at most L. The cost of the matchings connecting
odd-degree vertices of each cluster is at most %(L + d). Therefore the sum of the & tours
computed in Step 1 is at most %L + %d . There exists a tour of just the start vertices of
length A + d, which is obtained from OPT by replacing the paths through each cluster
of length L by a direct edge connecting the end vertices and deleting the intermedi-
ate vertices. Hence the cost of the tour § computed in Step 1 is at most %(A +d). Tour T,
is obtained by combining all the above tours and its length is at most %(L +A)+2d =
20PT+2d. y

LEMMA 5.2. Let T; be the tour computed in Step 2 of Algorithm GivenStart. Then

3 3
(T) < 30PT+2L - 3d.

PROOF. The tour T; is obtained by running Algorithm GivenST after choosing an end
vertex t; for each cluster. The algorithm computes a solution to SCP (Step 2), which
is computed in turn by computing two solutions and taking the shorter of the two (see
Section 2.2). We prove that if one just takes the SCP solution computed by Algorithm
ShortArcs, we get the desired result. We observe that OPT can be a shortcut to obtain
a feasible solution to the corresponding SCP and therefore if Algorithm ShortArcs is
applied to this problem, we get a tour whose length is at most % OPT—i—% D. In this tour
we replace each arc (s;, t;) by a path from s; to ¢;. By Theorem 2.1 the lengths of such
paths is at most 2 Zf;l MST(G;)— D < 2L — D, where G is the subgraph induced by
V;. Hence the total length of the tour obtained is

IT) < GOPT+LD)— D+ (2L - D)
= JOPT+2L — 3D
< 3 OPT+2L — id,

sinced < D. L
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THEOREM 5.3. Let T,, be the clustered tour returned by Algorithm GivenStart in
Figure 4. Then

I(T,)) < 3 OPT <2.643 OPT.

PROOF. Ifd < 2L, then, by Lemma 5.1 and the obvious inequality L < OPT,
I(Ty) < 3OPT+3L < 31 OPT.

Ifd > %‘L, then the same inequality holds for /(7;) by Lemma 5.2. Since the algorithm
chooses the shorter of the tours, the theorem follows. O

6. Unspecified End Vertices. In this case we are only given the clusters and we are
free to choose the start and end vertices in the clusters. We give a 2.75 approximation
for an arbitrary number of clusters. We first apply a TSPP algorithm with unspecified
ends within each cluster. We use the direct edges between the ends of these paths as
special edges for an RPP instance. We compute an approximate tour of this instance and
finally replace each special edge by the corresponding path to produce our first tour. To
obtain our second tour, in each cluster, select two vertices s; and ¢, such that I(s;, #;) is
maximized, to be the end vertices in the cluster, and then apply Algorithm GivenEnds
to obtain a tour. Finally, we select the shorter tour. Figure 6 describes the algorithm.

As in the previous section, L denotes the sum of the lengths of the Hamiltonian paths
within the clusters in OPT, and A denotes the sum of the lengths of the remaining edges
of OPT.let D = ZLI I(s;, t;). The first algorithm works well when D is small, and
the second works well when D is large.

LEMMA 6.1.  Let T, be the tour computed in Step 1 of Algorithm UnspecifiedEnds. Then

I(Ty) < 3 OPT+}L +2D.

ProOE  Consider an optimal solution OPT. Give it an arbitrary orientation. Let u; and
v; be the first and last vertices of V; in OPT. Suppose, without loss of generality, that we
name «; and b; so that OPT visits u;, a;, b;, v; in this order. It follows that

k
) L= U, a) +1as, b) + 1(bi, vi)).

i=1

There exists a rural postman tour with special edges (a;, b;) of length at most A +
Z,’le ((ui, a;) +1(a;, b)) +1(b;, v;)) so that the length of the tour returned by Algorithm
RuralPostman is at most

k
$IA4Y (G, a) +1as, b)) + 1B, v)) | -

i=1
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Algorithm UnspecifiedEnds
Input

1. Agraph G = (V, E), |V| = n, with weights [(e), e € E.
2. A partition of V into clusters Vy, ..., V.
returns A clustered tour

begin

Step 1
Apply a TSPP algorithm with unspecified end vertices to each V;, i € (1,2,
. k)
Let path; be the resulting path on V;, and denote its end vertices by a; and b;.
Apply Algorithm RuralPostman with special edges (a;, b;),i = 1,...,k, and
let T, be the tour obtained by replacing the special edge (a;, b;) by path;, | =
1,... k.
Step 2
In each cluster find vertices s; and t; that maximize [(s;, t;).
Apply Algorithm GivenEnds with end vertices {s;, t;}, and let T be the tour that
it returns.
Step 3
return the shorter of the tours T, and T).

end UnspecifiedEnds
Fig. 6. Algorithm UnspecifiedEnds.

We now replace (for each 1) the special edge (a;, b;) by path;. Since Zle l(path;) < %L
we obtain

k k
ITy) < %<A+ (z<ul~,al~>+z<al-,b,->+z<b,~,w))) — > U@, b) + 3L
i=1 i=1
k k
< 30PT+L D (Ui a) + L@, b) + b, v) + Y (i, ar) + (b, v7)
i=1 i=1
k
3 1 )
< 30PT+3 ) (Ui @) + L, by) + L(bi, v1)) + 2D

1
< 3O0PT+3L +2D,

!

where the last inequality follows from (1). O

LEMMA 6.2. Let T; be the tour computed in Step 2 of Algorithm UnspecifiedEnds. Then

I(T)) < 3 OPT+2L - 2D.

PrROOE.  The proof is similar to that of Lemma 5.2, except that we apply Algorithm
RuralPostman instead of Algorithm StackerCrane, since we can choose either of {s;, #;} as
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the start vertex. We observe that OPT can be a shortcut to obtain a feasible solution to the
corresponding RPP. Therefore, the RPP solution computed is at most % OFPT. From this
solution, we replace each special edge (s;, t;) by a path connecting s; and t;, that includes
all vertices in V;. The length of these paths is at most 2 Zle MST(V,))—D <2L-D
(Theorem 2.1). Hence the length of the tour is at most %OPT—D + 2L — D) =
20PT+2L —2D. o

THEOREM 6.3. Let T, be the tour returned by Algorithm UnspecifiedEnds in Figure 6.
Then

PrOOF, 2D < %L, then, by Lemma 6.1 and the inequality L < OPT,
I(Ty)) < 30PT+3L < Y orrT.

If2D > %L, then the same inequality holds for [(7}) by Lemma 6.2. Since the algorithm
chooses the shorter of the tours 7 and T}, the theorem follows. 0

7. Constant Number of Clusters. In this section we consider CTSP where the number
of clusters, &, is a constant. The case k = 1 is TSP. We show that CTSP with given end
vertices is equivalent to TSPP with given end vertices. Hence we can obtain the obvious
%—approximation for this case by using the §~approximati0n for TSPP, but any further
improvement in the approximation ratio is possible only if the approximation algorithm
for TSPP with given end vertices is improved.

We also show that TSPP with given end vertices is equivalent to CTSP with unspecified
end vertices for four or more clusters. This shows that an «-approximation algorithm
for this problem would imply an «-approximation algorithm for TSPP with given end
vertices.

THEOREM 7.1. If there exists an a-approximation algorithm to TSPP with given end
vertices, then there exists an o-approximation algorithm for CTSP for a constant number
of clusters (for all the variants we consider in this paper).

PROOF. Let k be the number of the clusters. For unspecified end vertices, we repeat
the following algorithm for each possible choice of a starting vertex in each cluster.
For a given set of start vertices in each cluster, we construct an auxiliary directed graph
with k vertices as follows. Each cluster is represented by a vertex. The length of arc
(i, j) is equal to the approximate length of a Hamiltonian path that starts at s;, traverses
all the other vertices of V;, and ends at s;. To compute these arc lengths, we use the
a-approximation algorithm for TSPP with given end vertices. We find an optimal TSP
tour in the auxiliary graph by complete enumeration of all possible orderings of clusters.
Since there are at most O (n*) possible sets of starting vertices, we can repeat the above
procedure for each set and select the best tour among them. It is easy to see that when
we try the set corresponding to the same start vertices as an optimal solution, the cost
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of the tour that we compute is no more than « times OPT. If the start vertices are given
we use the same algorithm but only for the given set of start vertices. For given start
and end vertices we use the TSPP algorithm to compute a tour between each pair of
given vertices, and complete the tour optimally by complete enumeration of all possible
ordering of clusters. For fixed end vertices (when the order is not given) we enumerate
over all 2% possible orderings. a

COROLLARY 7.2. There exists a %-approximation algorithm to CTSP for a constant
number of clusters (in all the variants we consider for this paper).

REMARK 7.3. If there exists an ¢-approximation algorithm for TSPP with given end
vertices there exists an a-approximation algorithm for CTSP when the order of the
clusters and the start and end vertices are given. This follows by finding a path between
each pair of end vertices inside each cluster using the approximation algorithm for TSPP,
and connecting the paths using the given order. If the order of the clusters is specified
but the end vertices are not specified, Anily et al. [1] give a %-approximation algorithm.

THEOREM 7.4. If there exists an a-approximation algorithm for CTSP with given end
vertices and k clusters, for some k > 2, then there exists an «-approximation algorithm
for TSPP with given end vertices.

PROOE. We prove the claim for k = 2, and the same idea extends to all & > 2. Let
G = (V, E) and end vertices s and ¢ be given as an instance of TSPP. We construct an
instance of CTSP with two clusters as follows. We make two copies of G, namely, G| and
G,. The copy of vertex v in G, is identified as v;. Distances between vertices of the same
copy are the same as the distances in G. We also set [(¢}, s2) = [(t2, 51) = 0. Distances
between vertices in different copies are computed by routing the path through the linking
vertices. Thus, foru; € Gyand vy € Gy, (uy, v2) = min( (uyg, 1) +1(s2, v2), {(v2, 1)+
L(s1, u1)).

The vertices of each copy of G form a cluster and the start and end vertices are
specified to be s; and ¢;, respectively, for G;, i € {1, 2}. Any solution to CTSP with given
end vertices consists of the union of two Hamiltonian paths between s and ¢. Therefore,
we get an «-approximation for TSPP with a given end point problem by computing an
a-approximation of the instance of the CTSP, and selecting the shorter of the two s—¢
paths. O

THEOREM 7.5. If there exists an a-approximation algorithm for CTSP with unspecified
end vertices and k clusters, for some k > 4, then there exists an a-approximation
algorithm for TSPP with given end vertices.

PROOE. Clearly a CTSP algorithm for & > 4 can be used to get the same performance
guarantee for k = 4. Hence we prove the claim assuming k = 4. Let G = (V, E) and
end vertices s and ¢ be given as an instance of TSPP. We construct an instance of CTSP
with four clusters as follows (see Figure 7). We make two copies of V — {s, ¢}, namely,
V1 and V5. The copy of vertex v in V; is identified as v;. Distances between vertices of the
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(@) ©)

Fig, 7. Reduction of TSPP with unspecified end vertices to CTSP. Clusters are {s}, {a1,b1,c1.d1},
{aa, b2, c2, da}, and {r}. (a) Input graph for TSPP. (b) Graph constructed for CTSP with four clusters.

same copy are the same as the distances in G. For x € {s, t} and i € {1, 2}, the distance
between x and v; is equal to the distance between x and v in G. Distances between
vertices in different copies are computed by routing the path through s or ¢. Thus, for
up € Viand v, € Vo, l(uq, vo) = min(l(uy, t) +1(t, v2), 1wy, s) +1(s, 1)).

We have four clusters, namely {s}, {t], V|, and V,.

If there is a solution to TSPP of length L, then there is a solution to CTSP with length
2L. If we have an -approximation for CTSP, we are guaranteed to obtain a solution of
length at most 2« L. We show that any solution to CTSP induces two paths connecting
s and ¢ that also visit all the vertices in V — {s, ¢}, and by taking the shorter path we can
obtain a TSPP solution from s to ¢ of length « L. This is an «-approximation for TSPP.
There are two cases (the others are essentially isomorphic). Suppose the tour visits the
clusters in the order s, V1, ¢, V», s. In this case the tour clearly decomposes into two s—¢
Hamilton paths, one through V), and the other through V,. The second case is when the
tour goes through the clusters in the order s, ¢, V1, V2, s. When the path goes from V) to
V2 it goes through either s or ¢. Assume that it goes through s (the other case is similar).
The two paths are ¢, Vi, s and s, V3, s, 1. O

REMARK 7.6. The approximation given in [9] is for CT'SP with unspecified end vertices
with three clusters, where one is a singleton. The main point of the last theorem is that
we cannot obtain such a bound even when a single new cluster is added, unless the bound
for TSPP of % is improved.
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